
Statistica Sinica Preprint No: SS-2023-0356 
Title Inference on Large-scale Generalized Functional Linear 

Model 
Manuscript ID SS-2023-0356 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202023.0356 

Complete List of Authors Kaijie Xue and 
Riquan Zhang 

Corresponding Authors Riquan Zhang 
E-mails zhangriquan@163.com 



Statistica Sinica

Inference on Large-scale Generalized Functional Linear Model

Kaijie Xue and Riquan Zhang*

Shanghai University of International Business and Economics

*corresponding author: zhangriquan@163.com

Abstract: In this work, we extend the classical generalized functional linear model to a

large-scale generalized functional linear model to handle a variety of complex situations

where the response (possibly discrete) can be nonlinearly linked to an ultra-high number

of functional predictors. Unlike most existing requirements on functional data, we don’t

need to impose any conditions regarding eigenvalue-decay or square-integrability on those

functional predictors, resulting in a more flexible but challenging model framework. Based

on a penalized model estimator, we develop a general inferential method to assess the sig-

nificance of an arbitrary group of regression curves. Concretely, a pseudo score function is

adopted to construct the associated confidence region for the regression curves of interest.

Notably, the proposed test is justified uniformly convergent to nominal level, without any

demand on estimation consistency of the regression curves. Finally, numerical studies are

carried out to show the empirical performance of the proposed test.

Key words and phrases: high dimensions, eigenvalue-decay-free, square-integrable-free,

estimation-consistency-relaxed, multiplier bootstrap.
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1. Introduction

A series of work (Ramsay and Dalzell, 1991; Yuan and Cai, 2010; Malfait and

Ramsay, 2003; Fan and Zhang, 2000; Cardot et al., 1999) have been devoted to

the study of classical functional linear model (FLM) containing a single func-

tional predictor, focusing on either theoretical basis (Hall and Horowitz, 2007;

Cai and Yuan, 2012; Ramsay and Silverman, 2005) or inferential methods (Car-

dot et al., 2003; Shang and Cheng, 2015a; Lei, 2014; Hilgert et al., 2013; Zhang

and Chen, 2007). As an important extension of FLM, the generalized functional

linear model (GFLM) has been frequently employed to model the more com-

plicated (possibly nonlinear) association between a response Y and a functional

predictor X(t) ∈ L2(T ), where the random process X(·) is defined and square-

integrable on a compact subset T ⊆ R. This model has been intensively studied

by many articles (e.g., Müller and Stadtmüller, 2005; Shang and Cheng, 2015a;

Escabias et al., 2004). Concretely, given a sample of n i.i.d pairs {Yi, Xi(·)}, the

conditional density of the classical GFLM under the commonly-used canonical

link belong to an exponential family, which takes the simple form:

f(yi|Xi, β, φ) = exp
{yiδ̃i − b(δ̃i)

a(φ)
+ c(yi, φ)

}
, i = 1, . . . , n (1.1)
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where a(·), b(·), and c(·, ·) are known functions, and φ is the dispersion parame-

ter. The linear predictor δ̃i = α0 +
∫
T
Xi(t)β(t)dt, where α0 is the intercept. The

random processesXi are set as mean zero, i.e., EXi(t) = 0 for all t ∈ T , and the

regression functions β(t) are assumed square-integrable satisfying β ∈ L2(T ).

The errors denoted by εi = Yi − E(Yi|Xi) = Yi − b′(δ̃i) are independent of

each other, having mean zero and conditional variances var(εi|Xi) = a(φ)b′′(δ̃i).

Moreover, the classical GFLM has been generalised to settings allowing for a fi-

nite number of functional predictors (e.g., Li and Zhu, 2020; Xiao et al., 2021).

Nevertheless, when a GFLM is considered under large-scale setting, the

number of predictors pn can be potentially much greater than the sample size

n, in spite of the parsimonious assumption that the sparsity level qn = card{j :

βj 6= 0} is of a fraction logarithmic order of n. As an illustrative example,

the illness status of a certain psychiatric disorder may rely on a small portion

of a great many potential brain areas, where the electroencephalography data

measured over time can be obtained for each area. Besides the curse of low

dimensionality, another drawback of the classical GFLM is that it demands its

linear subcase (FLM) to have homogeneous errors εi, whereas it is common to

encounter heterogeneous errors in practice. To address these shortcomings, the

conditional density function of a large-scale generalized functional linear model
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with a possibly heterogeneous linear subcase (LGFLMhete) is formulated as:

fi(yi|Xi, β, φi) = exp
{yiδi − b(δi)

ai(φi)
+ ci(yi, φi)

}
, i = 1, . . . , n (1.2)

with the linear predictor δi = α0+
∑pn

j=1

∫
T
Xij(t)βj(t)dt, where the data dimen-

sion pn is permitted to grow exponentially in n. For technical convenience, we

set the leading qn regression curves {βj : j = 1 . . . , qn} nonzero. Notably, under

the linear subcase of model (1.2) with b(t) = 2−1t2, it is not hard to verify that

the errors εi = Yi−E(Yi|Xi) = Yi−b′(δi) can be heterogeneous with mean zero

and possibly different variances and distributions, due to the reason that ai(φi)

may vary in i. Like other literature on GLM, we assume maxi≤n ai(φi) < ∞

throughout the paper, without loss of generality. Notice that the canonical link

function of (1.2) is given by g(·) = (b′)−1(·), which is completely determined

by the function b(·). Apparently, the LGFLMhete largely extends our previous

work Xue and Yao (2021) by permitting the framework of a large-scale general-

ized linear model with a possibly heterogeneous linear subcase. Indeed, extend-

ing the standard high-dimensional linear model to accommodate heterogeneity

or nonlinearity is not a straightforward task, to say nothing of functional data.

In terms of the basis representations of those random processes Xij , we adopt a

common pre-fixed orthornormal and complete basis {bk : k ≥ 1} on T , instead
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of seeking data-driven bases (e.g., FPCA) which are computationally intensive

especially in the context of pn � n.

In this article, we concentrate on constructing a confidence region for any

given subset of regression curves {βj : j ≤ pn}, giving rise to a valid infer-

ential method on the general hypothesis regarding that subset. The difficulty of

developing the method comes from five major challenges/advantages. The first

challenge is due to the more flexible framework of a generalized linear model,

coupled with the rather complicated correlation structure of a large-scale number

of functional predictors, which permits exponentially growing pn. In compari-

son, existing work on the classical GFLM (and its variants) is more stringent

requiring a fixed data dimension p. Our previous work Xue and Yao (2021)

did propose a testing procedure regarding ultra-high functional predictors, but

only the linear framework is considered and it fails to cover a confidence re-

gion. The second challenge is the allowance of heterogeneous errors under the

linear subcase of LGFLMhete, whereas all current articles on GFLM demand

i.i.d. errors for their linear subcases. The third challenge is due to the “square-

integrable-free” advantage of our LGFLMhete that permits any j-th functional

predictor to satisfy
∫
T
E(X2

ij)dt = ∞, whereas all existing literature on GFLM

strictly demands
∫
T
E(X2

ij)dt < ∞ for every j. The fourth challenge is due to

the “eigenvalue-decay-free” advantage that sets LGFLMhete free from any re-
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strictions on the decay of eigenvalues of functional data, whereas current work-

s on GFLM either require explicit decay restrictions on eigenvalue-gap (e.g.,

ωjk − ωj,k+1 & k−a−1 for some a > 1) or impose implicit decay constraints

to ensure a bounded exponential expectation in Bahadur representation for the

functional data (e.g.,Assumption A4 in Shang and Cheng, 2015b). For post-

regularization inference on LGFLMhete, it is common to construct the proce-

dure based on a penalized estimator {β̂j : j ≤ pn} such as in Xue and Yao

(2021). The fifth challenge is due to the advantage of “estimation-consistency-

relaxed” since no estimation consistency of estimated curves {β̂j : j ≤ pn} is

needed to conduct inference in the framework of the LGFLMhete, which differs

from most related works (e.g., Xue and Yao, 2021).

The organization of the remainder of the paper is as follows. Section 2 first

details a regularized estimator {β̂j : j ≤ pn} ∪ {α̂0} under a wide range of ei-

ther nonconvex or convex penalties, where α̂0 is the estimated intercept. Then,

the estimation consistency of a scaled-version of {β̂j : j ≤ pn} is established in

Theorem 1. In section 3, the confidence region of a general hypothesis is provid-

ed in Theorem 2, leading to the proposed testing procedure. The power analysis

of the test are then given in Theorems 3–4. Simulation results in section 4 and

real data analysis in section 5 demonstrate the effectiveness of the inferential

procedure. Appendix A summarizes the conditions imposed on LGFLMhete.
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Appendix B first presents the assumptions on penalty function, and then the al-

gorithm to get the regularized estimator. For space economy, the lemmas with

proofs and the proofs of theorems are relegated to an online Supplement.

2. Group penalized model estimation

For the LGFLMhete model in (1.2), given a pre-fixed orthonormal and complete

basis {bk : k ≥ 1}, the basis representations of the regression curves βj and

predictors Xij can be expressed as

βj =
∞∑
k=1

ηjkbk, Xij =
∞∑
k=1

θijkbk,

with the zero-mean random variables θijk =
∫
T
Xij(t)bk(t)dt, whose variance is

denoted by ωjk = E(θ2
ijk) > 0. In this context, {ωjk : k ≥ 1} are regarded as

eigenvalues of the functional predictor Xij . Thus the linear predictors δi in (1.2)

has the equivalent form

δi = α0 +

pn∑
j=1

∞∑
k=1

θijkηjk, i = 1, . . . , n (2.1)

which entails the equivalence between each βj and an infinite-dimensional se-

quence of coefficients {ηjk : k ≥ 1}. Due to the infeasibility to directly estimate
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an infinite sequence, we adopt the commonly-used technique of truncation to

approach the model (e.g., Kong et al., 2016; Xue, 2023; Xue et al., 2024; Fan

et al., 2015; Hall and Horowitz, 2007; Yao et al., 2005; Rice and Silverman,

1991). Specifically, using a common truncation size sn that increases in n, the

linear predictor δi in (2.1) can be approximated by the truncated version δ∗i as

δ∗i = δi −
pn∑
j=1

∞∑
k=sn+1

θijkηjk = α0 +

pn∑
j=1

sn∑
k=1

θijkηjk. (2.2)

After truncation, our next step is to regularize those truncated predictors, in

the same spirit as the group penalization procedure (Yuan and Lin, 2006), where

each predictor Xj is viewed as a group with dimension sn. Specifically for each

j-th predictor, penalization is implemented on the quantity n−5/9‖Θjηj‖2, with

matrix Θj = (θijk)1≤i≤n;1≤k≤sn and vector ηj = (ηj1, . . . , ηjsn)′. To this end,

denoting η = (η′1, . . . , η
′
pn)′, we solve the following optimization problem with

respect to (η, α0) to obtain a penalized estimator,

min
‖η‖1+|α0|≤Bn

{ Qn(η,α0)︷ ︸︸ ︷
n−1

n∑
i=1

{
b(δ∗i )− Yiδ∗i

}
︸ ︷︷ ︸

Ln(η,α0)

+

pn∑
j=1

ρλn
(
n−5/9‖Θjηj‖2

)
︸ ︷︷ ︸

Pλn (η)

}
(2.3)

in which the penalty function ρλ(·) that relies on a regularization parameter

λ > 0 can be a large number of popular candidates including SCAD, MCP and
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LASSO (Loh and Wainwright, 2015), provided that assumptions (B1)-(B5) are

met in Appendix B. The upper bound Bn is allowed to be any positive real num-

ber so that the genuine value (η∗, α∗0) is feasible (i.e., ‖η∗‖1 + |α∗0| ≤ Bn). Based

on any solution (η̂, α̂0) of (2.3), the penalized estimator for βj can be expressed

as β̂j(t) =
∑sn

k=1 η̂jkbk(t). An algorithm adapted from Ravikumar et al. (2008)

is provided in Appendix B to solve the optimization problem (2.3). In imple-

mentation, we tune the parameters sn and λn through cross-validation. Before

proceeding, we write a diagonal matrix as Λ = diag{Λ1, . . . ,Λpn} with subma-

trices Λj = diag{ωj1, . . . , ωjsn}. Notably, to conduct inference, it is adequate

to use a penalized estimator (η̂, α̂0) whose scaled-form (Λ1/2η̂, α̂0) satisfies es-

timation consistency, thus relaxing both estimation and selection consistencies

on (η̂, α̂0) and hence the curves β̂j . As a result, we present Theorem 1 below to

establish the estimation consistency of the scaled-form (Λ1/2η̂, α̂0) under mild

conditions (A1)-(A5) from Appendix A and (B1)-(B5) from Appendix B.

Theorem 1. Under conditions (A1)–(A5) and (B1)–(B5), for any local minima

(η̂, α̂0) of Qn(η, α0) obtained from (2.3), we have with probability tending to 1:

1) max
{
‖Λ1/2(η̂− η)‖2, |α̂0−α0|

}
≤ c1λnq

1/2
n n−1/18, for some constant c1 > 0.

2) ‖Λ1/2(η̂ − η)‖1 ≤ c2λns
1/2
n qnn

−1/18, for some constant c2 > 0.

It is noteworthy that Theorem 1 is essentially different from and more chal-
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lenging to show than the corresponding results in Xue and Yao (2021), since

a more general framework of a GLM including possibly ultrahigh number of

functional predictors is under concern. Additionally, the regression functions

β̂j(t) =
∑sn

k=1 η̂jkbk(t) are not necessarily consistent in estimation under The-

orem 1, setting itself apart from all existing results on GFLM. For a concrete

example, based on Theorem 1, if we impose extra restrictions that

|η̂jk − ηjk| � λnω
−1/2
jk s−1/2

n n−1/18 for j ≤ qn, k ≤ sn and

λ2
nn
−1/9s−1

n

qn∑
j=1

sn∑
k=1

ω−1
jk →∞,

then it can be deduced that
∑pn

j=1 ‖β̂j − βj‖2
L2
→ ∞. As we shall see in the

forthcoming section, Theorem 1 provides theoretical guarantee on using some

inconsistent estimators β̂j(t) in post-regularization inference. Such desired fea-

ture for inference or testing is described as “estimation-consistency-relaxed”.

3. Inferring a general hypothesis on LGFLMhete

Based on an estimator from (2.3), it is of primary interest to conduct post-

regularization inference on a general spectrum of hypotheses regardingLGFLMhete.

To motivate such general hypothesis, we first let the index set Pn = {1, . . . , pn}

to denote all predictors. Second, we write an arbitrary nonzero subset as Hn ⊆

Pn containing |Hn| = hn > 0 elements, whose complement is Hc
n = Pn \ Hn.
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To this end, we can formulate the general hypothesis as

H0 : ‖βj‖L2 = 0 for every j ∈ Hn v.s. Ha : ‖βj‖L2 6= 0 for some j ∈ Hn, (3.1)

whose generality stems from the arbitrary selection of the size hn ≤ pn.

To execute the inference on (3.1), the main solution is to construct a confi-

dence region of {βj : j ∈ Hn} based on a pseudo score function and a penalized

estimator (η̂, α̂0) from (2.3). Specifically, a pseudo score function represents

any extended version of the conventional score function, that will result in a

valid inference (see, for example, the decorrelated score function in Ning and

Liu, 2017). To motivate the pseudo score function of LGFLMhete, we first

present some useful notations. Here, we let ηHn to denote the vector of attaching

{ηj : j ∈ Hn} vertically in a column, whose estimator η̂Hn is defined analogous-

ly. Also, we write βHn = {βj : j ∈ Hn} to represent the collection of regression

curves. We further denote F{bk:k≤sn}(βHn) = ηHn as the function of mapping

βHn onto ηHn . We write the matrix ΘHn by attaching {Θj : j ∈ Hn} in a line,

and let Θ = ΘPn for brevity. For each j ≤ pn, we write the moment estimator

of the diagonal matrix Λj = diag{ωj1, . . . , ωjsn} by Λ̂j = diag{ω̂j1, . . . , ω̂jsn},

with each ω̂jk = n−1
∑n

i=1 θ
2
ijk. We then formulate the two diagonal matrices

ΛHn = diag{Λj : j ∈ Hn} and Λ = diag{Λj : j ∈ Pn}, whose moment esti-

mates are given by Λ̂Hn = diag{Λ̂j : j ∈ Hn} and Λ̂ = diag{Λ̂j : j ∈ Pn}. To
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this end, we present a series of matrices (expressed in row vectors) as

Θ = (G1, . . . , Gn)′,ΘHn = (E1, . . . , En)′,ΘHcn = (F1, . . . , Fn)′, Θ̃ = ΘΛ−1/2 = (G̃1, . . . , G̃n)′,

Θ̃Hn = ΘHnΛ
−1/2
Hn = (Ẽ1, . . . , Ẽn)′, Θ̃Hcn = ΘHcnΛ

−1/2
Hcn = (F̃1, . . . , F̃n)′, Θ̆ = ΘΛ̂−1/2 = (Ğ1, . . . , Ğn)′

Θ̆Hn = ΘHnΛ̂
−1/2
Hn = (Ĕ1, . . . , Ĕn)′, Θ̆Hcn = ΘHcnΛ̂

−1/2
Hn = (F̆1, . . . , F̆n)′.

Several scaled-forms of the vector η are abbreviated by η̃ = Λ1/2η and η̆ =

Λ̂1/2η, and similarly for η̃Hn and η̆Hn . Since the loss function Ln(η, α0) =

n−1
∑n

i=1{b(δ∗i ) − Yiδ
∗
i } with each δ∗i = α0 +

∑pn
j=1

∑sn
k=1 θijkηjk = α0 +∑pn

j=1

∑sn
k=1 ω

−1/2
jk θijkη̃jk, it causes no confusion to write Ln(η̃, α0) = Ln(η, α0)

for convenience. In our model, it is natural to adopt Ln(η̃, α0) as a pseudo neg-

ative log-likelihood function, where the genuine version is usually inaccessible

due to the unknown parameters φi such as in the case of a large-scale FLM with

heterogenous errors. At this point, we denote an unknown matrix w by

w = {E(FiFi
′)}−1E(FiẼ

′
i) = (w1, . . . , whnsn) ∈ R(pn−hn)sn×hnsn ,

with eachwj = (wj1, . . . , wj,(pn−hn)sn)′. Here, we use the value ρn = supj≤hnsn ρnj

(ρnj = card{l : wjl 6= 0}) to stand for the degree of sparsity of w. Note that

condition (A5.4) demands ρn to be sparse in n. To this end, the pseudo score
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function for η̃Hn can be formed by

S(η̃Hn ; ηHcn , α0) = n−1
n∑
i=1

(
w′Fi − Ẽi

)
{Yi − b′(δ∗i )}, (3.2)

where δ∗i = α0+
∑pn

j=1

∑sn
k=1 θijkηjk. Nevertheless, the utility of S(η̃Hn ; ηHcn , α0)

is limited since we don’t know the values of {ΛHn , ηHcn , α0, w}, which need to

be estimated. To bridge this gap, we approximate ΛHn by Λ̂Hn , and use the es-

timator (η̂Hcn , α̂0) in Theorem 1 to estimate (ηHcn , α0). Due to the possibly high-

dimensionality of w, it is reasonable to use a penalized method for estimation.

Precisely, for each j ≤ hnsn, one solves the following penalization problem

ŵj = argmin
wj

[
(2n)−1

n∑
i=1

(Ĕij − F ′iwj)2 + λ∗n‖Λ̂
1/2
Hcnwj‖1

]
, (3.3)

leading to the estimate ŵ = (ŵ1, . . . , ŵhnsn), where the penalty parameter λ∗n >

0 is tuned via cross-validation. Plugging ŵ and Λ̂Hn into (3.2), we reach an

estimated version of S(η̃Hn ; ηHcn , α0) as

Ŝ(η̃Hn ; ηHcn , α0) = n−1
n∑
i=1

(ŵ′Fi − Ĕi){Yi − b′(α0 + Ĕ′iη̃Hn + F ′iηHcn)}. (3.4)

Further substituting (ηHcn , α0) by (η̂Hcn , α̂0) gives rise to the estimated version
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of the pseudo score function for η̃Hn , denoted by

Ŝ(η̃Hn ; η̂Hcn , α̂0) = n−1
n∑
i=1

(ŵ′Fi − Ĕi){Yi − b′(α̂0 + Ĕ′iη̃Hn + F ′i η̂Hcn)}, (3.5)

which plays a crucial role in establishing the inferential procedure. For brevity

of notation, we introduce a new function T̂ (βHn) as

T̂ (βHn) = n1/2Ŝ(Λ̂
1/2
HnF{bk:k≤sn}(βHn); η̂Hcn , α̂0), (3.6)

where βHn = {βj : j ∈ Hn} and F{bk:k≤sn}(βHn) = ηHn . Before introducing

the cutoff value in inference, we propose a related term T̂e, which takes the form

T̂e = n−1/2
n∑
i=1

ei(ŵ
′Fi − Ĕi){Yi − b′(α̂0 +G′iη̂)},

where e = {e1, . . . , en} represents a collection of i.i.d. N(0, 1), that are inde-

pendent of the data. Then, the cutoff value is defined as the (1 − α)th quantile

of ‖T̂e‖∞, denoted by

cB(α) = inf{t ∈ R : Pe(‖T̂e‖∞ ≤ t) ≥ 1− α}, α ∈ (0, 1) (3.7)

where Pe(·) represents the conditional probability that only treats e as random.

The computation of cB(α) can be fastly achieved through multiplier bootstrap
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on e. The following Theorem 2 lays down a theoretical basis for conducting

general inference under fairly flexible conditions (A1)-(A5) from Appendix A

and (B1)-(B5) from Appendix B.

Theorem 2. Under conditions (A1)–(A5) and (B1)–(B5), the Kolmogorov dis-

tance between the distributions of ‖T̂ (βHn)‖∞ and ‖T̂e‖∞ satisfies

lim
n→∞

sup
t≥0

∣∣P (‖T̂ (βHn)‖∞ ≤ t)− Pe(‖T̂e‖∞ ≤ t)
∣∣ = 0,

and consequently, lim
n→∞

sup
α∈(0,1)

∣∣P{‖T̂ (βHn)‖∞ ≤ cB(α)} − (1− α)
∣∣ = 0.

The quantities T̂ (βHn) and cB(α) can be referred to (3.6) and (3.7). Based

on Theorem 2, a 100(1− α)% confidence region of βHn takes the form

CR1−α = {βHn : ‖T̂ (βHn)‖∞ ≤ cB(α)}. (3.8)

Thus, the corresponding test is to reject the H0 specified by (3.1) at nominal

level α ∈ (0, 1) provided that

‖T̂ (0)‖∞ > cB(α), (3.9)

with cutoff value cB(α) and test statistic ‖T̂ (0)‖∞. Notably, the inferential pro-

cedure induced by Theorem 2 is uniformly consistent for every 0 < α < 1.

Also notice that Theorem 2 is essentially distinguished from its counterpart in
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our previous work Xue and Yao (2021), due to not only the more challenging

framework of a large-scale generalized linear model, but also the fact that a con-

fidence region is established instead of just an asymptotic test. As a result, such

confidence region can be used to analyze power in the following Theorems 3–4.

Since (A3.1) in Appendix A is the only assumption on the eigenvalues ωjk, it

indicates that the inferential procedure enjoys the distinguishing advantage of

imposing no constraint on the decay of those eigenvalues, in contrast to most

current articles on generalized functional linear models that require ωjk to sat-

isfy either λmin(Λ) & s−an or ωjk & k−a, for a constant a > 1. Such desired

advantage is described as “eigenvalue-decay-free”. It is also seen from (A3.1)

that the proposed inferential procedure enjoys another distinguishing advantage

of permitting supj≤pn
∑∞

k=1 ωjk = ∞, in contrast to all existing literature that

demand a square-integrable condition: supj≤pn
∑∞

k=1 ωjk <∞. This advantage

is regarded as “square-integrable-free”.

To evaluate power at the given genuine βHn , first note that the true power

function takes the form Power(βHn) = P{‖T̂ (0)‖∞ > cB(α)|βHn}. Never-

theless, the true power cannot be assessed due to the unknown distribution of

‖T̂ (0)‖∞. To bridge this gap, the key idea is to exploit a proper estimate of

Power(βHn). In a similar spirit to Theorem 2, another procedure of multiplier

bootstrap is adopted to imitate the distribution of ‖T̂ (0)‖∞, thus approximat-
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ing the genuine power. More precisely, the estimated version of Power(βHn) is

expressed by

Power∗(βHn) =Pe∗ [‖T̂e∗ + n−1/2
n∑
i=1

(ŵ′Fi − Ĕi){b′(α̂0 + E′i · F{bk:k≤sn}(βHn) + F ′i η̂Hcn)

− b′(α̂0 + F ′i η̂Hcn)}‖∞ > cB(α)], (3.10)

with e∗ = {e∗1, . . . , e∗n} as an independent copy of e. The computation of (3.10)

can be achieved via a multiplier bootstrap procedure on e∗. The asymptotic

equivalence between Power(βHn) and Power∗(βHn) is then established in the

Theorem below.

Theorem 3. Under conditions (A1)–(A5) and (B1)–(B5), given the true version

βHn , we have: limn→∞
∣∣Power(βHn)− Power∗(βHn)

∣∣ = 0.

Regarding the analysis of power, the consistency of Power∗(βHn) is ensured

for a quite general set of alternatives in the following Theorem.

Theorem 4. Assume the conditions (A1)–(A5) and (B1)–(B5) and that the true

version βHn belongs to the alternative set

Fn =
{
βHn : P

(
‖n−1

n∑
i=1

(Ẽi − w′Fi){b′(α̂0 + E′iηHn + F ′i η̂Hcn)− b′(α̂0 + F ′i η̂Hcn)}‖∞

≥ Kn−1/2(ρ1/2
n + log n){log(npnsn)}1/2 exp{Kqn log1/2(nqnsn)}

)
→ 1

}
,

where K > 0 is a sufficiently large universal constant. Then, we have:
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lim
n→∞

Power∗(βHn) = 1.

4. Simulation Studies

Since the finite sample performance of the linear model is thoroughly evaluated

in Xue and Yao (2021) and Xue and Yao (2024), we consider another two crucial

cases of a LGFLMhete, which are the logistic and poisson models as follows.

4.1 Logistic model

For logistic model, the response data {Yi, i = 1, . . . , n} are independently sim-

ulated from the distribution as follows

Yi|Xi ∼ Bernoulli(
exp(δi)

1 + exp(δi)
),

with the linear predictor δi = α0+
∑pn

j=1

∫
T
Xij(t)βj(t)dt = α0+

∑qn
j=1

∫
T
Xij(t)βj(t)dt =

α0+
∑qn

j=1

∑
k ηjkθijk under the ultra-high-dimensional setting (n, pn) = (100, 200).

We set the intercept α0 = 0 without loss of generality. The basis representation

of the nonzero regression functions are defined by βj(t) =
∑50

k=1 ηjkφk(t), with

coefficients ηjk = hj[(1.2 − 0.2k)1{k≤5} + 0.2(k − 4)−31{6≤k≤50}] for j ≤ qn,

where the parameters {hj : j ≤ qn} control the intensity level of each predic-

tor. The fourier basis {φk(·) : k ≥ 1} defined on T = [0, 1] is orthonormal
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4.1 Logistic model

and can be expressed as φ1 = 1, φ2l = 21/2 cos{lπ(2t − 1)}, l = 1, . . . , 25 and

φ2l−1 = 21/2 sin{(l − 1)π(2t − 1)}, l = 2, . . . , 25. In order to obtain the pre-

dictors {Xij(·) : j ≤ pn}, we start by introducing a collection of independent

random processes {Zij(·) : j ≤ pn} as

Zij(t) =

50∑
k=1

ξ̃ijkφk(t), t ∈ [0, 1],

with the scores {ξ̃ijk} independently simulated from N(0, τ 2
k ). The sequence

τ1, . . . , τ50 are independently generated from uniform(1/4, 1/2), and are set

fixed through all simulations. To this end, the functional predictors Xij can be

formulated via autoregressive correlation:

Xij(t) =

pn∑
j′=1

ρ|j−j
′|Zij′(t) =

50∑
k=1

pn∑
j′=1

ρ|j−j
′|ξ̃ij′kφk(t) =

50∑
k=1

θijkφk(t),

where θijk =
∑pn

j′=1 ρ
|j−j′|ξ̃ij′k, and the value of ρ ∈ (0, 1) governs the overall

correlation among these predictors. Without loss of generality, we consider the

setting of ρ = 0.3 in simulation. In addition, when compared to existing studies

on functional data, it follows from the definition of τk that our setting is more

challenging since it not only imposes no decay restriction on eigenvalues of the

processes Xij , but also violates the square-integrable condition due to the fact

that
∫
T
E(X2

ij)dt �
∑d

k=1 τk → ∞ for large d. The observed measurements
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4.1 Logistic model

of {Xij(·), j = 1, . . . , pn} are taken discretely at m = 100 time points {tijl =

l−1
m−1

: l = 1, . . . ,m} ∈ T . An orthonormal cubic spline basis is then adopted

to obtain the fitted curves, with the tuning parameters sn, λn, λ∗n chosen from 5-

fold cross-validation based on the algorithm in Appendix B using SCAD penalty.

To conduct test, we adopt nominal level α = 5% and bootstrap resample size

N = 10000. In the upper part of Table 1, a parsimonious model with qn = 3 is

considered and we report the rejection proportions for testing several H0 under

various settings of {hj : j ≤ qn}, on the basis of 1000 Monte Carlo repetitions.

Furthermore, a denser case of qn = 6 is summarized in the lower part of Table 1.

The upper part of Table 1 shows that the empirical size corresponding to

the null Hn = {4, . . . , 6} approximates the prespecified level α = 5% very

well, which is consistent with the theory of the proposed test. Besides, as we

include more nonzero regressors into Hn, the rejection proportion (empirical

power) ascends fast, showing the pattern of a power curve. As expected, the

empirical power also rises significantly when the signal strength level is raised

from .3× 11×3 to .5× 11×3. Analogous patterns are shown in the lower part of

Table 1, which illustrate the validity of the test under relative denser signals.
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4.2 Poisson model

Table 1: Results of the logistic model for different settings of the regression
curves {βj : j ≤ qn} specified by {hk : k ≤ qn}, under various values of qn
and hypotheses Hn based on 1000 Monte Carlos, in the context of large-scale
setting: (n, pn) = (100, 200). Shown are the empirical rejection proportions.

Value of qn (h1, . . . , hqn) H0 : Hn Rejection proportion

qn = 3

.3× 11×3 {4, . . . , 6} .052

.3× 11×3 {3, . . . , 6} .082

.3× 11×3 {2, . . . , 6} .116

.3× 11×3 {1, . . . , 6} .258

.5× 11×3 {4, . . . , 6} .053

.5× 11×3 {3, . . . , 6} .103

.5× 11×3 {2, . . . , 6} .163

.5× 11×3 {1, . . . , 6} .470

qn = 6

.3× 11×6 {7, . . . , 9} .054

.3× 11×6 {5, . . . , 9} .101

.3× 11×6 {3, . . . , 9} .193

.3× 11×6 {1, . . . , 9} .425

.5× 11×6 {7, . . . , 9} .051

.5× 11×6 {5, . . . , 9} .180

.5× 11×6 {3, . . . , 9} .452

.5× 11×6 {1, . . . , 9} .784

4.2 Poisson model

The data {Yi, i = 1, . . . , n} are independently simulated from the poisson model

Yi|Xi ∼ Poisson(exp(δi)),

where the linear predictors δi = α0+
∑pn

j=1

∫
T
Xij(t)βj(t)dt = α0+

∑qn
j=1

∫
T
Xij(t)βj(t)dt =

α0 +
∑qn

j=1

∑
k ηjkθijk are identically generated as those in the logistic model.

We adopt the same settings as those in Table 1, and report the corresponding

results in Table 2 below. Since the pattern in Table 2 is similar to that of Table 1,
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it further justifies the validity of the proposed test for poisson model. The com-

putation costs around 1 minute for each test in one Monte Carlo for both models.

Table 2: Results of the poisson model for different settings of the regression
curves {βj : j ≤ qn} specified by {hk : k ≤ qn}, under various values of qn
and hypotheses Hn based on 1000 Monte Carlos, in the context of large-scale
setting: (n, pn) = (100, 200). Shown are the empirical rejection proportions.

Value of qn (h1, . . . , hqn) H0 : Hn Rejection proportion

qn = 3

.3× 11×3 {4, . . . , 6} .045

.3× 11×3 {3, . . . , 6} .084

.3× 11×3 {2, . . . , 6} .204

.3× 11×3 {1, . . . , 6} .488

.5× 11×3 {4, . . . , 6} .050

.5× 11×3 {3, . . . , 6} .270

.5× 11×3 {2, . . . , 6} .635

.5× 11×3 {1, . . . , 6} .905

qn = 6

.3× 11×6 {7, . . . , 9} .048

.3× 11×6 {5, . . . , 9} .188

.3× 11×6 {3, . . . , 9} .476

.3× 11×6 {1, . . . , 9} .572

.5× 11×6 {7, . . . , 9} .046

.5× 11×6 {5, . . . , 9} .305

.5× 11×6 {3, . . . , 9} .660

.5× 11×6 {1, . . . , 9} .760

5. Real Data

In this section, we adopt one real data set regarding attention deficit hyperactiv-

ity disorder (ADHD) to show the desired performance of the proposed method,

where ADHD is known as a common neurodevelopmental disorder of childhood.

More precisely, we use the preprocessed resting state data from the ADHD-200
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Sample Initiative Project under Anatomical Automatic Labeling atalas (Tzourio-

Mazoyer et al., 2002), where n = 137 individuals are included in the study after

quality control. In dataset, each individual is linked to pn = 116 brain regions

of interest, where the mean grayscale is recorded over 172 evenly spaced time

points for each region. The binary response of interest Yi ∈ {0, 1} is the diagno-

sis status, where Yi = 1 means the sick state. Our target is to find the significant

functional predictors among the 116 regions for predicting the ADHD status.

Given the discrete response, we assume the model as logistic, representing

an important subcase of (1.2). At the significance level α = .05, the proposed

testing method is first conducted to access the simple hypotheses H0 : βj = 0

respectively. Based on these simple tests, it is found that 4 regression curves

(βj : j = 2, 45, 64, 70) corresponding to brain regions of Precentral, Cuneus,

SupraMarginal, and Paracentral are identified as significant, which makes sense

due to the literature such as (Long et al., 2022; Hart et al., 2013; Hale et al.,

2014; Liu et al., 2017; Griffiths et al., 2021). To confirm further, letting Hn =

{2, 45, 64, 70}, we apply the testing procedure to the two composite hypotheses

H1
0 : βj = 0 for all j ∈ Hn, and H2

0 : βj = 0 for all j ∈ Hc
n, which rejects

H1
0 and accepts H2

0 . This further verifies the importance of regions in Hn for

predicting disease status. For comprehension, the estimated regression curves

for regions in Hn are shown in Figure 1, in spite of the scenario of estimation-
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consistency-relaxed.
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Figure 1: The estimated regression functions are depicted for significant brain
regions of Precentral, Cuneus, SupraMarginal, and Paracentral respectively.

Supplementary Material

The auxiliary lemmas with their proofs, and the proofs of the main theorems

are delegated to an online Supplementary Material for space economy.
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Appendix

A. Assumptions on the LGFLMhete

To ensure the theoretical results, we impose some mild conditions (A1)–(A5)

on the model as follows. First of all, assumption (A1) is on the property of the

function b(t), which specify the canonical link function g(·) = (b′)−1(·).

(A1). Given any K > 0, for every t, t1, t2 ∈ [−K,K], we have

4−1 exp(−K) ≤ b′′(t) ≤ exp(K), |b′′(t1)− b′′(t2)| ≤ exp(3K) · |t1 − t2|.

Condition (A1) is satisfied by a large class of generalized linear models including

the linear regression, the logistic regression, and the poisson regression. Condi-

tion (A2) imposes mild distributional assumptions on several random quantities,

which consists of parts (A2.1)–(A2.4).

(A2). (A2.1). The random terms ω−1/2
jk θijk, wt′Fi are centered sub-Gaussian with vari-

ance proxy σ2 for some constant σ > 0, uniformly in i = 1, . . . , n, j = 1, . . . , pn,

k = 1, . . . ,∞, t = 1, . . . , hnsn.
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(A2.2). There is a sufficiently large universal constant C > 0 such that:

P
{

max
l≤hnsn

‖n−1
n∑
i=1

(
F̃i
1

)
(wl
′Fi − Ẽil)b′′(δ∗i )‖∞ ≤ C max

i≤n
b′′(δ∗i )·

max
l≤hnsn

‖n−1
n∑
i=1

(
F̃i
1

)
(wl
′Fi − Ẽil)‖∞

}
→ 1.

(A2.3). The conditional distribution of the error εi can be either

εi|Xi ∼ sub-Gaussian(σ∗2{1 + var(εi|Xi)})

or εi|Xi ∼ sub-Exponential(σ∗2{1 + var(εi|Xi)}),

where Xi stands for the data {Xij : j ≤ pn}, and σ∗2{1 + var(εi|Xi)} is the

variance proxy, with σ∗ > 0 as a universal constant.

(A2.4). The errors ε1, . . . , εn are mutually independent (may not have identical

distribution), and meet the moment condition:

min
l≤hnsn

n−1
n∑
i=1

E{(w′lFi − Ẽil)2ε2i } ≥ c1, for some universal constant c1 > 0.

Notice that (A2.1) demands the sub-Gaussianity of the predictors, which is com-

monly assumed in high-dimensional data analysis. (A2.2) further imposes a mild

restriction on the distribution of the data {Xij : i ≤ n, j ≤ pn}, which holds

apparently for the linear model by taking C = 1. (A2.3) is on the distribution

type of error terms, which includes many commonly used GLMs. For instance,

(A2.3) holds true for poisson regression with εi|Xi ∼ sub-Exponential(σ∗2{1 +

var(εi|Xi)}), and is also valid for logistic regression with εi|Xi ∼ sub-Gaussian(σ∗2).
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(A2.4) correspond to a moment assumption on the error terms, which is also

quite general permitting a portion of vanishing errors. In particular, (A2.3) and

(A2.4) together indicate that the error terms are allowed to be non i.i.d. or het-

erogeneous under the linear model of (1.2). Condition (A3) is used to regulate

the smoothness and the correlation structure of the LGFLMhete.

(A3). (A3.1). supj≤pn supk≥1 ωjk <∞.

(A3.2). supj≤qn
∑∞

k=1 η
2
jkk

2δ <∞, for some constant δ > 0.

(A3.3). c−1
1 ≤ λmin(E(G̃iG̃

′
i)) ≤ λmax(E(G̃iG̃

′
i)) ≤ c1, for a constant c1 > 0.

(A3.1) stands for the sole smoothness constraint on the functional predictors

Xij , which is extremely loose by permitting non-square-integrable processes

in the sense of supj≤pn
∫
T
E(X2

ij)dt = supj≤pn
∑∞

k=1 ωjk = ∞ (i.e., square-

integrable-free), and also requires no decay restrictions on ωjk (i.e., eigenvalue-

decay-free). In comparison, all existing literature on GFLM demand the square-

integrable condition: supj≤pn
∑∞

k=1 ωjk <∞, as well as some eigenvalue-decay

conditions such as ωjk − ωj,k+1 & k−a−1 for some a > 1. (A3.2) regulates the

smoothness level of the non-vanishing regression functions {βj : j ≤ qn} via

a positive constant δ. We require bounded eigenvalues of the correlation matrix

in (A3.3), which is commonly assumed in large-scale data analysis. The relative

magnitudes of a series of important parameters are provided in (A4).
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(A4). (A4.1). For any constant c > 0, we have:

{log(npnsn)}12 exp{cqn log1/2(nqnsn)}
n → 0.

(A4.2). For any constant c > 0, we have:

s2n{log(npnsn)}6 exp{cqn log1/2(nqnsn)}
n → 0,

snB2
n{log(npnsn)}2 exp{cqn log1/2(nqnsn)}

n → 0.

(A4.3). For any constant c > 0, we have:

s2δ−1
n

n{log(npnsn)} exp{cqn log1/2(nqnsn)}
→∞.

(A4.1) incorporates the large-scale model framework by allowing for exponen-

tially increasing pn in n, and it also suggests a parsimonious model structure

due to qn � n. Regarding the truncation number sn, (A4.2) demands sn to

grow relatively slowly in n to mitigate the negative effects caused by the infinite-

dimensionality of these processes Xij , whereas (A4.3) requires sn to grow rela-

tively fast in n to retain adequate information for valid inference. (A4.2) together

with (A4.3) entails δ > 3/2, where the smoothing parameter δ can be referred

to (A3.2). Based on (A3) and (A4), it can be deduced that ‖η‖1 . qn, which

suggests us to choose Bn � qn, where Bn is defined in (2.3). (A5) specifies

the magnitudes of the penalization parameters λn and λ∗n, as well as the sparsity

level ρn = supj≤hnsn ‖wj‖0 of w = {E(FiFi
′)}−1E(FiẼ

′
i) = (w1, . . . , whnsn).

(A5). (A5.1). For any constant c > 0, we have:

n−1/9sn{log(npnsn)}2 exp{cqn log1/2(nqnsn)} = o(λ−2
n ),
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n−1/9ρn{log(npnsn)}2 exp{cqn log1/2(nqnsn)} = o(λ−2
n ),

n−1/9{log(npnsn)}3 exp{cqn log1/2(nqnsn)} = o(λ−2
n ),

n7/18{log(npnsn)} exp{cqn log1/2(nqnsn)} = o(λ−2
n ),

n−1/9B2
n = o(λ−2

n ).

(A5.2). For any constant c > 0, we have:

n−8/9sn{log(npnsn)}2 exp{cqn log1/2(nqnsn)} = o(λ2
n),

n1/9s−2δ+2
n exp{cqn log1/2(nqnsn)} = o(λ2

n).

(A5.3). K1{log(npnsn)/n}1/2 ≤ λ∗n ≤ K2{log(npnsn)/n}1/2, for some suffi-

ciently large universal constants K2 > K1 > 0.

(A5.4). For any constant c > 0, we have:

ρ2n{log(npnsn)}4 exp{cqn log1/2(nqnsn)}
n → 0.

The order of the parameter λn is given in (A5.1) and (A5.2), while the magnitude

of λ∗n is quantified by (A5.3). The order of ρn is provided in (A5.4), suggesting

a sparse matrix w. As an illustrative example, assumptions (A1)–(A5) hold true

for the large-scale scenario
{

log pn � n1/20; qn � Bn � log1/4(n); sn �

ρn � n1/9; λn � n−1/3; λ∗n � n−19/40; δ = 6
}

.

B. Penalties and algorithm

For the sake of simplicity, we write each f̂j = Θj η̂j for j = 1, . . . , pn, and denote

the vector δ̂∗ = (δ̂∗1, . . . , δ̂
∗
n)′ = α̂01n +

∑pn
j=1 f̂j . We use Y = (Y1, . . . , Yn)′ to
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represent the response vector. The coordinate descent algorithm to solve (2.3)

is adapted from Fan et al. (2015) and Ravikumar et al. (2008). Such algorithm

can be implemented to a wide spectrum of penalties ρλ provided that the mild

conditions (B1)–(B5) on ρλ listed below are satisfied. Similar conditions can be

also found in Loh and Wainwright (2015). To be specific, we assume:

(B1) ρλ(t) = ρλ(−t) for every t ∈ R, and ρλ(0) = 0.

(B2) ρλ(t) is nondecreasing on the interval [0,∞).

(B3) gλ(t) = t−1ρλ(t) is nonincreasing on the interval (0,∞).

(B4) ρλ(t) has derivatives at every t 6= 0 and subdifferentiable at t = 0, with limt→0+ ρ
′
λ(t) =

λL for a universal constant L > 0.

(B5) There is a constant µ > 0 so that the function ρλ,µ(t) = ρλ(t)+2−1µt2 is convex.

Notably, a wide range of commonly seen regularizers (e.g., SCAD, LAS-

SO, MCP) fulfill (B1)–(B5). Lastly, the algorithm to fit (2.3) is presented below
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FILL IN A SHORT RUNNING TITLE

(i) Initialize α̂0 = 0 and f̂j = 0, for every j = 1, . . . , pn.

(ii) Compute δ̂∗ = (δ̂∗1 , . . . , δ̂
∗
n)′ = α̂01n +

∑pn
j=1 f̂j .

(iii) Compute π̂ = (π̂1, . . . , π̂n)′ with each π̂i = b′(δ̂∗i ).

(iv) Compute v = ‖π̂‖∞.

(v) Compute Ỹ = δ̂∗ + Y−π̂
v

.

(vi) For j = 1, . . . , pn

set zj = n−1(Ỹ − δ̂∗) + n−1f̂j ,

set f̃j = max
{
n‖zj‖2 − n4/9v−1ρ′λn

(n−5/9‖f̂j‖2), 0
}
zj/(‖zj‖2 + 1{‖zj‖2=0}),

set δ̂∗ = δ̂∗ + (f̃j − f̂j),

set π̂ = (π̂1, . . . , π̂n)′ with each π̂i = b′(δ̂∗i ),

set v = ‖π̂‖∞,

set Ỹ = δ̂∗ + Y−π̂
v

,

set f̂j = f̃j ,

set α̃0 = n−11′n(Ỹ − δ̂∗) + α̂0,

set δ̂∗ = δ̂∗ + (α̃0 − α̂0)1n,

set π̂ = (π̂1, . . . , π̂n)′ with each π̂i = b′(δ̂∗i ),

set v = ‖π̂‖∞,

set Ỹ = δ̂∗ + Y−π̂
v

,

set α̂0 = α̃0,

end.

(vii) Repeat (ii)–(vi) until convergence to obtain the final estimators α̂0 and {f̂j : j = 1, . . . , pn}.

(viii) Using the final estimators from (vii), obtain the final estimators α̂0, and η̂j = (Θj
′Θj)−1Θj

′f̂j for j = 1, . . . , pn.
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