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Abstract: Functional data have received significant attention as they frequently

appear in modern applications, such as functional magnetic resonance imaging

(fMRI) and natural language processing. The infinite-dimensional nature of func-

tional data makes it necessary to use dimension reduction techniques. Most ex-

isting techniques, however, rely on the covariance operator, which can be affected

by heavy-tailed data and unusual observations. Therefore, in this paper, we con-

sider a robust sliced inverse regression for multivariate elliptical functional data.

For that reason, we introduce a new statistical linear operator, called the con-

ditional spatial sign Kendall’s tau covariance operator, which can be seen as an

extension of the multivariate Kendall’s tau to both the conditional and functional

settings. The new operator is robust to heavy-tailed data and outliers, and hence

can provide a robust estimate of the sufficient predictors. We also derive the

convergence rates of the proposed estimators for both completely and partially

observed data. Finally, we demonstrate the finite sample performance of our

estimator using simulation examples and a real dataset based on fMRI.
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1. Introduction

The complexity of data structures has increased over the past few decades

as data storage capacity and its usage demand have exploded. Following

these phenomena, functional data analysis (FDA) has gained great atten-

tion, which treats an entire curve or a vector of curves as a single obser-

vation. Functional data are considered to be random elements in infinite-

dimensional linear spaces and the extension of multivariate data analysis

to functional data is highly non-trivial. However, the rapid development of

FDA in the past few decades has enabled us to use a variety of techniques

to analyze such infinite dimensional data. See Wang et al. (2016) for a

comprehensive overview on FDA.

The infinite-dimensional nature of functional data leverages the use of

dimension reduction techniques, i.e., techniques that replace the functional

objects with finite ones while maintaining all the necessary information. At
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the unsupervised setting, a common dimension reduction technique is that

of functional principal component analysis (FPCA); see Hall and Hosseini-

Nasab (2006), and Happ and Greven (2018) for an overview. At the super-

vised setting, many authors considered extensions of dimension reduction

techniques to functional data. For example, Ferré and Yao (2003) proposed

functional sliced inverse regression (FSIR) by extending the sliced inverse

regression (SIR) of Li (1991) to the case where the predictor is a function,

while Li and Song (2022) further generalized sufficient dimension reduction

to the nonlinear case and where both the response and the predictor are

random elements in a Hilbert space.

The aforementioned methods are based on the covariance operator,

which can be sensitive under heavy-tailed data and unusual observations.

To address these challenges, at the unsupervised setting, efficient robust

methods for FPCA have been recently developed. For example, Locantore

et al. (1999) introduced the spherical covariance operator to replace the

covariance operator. Gervini (2008) introduced the functional median for

robust mean estimation and studied the properties of the principal com-

ponents of the spherical covariance operator, under the assumption that

the observed functions lie in a finite-dimensional Hilbert space. Bali et al.

(2011) extended the projection-pursuit method of Li and Chen (1985) to
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the functional setting and Kraus and Panaretos (2012) proposed to replace

the covariance operator with a dispersion operator defined through a vari-

ational problem. Boente et al. (2019) and Wang et al. (2022) introduced

the functional pairwise spatial sign operator that extends the multivariate

Kendall’s tau matrix of Choi and Marden (1998) to the functional setting.

For Euclidean finite-dimensional data, the multivariate Kendall’s tau ma-

trix has also been studied by several other authors; see Marden (1999),

Han and Liu (2018), Croux et al. (2002), Visuri et al. (2000), and Jackson

and Chen (2004). In particular, Marden (1999) showed that the population

multivariate Kendall’s tau shares the same eigenspace with the covariance

matrix under the coordinate-wise symmetric condition.

All above works tackle the problem at the unsupervised learning set-

ting. In this article, we introduce robust inverse regression for multivariate

elliptical functional data. We relax the Gaussian assumption in Ferré and

Yao (2003), and we consider the situation where the multivariate functional

predictors are not Gaussian and may be characterized by the presence of

atypical observations. Our proposal thus extends two lines of existing and

relevant research: from robust inverse regression of random variables to that

of random functions, and from unsupervised robust dimension reduction

for functional data to supervised robust dimension reduction for functional
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data. We note that Chen et al. (2022) introduced elliptical sliced inverse

regression for finite-dimensional data. However, our method involves vec-

tors of random functions and hence, requires different techniques for both

the method and the theory. We make several contributions as below:

• We define the elliptical distribution for a vector of random functions,

extending the existing definition of Boente et al. (2014) to the multi-

variate setting.

• We introduce a new statistical linear operator, called the conditional

spatial sign Kendall’s tau covariance operator, which can be seen as

an extension of the multivariate Kendall’s tau to both the conditional

and functional settings, and is capable to handle heavy-tailed func-

tional data and outliers. We show that the conditional spatial sign

Kendall’s tau covariance operator has the same eigenfunctions with

the conditional covariance operator, and hence we can formulate the

generalized eigenvalue problem based on this new operator to achieve

estimation robustness.

• We derive the convergence rates of the proposed estimators for both

completely and partially observed data. In practice, we can only

observe the functions at discrete time points, and the new theoretical
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results support practical estimation procedure.

The rest of the paper is organized as follows. Section 2 introduces the mul-

tivariate elliptical random elements in Hilbert spaces and the conditional

spatial sign Kendall’s tau covariance operator. Section 3 describes the pro-

posed method of robust functional SIR. Section 4 presents the asymptotic

results of the method, while Section 5 demonstrates its sample estimation.

Finally, the finite sample performance of the proposed method is illustrated

through simulation studies in Section 6 and through a neuroimaging dataset

in Section 7. All proofs and some additional results can be found in the

supplementary file.

2. Multivariate elliptical random elements in Hilbert spaces

In this section we present basic notations and definitions that will be used

throughout the paper. Let (Ω,F , P ) be a probability space and H be a

separable Hilbert space of real-valued functions defined on T , where T is a

closed interval in R. Let 〈·, ·〉H represent the inner product in H with the

induced norm ‖ · ‖H. A random element U in H is a mapping from Ω to H

that is measurable with respect to the Borel σ-field generated by the open

sets in H . Assuming

Assumption 1. E‖U‖2H <∞,
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implies that E‖U‖H <∞, under which the mapping H → R, s 7→ E〈s, U〉H

is a bounded linear functional. Then, by Riesz representation there exists

a unique µU ∈ H , such that

〈s, µU〉H = E(〈s, U〉H). (2.1)

The function µU is called the mean of U and it can also be written as

E(U). Under Assumption 1, we can define the covariance operator of U ,

ΣUU = E[{U−E(U)}⊗{U−E(U)}], where ⊗ represents the tensor product

on H . If, for example, H = L2(T ), where L2(T ) denotes the space of

square-integrable real-valued functions, then the mean of U is the function

t 7→ EU(t) and the covariance operator is defined as the integral operator

ΣUU(f) =
∫
T
f(s)σUU(s, t)dt for f ∈ H , where σUU(s, t) = cov{U(s), U(t)}

is the covariance function of U .

Under Assumption 1, it can be shown that ΣUU is a self-adjoint, non-

negative definite and trace-class operator, and that it belongs to the Hilbert

space of Hilbert-Schmidt operators over H . Hence, it achieves a spectral

decomposition
∑∞

r=1
λrφr ⊗ φr, where {λr}r≥1 are the nonnegative eigen-

values satisfying λ1 ≥ λ2 ≥ . . . ≥ 0, and {φr}r≥1 are the eigenfunctions

forming an orthonormal basis in H . Moreover, U − µU can be expressed as
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the Karhunen-Loève expansion (Bosq, 2000)

U − µU =
∞∑
r=1

λ1/2

r ξr φr, (2.2)

where ξr = λ−1/2r 〈U − µU , φr〉H, r = 1, 2, . . ., are zero mean, unit variance,

and uncorrelated random variables. Next, we give the definition of the

elliptical distribution for a univariate random element in H , as introduced

in Boente et al. (2014, 2019).

Definition 1. A random element U in H is said to follow a functional

elliptical distribution with parameters µ ∈ H and Σ : H 7→ H , where Σ

is a self-adjoint, nonnegative definite and compact operator, if and only if,

for any d ≥ 1 and for any linear and bounded operator A : H 7→ Rd, we

have that E[exp{itT(AU)}] = exp(itTAµ)ϕ{tT(AΣA∗)t}, t ∈ Rd, where ϕ is

a valid characteristic function in Rd and A∗ : Rd 7→ H denotes the adjoint

operator of A. Equivalently, AU is a d-dimensional elliptical random vector,

written as AU ∼ E d(Aµ,AΣA∗, ϕ). We write U ∼ E(µ,Σ, ϕ), and we call µ

the location parameter and Σ the scatter operator of U .

Note that, if µU = E(U) exists, then µU = µ, and if E‖U‖2H < ∞,

then ΣUU = aΣ for some constant a (Boente et al., 2014, 2019). Moreover,

elliptical random elements in H are closed through linear and bounded

transformations; see Lemma 2.1 in Boente et al. (2014, 2019). According
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to Boente et al. (2014, 2019), the elliptical random elements in H can be

constructed as follows: Let N be a Gaussian random element in H with

zero mean and covariance operator ΣNN , and let S be a nonnegative random

variable that is independent of N . Given µ ∈ H , the random element

U
d
= µ + SN is an elliptical random element in H , i.e., U ∼ E(µ,Σ, ϕ)

with Σ = ΣNN and ϕ(x) = E{exp(−xS/2)}. Throughout the paper, for an

elliptical random element U we assume that E(S2) < ∞, so that ΣUU =

E(S2)Σ. Further, for model identifiability, we assume that E(S2) = 1. The

class of the elliptical distributions in H includes the Gaussian distribution

by taking ϕ(t) = exp(−t/2) and Σ = ΣUU .

We now turn to vector-valued random functions. For each i = 1, . . . , p,

let H i be a separable Hilbert space of real-valued functions on T with inner

product 〈·, ·〉Hi . Let H = ⊕p
i=1H i be the direct sum of H 1, . . . ,H p. That

is, ⊕p
i=1H i is the Cartesian product H 1 × · · · × H p with its inner product

defined by 〈f, g〉⊕H =
∑

p

i=1
〈fi, gi〉Hi , where f and g are members of ⊕p

i=1H i

and fi and gi are the ith components of f and g, respectively.

Let X = (X1, . . . , Xp) be a random element in ⊕p
i=1H i. For each

i = 1, . . . , p, we assume that E‖X i‖2H < ∞. The covariance operator be-

tween X i and X j is defined as ΣXiXj = cov(X i, X j) = E{(X i − µXi) ⊗

(X j − µXj)}, where µXi and µXj are the means of X i and X j, respectively
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as defined in (2.1), for i, j = 1, . . . , p. Note that, ΣXiXj ∈ B (H j,H i),

where B (H j,H i) denotes the set of all bounded operators from H j to

H i. Define ΣXX to be the operator ⊕p
i=1H i → ⊕p

i=1H i, (t1, . . . , tp) 7→

(
∑

p

i=1
ΣX1Xiti, . . . ,

∑
p

i=1
ΣXpXiti). Intuitively, ΣXX can be interpreted as the

p× p matrix whose (i, j)th entry is ΣXiXj . The covariance operator ΣXX is

a linear, self-adjoint, symmetric and nonnegative definite operator. More-

over, it is assumed to be a compact operator in ⊕p
i=1H i; see Proposi-

tion 2 of Happ and Greven (2018) for more details. Then, there exists

a complete orthonormal basis of eigenfunctions {ψr}r≥1 in ⊕p
i=1H i such that

ΣXX =
∑∞

r=1
γrψr ⊗ ψr , where the eigenvalues {γr}r≥1 satisfy γ1 ≥ γ2 ≥

. . . ≥ 0. Then, X admits the multivariate Karhunen-Loève decomposition

(see Proposition 4 of Happ and Greven (2018))

X − µX =
∑∞

r=1
γ1/2
r ρr ψr, (2.3)

where ρr = γ−1/2
r 〈X − µX, ψr〉⊕H, r = 1, 2, . . ., are zero mean, unit-variance,

and uncorrelated random variables, and µX = (µX1 , . . . , µXp) ∈ ⊕p
i=1H i.

Suppose for any d ≥ 1 and each i = 1, . . . , d, j = 1, . . . , p, Aij is a

linear and bounded operator from H j to R. We define the matrix of op-

erators A = {Aij}d,pi,j=1 as the mapping A : ⊕p
i=1H i → Rd, (t1, . . . , tp) 7→

(
∑

p

`=1
A1`t`, · · · ,

∑
p

`=1
Ad`t`). Using this convention we can define the multi-

variate elliptical random element in ⊕p
i=1H i.
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Definition 2. Suppose X is a random element in ⊕p
i=1H i. We say that

X follows the multivariate functional elliptical distribution with location

parameter µ ∈ ⊕p
i=1H i and scatter operator Σ : ⊕p

i=1H i 7→ ⊕p
i=1H i, if and

only if, for any d ≥ 1, and for any linear and bounded d× p matrix of op-

erators A = {Aij}d,pi,j : ⊕p
i=1H i 7→ Rd, we have that AX ∼ E d(Aµ,AΣA∗, ϕ),

where A∗ : Rd 7→ ⊕p
i=1H i denotes the adjoint operator of A and ϕ is a valid

characteristic function in Rd. We write X ∼ Ep(µ,Σ, ϕ).

Remark 1. As in the classical setting, elliptical random elements in ⊕p
i=1H i

can be characterised by their marginals. In particular, X is an elliptical

random element in⊕p
i=1H i if and only if for any bounded and linear operator

B : ⊕p
i=1H i 7→ ⊕k

i=1H i, k ≤ p, BX is an elliptical random element in ⊕k
i=1H i

with parameters Bµ and BΣB∗. That is, if X is an elliptical random

element in ⊕p
i=1H i, then Xj is an elliptical random element in H j. As

in the case with p = 1, the following construction allows to obtain an

elliptical random element in ⊕p
i=1H i. Let N be a Gaussian random element

in ⊕p
i=1H i with zero mean and covariance operator ΣNN , and let S be a non-

negative random variable that is independent of N . Given µ ∈ ⊕p
i=1H i, the

random element X d
= µ+SN is an elliptical random element in ⊕p

i=1H i, i.e.,

X ∼ Ep(µ,Σ, ϕ) with Σ = ΣNN . We assume that the covariance operator of

X ∈ ⊕p
i=1H i is the same as its scatter operator Σ.
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2.1 Spatial sign Kendall’s tau covariance operator

2.1 Spatial sign Kendall’s tau covariance operator

We next define the spatial sign Kendall’s tau covariance operator of a vector

of functions X ∈ ⊕p
i=1H i to the multiple setting.

Definition 3. Assume X is a random element in ⊕p
i=1H i. Let X̃ be an

independent copy of X, the operator defined as

TXX = E
{(X − X̃)⊗ (X − X̃)T

‖X − X̃‖2⊕H

}
, (2.4)

is called the spatial sign Kendall’s tau covariance operator.

The spatial sign Kendall’s tau covariance operator TXX can be seen

as the covariance operator of the functional pairwise spatial signs (X −

X̃)/‖X − X̃‖⊕H and it exists without any moment assumptions. Moreover,

(2.4) shows that TXX is self-adjoint. An alternative robust estimator of the

covariance operator, introduced by Locantore et al. (1999), is called the

spherical covariance operator and is given by RXX = E
{

(X−µX)⊗(X−µX)T

‖X−µX‖2⊕H

}
.

The next lemma shows that the Kendall’s tau covariance operator, TXX, and

the spherical covariance operator, RXX, coincide when X ∼ Ep(µX ,Σ, ϕ).

However, the advantage of using TXX is that it avoids the estimation of the

location centre µX.

Lemma 1. Let X be an elliptical random element in ⊕p
i=1H i, satisfying
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2.1 Spatial sign Kendall’s tau covariance operator

Assumption 1. Then, E
{

(X−X̃)⊗(X−X̃)T

‖X−X̃‖2⊕H

}
= E

{
(X−µX)⊗(X−µX)T

‖X−µX‖2⊕H

}
, where X̃

is an independent copy of X.

The following theorem states that, for elliptical random elements in

⊕p
i=1H i, the spatial sign Kendall’s tau covariance operator TXX has the

same set of eigenfunctions with the covariance operator ΣXX. In addition,

they have the same descending order of the eigenvalues. For a similar result

for a univariate X see Kraus and Panaretos (2012) and Wang et al. (2022).

Theorem 1. Let X be an elliptical random element in ⊕p
i=1H i, satisfying

Assumption 1, with mean function µX ∈ ⊕p
i=1H i and covariance operator

ΣXX. Then, we have TXX =
∑∞

r=1
δrψr ⊗ ψr, where the eigenvalues {δr}r≥1

of TXX satisfy δr = E
(
γrY

2
r /
∑∞

k=1
γkY

2
k

)
, r = 1, 2, . . . ,, {γr}r≥1 and {ψr}r≥1

are the eigenvalues and the eigenfunctions of the covariance operator ΣXX ,

respectively, and {Yr}r≥1, are iid standard normal random variables.

The proof of Theorem 1 for the multivariate case X ∈ ⊕p
i=1H i follows

the same arguments as in the proof of Theorem 4 in Wang et al. (2022), and

thus it is omitted. A similar result to Theorem 1 was obtained by Gervini

(2008), under the assumption of exchangeability of the scores. However,

Gervini (2008) does not require any moment assumptions as the author as-

sumes that the Karhunen-Loève expansion is a finite sum, i.e., that function
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2.2 Conditional spatial sign covariance operator

X lies in finite-dimensional Hilbert spaces. In contrast, our results rely on

infinite-dimensional functions X, and, without the Assumption 1 of finite

second moments, the convergence of an infinite Karhunen-Loève series is

not guaranteed (Kraus and Panaretos, 2012).

2.2 Conditional spatial sign covariance operator

We now define the conditional spatial sign covariance operator, a general-

ization of the Kendall’s tau covariance matrix to the functional and condi-

tional settings. Let Y be a random variable with support ΩY . For each

fixed y ∈ ΩY , let µX|Y (y) be the Riesz representation of the bounded

linear functional ⊕p
i=1H i 3 s 7→ E(〈s,X〉⊕H|y). Then, the conditional

expectation of X given Y is the mapping y 7→ µX|Y (y). Moreover, we

can define the conditional covariance operator of µX|Y (Y ) by ΣXX|Y =

E[{µX|Y (Y )− µX} ⊗ {µX|Y (Y )− µX}T]. Then, define

TXX|Y = E
[{µX|Y (Y )− µX|Y (Ỹ )} ⊗ {µX|Y (Y )− µX|Y (Ỹ )}T

‖µX|Y (Y )− µX|Y (Ỹ )‖2⊕H

]
, (2.5)

where Ỹ is an independent copy of Y .

Definition 4. We call the operator TXX|Y defined in (2.5) the conditional

spatial sign covariance operator of µX|Y (Y ).
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3. Robust inverse regression

3.1 Population level

Let Y be a random variable and X be an elliptical random element in

⊕p
i=1H i with mean function µX ∈ ⊕p

i=1H i and covariance operator ΣXX. Di-

mension reduction techniques aim at finding functions β1, . . . , βK in ⊕p
i=1H i,

K ≥ 1, such that

Y = g(〈β1, X〉⊕H, . . . , 〈βK, X〉⊕H, ε), (3.1)

where g is an arbitrary unknown function on RK+1, and ε is independent of

X. An equivalent definition of (3.1) is that Y X | 〈β1, X〉⊕H, . . . , 〈βK, X〉⊕H.

The functions β1, . . . , βK in ⊕p
i=1H i are called the functional dimension re-

duction directions and the subspace spanned by β1, . . . , βK is called the

functional dimension reduction subspace. The smallest functional dimension

reduction subspace is called the functional central subspace and is denoted

by SY |X. As in the classical setting, the functional dimension reduction

directions β1, . . . , βK are not identifiable. However, the functional central

subspace SY |X is identifiable, and is the goal of the estimation. A common

assumption in the dimension reduction literature is that of the linearity

condition, which is adopted to the functional case and is satisfied in our

setting since X has an elliptical distribution.
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3.1 Population level

Assumption 2. For any function b ∈ ⊕p
i=1H i there exist constants c0,

c1, . . . , cK such that E(〈b,X〉⊕H|〈β1, X〉⊕H, . . . , 〈βK, X〉⊕H) = c0+c1〈β1, X〉⊕H+

. . .+ cK〈βK, X〉⊕H.

Under Assumption 2, µX|Y (Y ) − µX belongs to the subspace spanned

by ΣXXβ1, . . . ,ΣXXβK (Theorem 2.1, Ferré and Yao (2003)). The next

Theorem provides a parallel result, where ΣXX is replaced with the spatial

sign Kendall’s tau covariance operator TXX defined in (2.4).

Theorem 2. Let X be an elliptical random element in ⊕p
i=1H i, satisfying

Assumption 1. Then, µX|Y (Y )− µX ∈ span{TXXβ1, . . . , TXXβK}.

It follows from Theorem 2 that ΣXX|Y is degenerate in any direction

TXX-orthogonal to the central subspace, implying that the range of ΣXX|Y

is contained in span{TXXβ1, . . . , TXXβK}. Thus, a subspace of the central

subspace can be recovered through the TXX-orthonormal eigenfunctions of

ΣXX|Y corresponding to its K largest eigenvalues. However, the covari-

ance operator ΣXX|Y can be sensitive to outliers and heavy-tailed data. A

robust alternative can be obtained using the next theorem, which states

that for elliptical random elements, the range of TXX|Y is also contained in

span{TXXβ1, . . . , TXXβK}. Thus, we can use TXX|Y to provide an efficient

and robust estimate of the central subspace.
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3.1 Population level

Theorem 3. Let X be an elliptical random element in ⊕p
i=1H i, satisfying

Assumption 1. Then, TXX|Y and ΣXX|Y have the same eigenfunctions.

Under Assumption 1, Theorems 2 and 3 imply that the range of TXX|Y

is contained in span{TXXβ1, . . . , TXXβK}. Hence, the K eigenfunctions of

T †XXTXX|Y corresponding to the K nonzero largest eigenvalues generate a

subspace that is contained in the central subspace SY |X. Here, T †XX denotes

the Moore-Penrose inverse of TXX which is defined in the next paragraph.

Recall, the goal of sufficient dimension reduction is not about estimating the

directions β1, . . . , βK, but rather estimating the central subspace spanned

by β1, . . . , βK. Hence, with a little abuse of notation, we will use β1, . . . , βK

to denote the TXX-orthonormal eigenfunctions of TXX|Y . To get those eigen-

functions, it is convenient to determine the eigenfunctions η1, . . . , ηK, of

T
† 12
XXTXX|YT

† 12
XX and to use β` = T

† 12
XXη`, ` = 1, . . . , K, leading to the following

eigenvalue problem

maximize 〈η, T †
1
2

XXTXX|YT
† 12
XXη〉⊕H

subject to η ∈ ⊕p

i=1H i, 〈η, η〉⊕H = 1, 〈η, η`〉⊕H = 0, ` = 1, . . . , K − 1.

(3.2)

The functions η1, . . . , ηK generate a subspace of the central subspace SY |X.

We refer to any sample estimator targeting the central subspace as R-FSIR.

In the infinite-dimensional setting, TXX is not necessarily invertible since it
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3.1 Population level

is a compact operator. However, following He et al. (2003), we can de-

fine the inverse of the restricted operator of TXX. Let RT
1/2
XX

be the range of

T
1
2
XX, which is characterized byR

T
1/2
XX

= {f ∈ ⊕p
i=1H i :

∑∞
i=1
δ−1
i |〈f, ψi〉⊕H|2 <

∞, f ∈ ker(TXX)}, where ker(TXX) denotes the kernel of the operator TXX.

Define R−1

T
1/2
XX

= {h ∈ ⊕p
i=1H i : h =

∑∞
r=1
δ−1/2
i 〈f, ψr〉⊕Hψr, f ∈ RT

1/2
XX
} ⊂

⊕p
i=1H i. Then, the restricted operator T̃

1
2
XX = TXX|R−1

T
1/2
XX

is a one-to-one

mapping from R−1

T
1/2
XX

to R
T
1/2
XX

. We call the inverse of this restricted op-

erator the Moore-Penrose inverse of T
1
2
XX and denote it as T †

1
2

XX. Thus,

T
† 12
XX : R

T
1/2
XX
7→ R−1

T
1/2
XX

and T
† 12
XX =

∑∞
r=1
δ−1/2
r ψr ⊗ ψr. Moreover, T †

1
2

XX sat-

isfies the usual properties of an inverse in the sense that T
1
2
XXT

† 12
XXf = f , for

all f ∈ R
T
1/2
XX

and T
† 12
XXT

1
2
XXg = g, for all g ∈ R−1

T
1/2
XX

. Note that we do not

assume that T †
1
2

XX is continuous, which would be a strong assumption since

T
1
2
XX is a trace-class operator whose eigenvalues tend to zero. The follow-

ing assumption guarantees that the operator T †
1
2

XXTXX|YT
† 12
XX is a well-defined

Hilbert-Schmidt operator as well as that the eigenfunctions of T †
1
2

XXTXX|YT
† 12
XX

are well-defined in ⊕p
i=1H i.

Assumption 3.
∑∞

i=1

∑∞
j=1
δ−2
i δ

−1
j E2

[
{E(ρ∗i |Y )−E(ρ∗i |Ỹ )}{E(ρ∗j |Y )−E(ρ∗j |Ỹ )}∑∞

r=1
{E(ρ∗r|Y )− E(ρ∗r|Ỹ )}2

]
<∞,

where Ỹ is an independent copy of Y , {δr}r≥1 and ψr are the eigenvalues

and eigenfunctions of TXX, respectively and ρ∗r = γ1/2
r ρr = 〈X − µX, ψr〉⊕H.

Assumption 3 implies
∑∞

i=1
δ−1
i |〈TXX|YT

† 12
XXu, ψi〉⊕H|2 < ∞ for all u ∈
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3.2 Sample level

R
T
1/2
XX

. Thus, |〈TXX|YT
† 12
XXu, ψi〉⊕H|2 must decay to 0 faster than δi as i→∞.

Essentially, it implies that TXX|YT
† 12
XX is a Hilbert-Schmidt operator, and can

be interpreted as a type of smoothness assumption. It requires the range

space of TXX|YT
† 12
XX to be sufficiently focused on the eigenspaces of the large

eigenvalues of T
1
2
XX. The following proposition is analogue to Theorem 2.1

of Ferré and Yao (2005) and to Theorem 4.8 of He et al. (2003).

Proposition 1. Let X be an elliptical random element in ⊕p
i=1H i, satisfying

Assumption 1. Then, under Assumption 3, the eigenfunctions η1, . . . , ηK

associated with the K positive eigenvalues of T †
1
2

XXTXX|YT
† 12
XX are well-defined.

3.2 Sample level

In this section, we derive the sample estimate of the conditional spatial

sign covariance operator when the functions are fully observed. For u =

1, . . . , n, let Yu be an independent and identically distributed (iid) sample

from Y , and let X1, . . . , Xn be an iid sample from the random element

X = (X1, . . . , Xp), such that Xu = (X1
u, . . . , X

p
u)

T. Consider partitioning

Y into slices J1, . . . , JH. Then, for each slice h, estimate µX|Y (h) using

µ̂X|Y (h) = En{XI(Y ∈Jh)}
En{I(Y ∈Jh)}

, h = 1, . . . , H, where En(·) denotes the sample mean

and I(·) denotes the indicator function. Then, by (2.4) we estimate TXX
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using

T̂XX =
2

n(n− 1)

∑
1≤u<u′≤n

(Xu −Xu′)⊗ (Xu −Xu′)
T

‖Xu −Xu′‖2⊕H

. (3.3)

Note that T̂XX is a U-statistic of order 2 with the kernel,

k(Xu, Xu′) =
(Xu −Xu′)⊗ (Xu −Xu′)

T

‖Xu −Xu′‖2⊕H

.

Moreover, k(·, ·) is bounded operator, i.e., ‖k‖op ≤ 1. Similarly, we can

estimate TXX|Y as defined in (2.5) by

T̂XX|Y =
2

H(H − 1)

∑
1≤h<h′≤H

[{µ̂X|Y (h)− µ̂X|Y (h′)} ⊗ {µ̂X|Y (h)− µ̂X|Y (h′)}T

‖µ̂X|Y (h)− µ̂X|Y (h′)‖2⊕H

]
.

(3.4)

4. Asymptotic theory

4.1 Convergence rates for fully observed random functions

We first establish the convergence rate of R-FSIR assuming the random

functions X i, i = 1, . . . , p, are fully observed. The following Theorem is

due to Zhong et al. (2022) (Theorem 2.1).

Theorem 4. Let T̂XX be as defined in (3.3). Then, ‖T̂XX − TXX‖op =

Op(n
−1/2).

For the iid sample {(Yu, Xu) : u = 1, . . . , n}, denote the order statistics

{(Y(u), X(u)) : u = 1, . . . , n} where Y(1) ≤ Y(2) . . . ≤ Y(n), are called the
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4.1 Convergence rates for fully observed random functions

concomitant of Y(u) (Yang, 1977). Then, following Chen et al. (2022), we

introduce the following double subscripts, where the first subscript refers

to the slice number and the second subscript refers to the order number

of an observation in the given slice, that is, Xhi = X(`(h−1)+i) and Yhi =

Y(`(h−1)+i), i = 1, . . . , `, h = 1, . . . , H, where ` = [n/H] is the number of

observations in a given slice. Define mk(Y ) = E(Xk|Y ), k = 1, . . . , p,

and m(Y ) = E(X|Y ) = (E(X1|Y ), . . . ,E(Xp|Y ))T. Next, to derive the

convergence rate of T̂XX|Y , we need the following smoothness condition on

the inverse regression curve, which was also used in Hsing and Carroll (1992)

and Zhu and Ng (1995).

Assumption 4. Let
∏

n
(B) be the collection of all n-points partitions

−B ≤ y(1) ≤ . . . ≤ y(n) ≤ B of the closed interval [−B,B], where B > 0 and

n ≥ 1. Any function m(y) : R 7→ ⊕p
i=1H i is said to have a total variation

of order r if for any fixed B > 0, limn→∞ n
−r sup∏

n(B)

∑
n−1

i=1
‖m(y(i+1)) −

m(y(i))‖⊕H = 0.

Assumption 4 holds for any r > 1 if m is a continuous function.

Theorem 5. Assume E‖X‖4⊕H < ∞, Assumption 4 holds with r = 4, and

there exists a nondecreasing real-valued function M̃ and B0 > 0 such that for

any two points y1 and y2 both in (−∞, B0] or [B0,∞), ‖m(y1)−m(y2)‖⊕H ≤

|M̃(y1) − M̃(y2)| and M̃ 4(u)P(Y > u) → 0 as t → ∞, n → ∞. Then,
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4.1 Convergence rates for fully observed random functions

‖T̂XX|Y − TXX|Y ‖op = Op(n
−1/2), where T̂XX|Y and TXX|Y are defined in (3.4)

and (2.5), respectively.

Assumption 5. There exists a bounded and self-adjoint operator DXX :

⊕p
i=1H i 7→ ⊕p

i=1H i and β > 0, such that TXX|Y = T 1+β
XX DXXT

1+β
XX .

Assumption 5 requires T−1−β
XX TXX|Y to be a bounded operator, and that

ran(TXX|Y ) ⊆ ran(T 1+β

XX ), (4.1)

where ran(T 1+β
XX ) is the range of the operator T 1+β

XX , characterized by ran(T 1+β
XX ) ={

f ∈ ⊕p
i=1H i :

∑∞
i=1

|〈f,ψi〉⊕H|2

δ
2(1+β)
i

<∞, f ⊥ ker(TXX)
}
, and (δ1, ψ1), (δ2, ψ2), . . . ,

are the eigenvalue-eigenfunctions pairs of TXX. Note that, condition (4.1) re-

quires that
∑∞

i=1

|〈TXX|Y f,ψi〉⊕H|2

δ
2(1+β)
i

<∞, for all f ∈ ran(T 1+β
XX ). Therefore, in or-

der for condition (4.1) to hold, 〈TXX|Y f, ψi〉2⊕H must decay faster than δ2(1+β)i

as i→∞. This means that the operator TXX|Y sends any incoming function

f ∈ ran(T 1+β
XX ) to the eigen-spaces of TXX corresponding to the large eigen-

values, or to the low-frequency components of TXX. Moreover, the degree of

concentration increases as β increases. For that reason, Assumption 5 can

be interpreted as a type of smoothness, where β characterizes the degree of

smoothness. Moreover, Assumption 5 allows to derive convergence rates of

certain operators beyond consistency, when dealing with compact operators

which are noninvertible in the infinite-dimensional case. Finally, in the sim-
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4.1 Convergence rates for fully observed random functions

ulations setting, we approximate the functions through a few coefficients,

and hence Assumption 5 holds since all operators involved are finite-rank

operators. See also Li (2018), for more details. For simplicity, we use the

notationM = T
† 12
XXTXX|YT

† 12
XX and M̂ (εn) = (T̂XX +εnI)−

1
2 T̂XX|Y (T̂XX +εnI)−

1
2 ,

where (εn)n∈N is a sequence of positive numbers such that εn → 0 as n→∞.

Theorem 6. Let X be an elliptical random element in ⊕p
i=1H i, satisfying

E‖X‖4⊕H < ∞. Then, under Assumptions 3, 4, and 5 and n−2/5 ≺ εn ≺ 1,

we have ‖M̂ (εn) −M‖op = Op(n
−1ε−5/2

n + n−1/2ε−1
n + εmin(1,β

n )).

Let (ζ1, η1), (ζ2, η2) . . . , (ζK, ηK) and (ζ̂1, η̂1), (ζ̂2, η̂2) . . . , (ζ̂K, η̂K) be the

first K eigenvalues-eigenfunction pairs of M and M̂ (εn), respectively. The

following corollary provides the rates of convergence for the eigenvalues

ζ̂1, . . . , ζ̂K and eigenfunctions η̂1, . . . , η̂K, which are the same as the ones in

Theorem 6. The corollary follows by applying perturbation theory for linear

operators (Koltchinskii and Giné (2000), Kato (2013), Chapter VIII).

Corollary 1. Under the assumptions of Theorem 6 and the assumption

that the nonzero eigenvalues of M are distinct, we have for k = 1, . . . , K,

‖η̂k − ηk‖⊕H = Op(n
−1ε−5/2

n + n−1/2ε−1

n + εmin(1,β

n )),

|ζ̂k − ζk| = Op(n
−1ε−5/2

n + n−1/2ε−1

n + εmin(1,β

n )).
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4.2 Convergence rates for partially observed random functions

Next, we derive the convergence rates of the transformed eigenfunctions

β̂k = (T̂XX + εI)−1/2η̂k and the sufficient predictors 〈β̂k, X〉⊕H k = 1, . . . , K.

Theorem 7. Let X be an elliptical random element in ⊕p
i=1H i, satisfying

E‖X‖4⊕H < ∞. Then, under Assumptions 3, 4, and 5, β > 1, and n−1/3 ≺

εn ≺ 1, we have for k = 1, . . . , K,

‖β̂k − βk‖⊕H = Op(n
−1ε−5/2

n + n−1/2ε−3/2

n + εmin(1,β−1

n )),

|〈β̂k, X〉⊕H − 〈βk, X〉⊕H| = Op(n
−1ε−5/2

n + n−1/2ε−3/2

n + εmin(1,β−1

n )).

4.2 Convergence rates for partially observed random functions

We next derive the convergence rate under the scenario that each random

function X i, i = 1, . . . , p, is only partially observed. Partially observed

functions can only be observed at a measurement schedule and must be

estimated from observed values at the sampled time points. Measurement

schedules are classified as ‘dense’ if the covariance operator ΣXiXi can be

estimated at n−1/2 rate; otherwise they are classified as ‘sparse’. See Yao

et al. (2005) for more information about the measurement schedule.

For each u = 1, . . . , n, let X̂u(t) = (X̂1
u(t), . . . , X̂

p
u(t))

T be the estimated
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4.2 Convergence rates for partially observed random functions

functions. We then estimate

µ̂X|Y (h) =
En{X̂I(Y ∈ Jh)}
En{I(Y ∈ Jh)}

, h = 1, . . . , H,

T̂XX =
2

n(n− 1)

∑
1≤u<u′≤n

(X̂u − X̂u′)⊗ (X̂u − X̂u′)
T

‖X̂u − X̂u′‖2⊕H

,

T̂XX|Y =
2

H(H − 1)

∑
1≤h<h′≤H

[{µ̂X̂|Y (h)− µ̂X̂|Y (h′)} ⊗ {µ̂X̂|Y (h)− µ̂X̂|Y (h′)}T

‖µ̂X̂|Y (h)− µ̂X̂|Y (h′)‖2⊕H

]
.

Theorems 5 and 6 show that the convergence rates depend on the rate

of convergence of ‖T̂XX −TXX‖op. This rate is equal to n−1/2 when the func-

tions are completely observed. However, when the functions are partially

observed, we may assume that TXX is estimated at an arbitrary rate n−γ

such that n−1/2 � n−γ ≺ 1 with 0 < γ ≤ 1/2. The denser the measurement

schedule, the closer γ is to 1/2. The next theorem extends Theorem 6 and

Theorem 7, and takes into account the effect of the measurement schedule.

Theorem 8. Let X be an elliptical random element in ⊕p
i=1H i, satisfying

E‖X‖4⊕H < ∞. Under Assumptions 3, 4, 5, the assumption that there

exists 0 < γ ≤ 1/2 such that ‖T̂XX − TXX‖op = Op(n
−γ), β > 1, and

n−2γ/3 ≺ εn ≺ 1, we have

‖M̂ (εn) −M‖op = Op(n
−2γε−5/2

n + n−γε−1

n + εn),

‖β̂k − βk‖⊕H = Op(n
−2γε−5/2

n + n−γε−3/2

n + εmin(1,β−1

n )),

|〈β̂k, X〉⊕H − 〈βk, X〉⊕H| = Op(n
−2γε−5/2

n + n−γε−3/2

n + εmin(1,β−1

n )).
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5. Implementation

In Section 3.2, we described the estimation procedures at the operator level.

To implement the estimation procedure, we need to represent operators as

matrices through coordinating mapping. To save space we leave the full

details of the development of the coordinate mapping in the supplementary

appendix, while only present the final results here.

5.1 Algorithm for R-FSIR

1. For each i = 1, . . . , p, choose a finite set of functions {gi1, . . . , gikn} such

that span{gi1, . . . , gikn} = H i.

2. Obtain the Gram matrix Ki and its centered version QknKiQkn ≡ Gi.

3. For each Xu, u = 1, . . . , n, calculate the centered version Xu − EnXu.

4. Compute the coordinate [Xu] relative to the basis B of ⊕p
i=1H i, and

derive the gram matrix G = QknKQkn of the basis B .

5. Divide the range of Y into H equal slices, J1, . . . , JH.

6. For each h = 1, . . . , H, compute [µ̂X|Y (h)] according to

[µ̂X|Y (h)] =
[En{XI(Y ∈ Jh)}]
En{I(Y ∈ Jh)}

=
En{[X]I(Y ∈ Jh)}
En{I(Y ∈ Jh)}

.

7. Compute the matrices Ω and Λ, defined as

Λ =
2

H(H − 1)

∑
1≤h<h′≤H

{ [µ̂X|Y (h)− µ̂X|Y (h′)][µ̂X|Y (h)− µ̂X|Y (h′)]T

[µ̂X|Y (h)− µ̂X|Y (h′)]TG[µ̂X|Y (h)− µ̂X|Y (h′)]

}
.
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Ω =
2

n(n− 1)

∑
1≤u<u′≤n

[Xu −Xu′ ][Xu −Xu′ ]
T

[Xu −Xu′ ]TG[Xu −Xu′ ]
.

8. Compute the matrixMΛMT and its K eigenvectors, v1, . . . , vK, where

M = (G
1
2 ΩG

1
2 )†

1
2G

1
2 .

9. Obtain the eigenfunctions β̂`, ` = 1, . . . , K by β̂` = vT
` (G

1
2 ΩG

1
2 )†

1
2G†

1
2 b,

` = 1, . . . , K, where b = (b1>, . . . , bp>)> and bi = (bi1, . . . , b
i
kn

).

We determine the dimensionK of the central subspace using the CVBIC

criterion introduced by Li et al. (2011), with full details developed in the

supplementary material in Section S2.4.

6. Simulation Studies

The finite sample performance of the proposed methodology is illustrated

through simulation examples. We use R-FSIR to denote the proposed rank-

based FSIR method, and we compare it with FSIR (Ferré and Yao, 2003).

The simulation setting is an extension of Wang et al. (2022) to multivari-

ate functional data and is as follows. For j = 1, . . . , p, assume µXj = 0 and

generate X j
u(t) from the univariate Karhunen-Loève expansion (2.2), that

is, X j
u(t) =

∑
4

q=1
ξjuqφ

j
q(t), t ∈ [0, 1], u = 1, . . . , n, where φj1(t) =

√
2 sin(2πt),

φj2(t) =
√

2 cos(2πt), φj3(t) =
√

2 sin(4πt) and φj4(t) =
√

2 cos(4πt), and ξjuq

are mutually independent random variables with zero mean and variance
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var(ξjuq) = λq, q = 1, . . . , 4 with (λ1, λ2, λ3, λ4)
T = (2, 1, 1/2, 1/4)T.

To simulate the multivariate functional data Xu(t) = (X1
u(t), . . . , X

p
u(t))

from the Karhunen-Loève expansion (2.3), we obtain the multivariate FPCA

eigenfunctions through an orthogonalization of the univariate eigenfunc-

tions, as described in the Proposition 5 of Happ and Greven (2018). Specif-

ically, let ξu= ((ξ1

u)
T, . . . , (ξpu)

T)T ∈ R4p, where ξju = (ξju1, . . . , ξ
j
u4)

T, j =

1, . . . , p, u = 1, . . . , n, and let Z ∈ R4p×4p be the covariance matrix of

the univariate FPCA scores ξu whose (j, k)th entry is the matrix Zjk =

cov(ξju, ξ
k

u) ∈ R4×4. Then, the kth eigenfunction of ΣXX, denoted by ψk(t) =

(ψ1
k(t), . . . , ψ

p
k(t))

T, is given by ψj
k(t) = φj(t)Tvjk, k = 1, . . . , 12, where

φj(t) = (φj1(t), . . . , φ
j
4(t))

T and vjk = (vjk1, . . . , v
j
k4)

T ∈ R4 denotes the jth

block of the eigenvector vk of Z. Then, the scores ρuk are obtained by

ρuk =
∑

p

j=1

∑
4

q=1
vjkqξ

j
uq, k = 1, . . . , 12, u = 1, . . . , n, where we assume that

coordinate-wise scores ξjuq are simulated from the following distributions:

1) Gaussian 2) multivariate Student-t distribution with two and three de-

grees of freedom and 3) Cauchy distribution. Moreover, to evaluate the

robustness of the method, for each j = 1, . . . , p and each q = 1, . . . , 4, we

randomly select m out of the n simulated coordinate-wise scores ξjuq and

add a shift of +5 or -5 in an alternating way. We estimate each function

X j
u using 4 cubic piecewise polynomials.
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6.1 Results

6.1 Results

We simulate n independent copies of the response Y from each of the fol-

lowing single- and double-index models

Model I: Y =
1

0.5 + (〈β1, X〉⊕H + 1)2
+ 0.2ε,

Model II: Y = sin(π〈β1, X〉⊕H/4) + 0.5ε,

Model III: Y = arctan(π〈β1, X〉⊕H/2) + ε,

Model IV: Y = arctan(π〈β1, X〉⊕H) + 0.5 sin(π〈β2, X〉⊕H/6) + 0.1ε,

Model V: Y =
〈β1, X〉⊕H

0.5 + (〈β2, X〉⊕H + 1)2
+ 0.2ε,

where β1(t) = ψ1(t) and β2(t) = ψ2(t) are the first and second eigen-

functions of ΣXX, respectively, X is simulated as described in Section 6,

assuming µXj(t) = 0 for all j = 1, . . . p, and observed at 101 time points

equally spaced in [0,1]. The error ε is generated according to a standard

normal distribution. We use n = 400, p = 5, and H = 10 slices.

To evaluate the performance of each method, we use the multiple cor-

relation between the true and estimated predictors, also considered in Li

and Song (2022). Specifically, let U and V be random vectors of the same

dimension and let CUU , CUV , and CV V represent the sample covariance

matrices. The multiple correlation between U and V is mcorr(U, V ) =

tr(C−1/2V V CV UC
−1
UUCUVC

−1/2
V V ). This measure varies from 0 to K, and a value
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close to K indicates better estimation accuracy.

Table 1 shows the observed, over the 100 simulation runs, means and

standard deviations (in parenthesis) of the multiple correlation between

the true and the estimated predictors when no outliers are present (upper

part) and when outliers are added as described in Section 6 (lower part).

We expect the multiple correlation to be close to K = 1 for the single-

index Models I - III and close to K = 2 for the double-index Models IV

- V. We observe that R-FSIR and FSIR have comparable performance for

the Gaussian distribution with no outliers. However, R-FSIR outperforms

FSIR for heavy-tailed data. Specifically, the efficiency of R-FSIR remains

reasonably high, whereas the efficiency of FSIR decreases considerably. This

is especially evident when outliers are added to the data.

In Sections S3 and S4 of the supplementary appendix, we further inves-

tigate the performance of R-FSIR for a variety of combinations of (n, p,H)

and the performance of the CVBIC order-determination criterion (S2.10).

7. Neuroimaging data application

To illustrate the performance of the methodology we use an fMRI dataset,

obtained from the ADHD-200 Consortium (http://fcon_1000.projects.

nitrc.org/indi/adhd200/index.html), consisting of resting-state fMRI
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Table 1: Mean (and standard deviation) of the multiple correlation with no

outliers (upper) and with outliers added (lower) for Study 1

number of
Models

Gaussian t(3) t(2) Cauchy

outliers FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR

m = 0

I 0.96 (0.02) 0.96 (0.02) 0.60 (0.24) 0.82 (0.21) 0.37 (0.22) 0.85 (0.22) 0.22 (0.13) 0.84 (0.23)

II 0.98 (0.001) 0.98 (0.001) 0.68 (0.17) 0.86 (0.17) 0.34 (0.23) 0.84 (0.20) 0.21 (0.14) 0.85 (0.23)

III 0.98 (0.001) 0.98 (0.001) 0.88 (0.11) 0.99 (0.007) 0.69 (0.20) 0.99 (0.01) 0.30 (0.19) 0.98 (0.03)

IV 1.91 (0.04) 1.93 (0.03) 1.45 (0.27) 1.81 (0.15) 0.91 (0.33) 1.69 (0.28) 0.33 (0.17) 1.65 (0.35)

V 1.83 (0.07) 1.83 (0.09) 1.28 (0.28) 1.56 (0.26) 0.81 (0.26) 1.51 (0.31) 0.27 (0.14) 1.69 (0.30)

m = 40

I 0.24 (0.06) 0.75 (0.24) 0.26 (0.15) 0.50 (0.26) 0.26 (0.19) 0.48 (0.32) 0.23 (0.15) 0.78 (0.28)

II 0.40 (0.1) 0.96 (0.02) 0.33 (0.14) 0.78 (0.15) 0.26 (0.16) 0.57 (0.30) 0.20 (0.14) 0.84 (0.23)

III 0.82 (0.04) 0.99 (0.0005) 0.84 (0.07) 0.99 (0.02) 0.79 (0.17) 0.96 (0.05) 0.32 (0.18) 0.98 (0.03)

IV 1.40 (0.09) 1.75 (0.11) 1.19 (0.20) 1.75 (0.17) 0.94 (0.27) 1.58 (0.29) 0.34 (0.15) 1.59 (0.34)

V 1.57 (0.22) 1.55 (0.24) 1.18 (0.28) 1.52 (0.29) 0.84 (0.32) 1.47 (0.31) 0.26 (0.14) 1.62 (0.34)

and anatomical datasets of children with and without ADHD aggregated

across 8 independent imaging sites. For our analysis, we consider the

resting-state fMRI of the New York University Child Study Center. This

dataset includes 222 subjects, of which 99 are the controls and the rest

are diagnosed with ADHD. The ADHD group is further divided into the

ADHD Combined group (77 subjects), the ADHD Inattentive group (44

subjects) and the ADHD Hyperactive group (2 subjects); we use the 77

subjects in the ADHD Combined group for our analysis. Moreover, 5 sub-

jects were removed from the ADHD Combined group because of significant

amount of missing observations, resulting in n = 72 subjects. Technical
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details regarding the sample and the scanning parameters can be found at

the ADHD-200 Consortium.

The dataset was preprocessed by the NeuroBureau community using

the Athena pipeline. 116 brain regions-of-interest (ROI) were constructed

for the preprocessed resting-state fMRI using the anatomical labelling at-

las (AAL) developed by Craddock et al. (2012). fMRI time series were

extracted for each of the 116 regions by averaging all voxels time series

within each region at each time point, resulting in 172 time points for

each of the 116 regions for each subject. Hence, for each subject we have

116 different regional fMRI time series, observed at 172 time points. The

AAL atlas and the regional fMRI time series are publicly available at NI-

TRC (www.nitrc.org). The aim is to determine the association between the

ADHD index with the brain activities measured by the fMRI. To simplify

the model, we use the results obtained in Mahzarnia and Song (2022) and

choose the 42 regions out of the 116 most related with the ADHD index;

the list of the these regions can be found in Mahzarnia and Song (2022). In

Section S5 of the supplementary appendix, we provide the smoothed spline

fMRI curves with outliers and boxplots of the first two principal compo-

nents for two regions of interest, showing that the marginal distributions

are heavy-tailed.
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Next, we apply R-FSIR using seven number of slices and 15 number of

basis. Moreover, we use the CVBIC order-determination criterion defined

in (S2.10) and conclude that K̂ = 5. Then, we apply R-FSIR and FSIR

to obtain the five sufficient predictors 〈X, β̂j〉⊕H. In order to compare the

performance of the two methods, we apply a generalized additive model

(GAM) using the new sufficient predictors and calculate the root mean

squared errors. The results are 2.059 and 2.488 for R-FSIR and FSIR, re-

spectively. We note that we try different values for the number of slices and

the number of basis, but the results did not change much. There is a general

tendency for R-FSIR and FSIR to perform better with smaller number of

slices, but this pattern was not strong to require more consideration.

Figure 1 illustrates pair-plots of the five sufficient predictors 〈X, β̂j〉⊕H,

j = 1, . . . , 5, where the different colors denote different values of the re-

sponse variable Y . Specifically, we define a new variable, YQ, to take values

1, . . . , 7, depending on which quantile an observation falls. For example,

for u = 1, . . . , n, YQu = 1 if Yu falls in the smallest (1/7)100% of the

data, YQu = 2 if Yu falls in the (2/7)100% of the data, and so on. For

interpretation purposes, we refer to the ADHD index score as very low-

level (YQ = 1), low-level (YQ = 2), mild low-level (YQ = 3), middle-level

(YQ = 4), mild high-level (YQ = 5), high-level (YQ = 6), very high-level
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(YQ = 7). The diagonal plots illustrate the estimated density curves of

〈X, β̂j〉⊕H, j = 1, . . . , 5, for each YQ. Observe that each sufficient predic-

tor represents different groups of Y and that the five sufficient predictors

capture the important characteristics of the conditional distribution Y |X.

For example, the first sufficient predictor differentiates middle-level ADHD

score from other levels. The second sufficient predictor differentiates low-

level, mild high-level, and very high-level ADHD scores. The third pre-

dictor can separate very high-level and high-level scores. The combination

of second and third predictors can separate high-level ADHD index scores

(mild-high, high, very high), while the combination of second and fourth

predictors can separate low-level scores (very low, low, mild-low). Finally,

the fifth predictor separates low-level and high-level ADHD index scores.

Supplementary Material

The Supplementary Appendix contains the algorithms for the proposed

method, all the proofs of the theoretical results, and additional simulations.
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