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Abstract: An order-of-addition (OofA) experiment investigates how the sequence

of input factors influences the experimental response. This type of experiment

has recently gain significant interest among practitioners in clinical trials and

industrial processes. In this work, we introduce a new cost-efficient design called

the Complete Consecutive Order-Pairing (CCOP) design. The CCOP design not

only considers the effects of the component order on the response but also simul-

taneously accounts for the effects due to the component levels. We also propose

a new statistical model associated with the CCOP design for identifying the op-

timal settings of both component order and levels. The CCOP design method

evaluates the effects of two successive treatments by using the minimal number of

runs, as each pair of level settings for two different components appears exactly

once. Compared to recent studies on OofA experiments, our design effectively

handles pure order experiments and multi-level experiments with a relatively
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small run size.

Key words and phrases: Clinical Trials, Cost-Efficiency, Order-of-Addition Ex-

periments

1. Introduction

The concept of order-of-addition (OofA) experiments arises in fields such

as biochemistry, industry, agriculture, among many others. Different ar-

rangements of components in an experiment can lead to varying effects on

the response. The optimal order results in the best possible use of the com-

ponents, yielding better prognoses, more stable products, or higher profits

in different applications. Recent examples of using order effects in progno-

sis experiments are provided by Ding et al. (2015) and Bashkirtseva et al.

(2021), both concluding that the sequential use of certain therapies con-

tributed to the response.

To incorporate order effects in experimental analyses, OofA experiments

have resurfaced among researches in the design and analysis of experiments.

A major application of OofA experiments is to investigate how different or-

ders of medicine intakes significantly affect the response value, enabling the

determination of the optimal order of medicine intakes. However, this treat-

ment involves not only the order of medicine intakes but also the dosage.
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Among all researches on OofA design and analysis, only Rios et al. (2022),

Xiao et al. (2022), and Tsai (2023) considered both order and level. Their

designs exhibit good statistical properties only when the run size is afford-

able for the experimenter. However, in many real-world cases in biomedical

sciences and clinical trials, the number of observations is often limited, ne-

cessitating a design that requires a small run size to identify the optimal

component orders and levels.

The main contribution of this work is the introduction of a new class

of cost-efficient plans and the corresponding analysis procedure for OofA

experiments. This enables the collection and summarization of information

on all possible successive component-ordered pairs, regardless of the number

of component levels involved, using minimal experimental resources. The

rest of the paper is arranged as follows. Section 2 reviews all existing

methods for OofA experiments and introduces the definitions, notation,

and mathematical tools underlying our work. Section 3 provides a model

that considers all possible successive component pairs. Section 4 presents

the main results, including the general solution of starting sequences for

constructing our designs for a number of levels k > 1, depending on the

numbers of components (even or odd) and the numbers of levels (even or

odd). Section 5 compares the simulations and data analysis results for
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k > 1 and k = 1, demonstrating that our design can handle both cases

involving components and their levels as well as pure order arrangements. A

summary, along with future extensions, is provided in Section 6. All proofs

and large-scale examples are included in the supplementary material.

2. Reviews and Preliminaries

2.1 Literature Reviews

Generally speaking, there are three main modeling approaches for OofA

experiments: pairwise-order (PWO), component-position (CP), and Gaus-

sian Process (GP). The PWO approach considers the relative positions of

components in the ordering sequence, while the CP approach focuses on

the absolute positions of components. The GP approach can be general-

ized from both PWO and CP factors. Optimal designs are derived for each

model, with a comprehensive review available in Stokes (2021). Below, we

provide a brief overview of these models and their favorable designs.

A Review of PWO Modeling and Its Favorable Design. Following

the pseudo-factor approach introduced in Van Nostrand (1995), we recall

the general framework of a PWO favorable design. Suppose there are m

components (e.g, drugs, reactants). Each pair of components (i, j) is con-

sidered a factor zij in the design. We denote its value for a run in an
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2.1 Literature Reviews

experiment as 1 if j is applied after i and -1 if i is applied after j. This re-

sults in a two-level factorial design in which each factor indicates the order

of two components. Peng, Mukerjee and Lin (2019) provided a sufficient

and necessary condition for a (fractional) design to be optimal under PWO

model.

Although the properties of PWO favorable designs are good from a

theoretical perspective, the desired optimal design properties are lost when

there are not enough budget. To overcome this obstacle, Zhao, Lin and

Liu (2021) introduced another approach via the minimal-point (MP) de-

sign. It reduces the experimental cost by using only
(
m
2

)
+ 1 runs. Wang

and Mee (2022) also proposed a supersaturated Bayesian D-optimal design

constructed by the Federov exchange algorithm.

For cases involving both component order and component level, Voelkel

(2019) and Mee (2020) considered an additive model for the order effects

and level effects; the model is Ŷ = β0 +
∑

βijZij +
∑

βkXk, where the

Zijs are PWO effects and the Xks are component-level effects. Tsai (2023)

further proposed dual-orthogonal arrays (DOAs), which combined cross ar-

rays of order-of-addition orthogonal arrays (OofA-OAs) and the classical

orthogonal array to construct optimal designs for such additive models.

A Review of CP Modeling and Its Favorable Design. Yang, Sun
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2.1 Literature Reviews

and Xu (2021), Stokes (2021) and Stokes and Xu (2022) followed nominal

CP and position-based models to address the effects of positions. The effects

X
(j)
c in the CP model are coded by 1 if component c is at position j, and the

effects in the position-based model are considered to be evenly spaced time

points, which is a quantitative method. Position-based models include 1st-

order, quadratic and 2nd-order models with orthogonal polynomials of the

time points to apply components. The corresponding favorable designs for

nominal CP, the component orthogonal arrays (COAs), have strength 2 so

that for any two columns, all pairs of components appear exactly once. The

corresponding favorable design for position-based models, Fn,m, where n is

the run size and m is the number of components, is a generalized minimum

aberration design for n runs where m ≤ n ≤ m(m − 1). This approach is

useful when the absolute positions of components are important.

A Review of GP-type Modeling and Design. In addition to PWO

and CP factors, there is another class of model that depends on GP regres-

sion. Xiao and Xu (2021) first considered the generalization of both PWO

and CP factors to GP regression. Xiao et al. (2022) further generalized the

models on the basis of both order effects and dose-level effects and called

them MaGP models. Order effects can be of PWO or CP type, and dose-

level effects are considered in the traditional quantitative setting. They
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2.1 Literature Reviews

called the factors, which have both order and level effects on the response,

the quantitative-sequence (QS) factors, and proposed a QS design that has

a certain best space-filling property.

Problems. These approaches are useful for interpretation, but most

of them need a large run size to preserve desirable design properties and

estimation stability. As an alternative to existing models, we start from the

steps of the original data analysis scheme: defining important information

conceptually, collecting data, modeling important information, analyzing

data, and making decisions. We define the important information of the

order to be the consecutive pieces in the order. To reduce the run size, we

focus on the smallest pieces, which are the consecutive pairs. For example,

the order (1,2,4,3) has the smallest pieces (1,2), (2,4) and (4,3). Therefore,

the problem becomes finding a design that has the smallest run size and

covers all possible smallest paired pieces. We propose a design with a

small run size of mk2, where m is the number of components and k is

the number of component levels. This design is supersaturated under all

existing models, so we also propose a new model to analyze such small

experiments based on a Distance-based Linear Model (DBLM) Cuadras

and Arenas (1990) that will be introduced later in the next section.
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2.2 Definitions, Notation and Existing Related Tools

2.2 Definitions, Notation and Existing Related Tools

We provide the definitions required for this problem. In the remaining of

the paper, m and k are the number of components and the number of their

levels, respectively. We assume that all components have same number

of levels. The mixed-level cases are outside the scope of our paper and

will be considered as a future extension. We define the equivalence class

Fi = {i,m+ i, · · · , (k− 1)m+ i} for each k-level component i, i = 1, ...,m.

Any two elements a and b in the same equivalence class are said to be

congruent modulo m and denoted as a ≡ b (mod m). If a ̸= b but a ≡ b

(mod m), then they represent the same component but are at different

levels.

We define a run of an experiment as an m-ordered sequence formed

by elements in ∪m
i=1Fi. A design is valid for OofA experiments only if

all its runs go through each component exactly once; that is, each run

is a permutation of the m components. Mathematically, we can say that

for any run (a1, · · · , am), there is a bijection from {ai, i = 1, · · · ,m} to

{Fi, i = 1, · · · ,m} such that each ai belongs to exactly one equivalence

class. Given a run a⃗ = (a1, · · · , am), we denote a run difference vector of

length m−1 as ∆a⃗ = (a2−a1, a3−a2, · · · , am−am−1). Rephrased in terms

of the above notation, this paper aims to construct a class of valid designs
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2.2 Definitions, Notation and Existing Related Tools

D = [Di,j] that satisfies the following definition.

Definition 1. A valid design D is called a k-layer complete consecutive

order-pairing (CCOP) design if

(i) for all (a, b), where 1 ≤ a, b ≤ km and a ̸≡ b (mod m), there is exactly

the same number of pairs of (i, j) such that (a, b) = (Di,j, Di,j+1);

(ii) the run size of D is the minimum among all valid designs satisfying

property (i).

Example 1. The 1-layer CCOP design



1 2 4 3

2 3 1 4

3 4 2 1

4 1 3 2



contains all possible different pairs (1, 2), (1, 3), (1, 4), (2, 1) . . . , (4, 3) ex-

actly once.

Remark. The first condition in the definition when k = 1 is identical to

the balanced crossover design in Dean et al. (2015) and the pair-balanced

design in Xiao et al. (2022). In addition, some COA’s are unions of m
n
1-layer

designs, where n is the run size. However, a k-layer CCOP design in which
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2.3 1-layer CCOP Designs: Construction

k > 1 is different from these because of the structure of equivalence classes

that use the same components. The feature of such layer-type structures

results in a new constraint on these numbers to make a valid run. For

example, when m = 4 and k = 2, we will have 8 possible ways, labelled

1, ..., 8, to assign components. In particular, 1 ≡ 5 (mod 4) belong to

component 1, 2 ≡ 6 (mod 4) belong to component 2, and so on. If 1 is in a

run then 5 can never appear in any position of that run, that is, component

1 can appear only once in a valid run. The same argument can be applied

to components 2, 3 and 4.

Our main purpose is to give a simple way to construct a k-layer CCOP

design for any number of components m and number of levels k. Such

constructions for k = 1 are provided in Williams (1949) and Tillson (1980).

For k > 1, we propose some k-layer CCOP designs inspired by Williams

(1949). For notational simplicity in the lemmas and theorems in the later

sections, we introduce a function, denoted as f(i, a, b), that returns the

value a if i is odd and b if i is even.

2.3 1-layer CCOP Designs: Construction

Williams (1949) provided a construction method for 1-layer CCOP designs,

applicable to pure order problems. Before stating the construction from
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2.3 1-layer CCOP Designs: Construction

Williams (1949), we define the Latin square and the cyclic addition proce-

dure.

Definition 2. A Latin square A of order m is an m × m array in which

every entry x in A is an image of a mapping L : {1, . . . ,m}×{1, . . . ,m} →

{1, . . . ,m}. In this mapping, any row or column in A is a permutation of

{1, . . . ,m}, where the first and second dimensions of the domain represent

the row and column positions of x in A respectively.

Definition 3. A matrix is said to be constructed via cyclic addition pro-

cedure if each row is obtained from its preceding row +1 under modulo m.

The first row is commonly called the base block.

Example 2. The 1-layer CCOP design in Example 1 can be constructed

via a cyclic addition procedure. In specific, the second row 2 → 3 → 1 → 4

is obtained from the first row 1 → 2 → 4 → 3 by adding one to every

component under modulo 4. The third and forth rows are obtained in the

same way.

To construct a 1-layer CCOP design for even m, Williams (1949) sug-

gested using a base block r⃗1 = (1, 2,m, 3,m − 1, 4,m − 2, · · · , m
2
+ 1).

The remaining rows are then obtained via a cyclic addition procedure

r1 + a× (1, · · · , 1) (mod m), 1 ≤ a ≤ n− 1.
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2.3 1-layer CCOP Designs: Construction

Due to its cyclic addition structure, if we subtract one column of the

design matrix from another, the resulting difference will be a constant vector

under modulo m. For example, in the 1-layer CCOP design of order 4, the

difference between the second and first column is (1, 1, 1, 1). TTherefore,

if the base block consists of all possible differences induced by all possible

pairs of components, the design generated by that base block must be a

1-layer CCOP design. We describe all base blocks in the form of difference

vectors and restate the above result in the following lemma.

Lemma 1. (Williams, 1949). Let m be even. An m × m Latin square

constructed by the cyclic addition procedure is a 1-layer CCOP design if the

difference vector is defined by ∆r⃗1[i] = f(i, i,m− i).

For odd m greater than 5, Tillson (1980) proved the existence of a 1-

layer CCOP design and provided an exact construction without the cyclic

addition structure. For example, we can express a design matrix for any
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2.3 1-layer CCOP Designs: Construction

m = 4p+ 3 with positive integer p as shown below.



4p+ 2 1 4p+ 1 · · · 2p+ 2 2p+ 1 4p+ 3

p+ 1 · · · 2p+ 2 4p+ 3 1 · · · 3p+ 4

...
...

...
...

...
...

p− 1 · · · 2p 4p+ 3 4p+ 2 · · · 3p+ 2

4p+ 3 4p+ 2 2p− 1 4p− 2 · · · 3p+ 4 p+ 1


.

This design does not have a cyclic addition structure, so it is outside the

scope of this work. Readers interested in such 1-layer CCOP designs are

referred to Tillson (1980) for details. In the rest of this paper, all 1-layer

CCOP designs are constructed via the cyclic addition procedure.

When m is odd, it is impossible to construct a 1-layer CCOP design

using the cyclic addition procedure. Recall in the lemma below, Williams

(1949) proposed a base block that can have every possible pair of com-

ponents appear exactly twice. The resulting designs are no longer 1-layer

CCOP designs, but they are useful for constructing designs when k > 1.

Lemma 2. (Williams, 1949). Let m be odd. A 2m × m Latin rectangle

constructed by the cyclic addition procedure satisfies the first condition of

1-layer CCOP design if the difference vectors of two non-overlapping m×m

submatrices are ∆r⃗1[i] = f(i, i,m− i) and ∆r⃗2[i] = f(i,m− i, i).
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3. New Model for k-layer CCOP Designs

The model matrix of 1-layer CCOP designs can be recast as a supersatu-

rated variant of both PWO and CP models, but there always exist pairs

of candidate components that are fully aliased with each other due to the

mathematical structure of our designs. For example, the design in Example

1 corresponds to the model matrix



Z12 Z13 Z23 Z14 Z24 Z34

1 1 1 1 1 −1

−1 −1 1 1 1 1

−1 −1 −1 −1 −1 1

1 1 −1 −1 −1 −1



in PWO modeling and corresponds to



X
(1)
2 X

(2)
2 X

(3)
2 X

(1)
3 X

(2)
3 X

(3)
3 X

(1)
4 X

(2)
4 X

(3)
4

0 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0

0 0 1 1 0 0 0 1 0

0 0 0 0 0 1 1 0 0


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in CP modeling. Similar to Z12, Z13, and Z34 in the PWO model matrix,

or X
(1)
2 and X

(2)
3 in the CP model matrix, they are both fully aliased with

each other in groups. It can be proved that full aliasing is inevitable, so

we propose a new model suitable for our k-layer CCOP designs with such

small run sizes.

Since our goal is to predict the largest or smallest response, we use

the Distance-based Linear Model (DBLM) as formulated in Cuadras and

Arenas (1990). The procedure is as follows: (1) Metric Definition: For

the set of all permutations S, define a metric d : (S, S) → R+ ∪ {0}. (2)

Model Matrix Construction: For any d, the columns of the model matrix

are defined as d(xi, x) for i = 1, · · · , n, where the xis are the design points

selected from S and x ∈ S. Dimension reduction on the columns can be

performed at this step if needed. (3) Model Fitting: Fit the model using

β̂ = (XTX)−1XTY Ŷ = X∗β. Here, X is the distance matrix (or reduced-

dimensional distance matrix) of the n observations, and X∗ represents the

distance measurement between the points we want to predict and the n

observations x1, . . . , xn.

A major concern with this model class is defining a suitable d to measure

the discrepancy between elements in S. For k = 1, we define d(x, y) =

(m− 1)− s(x, y), where s : (S, S) → R+ ∪ {0} counts the number of pairs
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that the two sequences have in common within their orders. For example,

if 1243 is a design point, then s(1243, 1234) = 1 because they both have the

pair 12, and s(1243, 3124) = 2 because they both have the pairs 12 and 24.

We consider only pair similarities because consecutive pairs are the smallest

units that affect the response. Here is an example of a model matrix X:



0 3 3 3

3 0 3 3

3 3 0 3

3 3 3 0



An example of a model matrix X∗ for all possible permutations can be

characterized in a transposed form as follows:



2 0 2 3 3 2 3 2 3 3 2 1 1 3 3 2 2 3 2 3 3 3 1 2

2 3 3 3 1 2 3 2 0 2 3 2 2 1 2 3 3 3 2 3 3 1 2 3

2 3 3 1 2 3 1 2 3 2 3 3 3 2 2 3 2 0 3 3 1 2 3 2

3 3 1 2 3 2 2 3 3 2 1 3 3 3 2 1 2 3 2 0 2 3 3 2


.

If the effects of triples or larger groups of elements are considered important,

our metric can be defined based on coinciding fragments of length 3 or other

higher lengths. While reasonable metrics can be constructed to fit case-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0357



specific situations, it’s essential to also develop other designs that ensure

proper analysis properties according to the new model.

For the case where k > 1, in addition to assigning 1 for a fully similar

pair and 0 for a fully dissimilar pair when k = 1, we define partial similarity.

In this scenario, s(x, y) may not be an integer. Partial similarity occurs

when pairs consist of the same components but differ in their levels. A naive

definition of partial similarity involves setting uniform intervals of points

in [0, 1]. For example, when m = 4 and k = 2, we have s(1234, 1243) = 1,

s(1234, 5243) = 2/3, s(1234, 5643) = 1/3 and s(2134, 1243) = 0. Although

this definition combines two types of differences, numerical results support

the usefulness of this model for differentiating the ranks of responses.

4. Construction of k-Layer CCOP Designs with k > 1

Inspired by the results in Williams (1949), this work presents a new and

systematic method for constructing k-layer CCOP with k > 1. Several

scenarios are considered based on the number of components m and the

number of levels k. These scenarios include even numbers of components

with any levels, odd numbers of components with even levels, and odd

numbers of components with odd levels.

Regarding the relationship between the model and the design we pro-
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4.1 k-Layer CCOP Designs with Even Numbers of Components

pose, it should be noted that our k-layer CCOP design has the smallest

run size necessary to capture all the information required by this model.

In specific, the rows of the full-model matrix induced by the metric d

will satisfy d(x1, x) + · · · + d(xn, x) = (m − 1)2 along with n inequalities

d(x1, x) ≤ m−1, · · · , d(xn, x) ≤ m−1, where n is the run size of the design

matrix, and x1, · · · , xn are the design points. The design points in a k-layer

CCOP design correspond to the vertices of a polyhedron that bounds all

possible points in the full design. Thus, our k-layer CCOP design is the

smallest among all designs that avoid extrapolation predictions.

4.1 k-Layer CCOP Designs with Even Numbers of Components

The following theorem extends Lemma 1 to 1-layer CCOP designs with

2-level components when m is even.

Theorem 1. When m is even, consider the difference vectors of two base

blocks ∆r⃗1[i] = f(i, i,m − i), and ∆r⃗2[i] = f(i,m + i, 2m − i). Let 1 be

the starting element of the base block. A 2m×m submatrix M1 is obtained

from r⃗1 while another 2m×m submatrix M2 is obtained from r⃗2 under the

cyclic addition procedure. Then D =

M1

M2

 is a 4m × m 2-layer CCOP

designs.
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4.1 k-Layer CCOP Designs with Even Numbers of Components

Example 3. To illustrate this result, let us consider m = 4 and k = 2.

Here, the numbers 1, 2, 3, and 4 represent the low-level settings of compo-

nents 1, 2, 3, and 4, while the numbers 5, 6, 7, and 8 represent the high-level

settings of these components. For example, both 1 and 5 represent com-

ponent 1, which can be determined by checking if their remainders under

modulo 4 are the same. Following Theorem 1, the difference vectors of the

two base blocks are ∆r⃗1 = (1, 2, 3) and ∆r⃗2 = (5, 6, 7). The base blocks are

r⃗1 = (1, 2, 4, 7) and r⃗2 = (1, 6, 4, 3). These two base blocks generate two

8× 4 submatrices

M1 =



1 2 4 7

2 3 5 8

3 4 6 1

4 5 7 2

5 6 8 3

6 7 1 4

7 8 2 5

8 1 3 6



and M2 =



1 6 4 3

2 7 5 4

3 8 6 5

4 1 7 6

5 2 8 7

6 3 1 8

7 4 2 1

8 5 3 2


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4.1 k-Layer CCOP Designs with Even Numbers of Components

under the cyclic addition procedure. It is easy to verify that D =

M1

M2


is a 16× 4 2-layer CCOP designs.

A larger example with m = 10 and k = 2 is provided in the supplemen-

tary material. We further extend the result of Theorem 1 to k-layer CCOP

designs for any k when m is even in the following theorem.

Theorem 2. For even m, consider the difference vectors of k base blocks

∆r⃗1[i] = f(i, i,m − i) and ∆r⃗j = ∆r⃗1 +m(j − 1), for j = 2, . . . , k. Let 1

be the starting element of the base blocks. Each r⃗j leads to a different base

block, generating k km × m submatrices Mj under cyclic addition. Then,

D, obtained by stacking all Mj vertically for all j, is a k2m × m k-layer

CCOP design.

Example 4. Consider a 3-layer CCOP design with ten components. Fol-

lowing Theorem 2, when j = 1 and 2, the difference vectors of the first

two base blocks are the same as ∆r⃗1 and ∆r⃗2 from Example 3. For j = 3,

the difference vector of the third base block is ∆r⃗3 = (9, 10, 11). The base

blocks are r⃗1 = (1, 2, 4, 7), r⃗2 = (1, 6, 12, 7), and r⃗3 = (1, 10, 8, 7). These

three base blocks generate three 12× 4 submatrices M1, M2, and M3 under

the cyclic addition procedure. Consequently, D, obtained by stacking these

nine submatrices, is a 36× 4 3-layer CCOP design.
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4.2 Even-Level k-Layer CCOP Designs with Odd Numbers of
Components

A larger example form = 10 and k = 3 is provided in the supplementary

material.

4.2 Even-Level k-Layer CCOP Designs with Odd Numbers of

Components

The following theorem extends Lemma 2 to 2-layer CCOP designs when m

is odd.

Theorem 3. When m is odd, the difference vector pairs of base blocks r⃗1

and r⃗2 are formulated as ∆r⃗1[i] = f(i, i,m − i) and ∆r⃗1[m − i] = f(i, i +

m, 2m−i) and ∆r⃗2[i] = f(i,m−i, i) and ∆r⃗2[m−i] = f(i, 2m−i, i+m) for

i = 1, . . . , m−1
2

. Let 1 be the starting element of the base blocks. A 2m×m

submatrix M1 is obtained from r⃗1 while another 2m × m submatrix M2 is

obtained from r⃗2 under the cyclic addition procedure. Then D =

M1

M2

 is

a 4m×m 2-layer CCOP design.

An example with m = 11 and k = 2 is provided in the supplementary

material.

We further extend the result of 1 to k-layer CCOP designs for any even

number k when m is odd in the following theorem.

Theorem 4. When m is odd and k is even, the difference vector pairs
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4.3 Odd-Level k-Layer CCOP Designs with Odd Numbers of
Components

are formulated as ∆r⃗j[i] = f(i, i + 2m(j − 1),m − i + 2m(j − 1)) and

∆r⃗j[m− i] = f(i, i+m(2j− 1),m− im(2j− 1)) and ∆ ⃗rj+1[i] = f(i,m− i+

2m(j−1)i+2m(j−1)) and ∆ ⃗rj+1[m−i] = f(i,m−i+(2j−1), i+m(2j−1))

for i = 1, . . . , m−1
2

and odd j with 1 ≤ j ≤ k−1. Let 1 be the starting element

of the base blocks. Each r⃗j and ⃗rj+1 generates one base block, so they form

k
2
km ×m submatrices Mj and k

2
km ×m submatrices Mj+1 under cyclic

addition. Then, D, obtained by vertically stacking all Mj’s and Mj+1, is a

k2m×m k-layer CCOP design.

4.3 Odd-Level k-Layer CCOP Designs with Odd Numbers of

Components

k-layer CCOP designs with an odd number of odd-level components are

among the most challenging to construct across all dimensions. The fol-

lowing theorem outlines the construction method for k-layer CCOP designs

when m ≡ 1 (mod 4).

Theorem 5. For m ≡ 1 (mod 4) and k = 3, construct the difference

vector trios ∆r⃗1,∆r⃗′1 and ∆r⃗′′1 by ∆r⃗1[i] = f(i, i,m − i), ∆r⃗1[m − i] =

f(i, i + m, 2m − i), ∆r⃗′1[
m−1
2

− i + 1] = f(i, i,m − i), and ∆r⃗′′1 [
m−1
2

− i +

1] = i, i + m, 2m − i for i = 1, . . . , m−1
2

, and ∆r⃗′1[
m+1
2

] = m+1
2

+ 2m,

∆r⃗′′1 [
m+1
2

] = m−1
2

+ 2m, ∆r⃗′1[
m+1
2

+ i] = f(i,m − i + 2m, i + 2m), and
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4.3 Odd-Level k-Layer CCOP Designs with Odd Numbers of
Components

∆r⃗′′1 [
m+1
2

+ i] = f(i, i + 2m,m − i + 2m) for i = 1, . . . , m−3
2

. Let 1 be the

starting element of the base blocks. Then, r⃗1, r⃗′1, and r⃗′′1 generate three

3m×m submatrices M1, M
′
1, and M ′′

1 , respectively, under cyclic addition.

Then, D, obtained by stacking all three submatrices resulting from r⃗1, r⃗′1,

and r⃗′′1 , is a 9m×m 3-layer CCOP design.

Theorem 6. When m ≡ 1 (mod 4) k > 3, consider the difference vector

trios for base blocks ∆r⃗1[i] = ∆r⃗′1[
m−1
2

− i+1] = f(i, i,m− i) and ∆r⃗1[m−

i] = ∆r⃗′′1 [
m−1
2

− i+ 1] = f(i, i+m, 2m− i) for i = 1, . . . , m−1
2

; ∆r⃗′1[
m+1
2

] =

m+1
2

+2m, ∆r⃗′′1 [
m+1
2

] = m−1
2

+2m, ∆r⃗′1[
m+1
2

+i] = f(i,m−i+2m, i+2m), and

∆r⃗′′1 [
m+1
2

+ i] = f(i, i+ 2m,m− i+ 2m) for i = 1, . . . , m−3
2

; and ∆ ⃗rj+1[i] =

f(i, i+ jm,m− i+ jm), ∆ ⃗rj+1[m− i] = f(i, i+m(j+1),m− i+m(j+1)),

∆ ⃗rj+2[i] = f(i,m− i+ jm, i+ jm), and ∆ ⃗rj+2[m− i] = f(i,m− i+ jm+

1, i + jm + 1) for i = 1, . . . , m−1
2

and odd j with 3 ≤ j ≤ k − 2. Let

1 be the starting element of the base blocks. All the base blocks generate k

km×m submatrices under the cyclic addition procedure. Then, D, obtained

by stacking all the resulting submatrices, is a k2m×m k-layer CCOP design.

The remaining part of this subsection examines several unique struc-

tures of k-layer CCOP designs when there is an odd number of level and

m ≡ 3 (mod 4).
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4.3 Odd-Level k-Layer CCOP Designs with Odd Numbers of
Components

Theorem 7. When m = 3, a k-layer CCOP design does not exist for any

odd k.

Theorem 8. For m = 7 and k = 3, consider the difference vector trios

for base blocks r⃗1, r⃗′1, and r⃗′′1 as follows: ∆r⃗1 = (6, 2, 4, 11, 9, 13), ∆r⃗′1 =

(3, 5, 1, 10, 20, 16), and ∆r⃗′′1 = (17, 19, 15, 18, 12, 8). Assuming 1 is the start-

ing element of the base blocks, and for 1 ≤ a ≤ 21 − 1, the vectors r⃗1, r⃗′1,

and r⃗′′1 generate three 21 × 7 submatrices M1, M ′
1, and M ′′

1 , respectively,

under cyclic addition. The final design matrix D is obtained by stacking all

three submatrices, resulting in a 63 × 7 3-layer CCOP design. Similar to

Theorem 6, this approach can be extended to obtain k-layer CCOP designs

for any odd k > 3.

In general, cyclic addition-structured solutions are not available for

m ≡ 3 (mod 4). In graph theory, finding such solutions is equivalent to

partitioning k directed complete graphs K∗
m into k2m Hamiltonian paths.

The method proposed in Tillson (1980) offers a possible approach to con-

struct a matrix without relying on cyclic addition structure. In practice,

for an OofA experiment, it is relatively straightforward to incorporate a

placebo component (dummy variable) or an unused ground level (zero dose)

to create k-layer CCOP designs using Theorem 2 and 4.
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5. Applications

This section is divided into two parts: the first addresses multi-level simu-

lations, and the second covers 1-level simulations along with data analysis.

In the first part, we demonstrate that our results for k > 1 simulations

outperform those of the DOA and QS designs. In the second part, we show

through simulations and data analysis that even for k = 1, our design and

analysis surpass existing methods in terms of selecting the optimal setting.

Our primary goal is to identify the optimal order for response optimization

using a small design, rather than focusing on model fitting. We emphasize

the performance of the true rank identified as the optimal order by both

the design and the model.

The procedure for applying our design and analysis method with any

number of levels is outlined below and is supported by numerical studies:

(i) Select the initial design with n points from our design.

(ii) Fit our distance-based model and, if necessary, use the Dantzig selec-

tor to select variables..

(iii) Conduct a confirming experiment for points with the top or bottom

n fitted values, depending on whether maximization or minimization

is being pursued.
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5.1 Simulation with k > 1

(iv) Select the setting with the optimal observation.

5.1 Simulation with k > 1

We compare the 2-layer CCOP design with DBLM, the DOA design with

the PWO model, and the QS design with the kriging model. For this multi-

level simulation, we use a numerical setting similar to that in Mee (2020).

Starting with Y0 = 1, the response follows the pattern below.

1. If the next component is


1, then add c11

5, then add c12

.

2. If the next component is


2, then subtract c21

6, then subtract c22

.

3. If the next component is


3, then multiply by c31

7, then multiply by c32

.

4. If the next component is


4, then divide by c41

8, then divide by c42

.

In this case, m = 4, k = 2, and components are considered the same if

they have the same value modulo 4. To generate the level differences, we
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5.1 Simulation with k > 1

create a half-normal distribution ci with σ = 2
√
π and a Bernoulli trial bi

with probability 1
2
, such that ci1 = ci+bi+3(1−bi) and ci2 = ci+3bi+(1−bi)

for all i. We repeat the data generation process 100 times. Figure 1 displays

the final true rank identified by our method with 16 initial and 16 follow-up

runs, compared to a DOA with 36 runs and a QS design with 16 initial runs

and 16 follow-up runs. Since the run size is too small for active learning,

the follow-up experiment for the QS design replicates the third step of our

analysis procedure.

Figure 1: Side-by-Side Boxplots of the True Rank of the Order Selected.

In Figure 1, the x-axis shows the design name and the objective (e.g.,
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5.2 Simulation and Real Data Analysis with k = 1

DOA.max indicates a DOA design with maximization as the objective).

The y-axis represents the true rank of the order selected by the design and

its corresponding model across 100 replications. The side-by-side boxplot

demonstrates that, in most cases, our method selects sequences with a

better rank than those of the DOA and QS designs, both for maximization

and minimization tasks. In addition, our run size is at most 32, which

is equal to or smaller than that of the other methods. While our multi-

level design and basic modeling method show promise in handling multi-

level situations, further development is needed. For instance, optimizing

the follow-up experiment for small primary designs and constructing more

precise models remain open challenges.

5.2 Simulation and Real Data Analysis with k = 1

Table 1 presents the results of a full OofA experiment based on Mee (2020)

and Yang, Sun and Xu (2021). It includes two cases: Y1, a numerical

example, and Y2, which uses real data. The true function for Y1 is detailed

in Mee (2020). The maximizer for Y1 is 4132 with a value of 37, and the

minimizer is 4231 with a value of −8. The response Y2 pertains to a drug

combination experiment (a larger-the-better problem), where sequences of

four anti-tumor drugs are evaluated based on their inhibition of tumor cell
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5.2 Simulation and Real Data Analysis with k = 1

proliferation. The naive best order for maximizing Y2 is 1342, with a value

of 56.5. Since the true mean is unknown, this result is provided for reference

only. Table 2 summarizes the overall results of the analysis. Further details

on CCOP design with DBLM, MP design with PWO model, and Bayesian

D-optimal design with PWO model are provided below. Details on the two

designs from Stokes and Xu (2022) with CP-related models are provided in

the appendix.

Z12 Z13 Z23 Z14 Z24 Z34 Y1 Y2

1234 1.00 1.00 1.00 1.00 1.00 1.00 12 41.1
1243 1.00 1.00 1.00 1.00 1.00 -1.00 12 37.5
1324 1.00 1.00 -1.00 1.00 1.00 1.00 19.5 55.4
1342 1.00 1.00 -1.00 1.00 -1.00 1.00 17 56.5
1423 1.00 1.00 1.00 1.00 -1.00 -1.00 2 43.3
1432 1.00 1.00 -1.00 1.00 -1.00 -1.00 17 51.2
2134 -1.00 1.00 1.00 1.00 1.00 1.00 12 46.1
2143 -1.00 1.00 1.00 1.00 1.00 -1.00 12 27.8
2314 -1.00 -1.00 1.00 1.00 1.00 1.00 -3 39.5
2341 -1.00 -1.00 1.00 -1.00 1.00 1.00 2 46.4
2413 -1.00 1.00 1.00 -1.00 1.00 -1.00 32 34.4
2431 -1.00 -1.00 1.00 -1.00 1.00 -1.00 2 39.4
3124 1.00 -1.00 -1.00 1.00 1.00 1.00 4.5 53.5
3142 1.00 -1.00 -1.00 1.00 -1.00 1.00 2 51.2
3214 -1.00 -1.00 -1.00 1.00 1.00 1.00 4.5 50.8
3241 -1.00 -1.00 -1.00 -1.00 1.00 1.00 9.5 51.4
3412 1.00 -1.00 -1.00 -1.00 -1.00 1.00 7 52.9
3421 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 7 53.4
4123 1.00 1.00 1.00 -1.00 -1.00 -1.00 22 39.1
4132 1.00 1.00 -1.00 -1.00 -1.00 -1.00 37 46.4
4213 -1.00 1.00 1.00 -1.00 -1.00 -1.00 22 37.2
4231 -1.00 -1.00 1.00 -1.00 -1.00 -1.00 -8 42.1
4312 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 7 46.8
4321 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 7 41.8

Table 1: The Dataset for the Illustrative Example

We evaluate six designs and six models in total. Our 1-layer CCOP
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5.2 Simulation and Real Data Analysis with k = 1

Response Design Name Run Size Model Rank(Max) Rank(Min)
Y1 1-layer CCOP 4+3 DBLM, Eq (5.1) 1 1
Y1 1-layer CCOP* 4+3 DBLM, Eq (5.2) 1 1
Y1 MP 7 PWO, Eq (5.3) 1 2
Y1 Bayesian D 7 PWO, Eq (5.4) 1 2
Y1 F8,4 8 1st-order, Eq (S3.1) 19 13
Y1 F8,4 8 Quadratic, Eq (S3.2) 3 3
Y1 F12,4 12 2nd-order, Eq (S3.3) 3 13
Y1 F12,4 12 Nominal CP, Eq (S3.4) 13 13
Y2 1-layer CCOP 4+3 DBLM, Eq (5.5) 1 -
Y2 1-layer CCOP* 4+3 DBLM, Eq (5.6) 2 -
Y2 MP 7 PWO, Eq (5.7) 5 -
Y2 Bayesian D 7 PWO, Eq (5.8) 5 -
Y2 F8,4 8 1st-order, Eq (S3.5) 19 -
Y2 F8,4 8 Quadratic, Eq (S3.6) 19 -
Y2 F12,4 12 2nd-order, Eq (S3.7) 19 -
Y2 F12,4 12 Nominal CP, Eq (S3.8) 13 -

Table 2: Data Analysis Summary Table

design suggests four runs 1243, 2314, 3421, and 4132. To validate that our

results are not due to chance, we provide another 1-layer CCOP, denoted

as CCOP∗ in Table 2, which proposes four different runs 1423, 234, 3241,

and 4312. Note that this CCOP is not derived from our construction.

Both CCOP designs are fitted using the DBLM. The MP design selects

seven runs 1234, 2314, 2143, 1342, 3241, 4213, and 4312. The Bayesian

D-optimal design selects seven runs 1243, 1324, 2341, 3412, 3214, 4213, and

4312. Both the MP design and the Bayesian D-optimal design are fitted

using the PWO model.

The DBLM fitted model for the 1-layer CCOP design, {1243, 2314, 3421, 4132},
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5.2 Simulation and Real Data Analysis with k = 1

is given by:

Ŷ = 1.889d(1243, X) + 6.889d(2314, X) + 3.556d(3421, X)− 6.444d(4132, X).

(5.1)

According to this model, the top four fitted values are selected from 4132,

1324, 2413, and 3241. After a follow-up experiment for these top values,

the maximizer 4132 is identified among the 7 runs. Similarly, the bottom

four fitted values are 2314, 1423, 3142, and 4231. The minimizer 4231 is

identified among the 7 runs.

To illustrate the effectiveness of our process even when the true max-

imizer is not included in our design, we consider another 1-layer CCOP

design, {1423, 2134, 3241, 4312}. The DBLM fitted model for this design is

Ŷ = 2.722d(1423, X)− 0.611d(2134, X) + 0.222d(3241, X) + 1.056d(4312, X).

(5.2)

After the follow-up experiment for 2134, 1324, 2413, and 4132 with top

fitted values, and 1423, 2314, 3142, and 4231 with bottom fitted values, we

again identify the maximizer 4132 and the minimizer 4231 in 7 runs.

In contrast, the fitted PWOmodel for the MP design {1234, 2314, 2143, 1342, 3241, 4213, 4312}
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5.2 Simulation and Real Data Analysis with k = 1

is

ŷ = 10.438− 0.938X12 + 8.438X13 − 1.875X23 − 4.375X14 − 0.625X24 + 0.938X34.

(5.3)

This model identifies the maximizer 4132 with 7 runs, matching our total

run size. However, it fails to identify the minimizer 4231, instead identifying

2314 with a value of −3, while 4231 has a value of −8.

The Bayesian D-optimal design {1243, 1324, 2341, 3412, 3214, 4213, 4312}

results in the model

ŷ = 11.375− 1.875X12 + 9.375X13 − 3.750X23 − 2.500X14 − 0.625X24 + 1.496 · 10−15X34,

(5.4)

This model is very similar to that of the MP design. It identifies the maxi-

mizer 4132 but fails to identify the minimizer 4231, instead identifying the

order 2314 with the value −3 as the smallest fitted value.

For the real data Y2, similar procedures are followed. The naive op-

timizer 1342 is not included in the two 1-layer CCOP designs used. The
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5.2 Simulation and Real Data Analysis with k = 1

fitted model for the first 1-layer CCOP design, {1243, 2314, 3421, 4132}, is:

Ŷ = 7.144d(1243, X) + 6.478d(2314, X) + 1.844d(3421, X) + 4.178d(4132, X).

(5.5)

After the follow-up experiment for 3421, 1342, 2134, and 4213 with top

fitted values, we identify the naive optimizer 1342 with Y2 = 56.5 in 7 runs.

The second 1-layer CCOP design, {1423, 2134, 3241, 4312}, has the fitted

model:

Ŷ = 6.411d(1423, X) + 5.478d(2134, X) + 3.711d(3241, X) + 5.244d(4312, X).

(5.6)

After the follow-up experiment for 3241, 1324, 2413, and 4132 with top

fitted values, we identify 1324 with Y2 = 55.4 in 7 runs, which ranks second

among all observations and was not included in the initial design.

In contrast, the MP design {1234, 2314, 2143, 1342, 3241, 4213, 4312}

results in:

ŷ = 43.388 + 0.563X12 + 0.238X13 − 4.475X23 − 1.475X14 − 3.225X24 + 6.088X34.

(5.7)
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Similarly, the Bayesian D-optimal design {1243, 1324, 2341, 3412, 3214, 4213, 4312}

gives:

ŷ = 45.312 + 1.312X12 + 0.988X13 − 4.475X23 − 2.275X14 + 1.112X24 + 4.475X34.

(5.8)

Both MP and Bayesian D-optimal designs identify the sequence 3412 with

Y2 = 52.9.

In conclusion, our designs are constructed systematically and can be

easily formulated using general formulas. In many cases, our method out-

performs other designs in identifying the optimal order. While our model

fitting may not be perfect, our approach is effective in ranking response se-

quences. Although it is not ideal for estimating the entire response surface,

it excels at evaluating the relative ranking between responses.

6. Summary and Discussion

In this work, we propose a systematic construction method for k-layer

CCOP designs under the following scenarios: (1) an even number of com-

ponents; (2) an odd number of k-level components where k is even; and (3)

an odd number of k-level components where k is odd. Our k-layer CCOP

designs follow a similar structure to those in Williams (1949). This new
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class of designs has the following properties:

1. They can be systematically constructed using our theorems.

2. They are highly cost-efficient, with a run size of at most 2mk2.

3. All ordered pairs occur exactly once in k-layer CCOP designs.

4. They can accommodate components with any level of user interest.

We introduce a new procedure for data analysis by first defining important

information as the smallest units that can describe the ordering. These

units are used to construct the CCOP design and its corresponding model,

DBLM. Our design is the smallest to encompass all necessary information.

Both for k = 1 and k > 1, our design and model demonstrate cost-efficiency

in identifying the optimal order, even though the model is defined in a

simple and naive manner.

It is important to note that our systematic construction is incomplete

for the case where m = 4p + 3 and p > 1, which is expected to be highly

complex, if not infeasible. This issue will be addressed in a future exten-

sion of this paper. In additional, all components of k-layer CCOP designs

constructed here are assumed to be at the same level, which may not be re-

alistic in some scenarios. For instance, different medicines may have varying
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dosages available for patients. Therefore, constructing mixed-level k-layer

(nearly-)CCOP designs represents a natural extension of this work.

In practice, OofA designs have numerous applications. In clinical trials,

they can be used to identify the optimal orders and dosages of medicines

that result in the best patient outcomes. For supercomputing scheduling

problems, a one-level OofA design can effectively schedule jobs to minimize

waiting time. Moreover, OofA designs are applicable in various industrial

experiments where experimental components are not restricted to a single

level. Moreover, our designs can serve as a ”smart initialization” method

Hsu and Phoa (2018) for metaheuristic algorithms in ordering problems,

such as the traveling salesman problem Yen and Phoa (2021).

Supplementary Materials

The supplementary material consists of two appendix sections: (1) Exam-

ples, (2) Proof of Theorems, and (3) Simulation and Real Data Analysis

with k = 1 for CP-related Models.
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