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Abstract:

Testing cross-sectional independence in panel data models is of fundamental im-

portance in econometric analysis with high-dimensional panels. Recently, econo-

metricians began to turn their attention to the problem in the presence of serial

dependence. The existing procedure for testing cross-sectional independence with

serial correlation is based on the sum of the sample cross-sectional correlations,

which generally performs well when the alternative has dense cross-sectional cor-

relations, but suffers from low power against sparse alternatives. To deal with

sparse alternatives, we propose a test based on the maximum of the squared

sample cross-sectional correlations. Furthermore, we propose a combined test

∗co-corresponding authors.
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to combine the p-values of the max based and sum based tests, which performs

well under both dense and sparse alternatives. The combined test relies on the

asymptotic independence of the max based and sum based test statistics, which

we show rigorously. We show that the proposed max based and combined tests

have attractive theoretical properties and demonstrate the superior performance

via extensive simulation results. We demonstrate the practicality of the pro-

posed tests through two empirical applications.

Key words and phrases: Asymptotic independence, Cross-sectional dependence,

Heterogeneous panel data models, High dimensionality

1. Introduction

In this paper, we consider the problem of testing cross-sectional indepen-

dence in heterogeneous panel data models. In statistics and econometrics,

panel data occur frequently, which contain observations of various types

obtained over multiple time periods for any single unit. In the study of

panel data models, the cross-sectional dependency is an important concept,

described as the interaction between cross-sectional units, which could arise

from the behavioral interaction between units Breusch and Pagan (1980);

Feng et al. (2022). To make theoretical study easier, experts often assume

cross-sectional independence in the model setups. If data across units are

dependent, inferences under the assumption of cross-sectional independence
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would be inaccurate and misleading; see literature on spatial econometrics,

such as Anselin and Bera (1998); Kelejian and Prucha (1999); Kapoor et al.

(2007); Lee (2007); Lee and Yu (2010) for examples of cross-sectional de-

pendence. Therefore, testing the existence of cross-sectional dependence is

important and attracts increasing attention.

A large number of literatures on testing cross-sectional dependence are

available, among which the most widely known is likely the Lagrange Mul-

tiplier (LM) test proposed by Breusch and Pagan (1980). The LM test is

based on the sum of the squared cross-sectional correlations of residuals,

which is applicable when the sample size T is large and the dimension N

is finite, but is not a valid test when N → ∞. To develop tests applicable

when both N and T are large, two limit schemes have been considered in

the literature. One is the sequential limit scheme: T → ∞, followed by

N → ∞, and the other is the simultaneous limit scheme: N and T tend

to infinity simultaneously, i.e. (N, T ) → ∞. Under the sequential limit

scheme, Pesaran (2004) proposed a scaled version of the LM test, as well as

a test based on the sum of the residual correlations, instead of the squared

sum, to address the issue that the former test may suffer from substantial

size distortions in the case of large N and small T ; Pesaran et al. (2008)

proposed a bias-adjusted LM test based on the scaled LM test. Later, under

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0348



the simultaneous limit scheme, Pesaran (2015) established the asymptoti-

cal properties of the sum based test by Pesaran (2004); Feng et al. (2022)

established the asymptotical properties of the bias-adjusted LM test pro-

posed by Pesaran et al. (2008). In addition to these tests, there are also

works on testing cross-sectional independence under other related models,

such as the fixed effect panel data models; see, for instance, Baltagi et al.

(2012); Feng et al. (2020).

All the above tests are sum based tests, i.e., they are based on the

sum of the correlations or squared correlations of the residuals. These tests

generally perform well under dense alternatives, but may suffer from low

power against sparse alternatives. To deal with sparse alternatives, Feng

et al. (2022) proposed a max based test for testing cross-sectional depen-

dence, and further developed a combined test that integrates the advantages

of the max based and sum based tests, by establishing the asymptotical in-

dependence between the test statistics.

All the tests mentioned above make the common assumption that the

errors in the panel data models are independent across time. However,

the existence of serial dependence is likely to be the rule rather than the

exception; see, for instance, Wei (2006); Hong (2010); Box et al. (2015). In

many applications, serial dependence may have great impact on statistical
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inference, such as leading to deviation of the limiting spectral distribution

of the sample covariance matrix (Gao et al., 2017). Hence, in analyzing

panel data with serially correlated errors, using tests for cross-sectional

independence that are based on the assumption that the errors are serially

independent may lead to wrong conclusions.

To solve this problem, Baltagi et al. (2016) proposed a test for cross-

sectional correlation under heterogeneous panel data models with serial

correlations by adjusting the sum based test by Pesaran (2004). Similarly,

Lan et al. (2017) proposed a test for cross-sectional independence under

fixed effects panel data models with serial correlations. Both tests are sum

based, hence the scope of their application is limited to dense alternatives.

As far as we know, research on max based tests for sparse alternatives or

combined tests regardless of whether alternatives are sparse or not is not

yet available for data with serial dependence.

We aim to fill this gap in this work. To this end, for testing cross-

sectional independence under heterogeneous panel data models with serial

correlations, we propose a max based test based on the maximum of the

squared cross-sectional residual correlations to deal with sparse alternatives.

The method follows the framework of Chen and Liu (2018) for testing in-

dependence of correlated samples, while relaxing their Gaussian sample as-
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sumption. Furthermore, we propose a Fisher’s combined probability test by

combining the p-values of our proposed max based test and the sum based

test by Baltagi et al. (2016). This combined test is applicable regardless

the alternatives are sparse or dense. We derive the asymptotic null distri-

bution of the proposed combined test, by first rigorously establishing the

asymptotic independence of the max based and sum based test statistics.

In summary, there are two main contributions of our work.

(1) We propose a max based test for testing cross-sectional independence

in models with serial correlation and sub-Gaussian error. The new

test is powerful in detecting sparse alternatives.

(2) We establish the asymptotic independence between the sum based

and max based test statistics. We propose a combined test for test-

ing cross-sectional independence in models with serial correlation and

sub-Gaussian error. The new test is powerful overall.

The rest of the paper is organized as follows. We propose two new tests

and establish their asymptotic properties in Section 2. Simulation results

of the proposed tests and their comparison to some existing methods are

demonstrated in Section 3, followed by an empirical application in Section

4. We conclusion the paper in Section 5 and relegate some additional
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simulation results, an additional empirical application and the technical

proofs to the Supplementary Material.

Notataion. For any square matrix A, (A)ij denotes the (i, j)-th en-

try of A, tr(A) denotes the trace of A, λmax(A) and λmin(A) denote the

maximum and the minimum eigenvalues of A, respectively, ∥A∥F denotes

the Frobenius norm of A, and A1/2 denotes the principal square root ma-

trix of A if A is a positive definite matrix. In denotes the n × n identity

matrix for each positive integer n. For any two real numbers x and y, let

x ∨ y = max(x, y) and x ∧ y = min(x, y). For any vector v, ∥v∥ denotes

the Euclidean norm of v. Let N (a, b) denote the normal distribution with

mean a ∈ R and variance b ≥ 0, tv denote the t-distribution with degree of

freedom v, χ2
v denote the chi-square distribution with degree of freedom v

, and U [a, b] denote the uniform distribution over the interval [a, b], where

both a and b are real numbers. Let Φ(·) denote the cumulative distribu-

tion function of the standard normal distribution. We use (N, T ) → ∞ to

denote the joint convergence of N and T to infinity, i.e. min(N, T ) → ∞.
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2. The proposed tests

2.1 Problem description

We consider the heterogeneous panel data model taking the form

yit = x′itβi + ϵit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (2.1)

where i indexes the cross-sectional units, and t indexes the time dimension.

yit ∈ R is the dependent variable, xit ∈ Rp is the exogenous regressors with

slope parameters βi ∈ Rp that are allowed to vary across i and ϵit ∈ R is

the corresponding idiosyncratic error term. For each 1 ≤ i ≤ N , let xi =

(xi1, . . . , xiT )
′ ∈ RT×p, yi = (yi1, . . . , yiT )

′ ∈ RT and ϵi· = (ϵi1, . . . , ϵiT )
′ ∈

RT . For each 1 ≤ t ≤ T , let ϵ·t = (ϵ1t, . . . , ϵNt)
′. The null hypothesis of

cross-sectional independence can be written as

H0 : ϵ1·, ϵ2·, . . . , ϵN · are independent random vectors. (2.2)

2.2 Related works

Early studies on testing cross-sectional independence in (2.2) are based on

the assumption that there is no serial dependence in {ϵ·t}Tt=1, where ϵ·t is

assumed to be iid over time t. The earliest work is the LM test (Breusch
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2.2 Related works

and Pagan, 1980), with test statistic

LMBP = T
∑∑
1≤i<j≤N

ρ̂2ij,

where ρ̂ij is the sample correlation constructed by the OLS residuals ϵ̂it =

yit − x′itβ̂i, with

β̂i = (x′
ixi)

−1
x′
iyi and ρ̂ij =

∑T
t=1 ϵ̂itϵ̂jt√∑T

t=1 ϵ̂
2
it

∑T
t=1 ϵ̂

2
jt

.

The asymptotic null distribution of LMBP is a chi-squared distribution with

N(N − 1)/2 degrees of freedom, which is established when N is fixed and

T diverges to infinity. Hence, it is not applicable to the case of large N .

To overcome the size distortions of the scaled version of the LMBP test

proposed by Pesaran (2004) for large N and small T , Pesaran et al. (2008)

proposed a bias-adjusted test, with test statistic

LMPUY =

√
2

N(N − 1)

∑∑
1≤i<j≤N

(T − p)ρ̂2ij − µT ij

vT ij

,

where

µT ij =
tr {E (PiPj)}

T − p
, v2T ij =

[
tr2 {E (PiPj)}

]
a1T + 2tr

[
{E (PiPj)}2

]
a2T ,

a1T = a2T − 1

(T − p)2
and a2T = 3

{
(T − p− 8)(T − p+ 2) + 24

(T − p+ 2)(T − p− 2)(T − p− 4)

}2

.

Here, for each 1 ≤ i ≤ N , Pi = IT−xi (x
′
ixi)

−1 x′
i, hence ϵ̂i· = (ϵ̂i1, . . . , ϵ̂iT )

′ =

Piϵi·. The asymptotic null distribution of LMPUY is N (0, 1), which is estab-
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2.2 Related works

lished when T → ∞ first and then N → ∞. Later, Feng et al. (2022) estab-

lished that LMPUY → N (0, 1) in distribution when min(N, T ) → ∞, and

also established that LMFJLX → N (0, 1) in distribution when min(N, T ) →

∞, where

LMFJLX =
1

N

∑∑
1≤i<j≤N

T ρ̂2ij −
µN

N
and µN =

T

(T − p)2

∑∑
1≤i<j≤N

tr (PiPj) .

These tests are all based on the sum of squared sample correlations∑∑
1≤i<j≤N ρ̂

2
ij. In contrast, Pesaran (2004) proposed a test for cross-

sectional independence directly based on the sum of sample correlations,

with test statistic

CDP =

√
2T

N(N − 1)

∑∑
1≤i<j≤N

ρ̂ij.

Pesaran (2015) established the asymptotic null distribution of CDP to be

N (0, 1) when min(N, T ) → ∞. Recently, to test cross-sectional correlation

with serially correlated errors, Baltagi et al. (2016) proposed a new test

with test statistic

SN =

√
2

N(N − 1)

∑∑
1≤i<j≤N

ρ̂ij, (2.3)

which is very similar to CDP, but has different asymptotic variance. Under

certain assumptions, they established that under the null hypothesis,

SN/σ̂SN
→ N (0, 1) in distribution when min(N, T ) → ∞, (2.4)
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2.3 Max based test

hence a level-α test can be performed by rejecting H0 when |SN/σ̂SN
| is

larger than the (1− α/2)-quantile zα = Φ−1(1− α/2). Here,

σ̂2
SN

=
2

N(N − 1)

∑∑
1≤i<j≤N

v′j (vi − v̄ij) v
′
i (vj − v̄ij) , (2.5)

v̄ij =
∑

1<k ̸=i,j<N vk/(N − 2) and vk = ϵ̂k·/∥ϵ̂k·∥ for all 1 ≤ k ≤ N.

2.3 Max based test

All tests mentioned in Section 2.2 are sum based tests, which generally

perform very well under dense alternatives, i.e. alternatives with dense

cross-sectional correlation matrices, but may suffer from low power against

sparse alternatives, i.e. alternatives with sparse cross-sectional correlation

matrices. To deal with sparse alternatives, we now propose a max based

test based on the maximum of the squares of the sample cross-sectional

correlations. The test statistic we propose is

LN = max
1≤i<j≤N

ρ̂2ij. (2.6)

Max based tests have been widely studied in testing independence among

variables, e.g., Li and Xue (2015), Chen and Liu (2018) and Feng et al.

(2022). Specifically, Feng et al. (2022) used it to test cross-sectional inde-

pendence under the assumption of no serial correlation between the errors,

and established that TLN − 4 logN + log logN → G(y) in distribution,
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2.3 Max based test

where G(y) = exp
{
− exp (−y/2) /

√
8π
}
. However, this test may perform

poorly if blindly used in the situation where serial correlation exists.

To utilize the test statistic in (2.6) for data with serial correlations,

we must reinvestigate the asymptotic properties of LN . We impose the

following assumptions.

Assumption 1. Assume that E = (ϵ1·, . . . , ϵN ·)
′ = ZR′, where R ∈ RT×T

is an invertible matrix, and all elements of Z = (Z1·, . . . , ZN ·)
′ ∈ RN×T

with Zi· = (Zi1, . . . , ZiT ) are iid variables with mean zero and variance one.

The density function of (Z)it is symmetric and the sub-Gaussian norm of

(Z)it is bounded by K, i.e., E[exp{(Z)2it/K2}] ≤ 2, for each 1 ≤ i ≤ N and

1 ≤ t ≤ T .

Assumption 2. (i) Assume that p > 0 is fixed, and the regressors xit are

strictly exogenous, such that

E (ϵit|xi) = 0, for all 1 ≤ i ≤ N and 1 ≤ t ≤ T.

(ii)Assume that x′
ixi/T =

∑T
t=1 xitx

′
it/T is non-singular and xi

(
x′
ixi/T

)−1
x′
i

is stochastically bounded for all 1 ≤ i ≤ N.

Assumption 3. (i) Assume that for some constant C > 0, C−1 ≤ λmin(Σ) ≤

λmax(Σ) ≤ C, whereΣ = RR′. (ii) Assume that maxj=1,...,T

∑T
k=1 |(Σ)jk|τ ≤

C ′ for some 0 < τ < 2 and C ′ > 0.
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2.3 Max based test

Under Assumption 1, the error is ϵi· = RZi·, where Σ = RR′ is the

covariance matrix of ϵi·. The assumption of symmetry ensures that the

expectations of both SN and ρ̂ij are precisely equal to zero. Pesaran et al.

(2008) also assume the symmetry when the error are independent across

time. If the error distribution is not symmetric, there would be a non-

negligible bias term in SN , see numerical experiments in Supplementary

Material. How to calculate the bias term of SN under the asymmetric

assumption needs some further studies.

Assumption 2(i) is used in Pesaran et al. (2008), which is a common

condition for panel data model in (2.1). Assumption 2(ii) is imposed to en-

sure that the difference between the distribution of the max based statistic

based on the residuals and that based on the errors is negligible.

Assumption 3(i) is the same as Condition (C1) in Chen and Liu (2018),

which is a common eigenvalue assumption in high-dimensional inference

literature such as in Cai et al. (2016) and contains many important types of

covariance matrices, including the bandable, Toeplitz and sparse covariance

matrices. Assumption 3(ii) is the same as Condition (C2) in Chen and Liu

(2018), which assumes the sparsity of Σ. Note that the sparsity of Σ is

imposed to ensure good estimation property. To eliminate the complexity

caused by the serial correlation across t within each row, ideally we hope
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2.3 Max based test

to work with E(R′)−1 = Z, and to test the cross-sectional independence

of Z. However, obtaining a sufficiently good estimate of (R′)−1 may be

very difficult. Thus, in our test procedure, we will need to estimate a Σ

dependent quantity tr2(Σ)/∥Σ∥2F. Since Σ is a high dimensional matrix,

sparsity is a common assumption to regularize the properties of the related

estimation.

To better explain the assumptions imposed, below we provide a simple

example that satisfies these assumptions. In fact, many time series models

satisfy the above assumptions, such as the first-order autoregressive model:

ϵit = aϵit−1 + Zit with |a| < 1. Clearly, this model satisfies Assumptions 1

with

R =


1 0 · · · 0

a 1 · · · 0

...
...

. . .
...

aT−1 aT−2 · · · 1

, (2.7)

and the covariance matrix Σ = RR′ based on (2.7) satisfies Assumption

3. In addition, Assumption 2(i) is commonly used (Pesaran et al., 2008).

Assumption 2(ii) holds if the two conditions, ∥xit∥ and
∑T

t=1 xitx
′
it/T =

x′
ixi/T are randomly bounded for all 1 ≤ i ≤ N and 1 ≤ t ≤ T , hold.

These two conditions are also commonly used, such as in Assumption A of

Bai (2009), Assumption 3 of Gao et al. (2023), Assumption 4 of Baltagi
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2.3 Max based test

et al. (2016) and Assumption 2(iii) of Baltagi et al. (2012).

Throughout the text, we let γ be a positive finite constant.

Theorem 1. Under Assumptions 1-3 and the null hypothesis in (2.2), when

min(N, T ) → ∞ and N/T → γ, for any y ∈ R, we have

P

(
tr2(Σ)

∥Σ∥2F
LN − 4 logN + log logN ≤ y

)
→ G(y),

where G(y) = exp
{
− exp (−y/2) /

√
8π
}

is a type-I Gumbel distribution

function.

Remark 1. The main idea of the proof of Theorem 1 is summarized as

follows. Let Λ = R′R and

T̃ij
.
=

ϵ′i·ϵj·
∥Λ∥F

=
Z ′

i·ΛZj·

∥Λ∥F
, ρij =

ϵ′i·ϵj·
∥ϵi·∥ × ∥ϵj·∥

.

To establish Theorem 1, we initially demonstrate that

P

(
max

1≤i<j≤N
T̃ 2
ij − 4 logN + log logN ≤ y

)
→ exp

{
− 1√

8π
exp

(
−y
2

)}
.

Subsequently, we prove max1≤i<j≤N T̃
2
ij − tr2(Λ)/ ∥Λ∥2Fmax1≤i<j≤N ρ

2
ij → 0

in distribution, and tr2(Λ)/ ∥Λ∥2Fmax1≤i<j≤N(ρ
2
ij−ρ̂2ij) → 0 in distribution.

By combining the aforementioned results, we derive that

P

(
tr2(Λ)

∥Λ∥2F
max

1≤i<j≤N
ρ̂2ij−4 logN+log logN ≤ y

)
→ exp

{
− 1√

8π
exp

(
−y
2

)}
.

Furthermore, due to tr(Σ) = tr(Λ) and ∥Σ∥2F = ∥Λ∥2F, we eventually obtain

the desired result.
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2.3 Max based test

The column covariance matrix Σ, which is needed in the construction of

the max based test statistic, can be assessed via a procedure similar to that

proposed in Chen and Liu (2018) for testing independence among variables

using correlated samples. First, define the column sample covariance matrix

Σ̂ = (σ̂ij)1≤i,j≤T with

σ̂ij =
1

N − 1

N∑
l=1

(
ϵ̂li − ¯̂ϵ·i

) (
ϵ̂lj − ¯̂ϵ·j

)
, ¯̂ϵ·j =

1

N

N∑
l=1

ϵ̂lj and θij =
σ̂ij√
σ̂iiσ̂jj

for each 1 ≤ i, j ≤ T . Then, define Σ̃ = (σ̃ij)1≤i,j≤T with

σ̃ij =


σ̂ijI

(
|θij|

1− θ2ij
≥ ν

√
P̂N log T

N

)
, i ̸= j,

σ̂ii, i = j

(2.8)

for each 1 ≤ i, j ≤ T . Here, ν >
√
2 and P̂N =

[
∥Φ̂∥2F − 1

T
{tr(Φ̂)}2

]
/N,

where for each 1 ≤ i, j ≤ N, (Φ̂)ij = ϵ̂′i·ϵ̂j·/tr(Σ̂). Based on Σ̃, tr2(Σ) and

∥Σ∥2F are estimated by tr2(Σ̃) and ∥Σ̃∥2F, respectively. Hence, tr2(Σ)/∥Σ∥2F

is estimated by tr2(Σ̃)/∥Σ̃∥2F, as indicated in the following theorem, which

is a ratio-consistent estimator of tr2(Σ)/∥Σ∥2F.

Theorem 2. Under Assumptions 1-3 and the null hypothesis in (2.2), for

any ν >
√
2,

tr2(Σ̃)

∥Σ̃∥2F

∥Σ∥2F
tr2(Σ)

= 1 +Op

{( log T
N

) 1
2
∧(1− τ

2
)
}
, (2.9)

when min(N, T ) → ∞ and N/T → γ.
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2.3 Max based test

Remark 2. The main idea of the proof of Theorem 2 is summarized as

follows. Initially, we establish that σ̂ij converges to (Σ)ij in distribution

uniformly for all 1 ≤ i, j ≤ T , and P̂N converges to 1 in distribution.

Subsequently, we leverage these findings to demonstrate the desired result.

Combining Theorems 1 and 2, we have that for any y ∈ R,

P

(
tr2(Σ̃)

∥Σ̃∥2F
LN − 4 logN + log logN ≤ y

)
→ G(y). (2.10)

Based on (2.10), for a given significance level α, the null hypothesis in (2.2)

will be rejected by the established max based test when LNtr
2(Σ̃)/∥Σ̃∥2F ≥

wα + 4 logN − log logN , where wα is the 1 − α quantile of the type-I

Gumbel distribution with the cumulative distribution function G(y) and

has the specific form of wα = log(8π)− 2 log log(1− α)−1.

Next, we turn to the power analysis of the proposed max based test,

in which the following two assumptions need to be imposed.

Assumption 4. Assume that E = (ϵ1·, . . . , ϵN ·)
′ = LZR′, where L ∈ RN×N

and R ∈ RT×T are invertible matrices, all elements of Z ∈ RN×T are iid

variables with mean zero and variance one. The density function of (Z)it is

symmetric, and the sub-Gaussian norm of (Z)it is bounded by K, that is,

for each 1 ≤ i ≤ N and 1 ≤ t ≤ T , E[exp{(Z)2it/K2}] ≤ 2.
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2.3 Max based test

Assumption 5. (i) For a certain constant C > 0, assume C−1 ≤ λmin(Φ) ≤

λmax(Φ) ≤ C, where Φ = LL′. (ii) For a certain 0 < τ < 2 and C ′ >

0, assume max1≤j≤N

∑N
k=1 |(Φ)jk|τ ≤ C ′. (iii) Assume that the diagonal

elements of Φ are all equal to 1.

Under Assumption 4, the error matrix is E = LZR′. It is well known

that when (Z)it
iid∼N(0, 1), the error matrix E has a matrix normal distribu-

tion N(0,Φ⊗Σ), where ⊗ represents the Kronecker product. Chen and Liu

(2018) studied the asymptotic properties of LN under the matrix normal

distribution. Assumption 5 (i) is the same as Condition (C1) in Chen and

Liu (2018), which is a common eigenvalue assumption. Assumption 5 (ii) is

the same as Condition (C2) in Chen and Liu (2018), which constrains the

sparsity of Φ. In addition, Assumption 5 (iii) makes the structural model

of the errors identifiable.

Theorem 3. Under Assumptions 2-5, suppose that for some δ > 2, some

ν > 0, and sufficiently large N and T ,

ψN = max
1≤i<j≤N

|(Φ)ij| ≥ δ
√

∥Σ∥2F logN/tr2(Σ),

then

P

(
tr2(Σ̃)

∥Σ̃∥2F
LN − 4 logN + log logN > wα

)
→ 1, (2.11)

as min(N, T ) → ∞ and N/T → γ.
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Remark 3. Here, we outline the primary steps in the proof of Theorem 3.

Initially, we establish the following facts:

max
1≤i<j≤N

|ρ̂ij − ρij| = Op

( √
tr (Σ2)√

logNtr (Σ)

)
and

∥Σ̃∥2F
tr2(Σ̃)

tr2(Σ)

∥Σ∥2F
= 1 +Op

{(√ log T

N

)min(1,2−τ)}
,

respectively. Subsequently, by leveraging these formulations and that fact

of ψN ≥ δ
√
∥Σ∥2F logN/tr2(Σ), we obtain the desired result.

Theorem 3 indicates that the proposed max based test is consistent

under the sparse alternative in which the maximum non diagonal entries of

Φ is sufficiently large. More specifically, because
√

∥Σ∥2F/tr2(Σ) ≍ T−1/2

under Assumption 3, the test is able to detect the dependence as long as a

single covariance is at the order of (logN/T )1/2, which leads to an overall

detection rate of (logN/T )1/2. In contrast, the sum based test can detect

the departure from null if each covariance reaches T−1/2N−1 (Theorem 4

of Baltagi et al. (2016)), hence the overall detection rate is N/T 1/2. This

theoretical result is consistent with the simulation results in Section 3, where

the max based test performs better than the sum based test in terms of

empirical power under sparse alternatives. The presence of the possible

serial correlation makes it more difficult to establish asymptotic properties
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of LN . For example, we need to reestablish the asymptotic variance of

LN that depends on Σ. This is the reason why we replace the test statistic

TLN−4 logN+log logN in Feng et al. (2022), where no serial correlation is

considered, by LNtr
2(Σ)/∥Σ∥2F−4 logN +log logN and LNtr

2(Σ̃)/∥Σ̃∥2F−

4 logN + log logN .

On the other hand, we note that the max based test for testing inde-

pendence among normally distributed variables with correlated samples has

been studied in Chen and Liu (2018), whereas in this paper we consider the

max based test under panel data models with strictly exogenous regressors,

and we relax the Gaussian assumption to sub-Gaussian. The proof under

sub-Gaussianity is much more challenging because many properties associ-

ated with Gaussianity, such as rotation invariance, can no longer be used.

To establish the theoretical results under sub-Gaussian distributions, more

advanced technical tools, such as the Hanson-Wright inequality (Rudelson

and Vershynin, 2013), need to be engaged in deriving the asymptotical dis-

tribution of the max based test statistic LN . In addition, the expressions

of the moments of the quadratic forms under sub-Gaussian distributions

are also much more complex than that under Gaussian distributions, which

further complicate the proof.
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2.4 Fisher’s combined probability test

2.4 Fisher’s combined probability test

fisher

It is intuitively expected that the sum based test SN performs well under

dense alternatives, whereas the max based test LN performs well under

sparse alternatives. However, in practice, it is usually unknown whether

the correlation matrix of the errors is sparse or not, hence it is difficult to

decide which test to use. For this reason, in this subsection, we propose

using Fisher’s combined probability test by combining the sum based and

max based tests, which is expected to take advantage of both tests. To

construct the test, we first need to establish the asymptotic independence

between the two statistics SN and LN under the null hypothesis.

Theorem 4. Under Assumptions 1-3 and the null hypothesis in (2.2),

LNtr
2(Σ̃)/∥Σ̃∥2F − 4 logN + log logN and SN/σ̂SN

are asymptotically in-

dependent, as min(N, T ) → ∞ and N/T → γ.

Remark 4. Here, we outline the main idea for establishing the above

asymptotical independence under the null hypothesis. Firstly, we estab-

lish the premise that if T̃max and SN are asymptotically independent, we

can infer that LN and SN are asymptotically independent, where T̃max =

max1≤i<j≤N(ϵ
′
i·ϵj·)

2/ ∥Σ∥2F. Hence, to demonstrate the asymptotic indepen-
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dence, it suffices to show that for any x and y,

lim
min(N,T )→∞

P
( SN

σSN

≤ x, T̃max > aN

)
= lim

min(N,T )→∞
P
( SN

σSN

≤ x
)

lim
min(N,T )→∞

P
(
T̃max > aN

)
, (2.12)

where aN = 4 logN − log logN + y. Let ΛN = {(i, j); 1 ≤ i < j ≤ N},

AN = {SN/σSN
≤ x}, BI = {|ϵ′i·ϵj·| ≥ lN} for any I = (i, j) ∈ ΛN , and

lN =

√
∥Σ∥2F (4 logN − log logN + y) =

√
∥Σ∥2F aN .

Then, the left side of (2.12) can be expressed as

P

(
SN

σSN

≤ x, max
1≤i<j≤N

(ϵ′i·ϵj·)
2

∥Σ∥2F
> aN

)
= P

( ⋃
I∈ΛN

ANBI

)
.

Due to the principle of inclusion-exclusion, when m is sufficiently large, we

can deduce that

P

( ⋃
I∈ΛN

ANBI

)
≈
∑

I1∈ΛN

P (ANBI1)−
∑

I1<I2∈ΛN

P (ANBI1BI2) + · · ·

+ (−1)m+1
∑

I1<I2<···<Im∈ΛN

P (ANBI1BI2 · · ·BIm) ,

where the symbol “≈” indicates that the difference between the two sides

tends to zero as min(N, T ) → ∞ with lim
min(N,T )→∞

N/T = γ ∈ (0,+∞).

Next, we establish two key facts. The first is given by the equation:

P (ANBI1BI2 · · ·BIm) ≈ P (AN) · P (BI1BI2 · · ·BIm) . (2.13)
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The second fact is that for any m ≥ 1, the following sum is negligible:

∑
I1<I2<···<Im∈ΛN

{P (ANBI1BI2 · · ·BIm)− P (AN) · P (BI1BI2 · · ·BIm)} → 0.

(2.14)

Finally, based on the above results, we obtain the desired result.

Note that in many related studies, such as Li and Xue (2015) and Feng

et al. (2022), the asymptotic independence between the sum based and max

based statistics is established under the assumption that all components of

the random vectors concerned are independent and identically distributed.

In contrast, we establish the asymptotic independence in the situation where

the error vectors may have serial correlation, which makes the proof of

the asymptotic independence much more challenging and requires more

complex technical treatments and tools.

Let PLN
= 1 − G

(
LNtr

2(Σ̃)/∥Σ̃∥2F − 4 logN + log logN
)
and PSN

=

2− 2Φ (|SN/σ̂SN
|). We construct Fisher’s combined probability test statis-

tic as

TC = −2 log(PLN
)− 2 log(PSN

). (2.15)

By Theorem 4, (2.4) and (2.10), we see that PLN
and PSN

are asymptoti-

cally independent under the null hypothesis and each has limit distribution
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U [0, 1], the uniform distribution on [0, 1]. We thus obtain the following

corollary.

Corollary 1. Assume that the assumptions in Theorem 4 hold, then we

have TC → χ2
4 in distribution when min(N, T ) → ∞ and N/T → γ.

According to Corollary 1, we proposed Fisher’s combined probability

tes at level α by rejecting the null hypothesis in (2.2) if TC ≥ qα, where qα

is the 1− α quantile of χ2
4.

3. Simulation studies

We now conduct simulations to investigate the finite sample performance

of the two tests proposed in this paper, i.e. the test based on LN and the

Fisher’s combined probability test based on TC . For comparison, we also

implement three other existing tests, i.e. the test based on SN proposed

by Baltagi et al. (2016), the LMPUY test proposed by Pesaran et al. (2008)

and the CDP test proposed by Pesaran (2004). Here, the max based test is

implemented by setting ν = 1.42 in (2.8) as in Chen and Liu (2018). For

simplicity, we will abbreviate these five tests as LN , TC , SN , LMPUY and

CDP, respectively.
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We consider the data generating process

yit = αi +

p∑
l=2

xli,tβli + ϵit, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (3.1)

where xit = (1, x2i,t, . . . , xpi,t)
′ ∈ Rp and βi = (αi, β2i, . . . , βpi)

′ ∈ Rp. We

generate αi
iid∼N (0, 1) and βli

iid∼N (1, 0.04) for 2 ≤ l ≤ p. The strictly ex-

ogenous regressors are generated by xli,t = 0.6xli,t−1 + vli,t for 1 ≤ i ≤ N,

−50 ≤ t ≤ T and 2 ≤ l ≤ p, where xli,−51 = 0 and vli,t are independently

and identically distributed from N (0, ψ2
li/ (1− 0.62)) , where ψ2

li
iid∼ χ2

6/6.

Consider the following two settings of serial correlation of the errors ϵit.

(i) The errors follow an auto-regressive (AR) model of order one over

time, i.e. AR(1): ϵi1 = ei1 and ϵit = 0.6ϵit−1 + eit for 2 ≤ t ≤ T and

1 ≤ i ≤ N.

(ii) The errors follow an auto-regressive and moving average (ARMA)

model of order (1,1) over time, i.e. ARMA(1,1): ϵi1 = ei1 and ϵit =

0.6ϵit−1 + eit + 0.2eit−1 for 2 ≤ t ≤ T and 1 ≤ i ≤ N.

To produce data under the null hypothesis, eit are independently generated

from the following three distributions: (1) N (0, 1); (2) t6/
√

6/4; (3) (χ2
5 −

5)/
√
10.

Then, we turn to produce data under the alternative hypothesis. The
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data generating process is specified as

yit = αi +

p∑
l=2

xli,tβli + ϵ∗it, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (3.2)

where ϵ∗it are generated from the following two settings.

(I) Non-sparse case. Spatial moving average (SMA) model with order

one, i.e. SMA(1): for all 1 ≤ t ≤ T, ϵ∗1t = 0.5δϵ2t + ϵ1t, ϵ
∗
Nt =

0.5δϵN−1t + ϵNt and ϵ∗it = δ (0.5ϵi−1,t + 0.5ϵi+1,t) + ϵit, where 2 ≤

i ≤ N − 1, δ = 0.2 and ϵit are generated from settings (i)-(ii) with

distributions (1)-(3).

(II) Sparse case. Let (ϵ∗1·, · · · , ϵ∗N ·)
′ = W1/2(ϵ1·, · · · , ϵN ·)

′, where ϵ∗i· =

(ϵ∗i1, · · · , ϵ∗iT )′ and ϵi· = (ϵi1, · · · , ϵiT )′, for all 1 ≤ i ≤ N. Here, ϵi·

are generated from settings (i)-(ii) with distributions (1)-(3). W is

constructed as follows. Randomly select a subset S ⊂ {1, · · · , N}

with cardinality ⌈N0.3⌉, the smallest integer grater than or equal to

N0.3. Let (W)ij = 1 if i = j. For i < j, define (W)ij = 0 if i /∈ S or

j /∈ S, and (W)ij
iid∼ U

[√
4 log T

N
,
√
6 log T

N

]
if i, j ∈ S.

In addition, for the choices of p,N and T , we set p ∈ {3, 5}, N ∈

{100, 200}, T ∈ {200, 300, 400, 500}.

The results of the empirical size and power of the five tests in the non-

sparse and sparse cases of error correlation matrices are summarized in
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Tables 1-3. The power curves are plotted in Figure 1. All results are based

on 1,000 replications. We next analyze them in detail.

Table 1 indicates that in most cases TC , LN and SN have empirical

sizes not much larger than 5%. Here, the max based test LN and Fisher’s

combined probability test TC tend to have smaller empirical sizes than the

sum based test SN , especially as T is relatively small. This is not surprising

and is common for many max based tests, because the convergence rate of

the type-I Gumbel distribution is typically slow (Liu et al., 2008). CDP and

LMPUY fail to control the empirical size because E(ρ̂2ij) may be seriously

affected by serial correlation. This is also observed by Baltagi et al. (2016).

Tables 2 and 3 show the empirical powers in both non-sparse and sparse

cases of correlation matrices. Since CDP and LMPUY fail to control the

empirical size, we exclude them from the empirical power results. Table 2

and 3 indicate that SN and TC generally perform better than LN in non-

sparse cases in terms of empirical powers, whereas LN and TC generally

perform better than SN in sparse cases. As expected, Fisher’s combined

probability test TC has power advantages regardless the local alternative is

sparse or not.

Figure 1 shows how the empirical powers of the three tests change as

the degree of sparsity of the correlation matrix changes, where the x-axis
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is the level of density k and the y-axis represents the empirical power. To

generate Figure 1, we designed the following simulation. Let (ϵ∗1·, . . . , ϵ
∗
N ·)

′ =

W1/2(ϵ1·, . . . , ϵN ·)
′, where ϵ∗i· = (ϵ∗i1, . . . , ϵ

∗
iT )

′ and ϵi· = (ϵi1, . . . , ϵiT )
′, for all

1 ≤ i ≤ N. Here, ϵi· are generated from settings (i)-(ii) with distribution (1).

We set N = 100, T = 300, p = 3, k = 2, . . . , 16; a subset S ⊂ {1, . . . , N} is

randomly selected with cardinality |S| = k; (W)ij = 1 if i = j; for i ̸= j,

(W)ij = 0 if i /∈ S or j /∈ S, and (W)ij
iid∼ U

[√
7
k
log T
N
,
√

9
k
log T
N

]
if i ∈ S

and j ∈ S. Hence, a larger k means a higher level of density.

Figure 1 indicates that the empirical power of Fisher’s combined prob-

ability test TC is always very close to the maximum power of both tests

for all k, which suggests that it has robust empirical power performance

regardless the alternative is sparse or not. In contrast, the empirical power

curves of SN , LN are both monotone, with the sum based test SN gains

more power with the increase of the level of density, while the max based

test LN gains more power with the decrease of the level of density.

4. Empirical application

We now apply the proposed tests to the dataset analyzed in Serlenga and

Shin (2007), which comprises bilateral trade flow data for 91 country pairs

from 15 European countries, spanning a 42-year period from 1960 to 2001.
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Figure 1: The empirical power curves of the three tests at 5% level under

settings (i) and (ii).

Consider the following linear heterogeneous slope panel data model:

Yit =αi + βi1GPDit + βi2RERit + βi3EMUit + γiDISTi

+ λi1RERTt + λi2FTRADEt + λi3FGDPt + λi4FRLFt + ϵit, (4.1)

where 1 ≤ i ≤ 91 and 1 ≤ t ≤ 42. For the i-th country pair in the t-th

year, Yit represents the bilateral trade flow, i.e. the sum of logged exports

and imports, GPDit represents the sum of the logged real GDPs, RERit

represents the logged bilateral real exchange rate, and EMUit represents

the dummy variable that is equal to 1 when both countries in this pair

adopt the common currency. DISTi represents the geographical distance

between capital cities, while RERTt denotes the logarithm of real exchange

rates between the European currencies and the U.S. dollar. In addition,
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FTRADEt, FGDPt and FRLFt are the time specific common factors of the

variables TRADE, GDP, RLF (a measure of relative factor endowments),

respectively.

Before applying the proposed tests to this dataset, we conducted the

Box-Pierce tests on the residual sequences to investigate whether there is

serial correlation in the residual sequences. The histogram of the p-values

of these tests, shown in Figure 2, suggests that for many residual sequences

exhibit serial correlation. Therefore, it is reasonable to apply the proposed

tests to this dataset. The p-values of applying the SN , LN and TC tests

to this dataset are 0.168, 0.015 and 0.018, respectively. To explore the

reasons behind these results, we plotted the histogram of the cross-sectional

correlations between all pairwise residual sequences as well as the heatmap

of their absolute values in Figure 3, which indicate that many of these

correlation values are non-zero, including some with very large absolute

values, and the distribution of these correlations is nearly symmetric. The

very large absolute values lead both the LN and TC tests to reject the null

hypothesis. However, despite having many non-zero correlation values, the

SN test failed to reject the null hypothesis. This is because its test statistic

is based on the sum of the correlation coefficients rather than the sum of the

squared correlation coefficients. In fact, the symmetry of these correlations
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Figure 2: Histogram of the p-values of the Box-Pierce test for all residual

sequences.

Figure 3: Heat map and histogram of the correlations between all pairwise

residual sequences.

causes their sum to approach zero, thereby failing to detect deviations from

the null hypothesis.

In the aforementioned application, the performance of LN is better

than SN . In the Supplementary Material, we will provide another empirical
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application where the superiority of LN or SN depends on the different ways

of handling the residuals.

5. Conclusion

In this paper, for testing cross-sectional independence under heterogeneous

panel data models with serial correlation, we proposed a max based test

based on the maximum of the squared cross-sectional correlations of resid-

uals to deal with sparse alternatives. Furthermore, we proposed using

Fisher’s combined probability test by combining the p-values of the pro-

posed max based test and the sum based test, which is applicable regard-

less alternatives are sparse or not. In constructing the combined test, the

asymptotic null distribution is established strictly based on the asymptotic

independence of the max based and sum based test statistics, which is an

important contribution of this paper. In addition, we relaxed the distribu-

tion assumption made in the existing studies for testing independence with

serial correlation from Gaussian to sub-Gaussian. Finally, simulation stud-

ies and empirical applications demonstrate the superiority of the proposed

tests in comparison with some of their competitors and their practicality.
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Supplementary Material

The Supplementary Material contains some additional numerical results,

an additional empirical application and the technical proofs.
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Table 1: The empirical size of the five tests under settings (i) and (ii)

with distributions (1)-(3) at 5% level.

Setting (i) Setting (ii)

p 3 5 3 5

N T 200 300 400 500 200 300 400 500 200 300 400 500 200 300 400 500

Normal distribution

100 SN 3.9 4.8 4.1 4.2 3.8 4.9 4.2 3.3 3.7 4.9 3.9 4.1 4.0 5.1 4.4 3.2

LN 3.4 3.2 3.9 4.9 3.6 4.4 3.9 3.9 2.2 2.5 3.7 4.4 3.4 3.9 3.4 4.0

TC 3.8 4.5 4.0 4.0 3.3 4.6 4.1 4.0 2.9 3.8 3.8 3.5 2.8 4.2 3.8 3.6

CDP 15.9 16.2 16.1 17.0 16.6 18.4 16.2 16.0 19.0 19.7 20.6 21.7 20.4 23.1 20.1 20.6

LMPUY 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

200 SN 4.4 4.1 4.1 5.9 4.4 4.8 4.8 5.0 4.5 4.2 4.2 5.4 4.3 4.8 4.9 5.1

LN 2.1 2.9 3.6 3.6 1.8 2.4 2.2 3.1 1.5 2.7 2.6 3.4 0.9 1.9 1.7 2.1

TC 2.4 2.8 4.8 4.3 3.1 4.4 3.6 3.3 2.0 2.6 4.3 3.5 2.6 3.4 3.6 2.5

CDP 15.7 15.9 15.8 18.6 14.1 16.8 16.8 16.8 20.2 20.1 20.2 22.8 18.1 20.9 21.2 19.2

LMPUY 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

t6-distribution

100 SN 3.7 4.9 4.5 4.6 4.2 5.1 5.0 4.6 3.9 5.2 4.4 4.1 4.6 5.2 4.8 4.9

LN 3.3 4.5 3.4 5.2 2.0 2.9 3.8 4.3 2.3 3.7 3.1 5.1 1.5 2.6 3.7 3.9

TC 3.0 4.7 4.1 4.2 2.8 4.0 4.3 4.1 2.8 4.1 3.5 4.4 2.5 3.8 3.7 3.9

CDP 15.3 15.2 15.7 16.4 16.0 17.1 16.7 16.7 17.8 19.4 19.9 19.3 19.3 22.5 20.7 20.5

LMPUY 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

200 SN 4.0 4.3 4.7 5.1 5.0 5.9 5.3 4.8 4.2 4.1 4.6 4.7 4.8 5.5 5.5 4.2

LN 2.4 3.5 4.2 4.2 3.0 2.5 3.2 3.2 1.4 2.1 2.9 3.9 2.0 2.4 3.0 2.8

TC 3.0 4.3 4.1 4.2 4.1 4.7 3.8 4.3 2.7 3.5 3.8 3.6 3.5 4.2 3.7 3.8

CDP 14.4 15.1 15.2 17.9 13.9 17.3 17.9 16.1 19.2 19.8 19.2 23.2 18.2 20.6 21.9 19.5

LMPUY 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

χ2
5-distribution

100 SN 4.2 3.8 5.1 5.7 5.2 5.1 4.4 4.2 4.5 3.5 5.1 5.6 4.9 5.2 4.3 4.4

LN 3.4 3.4 3.4 3.1 3.4 2.8 4.6 3.7 2.5 2.3 2.9 3.5 2.1 2.6 4.1 3.3

TC 3.6 3.9 4.4 5.2 3.6 3.3 3.6 4.0 3.4 3.4 4.0 5.0 3.3 3.2 3.5 3.9

CDP 15.8 15.9 16.2 17.6 15.0 16.5 16.4 15.9 20.5 20.9 19.8 21.2 18.6 19.7 20.3 20.3

LMPUY 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

200 SN 5.2 4.5 3.6 4.0 4.8 4.5 4.5 5.0 5.6 4.5 3.9 4.2 4.6 4.9 4.6 4.9

LN 1.9 3.3 3.9 4.9 3.1 3.9 4.1 3.7 1.2 2.7 3.2 3.8 1.7 3.4 3.6 3.2

TC 4.3 3.7 4.4 4.3 3.3 4.0 4.0 4.2 4.2 3.2 4.0 3.8 2.7 3.1 3.9 3.7

CDP 16.5 16.7 16.2 17.5 14.4 15.8 16.1 17.2 20.6 21.2 20.8 21.9 18.8 19.6 19.0 21.5

LMPUY 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table 2: The empirical power of the three tests at 5% level under case (I).

Setting (i) Setting (ii)

p 3 5 3 5

N T 200 300 400 500 200 300 400 500 200 300 400 500 200 300 400 500

Normal distribution

100 SN 71.3 83.6 91.5 96.6 69.0 82.9 91.6 96.0 65.4 77.6 85.5 93.3 61.8 75.6 87.0 92.8

LN 40.9 83.3 98.7 100 35.6 82.9 98.9 100 23.5 59.2 90.4 99.7 22.1 63.7 89.4 99.0

TC 81.6 96.2 99.7 100 77.8 96.9 99.8 100 68.1 89.6 98.0 99.9 67.8 91.1 98.5 100

200 SN 69.7 84.9 91.5 96.4 69.4 84.4 92.5 96.2 61.8 78.3 86.2 93.1 63.2 78.2 87.1 93.4

LN 27.9 77.7 98.2 100 25.2 77.0 97.3 100 12.7 53.0 88.7 98.8 12.6 52.9 86.5 99.2

TC 75.8 97.6 99.8 100 74.7 97.0 99.9 100 61.6 89.5 98.4 99.7 62.6 90.8 98.2 99.9

t6-distribution

100 SN 71.3 84.2 92.3 96.1 70.5 83.1 90.7 96.1 63.9 78.9 87.7 93.0 63.7 77.8 86.2 92.5

LN 35.9 79.3 98.4 100 34.9 81.5 97.9 100 21.9 57.8 90.3 99.4 20.4 60.9 88.6 99.0

TC 79.1 95.7 99.7 99.9 78.5 96.4 99.8 100 67.2 89.8 98.5 99.9 65.1 90.5 98.4 99.9

200 SN 69.9 85.9 92.1 96.4 70.8 84.3 92.0 96.9 62.4 77.4 87.1 93.0 64.2 78.7 87.6 93.5

LN 27.3 78.8 98.6 100 24.3 75.4 98.4 100 13.0 54.7 87.3 98.1 12.9 51.2 86.5 99.2

TC 77.0 96.7 99.7 100 75.7 96.0 99.7 100 63.4 89.1 97.7 99.9 63.7 88.9 97.5 99.8

χ2
5-distribution

100 SN 70.8 85.4 92.5 96.5 71.5 84.6 91.3 97.0 65.0 79.2 88.3 93.1 65.9 77.1 87.7 93.9

LN 41.4 82.5 98.2 100 36.8 81.7 98.0 100 24.7 62.9 90.3 98.8 21.3 60.9 88.4 99.1

TC 81.3 97.1 99.9 100 80.3 95.9 99.5 100 69.6 91.5 98.6 99.9 70.2 89.7 97.8 100

200 SN 69.6 84.7 94.0 98.3 72.8 84.4 94.3 96.5 63.9 78.8 89.4 95.1 65.9 77.9 90.4 93.1

LN 31.4 78.6 98.5 100 33.8 79.1 98.4 100 16.5 54.1 90.2 99.3 17.4 54.4 88.6 99.0

TC 78.0 96.7 99.9 100 80.8 97.1 99.9 100 66.0 90.0 99.1 100 66.8 90.5 99.2 99.9
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Table 3: The empirical power of the three tests at 5% level under case (II).

Setting (i) Setting (ii)

p 3 5 3 5

N T 200 300 400 500 200 300 400 500 200 300 400 500 200 300 400 500

Normal distribution

100 SN 7.5 8.7 8.4 11.7 8.9 10.5 10.6 10.9 7.6 8.2 8.4 10.8 7.9 9.8 9.2 9.3

LN 99.1 100 100 100 100 100 100 100 97.0 100 100 100 97.1 100 100 100

TC 98.4 100 100 100 99.6 100 100 100 94.7 100 100 100 93.7 100 100 100

200 SN 5.9 6.4 5.9 8.7 5.5 7.0 8.1 7.6 5.6 5.8 5.3 8.6 5.7 6.9 7.3 6.6

LN 58.3 97.2 99.6 100 48.5 97.1 100 100 35.6 88.7 99.2 99.9 32.3 87.5 98.4 100

TC 46.2 93.3 99.1 100 39.4 94.2 99.8 100 27.1 80.2 98.3 99.9 24.6 80.2 97.3 100

t6-distribution

100 SN 6.9 9.0 9.4 10.3 8.4 9.3 8.9 10.3 6.5 9.4 8.3 9.7 7.8 8.8 8.7 9.5

LN 99.8 100 100 100 99.6 100 100 100 96.0 100 100 100 97.2 100 100 100

TC 99.7 100 100 100 98.4 100 100 100 92.7 100 100 100 93.0 100 100 100

200 SN 5.7 5.9 6.3 7.3 5.6 8.6 8.2 7.2 5.5 5.9 5.4 7.4 5.6 7.7 8.1 6.3

LN 65.3 98.2 100 100 60.9 96.0 100 100 35.8 89.1 99.3 100 33.5 88.8 99.0 100

TC 53.9 95.7 99.9 100 48.8 92.7 99.8 100 27.8 79.6 98.4 100 25.1 81.5 98.3 99.8

χ2
5-distribution

100 SN 8.6 9.5 9.7 12.1 8.8 8.3 8.9 11.7 7.6 7.8 9.3 11.4 8.0 8.8 8.6 11.6

LN 99.9 100 100 100 100 100 100 100 97.0 100 100 100 97.7 100 100 100

TC 99.8 100 100 100 99.8 100 100 100 93.2 100 100 100 93.9 100 100 100

200 SN 7.1 7.0 7.9 8.9 5.5 7.2 7.8 7.3 7.2 6.4 7.1 8.5 6.7 6.8 8.1 6.8

LN 56.3 98.1 99.9 100 59.1 97.9 100 100 33.9 87.4 99.4 100 35.4 85.5 99.1 100

TC 47.2 96.2 99.8 100 48.4 95.0 100 100 25.2 81.0 98.5 100 27.7 78.5 97.7 100
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