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Abstract:

Testing cross-sectional independence in panel data models is of fundamental im-
portance in econometric analysis with high-dimensional panels. Recently, econo-
metricians began to turn their attention to the problem in the presence of serial
dependence. The existing procedure for testing cross-sectional independence with
serial correlation is based on the sum of the sample cross-sectional correlations,
which generally performs well when the alternative has dense cross-sectional cor-
relations, but suffers from low power against sparse alternatives. To deal with
sparse alternatives, we propose a test based on the maximum of the squared

sample cross-sectional correlations. Furthermore, we propose a combined test

*co-corresponding authors.



to combine the p-values of the max based and sum based tests, which performs
well under both dense and sparse alternatives. The combined test relies on the
asymptotic independence of the max based and sum based test statistics, which
we show rigorously. We show that the proposed max based and combined tests
have attractive theoretical properties and demonstrate the superior performance
via extensive simulation results. We demonstrate the practicality of the pro-

posed tests through two empirical applications.

Key words and phrases: Asymptotic independence, Cross-sectional dependence,

Heterogeneous panel data models, High dimensionality

1. Introduction

In this paper, we consider the problem of testing cross-sectional indepen-
dence in heterogeneous panel data models. In statistics and econometrics,
panel data occur frequently, which contain observations of various types
obtained over multiple time periods for any single unit. In the study of
panel data models, the cross-sectional dependency is an important concept,
described as the interaction between cross-sectional units, which could arise
from the behavioral interaction between units Breusch and Pagan (1980);
Feng et al. (2022). To make theoretical study easier, experts often assume
cross-sectional independence in the model setups. If data across units are

dependent, inferences under the assumption of cross-sectional independence



would be inaccurate and misleading; see literature on spatial econometrics,
such as Anselin and Bera (1998); Kelejian and Prucha (1999); Kapoor et al.
(2007); Lee (2007); Lee and Yu (2010) for examples of cross-sectional de-
pendence. Therefore, testing the existence of cross-sectional dependence is
important and attracts increasing attention.

A large number of literatures on testing cross-sectional dependence are
available, among which the most widely known is likely the Lagrange Mul-
tiplier (LM) test proposed by Breusch and Pagan (1980). The LM test is
based on the sum of the squared cross-sectional correlations of residuals,
which is applicable when the sample size T is large and the dimension N
is finite, but is not a valid test when N — oo. To develop tests applicable
when both N and T are large, two limit schemes have been considered in
the literature. One is the sequential limit scheme: T — oo, followed by
N — o0, and the other is the simultaneous limit scheme: N and T tend
to infinity simultaneously, i.e. (N,T) — oo. Under the sequential limit
scheme, Pesaran (2004) proposed a scaled version of the LM test, as well as
a test based on the sum of the residual correlations, instead of the squared
sum, to address the issue that the former test may suffer from substantial
size distortions in the case of large N and small 7'; Pesaran et al. (2008)

proposed a bias-adjusted LM test based on the scaled LM test. Later, under



the simultaneous limit scheme, Pesaran (2015) established the asymptoti-
cal properties of the sum based test by Pesaran (2004); Feng et al. (2022)
established the asymptotical properties of the bias-adjusted LM test pro-
posed by Pesaran et al. (2008). In addition to these tests, there are also
works on testing cross-sectional independence under other related models,
such as the fixed effect panel data models; see, for instance, Baltagi et al.
(2012); Feng et al. (2020).

All the above tests are sum based tests, i.e., they are based on the
sum of the correlations or squared correlations of the residuals. These tests
generally perform well under dense alternatives, but may suffer from low
power against sparse alternatives. To deal with sparse alternatives, Feng
et al. (2022) proposed a max based test for testing cross-sectional depen-
dence, and further developed a combined test that integrates the advantages
of the max based and sum based tests, by establishing the asymptotical in-
dependence between the test statistics.

All the tests mentioned above make the common assumption that the
errors in the panel data models are independent across time. However,
the existence of serial dependence is likely to be the rule rather than the
exception; see, for instance, Wei (2006); Hong (2010); Box et al. (2015). In

many applications, serial dependence may have great impact on statistical



inference, such as leading to deviation of the limiting spectral distribution
of the sample covariance matrix (Gao et al., 2017). Hence, in analyzing
panel data with serially correlated errors, using tests for cross-sectional
independence that are based on the assumption that the errors are serially
independent may lead to wrong conclusions.

To solve this problem, Baltagi et al. (2016) proposed a test for cross-
sectional correlation under heterogeneous panel data models with serial
correlations by adjusting the sum based test by Pesaran (2004). Similarly,
Lan et al. (2017) proposed a test for cross-sectional independence under
fixed effects panel data models with serial correlations. Both tests are sum
based, hence the scope of their application is limited to dense alternatives.
As far as we know, research on max based tests for sparse alternatives or
combined tests regardless of whether alternatives are sparse or not is not
yet available for data with serial dependence.

We aim to fill this gap in this work. To this end, for testing cross-
sectional independence under heterogeneous panel data models with serial
correlations, we propose a max based test based on the maximum of the
squared cross-sectional residual correlations to deal with sparse alternatives.
The method follows the framework of Chen and Liu (2018) for testing in-

dependence of correlated samples, while relaxing their Gaussian sample as-



sumption. Furthermore, we propose a Fisher’s combined probability test by
combining the p-values of our proposed max based test and the sum based
test by Baltagi et al. (2016). This combined test is applicable regardless
the alternatives are sparse or dense. We derive the asymptotic null distri-
bution of the proposed combined test, by first rigorously establishing the
asymptotic independence of the max based and sum based test statistics.

In summary, there are two main contributions of our work.

(1) We propose a max based test for testing cross-sectional independence
in models with serial correlation and sub-Gaussian error. The new

test is powerful in detecting sparse alternatives.

(2) We establish the asymptotic independence between the sum based
and max based test statistics. We propose a combined test for test-
ing cross-sectional independence in models with serial correlation and

sub-Gaussian error. The new test is powerful overall.

The rest of the paper is organized as follows. We propose two new tests
and establish their asymptotic properties in Section 2. Simulation results
of the proposed tests and their comparison to some existing methods are
demonstrated in Section 3, followed by an empirical application in Section

4. We conclusion the paper in Section 5 and relegate some additional



simulation results, an additional empirical application and the technical
proofs to the Supplementary Material.

NOTATAION. For any square matrix A, (A);; denotes the (i, j)-th en-
try of A, tr(A) denotes the trace of A, Apax(A) and A\yin(A) denote the
maximum and the minimum eigenvalues of A, respectively, ||Al/r denotes
the Frobenius norm of A, and A'/? denotes the principal square root ma-
trix of A if A is a positive definite matrix. I, denotes the n x n identity
matrix for each positive integer n. For any two real numbers x and y, let
zVy = max(z,y) and Ay = min(z,y). For any vector v, ||v|| denotes
the Euclidean norm of v. Let N (a,b) denote the normal distribution with
mean a € R and variance b > 0, t, denote the t-distribution with degree of
freedom v, x? denote the chi-square distribution with degree of freedom v
, and Ula, b] denote the uniform distribution over the interval [a, b], where
both a and b are real numbers. Let ®(:) denote the cumulative distribu-
tion function of the standard normal distribution. We use (N,T) — oo to

denote the joint convergence of N and 7T to infinity, i.e. min(N,7T) — oc.



2. The proposed tests

2.1 Problem description

We consider the heterogeneous panel data model taking the form

Yit = T3 + €, 1<i< N, 1<t <T, (2.1)

where 7 indexes the cross-sectional units, and ¢ indexes the time dimension.
yir € R is the dependent variable, x; € R? is the exogenous regressors with
slope parameters 5; € RP that are allowed to vary across ¢ and €¢; € R is
the corresponding idiosyncratic error term. For each 1 < ¢ < N, let x; =
(i1, i) € RTP g = (yi1, ..., yir) € RT and €. = (€;1,...,67) €
RT. For each 1 <t < T, let €; = (€1,...,ene). The null hypothesis of

cross-sectional independence can be written as

Hy: €., €., ..., en. are independent random vectors. (2.2)

2.2 Related works

Early studies on testing cross-sectional independence in (2.2) are based on
the assumption that there is no serial dependence in {e;}~ ;, where €, is

assumed to be iid over time ¢t. The earliest work is the LM test (Breusch



2.2 Related works

and Pagan, 1980), with test statistic

LMgp = TZ me’

1<i<j<N

where p;; is the sample correlation constructed by the OLS residuals €; =

Yir — Ty fi, with

TP

3 - ~ E €€

B = (xpxi) " xjyi and py = =17t
\/Zt 1 Zt t 1 ]t

The asymptotic null distribution of LMgp is a chi-squared distribution with

N(N —1)/2 degrees of freedom, which is established when N is fixed and
T diverges to infinity. Hence, it is not applicable to the case of large N.
To overcome the size distortions of the scaled version of the LMpp test
proposed by Pesaran (2004) for large N and small T', Pesaran et al. (2008)

proposed a bias-adjusted test, with test statistic

Y e D) P ]

v
1<’L<]<N Tij

where

Hrij = W’ ZZFU [tr* {E (PiP;)}] arr + 2tr [{E (Pz’PJ’)}Q} a2t

(T —p—8)(T —p+2)+24 }2
)

@ ™ C‘”:3{<T—p+2><T—p—2><T—p—4

. -1 ~ ~ A /
Here, foreach1 <i < N, P; = Ip—x; (x[x;)” X}, hence é;. = (€;1,...,6ér) =

P;e;.. The asymptotic null distribution of LMpyy is N'(0, 1), which is estab-



2.2 Related works

lished when 7" — oo first and then N — oco. Later, Feng et al. (2022) estab-
lished that LMpyy — N (0, 1) in distribution when min(N,T) — oo, and
also established that LMgyx — AN(0, 1) in distribution when min(N,T') —

oo, where

LMFJL)(——ZZT - and /LN— ZZtr PP

1<z<j<N 1<i<j<N

These tests are all based on the sum of squared sample correlations
> i<icj<n Pyj- In contrast, Pesaran (2004) proposed a test for cross-
sectional independence directly based on the sum of sample correlations,
with test statistic

CDP - Z szj

1<’L<]<N

Pesaran (2015) established the asymptotic null distribution of CDp to be
N(0,1) when min(N,T) — co. Recently, to test cross-sectional correlation
with serially correlated errors, Baltagi et al. (2016) proposed a new test

with test statistic

Sy = ZZPU’ (2.3)

l<z<]<N

which is very similar to CDp, but has different asymptotic variance. Under

certain assumptions, they established that under the null hypothesis,

Sn/Gsy — N(0,1) in distribution when min(N,T) — oo, (2.4)



2.3 Max based test

hence a level-a test can be performed by rejecting Hy when |Sy/dg,] is
larger than the (1 — a/2)-quantile z, = ®~!(1 — a/2). Here,

Gy = ZZU — Vi) v; (v; — Bij) (2.5)

1<7,<]<N

Vij = 3 1 cppijen Ui/ (N —2) and vy = é./||éx.|| for all 1 <k < N.

2.3 Max based test

All tests mentioned in Section 2.2 are sum based tests, which generally
perform very well under dense alternatives, i.e. alternatives with dense
cross-sectional correlation matrices, but may suffer from low power against
sparse alternatives, i.e. alternatives with sparse cross-sectional correlation
matrices. To deal with sparse alternatives, we now propose a max based
test based on the maximum of the squares of the sample cross-sectional

correlations. The test statistic we propose is

Ly = max /2. (2.6)

1<i<j<N "' Y

Max based tests have been widely studied in testing independence among
variables, e.g., Li and Xue (2015), Chen and Liu (2018) and Feng et al.
(2022). Specifically, Feng et al. (2022) used it to test cross-sectional inde-
pendence under the assumption of no serial correlation between the errors,

and established that TLy — 4log N + loglog N — G(y) in distribution,



2.3 Max based test

where G(y) = exp { — exp (—y/2) /v/87}. However, this test may perform
poorly if blindly used in the situation where serial correlation exists.

To utilize the test statistic in (2.6) for data with serial correlations,
we must reinvestigate the asymptotic properties of Ly. We impose the

following assumptions.

Assumption 1. Assume that E = (e;.,...,ex.) = ZR/, where R € RT*T
is an invertible matrix, and all elements of Z = (Z;.,...,Zy.) € RN*T
with Z; = (Za, ..., Zir) are iid variables with mean zero and variance one.
The density function of (Z); is symmetric and the sub-Gaussian norm of
(Z) is bounded by K, i.e., E[exp{(Z)%/K?*}] <2, for each 1 <i < N and

1<t<T.

Assumption 2. (i) Assume that p > 0 is fixed, and the regressors z;; are

strictly exogenous, such that
E(eylx;) =0, forall 1 <i< Nand 1 <t<T.

(ii) Assume that x/x; /T = S| zya,/T is non-singular and x; (xix;/T) 71X2

is stochastically bounded for all 1 <7 < N.

Assumption 3. (i) Assume that for some constant C' > 0, C~! < A\, (2) <
Amax(X2) < C, where ¥ = RR/. (ii) Assume that max;—; _r 25:1 |(32),]” <

C" for some 0 < 7 < 2 and C' > 0.
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Under Assumption 1, the error is ¢;, = RZ;., where ¥ = RR/ is the
covariance matrix of ¢;.. The assumption of symmetry ensures that the
expectations of both Sy and p;; are precisely equal to zero. Pesaran et al.
(2008) also assume the symmetry when the error are independent across
time. If the error distribution is not symmetric, there would be a non-
negligible bias term in Sy, see numerical experiments in Supplementary
Material. How to calculate the bias term of Sy under the asymmetric
assumption needs some further studies.

Assumption 2(i) is used in Pesaran et al. (2008), which is a common
condition for panel data model in (2.1). Assumption 2(ii) is imposed to en-
sure that the difference between the distribution of the max based statistic
based on the residuals and that based on the errors is negligible.

Assumption 3(i) is the same as Condition (C1) in Chen and Liu (2018),
which is a common eigenvalue assumption in high-dimensional inference
literature such as in Cai et al. (2016) and contains many important types of
covariance matrices, including the bandable, Toeplitz and sparse covariance
matrices. Assumption 3(ii) is the same as Condition (C2) in Chen and Liu
(2018), which assumes the sparsity of X. Note that the sparsity of X is
imposed to ensure good estimation property. To eliminate the complexity

caused by the serial correlation across ¢ within each row, ideally we hope



2.3 Max based test

to work with E(R/)™! = Z, and to test the cross-sectional independence
of Z. However, obtaining a sufficiently good estimate of (R’)™! may be
very difficult. Thus, in our test procedure, we will need to estimate a X
dependent quantity tr?(X)/||X||2. Since X is a high dimensional matrix,
sparsity is a common assumption to regularize the properties of the related
estimation.

To better explain the assumptions imposed, below we provide a simple
example that satisfies these assumptions. In fact, many time series models
satisfy the above assumptions, such as the first-order autoregressive model:

€ = a€y_1 + Zy with |a| < 1. Clearly, this model satisfies Assumptions 1

with
1 0 0
a 1 - 0
R = ' . willf (2.7)
aT—l aT—Q 1

and the covariance matrix 3 = RR’ based on (2.7) satisfies Assumption
3. In addition, Assumption 2(i) is commonly used (Pesaran et al., 2008).
Assumption 2(ii) holds if the two conditions, ||z;|| and S, zya!, /T =
x,x;/T are randomly bounded for all 1 < i < N and 1 < ¢t < T, hold.
These two conditions are also commonly used, such as in Assumption A of

Bai (2009), Assumption 3 of Gao et al. (2023), Assumption 4 of Baltagi
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et al. (2016) and Assumption 2(iii) of Baltagi et al. (2012).

Throughout the text, we let v be a positive finite constant.

Theorem 1. Under Assumptions 1-3 and the null hypothesis in (2.2), when

min(N,T) — oo and N/T — ~, for any y € R, we have

tr3(32
P (ﬁl‘w —4log N 4+ loglog N < y) — G(y),
F

where G(y) = exp{ — exp(—y/2) /V8r} is a type-I Gumbel distribution

function.

Remark 1. The main idea of the proof of Theorem 1 is summarized as
follows. Let A = R'R and

7o € €;. B ZIAZ;. o = €;.€;-
1] T - ) v T
7oAl (Al e |l < [l |l

To establish Theorem 1, we initially demonstrate that

- 1 )
J = { \/ 81 ( >}
(1§z‘<j§N ij log N + loglog N < y) exp 3 exp 9

Subsequently, we prove maxi<;<;j<n fg —tr2(A)/ || A]]7 max;<;cj<n py; — 0
in distribution, and tr*(A)/ ||A||% maxi<;<j<n(p;; —p3;) — 0 in distribution.

By combining the aforementioned results, we derive that
1

P tr2< ) ax p2—4log N+loglog N < )—>e { e ( y)}
———- max . — X ——F=€X - = .
I ”% 1§Z,<JSNPZ] g glog /v sy p R p 9

Furthermore, due to tr(2) = tr(A) and | 2|2 = ||A||%, we eventually obtain

the desired result.
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The column covariance matrix X, which is needed in the construction of
the max based test statistic, can be assessed via a procedure similar to that
proposed in Chen and Liu (2018) for testing independence among variables
using correlated samples. First, define the column sample covariance matrix

~

Y= (@-j)lgid,ST with

1 al - - - 1 < G
5’1‘]‘ = ﬁ (élz — gz) (élj — €]> s éj = N Zglj and eij = #
=1 =1 105
for each 1 < i,j < T. Then, define 3 = <5ij)1§i,ng with
0;; | Pylog T
a,lj[( | ]0|2 ZV &)) Z?éj’
Gy = 1 -6 N (2.8)
Tii, L=

for each 1 < 4,5 < T. Here, v > /2 and Py = [||<i>||% - %{tr(@)}Q] /N,
where for each 1 <i,7 < N, (<i>)” = €g.€j./tr(ﬁ]). Based on X, tr?(X) and
||| are estimated by tr?(X) and ||3||2, respectively. Hence, tr?(2)/|| X2
is estimated by tr2(X)/||3||2, as indicated in the following theorem, which

is a ratio-consistent estimator of tr?(X)/||X||3.

Theorem 2. Under Assumptions 1-3 and the null hypothesis in (2.2), for
any v > /2,

tr2

I
when min(N,T) — oo and N/T — ~.

~—~

3 |1Z)3 log T\ 3/1-%)
=1 — 2.
iy T (=) ! (2.9)

Ez
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Remark 2. The main idea of the proof of Theorem 2 is summarized as
follows. Initially, we establish that &;; converges to (X);; in distribution
uniformly for all 1 < 4,7 < T, and Py converges to 1 in distribution.

Subsequently, we leverage these findings to demonstrate the desired result.

Combining Theorems 1 and 2, we have that for any y € R,

tr2 (%)
P WLN —4log N +loglog N <y | — G(y). (2.10)
F

Based on (2.10), for a given significance level «, the null hypothesis in (2.2)
will be rejected by the established max based test when Lytr?(2)/|| |2 >
wy + 4log N — loglog N, where w, is the 1 — a quantile of the type-I
Gumbel distribution with the cumulative distribution function G(y) and
has the specific form of w, = log(87) — 2loglog(1 — o)~ 1.

Next, we turn to the power analysis of the proposed max based test,

in which the following two assumptions need to be imposed.

Assumption 4. Assume that E = (€., ..., ey.) = LZR/, where L € RV*V

and R € R™*T are invertible matrices, all elements of Z € RV*T are iid
variables with mean zero and variance one. The density function of (Z); is
symmetric, and the sub-Gaussian norm of (Z);; is bounded by K, that is,

foreach 1 <i < N and 1 <t < T, Elexp{(Z)%/K?}] < 2.
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Assumption 5. (i) For a certain constant C' > 0, assume C~1 < A\, (®) <
Amax(®) < C, where & = LL'. (ii) For a certain 0 < 7 < 2 and C' >
0, assume max;<j<y Y opy [(®);x]” < €. (iii) Assume that the diagonal
elements of ® are all equal to 1.

Under Assumption 4, the error matrix is E = LZR’. It is well known
that when (Z);; YN (0, 1), the error matrix E has a matrix normal distribu-
tion N(0,P®3X), where ® represents the Kronecker product. Chen and Liu
(2018) studied the asymptotic properties of Ly under the matrix normal
distribution. Assumption 5 (i) is the same as Condition (C1) in Chen and
Liu (2018), which is a common eigenvalue assumption. Assumption 5 (ii) is
the same as Condition (C2) in Chen and Liu (2018), which constrains the

sparsity of ®. In addition, Assumption 5 (iii) makes the structural model

of the errors identifiable.

Theorem 3. Under Assumptions 2-5, suppose that for some § > 2, some

v > 0, and sufficiently large N and T,

by = max [(@),] > 8/ |2 log N/u?(),

1<i<j<N

then

tr?(3
P ( ITE(|!2>LN —4log N 4 loglog N > wa> — 1, (2.11)
F

as min(N,T) — oo and N/T — ~.
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Remark 3. Here, we outline the primary steps in the proof of Theorem 3.

Initially, we establish the following facts:

Viog Ntr ()

max _|p;; — pij| = O
1§i<j§N|PzJ pw| P

( tr (32) >

and

17 tr*(2) log 7'\ min(1,2-7)
| ~1+0 |
T AR (U o A

respectively. Subsequently, by leveraging these formulations and that fact

of Yy > 51/ Z||2 log N/tr?(X), we obtain the desired result.

Theorem 3 indicates that the proposed max based test is consistent
under the sparse alternative in which the maximum non diagonal entries of
® is sufficiently large. More specifically, because /[|X[/z/tr?(2) < T—1/2
under Assumption 3, the test is able to detect the dependence as long as a
single covariance is at the order of (log N/T)'/2, which leads to an overall
detection rate of (log N/T)'/2. In contrast, the sum based test can detect
the departure from null if each covariance reaches 7-'/2N~! (Theorem 4
of Baltagi et al. (2016)), hence the overall detection rate is N/T'/2. This
theoretical result is consistent with the simulation results in Section 3, where
the max based test performs better than the sum based test in terms of
empirical power under sparse alternatives. The presence of the possible

serial correlation makes it more difficult to establish asymptotic properties
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of Ly. For example, we need to reestablish the asymptotic variance of
Ly that depends on 3. This is the reason why we replace the test statistic
TLy—4log N+loglog N in Feng et al. (2022), where no serial correlation is
considered, by Lytr?(X)/||2||2 —4log N +loglog N and Lytr?(X)/||3||2 —
4log N + loglog N.

On the other hand, we note that the max based test for testing inde-
pendence among normally distributed variables with correlated samples has
been studied in Chen and Liu (2018), whereas in this paper we consider the
max based test under panel data models with strictly exogenous regressors,
and we relax the Gaussian assumption to sub-Gaussian. The proof under
sub-Gaussianity is much more challenging because many properties associ-
ated with Gaussianity, such as rotation invariance, can no longer be used.
To establish the theoretical results under sub-Gaussian distributions, more
advanced technical tools, such as the Hanson-Wright inequality (Rudelson
and Vershynin, 2013), need to be engaged in deriving the asymptotical dis-
tribution of the max based test statistic Ly. In addition, the expressions
of the moments of the quadratic forms under sub-Gaussian distributions
are also much more complex than that under Gaussian distributions, which

further complicate the proof.



2.4 Fisher’s combined probability test

2.4 Fisher’s combined probability test

fisher

It is intuitively expected that the sum based test Sy performs well under
dense alternatives, whereas the max based test Ly performs well under
sparse alternatives. However, in practice, it is usually unknown whether
the correlation matrix of the errors is sparse or not, hence it is difficult to
decide which test to use. For this reason, in this subsection, we propose
using Fisher’s combined probability test by combining the sum based and
max based tests, which is expected to take advantage of both tests. To
construct the test, we first need to establish the asymptotic independence

between the two statistics Sy and Ly under the null hypothesis.

Theorem 4. Under Assumptions 1-3 and the null hypothesis in (2.2),
Lytr2(2)/||3||3 — 4log N + loglog N and Sy /s, are asymptotically in-

dependent, as min(N,T) — oo and N/T — ~.

Remark 4. Here, we outline the main idea for establishing the above
asymptotical independence under the null hypothesis. Firstly, we estab-
lish the premise that if Ty and Sy are asymptotically independent, we
can infer that Ly and Sy are asymptotically independent, where T =

max; <;«j<n(€.¢;.)2/ | Z|%. Hence, to demonstrate the asymptotic indepen-



2.4 Fisher’s combined probability test

dence, it suffices to show that for any x and y,

lim P<& < x,TmaX > aN>
— 00

min(N,T) OSn
: SN : =
= lim P(— < x) lim P(Tmax > aN), (2.12)
min(N,T)—o0 OSn min(N,T)—o0

where ay = 4log N —loglog N +y. Let Ay = {(i,7);1 <i < j < N},

Ay ={Sn/osy <z}, By ={|€,.€;.| > Iy} for any I = (i,7) € Ay, and

v = /ISII2 (41og N — loglog N + 1) = /[ S]2 ax.

Then, the left side of (2.12) can be expressed as

r 2
P(ﬁ <z, max @ > aN) :P< U ANBI>.
EE WPl

o
SN IeAN

Due to the principle of inclusion-exclusion, when m is sufficiently large, we

can deduce that

P(U ANBI) S Z P(AnBq) — Z P(AyBpB) + -

IeAn LeAN L<Il2eAN

+ (=)™ > P(AyBnBr, -+ By,),

L<lo<-<Im€EAN

where the symbol “~” indicates that the difference between the two sides
tends to zero as min(N,7T) — oo with (}\}% N/T = v € (0,+00).
min(N,T)—o0

Next, we establish two key facts. The first is given by the equation:

P(AnBy, By, -+ By, )~ P(Ax)-P(By,By, - By,) . (2.13)
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The second fact is that for any m > 1, the following sum is negligible:

> {P(AnBr, By, -+ By,) — P(An) - P (B, By, -+ By, )} — 0.

L<la<-<Im€EAN

(2.14)

Finally, based on the above results, we obtain the desired result.

Note that in many related studies, such as Li and Xue (2015) and Feng
et al. (2022), the asymptotic independence between the sum based and max
based statistics is established under the assumption that all components of
the random vectors concerned are independent and identically distributed.
In contrast, we establish the asymptotic independence in the situation where
the error vectors may have serial correlation, which makes the proof of
the asymptotic independence much more challenging and requires more
complex technical treatments and tools.

Let P, =1— G(LNtr2(§~3)/HZ~1H% — 4log N + loglog N) and Pg, =
2 -2 (|Sn/0sy])- We construct Fisher’s combined probability test statis-

tic as
Tc = —210g(PLN) — 210g(PSN). (2.15)

By Theorem 4, (2.4) and (2.10), we see that Pp, and Ps, are asymptoti-

cally independent under the null hypothesis and each has limit distribution



U[0, 1], the uniform distribution on [0,1]. We thus obtain the following

corollary:.

Corollary 1. Assume that the assumptions in Theorem 4 hold, then we

have T — X3 in distribution when min(N,T) — oo and N/T — 7.

According to Corollary 1, we proposed Fisher’s combined probability
tes at level a by rejecting the null hypothesis in (2.2) if T > q,, where g,

is the 1 — a quantile of x3.

3. Simulation studies

We now conduct simulations to investigate the finite sample performance
of the two tests proposed in this paper, i.e. the test based on Ly and the
Fisher’s combined probability test based on Tx. For comparison, we also
implement three other existing tests, i.e. the test based on Sy proposed
by Baltagi et al. (2016), the LMpyy test proposed by Pesaran et al. (2008)
and the CDp test proposed by Pesaran (2004). Here, the max based test is
implemented by setting v = 1.42 in (2.8) as in Chen and Liu (2018). For
simplicity, we will abbreviate these five tests as Ly, T¢, Sy, LMpyy and

CDp, respectively.



We consider the data generating process

p
yz‘tZOéz‘-Fszz‘,tﬁzH—Qt, 1<i:<N,1<t<T, (3.1)
=2

where i = (1,294, .., Zpi¢) € RP and B = (v, o, -, Bpi) € RP. We
generate ai%/\/(o, 1) and ﬁli@N(l,0.0él) for 2 < | < p. The strictly ex-
ogenous regressors are generated by xj; = 0.6x,1 + vy, for 1 <@ < N,
=50 <t <T and 2 <[ < p, where x;;, _5; = 0 and v;;; are independently
and identically distributed from N (0,%2/ (1 — 0.6%)), where 2 ZZﬁj)(%/G.

Consider the following two settings of serial correlation of the errors €.

(i) The errors follow an auto-regressive (AR) model of order one over
time, i.e. AR(1): €3 = e;; and €; = 0.66;,_1 + e for 2 < ¢ < T and

1<i<N.

(ii) The errors follow an auto-regressive and moving average (ARMA)
model of order (1,1) over time, i.e. ARMA(1,1): €1 = e;; and ¢; =

0.661'15,1 + €+ + O.2€it,1 for 2 <t< T and 1 < 1 < N.

To produce data under the null hypothesis, e;; are independently generated
from the following three distributions: (1) A(0,1); (2) ts/1/6/4; (3) (x% —
5)/v/10.

Then, we turn to produce data under the alternative hypothesis. The



data generating process is specified as

p
yz‘tZOéH-ZiCu,tﬁzH-Eft, 1<i<N, 1<t<T, (3.2)
=2

where €, are generated from the following two settings.

(D

(IT)

Non-sparse case. Spatial moving average (SMA) model with order
one, i.e. SMA(1): for all 1 < t < T, €}, = 0.50€y + €14, €y, =
0.50en—_11 + ent and €, = 0 (0.5¢;_14 + 0.5¢;41¢) + €z, where 2 <
i < N —1,0 = 0.2 and ¢; are generated from settings (i)-(ii) with

distributions (1)-(3).

Sparse case. Let (¢5,---,ey.) = WY2(er, - en.)

, where € =
(e, ,ep) and €. = (€1, -+ ,€7), for all 1 < i < N. Here, ¢,
are generated from settings (i)-(ii) with distributions (1)-(3). W is
constructed as follows. Randomly select a subset S C {1,---,N}

with cardinality [N%3], the smallest integer grater than or equal to

NO3. Let (W);; = 1ifi =j. For i < j, define (W);; =01ifi ¢ S or

j &S, and (W); XU l, [4leT |, /61°]gVT] ifi,jes.

In addition, for the choices of p, N and T, we set p € {3,5}, N €

{100,200}, T € {200,300, 400, 500}

The results of the empirical size and power of the five tests in the non-

sparse and sparse cases of error correlation matrices are summarized in



Tables 1-3. The power curves are plotted in Figure 1. All results are based
on 1,000 replications. We next analyze them in detail.

Table 1 indicates that in most cases Ty, Ly and Sy have empirical
sizes not much larger than 5%. Here, the max based test Ly and Fisher’s
combined probability test T tend to have smaller empirical sizes than the
sum based test Sy, especially as T is relatively small. This is not surprising
and is common for many max based tests, because the convergence rate of
the type-I Gumbel distribution is typically slow (Liu et al., 2008). CDp and
LMpyy fail to control the empirical size because E(p7;) may be seriously
affected by serial correlation. This is also observed by Baltagi et al. (2016).

Tables 2 and 3 show the empirical powers in both non-sparse and sparse
cases of correlation matrices. Since CDp and LMpyy fail to control the
empirical size, we exclude them from the empirical power results. Table 2
and 3 indicate that Sy and T generally perform better than Ly in non-
sparse cases in terms of empirical powers, whereas Ly and Ty generally
perform better than Sy in sparse cases. As expected, Fisher’s combined
probability test T has power advantages regardless the local alternative is
sparse or not.

Figure 1 shows how the empirical powers of the three tests change as

the degree of sparsity of the correlation matrix changes, where the z-axis



is the level of density k and the y-axis represents the empirical power. To
generate Figure 1, we designed the following simulation. Let (€],...,€x.) =
WY2(e) ... en), where €& = (¢,...,e) and €. = (€1, ..., e7), for all
1 <i < N. Here, ¢;. are generated from settings (i)-(ii) with distribution (1).
We set N =100, T =300, p=3,k=2,...,16; asubset S C {1,...,N}is

randomly selected with cardinality |S| = k; (W);; = 1 if i = j; for i # j,

(W), = 0ifi ¢ Sorj ¢S, and (W), YU {\/glojgf,\/glzgf] ifies
and j € S. Hence, a larger k means a higher level of density.

Figure 1 indicates that the empirical power of Fisher’s combined prob-
ability test Ty is always very close to the maximum power of both tests
for all k, which suggests that it has robust empirical power performance
regardless the alternative is sparse or not. In contrast, the empirical power
curves of Sy, Ly are both monotone, with the sum based test Sy gains
more power with the increase of the level of density, while the max based

test Ly gains more power with the decrease of the level of density.

4. Empirical application

We now apply the proposed tests to the dataset analyzed in Serlenga and
Shin (2007), which comprises bilateral trade flow data for 91 country pairs

from 15 European countries, spanning a 42-year period from 1960 to 2001.



Setting (i) Setting (ii)

power
power

§ 12 § 12
level of density level of density

—= Sy = Ly == T¢

Figure 1: The empirical power curves of the three tests at 5% level under

settings (i) and (ii).

Consider the following linear heterogeneous slope panel data model:

Yie =o; + BiiGPDyy + BioRER; + BisEM Uy + v, DIST;

where 1 < ¢ < 91 and 1 < t < 42. For the i-th country pair in the t-th
year, Y;; represents the bilateral trade flow, i.e. the sum of logged exports
and imports, GPD;; represents the sum of the logged real GDPs, RER;;
represents the logged bilateral real exchange rate, and EMU; represents
the dummy variable that is equal to 1 when both countries in this pair
adopt the common currency. DIST; represents the geographical distance
between capital cities, while RERT; denotes the logarithm of real exchange

rates between the European currencies and the U.S. dollar. In addition,



FTRADE;, FGDP, and F RLF; are the time specific common factors of the
variables TRADE, GDP, RLF (a measure of relative factor endowments),
respectively.

Before applying the proposed tests to this dataset, we conducted the
Box-Pierce tests on the residual sequences to investigate whether there is
serial correlation in the residual sequences. The histogram of the p-values
of these tests, shown in Figure 2, suggests that for many residual sequences
exhibit serial correlation. Therefore, it is reasonable to apply the proposed
tests to this dataset. The p-values of applying the Sy, Ly and T¢ tests
to this dataset are 0.168, 0.015 and 0.018, respectively. To explore the
reasons behind these results, we plotted the histogram of the cross-sectional
correlations between all pairwise residual sequences as well as the heatmap
of their absolute values in Figure 3, which indicate that many of these
correlation values are non-zero, including some with very large absolute
values, and the distribution of these correlations is nearly symmetric. The
very large absolute values lead both the Ly and T tests to reject the null
hypothesis. However, despite having many non-zero correlation values, the
Sy test failed to reject the null hypothesis. This is because its test statistic
is based on the sum of the correlation coefficients rather than the sum of the

squared correlation coefficients. In fact, the symmetry of these correlations
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Figure 2: Histogram of the p-values of the Box-Pierce test for all residual
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Figure 3: Heat map and histogram of the correlations between all pairwise

residual sequences.

causes their sum to approach zero, thereby failing to detect deviations from
the null hypothesis.
In the aforementioned application, the performance of Ly is better

than Sy. In the Supplementary Material, we will provide another empirical



application where the superiority of Ly or Sy depends on the different ways

of handling the residuals.

5. Conclusion

In this paper, for testing cross-sectional independence under heterogeneous
panel data models with serial correlation, we proposed a max based test
based on the maximum of the squared cross-sectional correlations of resid-
uals to deal with sparse alternatives. Furthermore, we proposed using
Fisher’s combined probability test by combining the p-values of the pro-
posed max based test and the sum based test, which is applicable regard-
less alternatives are sparse or not. In constructing the combined test, the
asymptotic null distribution is established strictly based on the asymptotic
independence of the max based and sum based test statistics, which is an
important contribution of this paper. In addition, we relaxed the distribu-
tion assumption made in the existing studies for testing independence with
serial correlation from Gaussian to sub-Gaussian. Finally, simulation stud-
ies and empirical applications demonstrate the superiority of the proposed

tests in comparison with some of their competitors and their practicality.



Supplementary Material

The Supplementary Material contains some additional numerical results,

an additional empirical application and the technical proofs.
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Table 1: The empirical size of the five tests under settings (i) and (ii)

with distributions (1)-(3) at 5% level.

Setting (i) Setting (ii)

(&3
w
wt

P 3

N T 200 300 400 500 | 200 300 400 500 | 200 300 400 500 | 200 300 400 500

Normal distribution

100 Sn 39 48 41 42 |38 49 42 33|37 49 39 41|40 51 44 32

Ly 34 32 39 49|36 44 39 39|22 2 3.7 44 ]34 39 34 40

(@2

Te 38 45 40 40|33 46 41 4029 38 38 3. 28 42 38 36

[

CDp | 159 162 16.1 17.0|16.6 184 16.2 16.0|19.0 19.7 20.6 21.7| 204 23.1 20.1 20.6
LMpyy | 100 100 100 100 | 100 100 100 100 | 100 100 100 100 | 100 100 100 100

200 SN 44 41 41 59 | 44 48 48 50 | 45 42 42 54| 43 48 49

ot
—_

Ly 21 29 36 36|18 24 22 31|15 27 26 34|09 19 17 21
Te 24 28 48 43 |31 44 36 33|20 26 43 35|26 34 36 25
CDp |15.7 159 158 186 |14.1 16.8 16.8 16.8|20.2 20.1 20.2 228|181 209 212 19.2
LMpyy | 100 100 100 100 | 100 100 100 100 | 100 100 100 100 | 100 100 100 100

tg-distribution

100 SN 3.7 49 45 46 |42 51 50 46|39 52 44 41|46 52 48 49
Ly 33 45 34 52120 29 38 43|23 37 31 51 1

ot
g
=)

3.7 39
Te 3.0 47 41 42 |28 40 43 41|28 41 35 44|25 38 37 39
CDp | 153 152 157 164 |16.0 171 16.7 16.7| 178 194 199 19.3|19.3 225 20.7 20.5
LMpyy | 100 100 100 100 | 100 100 100 100 | 100 100 100 100 | 100 100 100 100

200 Sy 4.0 43 47 51 |50 59 53 48 | 42 41 46 47|48 55 55 42
Ly 24 35 42 42 |30 25 32 3214 21 29 39|20 24 30 28

Te 3.0 43 41 42 |41 47 38 43|27 35 38 36|35 42 37 38
CDp | 144 151 152 179|139 173 179 16.1|19.2 19.8 19.2 23.2| 182 20.6 21.9 19.5

LMpyy | 100 100 100 100 | 100 100 100 100 | 100 100 100 100 | 100 100 100 100

x2-distribution

100 SN 42 38 1 57 |52 51 44 42| 45 3.

ot
ot
—
ot
=Y

49 52 43 44

ot

Ly 34 34 34 31|34 28 46 37|25 23 29 3. 21 26 41 33

[y

Te 36 39 44 52 (36 33 36 40|34 34 40 50|33 32 35 39
CDp | 158 159 16.2 17.6 | 15.0 165 164 159|205 209 19.8 21.2|186 19.7 20.3 20.3
LMpyy | 100 100 100 100 | 100 100 100 100 | 100 100 100 100 | 100 100 100 100

200 SN 52 45 36 40 |48 45 45 50| 56 45 39 42|46 49 46 49
Ly 19 33 39 49|31 39 41 37|12 27 32 38|17 34 36 32

Te 43 37 44 43|33 40 40 42|42 32 40 38|27 31 39 37

CDp | 165 167 162 175|144 158 16.1 17.2|20.6 21.2 20.8 219|188 19.6 19.0 21.5
LMpyy | 100 100 100 100 | 100 100 100 100 | 100 100 100 100 | 100 100 100 100
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Table 2: The empirical power of the three tests at 5% level under case (I).

Setting (i) Setting (ii)

N T | 200 300 400 500 | 200 300 400 500 | 200 300 400 500 | 200 300 400 500

Normal distribution

100 Sy | 71.3 83.6 91.5 96.6 | 69.0 829 91.6 96.0 | 654 77.6 855 93.3|61.8 75.6 87.0 92.8
Ly | 409 833 98.7 100 | 35.6 829 989 100 |23.5 59.2 904 99.7|221 63.7 89.4 99.0

Te 1816 96.2 99.7 100 | 77.8 96.9 99.8 100 | 68.1 89.6 98.0 99.9 | 67.8 91.1 985 100

200 Sy | 69.7 849 915 96.4 694 844 925 96.2|61.8 783 86.2 931|632 782 87.1 93.4
Ly 279 777 982 100 | 252 77.0 97.3 100 | 12.7 53.0 88.7 988|126 529 86.5 99.2

Te | 75.8 97.6 99.8 100 | 74.7 97.0 99.9 100 | 61.6 89.5 984 99.7 | 62.6 90.8 982 99.9

tg-distribution

100 Sy | 71.3 84.2 923 96.1 | 70.5 83.1 90.7 96.1 639 789 87.7 93.0|63.7 77.8 86.2 925
Ly 359 793 984 100 | 349 815 979 100 | 21.9 578 90.3 99.4 204 60.9 88.6 99.0

Te | 791 957 99.7 999 | 785 96.4 99.8 100 | 67.2 89.8 985 99.9 | 65.1 90.5 984 99.9

200 Sy [69.9 859 921 96.4 |70.8 84.3 920 96.9|624 774 87.1 93.0|642 787 87.6 93.5
Ly | 273 788 98.6 100 |24.3 754 984 100 | 13.0 54.7 87.3 981|129 51.2 86.5 99.2

Te | 77.0 96.7 99.7 100 | 75.7 96.0 99.7 100 | 63.4 89.1 97.7 99.9 | 63.7 889 97.5 99.8

x2-distribution

100 Sy | 70.8 854 925 96.5|71.5 84.6 91.3 97.0 | 650 79.2 883 93.1 659 77.1 87.7 939
Ly | 414 825 982 100 | 36.8 81.7 98.0 100 | 24.7 629 90.3 988 |21.3 60.9 884 99.1

Te | 813 97.1 99.9 100 | 80.3 959 99.5 100 | 69.6 91.5 98.6 99.9 | 70.2 89.7 97.8 100

200 Sy | 69.6 84.7 94.0 983|728 844 943 965|639 788 894 951|659 779 904 93.1

Ly 314 786 985 100 |33.8 79.1 984 100 | 16.5 541 90.2 99.3 | 174 544 88.6 99.0

Te | 78.0 96.7 99.9 100 | 80.8 97.1 99.9 100 | 66.0 90.0 99.1 100 | 66.8 90.5 99.2 99.9
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Table 3: The empirical power of the three tests at 5% level under case (1I).

Setting (i) Setting (ii)

N T | 200 300 400 500 | 200 300 400 500 | 200 300 400 500 | 200 300 400 500

Normal distribution

100 Sy | 75 87 84 11.7|89 105 106 109| 76 82 84 108| 79 98 92 93
Ly 991 100 100 100 | 100 100 100 100 | 97.0 100 100 100 |97.1 100 100 100

Te 1984 100 100 100 | 99.6 100 100 100 | 94.7 100 100 100 |93.7 100 100 100

200 Sy |59 64 59 87 |55 70 81 76|56 58 53 86|57 69 73 66
Ly | 583 972 99.6 100 | 485 97.1 100 100 | 35.6 88.7 99.2 99.9 | 32.3 87.5 984 100

Te | 462 933 99.1 100 | 39.4 942 998 100 | 27.1 80.2 98.3 99.9 | 24.6 80.2 97.3 100

tg-distribution

100 Sy |69 90 94 10384 93 89 103| 65 94 83 97|78 88 87 95
Ly 1998 100 100 100 |99.6 100 100 100 | 96.0 100 100 100 |97.2 100 100 100

Te | 99.7 100 100 100 | 984 100 100 100 | 92.7 100 100 100 |93.0 100 100 100

200 Sy | 57 59 63 73|56 86 82 72|55 59 54 74|56 77 81 6.3
Ly | 653 982 100 100 |60.9 96.0 100 100 |35.8 89.1 99.3 100 |33.5 88.8 99.0 100

Te | 539 957 99.9 100 | 488 92.7 99.8 100 | 27.8 79.6 984 100 | 25.1 81.5 98.3 99.8

x2-distribution

100 Sy |86 95 97 12188 83 89 11776 78 93 11480 88 86 116
Ly 1999 100 100 100 | 100 100 100 100 | 97.0 100 100 100 |97.7 100 100 100

Te | 99.8 100 100 100 |99.8 100 100 100 | 93.2 100 100 100 |93.9 100 100 100

200 Sy | 71 70 79 89 72 78 73172 64 71 85|67 68 81 6.8

ot
ot

Ly 563 981 999 100 |59.1 97.9 100 100 |33.9 874 994 100 |354 855 99.1 100

Te | 472 962 99.8 100 | 484 95.0 100 100 | 252 81.0 985 100 |27.7 785 97.7 100
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