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Abstract: Approximate Bayesian computation (ABC) has become a standard tool

to conduct Bayesian inference for models with intractable likelihoods. However,

most existing ABC methods suffer from the curse of dimensionality when the

number of parameters is large. To solve this problem, we introduce a Gibbs

Sequential Monte Carlo (SMC) method that utilizes a Gibbs kernel to update

parameters within the SMC framework and approximate the conditional distri-

bution of the parameters using a variety of regression adjustment methods. We

discuss the computational advantage of our method over existing approaches and

establish the theoretical property of the Gibbs kernel. We further demonstrate

the superior numerical performance of our method using simulation studies and

an application to cell motility example.
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1. Introduction

In Bayesian statistics, Approximate Bayesian Computation (ABC) is

a powerful method designed to tackle the challenges posed by intractable

likelihood functions. The first ABC-related ideas date back to the 1980s

(Rubin, 1984). The main idea of the ABC is to simulate data from the

model with different sets of parameters and retain the parameter values

if their corresponding simulated data are sufficiently close to the observed

data (e.g., within a tolerance level). Since its first appearance in genetics

(Tavaré et al., 1997; Pritchard et al., 1999), ABC has received a lot of at-

tention in many applications such as ecology, epidemiology, and material

science (François et al., 2008; Marin et al., 2012; Blum and Tran, 2010;

Ravandi and Hajizadeh, 2022). Numerous extensions to the standard ABC

methodology have been proposed in the literature. Some studies focus on

discrepancy measurement between simulated and observed data without re-

lying on summary statistics (Bernton et al., 2019; Zhu et al., 2023). Others

explore the integration of MCMC techniques within the ABC framework to

enhance parameter space exploration efficiency (Marjoram et al., 2003). Ad-

ditionally, there are approaches employing regression adjustment methods

to mitigate discrepancies arising from mismatches between observed and

simulated summaries (Beaumont et al., 2002; Blum and François, 2010).

Among these extensions, Sequential Monte Carlo ABC (SMC-ABC) (Toni

et al., 2009) emerges as a useful method that improves the sampling ef-

ficiency and parameter estimation accuracy over the original ABC. This
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approach draws inspiration from sequential Monte Carlo methods (Liu and

Chen, 1995). The key idea is to draw samples with a sequence of decreas-

ing tolerance levels and for each tolerance level, using importance sampling

techniques to obtain samples that provide a better fit to the observed data

as the tolerance level shrinks.

Despite their wide successes, several challenges still remain not fully

addressed for standard ABC and SMC-ABC. One such challenge arises in

high-dimensional parameter spaces, where designing an appropriate transi-

tion kernel for SMC-ABC while maintaining a high acceptance ratio for new

proposals becomes difficult, e.g., a random-walk type of proposal will suffer

from low sampling efficiency. Various strategies have been developed to

broaden the scope of ABC methods for accommodating higher-dimensional

models. These approaches include techniques such as regression adjust-

ment (Beaumont et al., 2002; Blum and François, 2010), marginal adjust-

ment (Nott et al., 2014), and the Gaussian copula approach (Li et al.,

2017). Nevertheless, it is essential to note that these methods fall un-

der the category of post-processing techniques, meaning they are primarily

designed to enhance existing ABC methodologies rather than serving as

principled approaches for inherently extending ABC methods to higher di-

mensions. Moreover, in practical scenarios, there is often an abundance of

available summary statistics to summarize the raw data, e.g., in our data

example presented in Section 4, we have a total of 145 summary statistics.

The selection of informative summary statistics poses a challenge for most
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ABC methods, including SMC-ABC. Kousathanas et al. (2016) proposed

an ABC-MCMC algorithm which only updates one parameter per iteration.

The new candidate is accepted or rejected based on a small subset of the

summary statistics, which are informative for that particular parameter.

Consequently, this method necessitates the identification of conditionally

sufficient statistics for each parameter.

In this paper, we aim to tackle these challenges by introducing a Gibbs-

SMC method within the ABC framework. The key idea is to utilize a Gibbs

kernel to update each parameter at a time and approximate the conditional

distribution of the parameters using regression adjustment methods. The

resulting Gibbs kernel essentially corresponds to an invariant distribution

and we demonstrate its optimality by showing that it minimizes the variance

of the incremental weights. For the conditional distribution approximation,

our method offers flexibility by allowing integration with various regression

techniques such as GLM, Lasso, random forest, and neural network (Beau-

mont et al., 2002; Blum and François, 2010; Bi et al., 2022). This flexibility

empowers us to capture potential nonlinear relationships between summary

statistics and parameters while bypassing the need to pre-select from avail-

able summary statistics.

Our method is closely related to but different with the recent work on

likelihood-free Gibbs-type MCMC sampler (Rodrigues et al., 2020) for two

reasons. First, in their work, a separate regression model is needed for each

parameter at each MCMC iteration, which results in a high computational
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cost. Our method, in contrast, only requires fitting a regression every SMC

iteration, hence is computationally more efficient. Secondly, our method

utilizes an importance sampling mechanism which effectively helps avoid-

ing regions of low posterior density (Sisson et al., 2007); and this is not

considered in Rodrigues et al. (2020).

The rest of the paper is organized as follows. We discuss our proposed

method, including its computational implementation and theoretical prop-

erty in Section 2. In Section 3, we evaluate the sampling efficiency and

parameter estimation accuracy of our method using simulation studies. We

apply our method to a cell movement and proliferation example in Section

4 and discuss several future work directions in Section 5.

2. Likelihood-free Gibbs SMC

In this section, we first provide a summary of the two critical types

of ABC algorithms, namely SMC-ABC (Toni et al., 2009) and Gibbs-ABC

(Clarté et al., 2021). The former utilizes sequential sampling while the

latter employs Gibbs sampling in the ABC settings. Then we discuss the

computational and theoretical properties of our proposed method, ABC

using the likelihood-free Gibbs SMC (ABC-GSMC),

2.1 SMC-ABC

The motivation behind the SMC-ABC algorithm is to approximate the

posterior distribution of the model parameters by generating samples from a
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2.1 SMC-ABC

sequence of intermediate distributions. This process is known as sequential

Monte Carlo or particle filtering.

More specifically, the SMC-ABC algorithm samples from the sequence

of target distributions {πϵt(θ|y)}, such that the thresholds ϵ1 > ϵ2 > · · · >

ϵT > 0. In iteration t, the algorithm generates a new set of particles

θ
(1)
t , ..., θ

(N)
t (i.e., parameter values) by perturbing the previous set of par-

ticles θ
(1)
t−1, ..., θ

(N)
t−1 according to a transition kernel distribution Kt. These

particles are accepted or rejected as regular ABC with threshold ϵt. The re-

jected ones will be re-perturbed until accepted. The accepted ones are then

weighted with the importance weights w̃
(i)
t = π

(
θ
(i)
t

)
/
∑N

j=1w
(j)
t−1Kt

(
θ
(i)
t | θ(j)t−1

)
,

and resampled (with replacement) with the normalised weights w
(i)
t . Obvi-

ously, at each iteration t, it is an importance sampling algorithm with the

proposal distribution qt(·) =
∑N

j=1 w
(j)
t−1Kt(·|θ(j)t−1), which is the denomina-

tor in the weights w̃
(i)
t . The output of SMC-ABC are the weighted samples

from the last iteration, i.e. (θ
(1)
T , w

(1)
T ), ..., (θ

(N)
T , w

(N)
T ). See Algorithm 1 for

a detailed description.

SMC-ABC improves the efficiency of the usual ABC algorithms by tak-

ing advantage of the sequential importance sampling scheme. Only at the

initial iteration, the proposed parameter values are obtained from the prior

distribution. Subsequently, adaptive proposal distributions, qt(·), which

are progressively closer to the true posterior, are employed for drawing the

proposed parameter values.

An interesting area of research involves developing the transition kernel
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2.1 SMC-ABC

Algorithm 1 SMC-ABC

Initialize ϵ1 > ϵ2 > ... > ϵT , set population indicator t = 1
for i = 1 : N do

repeat sample θ∗ ∼ π(θ); generate a dataset yi ∼ f(y|θ∗)
until ||(S(yi), Sobs|| < ϵt.

Set θ
(i)
t = θ∗ and w̃t

(i) = 1/N .
end for
for t = 2 : T do
repeat sample θ∗∗ from the weighted set {θjt−1, w

j
t−1}Nj=1; perturb θ∗ ∼

Kt(·|θ∗∗) according to a transition kernel; generate a dataset yi ∼ f(y|θ∗)
until ||(S(yi), Sobs|| < ϵt.

Set θ
(i)
t = θ∗ and w̃

(i)
t = π

(
θ
(i)
t

)
/
∑N

j=1w
(j)
t−1Kt

(
θ
(i)
t | θ(j)t−1

)
.

Normalise the weights w
(i)
t = w̃

(i)
t /

∑N
j=1 w̃

(j)
t .

end for

Kt. Filippi et al. (2013) suggest a d-dimensional Gaussian Kt = N(θ∗∗, 2Σ),

with Σ being the empirical weighted covariance matrix from the particles

accepted at previous iteration. They also propose to use another covari-

ance matrix that is specific to θ∗∗, which, however, increases non-negligible

computational burden. Lee (2012) proposes an adaptive r-hit kernels that

have more robust properties as the threshold ϵ → 0. However, these ker-

nels are not specifically designed for high-dimensional parameter space. As

the dimension of θ increases, the acceptance rate of proposed θ′ by these

kernels decreases rapidly, resulting in a significant drop in algorithmic ef-

ficiency. A very recent paper (Picchini and Tamborrino, 2022) proposes

to construct Kt that are conditional on observed summaries, by using a

conditional Gaussian distribution or a copula-based method. The so-called
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2.2 Likelihood-free Gibbs-SMC (ABC-GSMC)

“guided” sampler increases the efficiency by guiding the proposed parame-

ters to rapidly reach regions of the posterior that are compatible with the

observed data.

In the SMC literature that does not involve intractable likelihood,

Del Moral et al. (2006) suggests to use an MCMC kernel Kt of invari-

ant distribution πϵt . In particular, this approach is justified if Kt is fast

mixing, so that we can expect the importance proposal distribution qt to

be reasonably close to the target intermediate distribution πϵt . When faced

with the challenge of sampling from the complete conditional distributions

necessary for a Gibbs kernel with an invariant distribution πϵt , such as in

models with intractable likelihoods, one can turn to approximations of these

distributions to construct Kt. Several approaches are proposed in Doucet

et al. (2000) to approximate these conditional distributions. It is impor-

tant to note that these approximations are primarily tailored for state-space

models and may not be directly applicable in the context of ABC. In the

following subsection, we introduce a SMC algorithm specifically designed

to address high-dimensional parameter spaces within the ABC framework

(ABC-GSMC).

2.2 Likelihood-free Gibbs-SMC (ABC-GSMC)

When dealing with high-dimensional parameters, traditional ABC and

SMC-ABC methods encounter difficulties in generating simulated summary

data that can closely resemble the observed summary statistics. This chal-
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2.2 Likelihood-free Gibbs-SMC (ABC-GSMC)

lenge is commonly referred to as the “curse of dimensionality”, which affects

most standard ABC techniques. In parameter spaces with a large dimen-

sion, finding an effective proposal distribution qt, or a suitable kernel Kt for

SMC-ABC becomes a non-trivial task.

To address this issue, we propose the utilization of a Gibbs kernel

that updates one parameter at a time from its conditional distribution.

Suppose that θ = (θ1, ..., θD)
⊺ is a D-dimensional parameter vector, and

θ
(i)
t = (θ

(i)
t,1, ..., θ

(i)
t,D)

⊺ is the i-th particle at iteration t. We update the d-th

parameter θ
(i)
t,d from πϵt(θd|θ−d), where θ−d is the vector θ excluding θd. By

subsequently updating each parameter from its conditional distribution, we

implicitly construct the Markov kernel with an invariant distribution πϵt .

Unlike the “random-walk” type of moves in Filippi et al. (2013); Picchini

and Tamborrino (2022), this approach uses the information of πϵt to guide

the move of particles and allows us to select the optimal backward kernel

which minimizes the variance of the incremental weights (more details are

provided in section 2.3).

Note that the conditional distribution πϵt(θd|θ−d) is intractable. There-

fore, at iteration t, we approximate the conditional distribution of each pa-

rameter employing regression adjustment methods (Beaumont et al., 2002;

Blum and François, 2010; Bi et al., 2022). Furthermore, this strategy offers

additional advantages. In the context of ABC, the selection of informative

summary statistics poses another significant challenge. By employing spe-

cific regression techniques, we can identify from a wide range of summary
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2.2 Likelihood-free Gibbs-SMC (ABC-GSMC)

statistics the most informative ones. Regression methods such as regular-

ized regression or random forest regression (Bi et al., 2022) are particularly

robust in handling such scenarios. Thus, our proposed approach not only

addresses the challenges associated with high-dimensional parameter spaces

but also provides a solution to the selection of informative summary statis-

tics.

Regression adjustment post-processing methods assume that the rela-

tion between parameter θd and summary statistics S can be fitted with

regression models of the form θd|S ∼ fd(θd|S) for d = 1, ..., D using

samples (θ(i), s(i))Ni=1. To construct the Gibbs kernel in SMC-ABC, we

similarly build regression models of the form θd|(S, θ−d) ∼ fd(θd|S, θ−d),

where θ−d is the vector θ excluding θd, such that fd(θd|Sobs,θ−d) locally

approximate the true conditional distribution π(θd|Sobs,θ−d). The choice

of relevant dependent variables is evidently dependent on the dimension

d. When the dependent variables (including summary statistics specific

for θd) associated with θd are easy to identify, they tend to possess a

lower dimensionality. However, in cases where the identification of these

variables becomes more challenging, employing techniques such as regu-

larized regression or random forest regression can alleviate the need for

a careful selection process. The approximate Gibbs update will proceed

by iterating through each of the conditional distributions in a cyclical

manner. It will draw θd ∼ fd(θd|Sobs,θ−d) for d = 1, ..., D, while con-

ditioning on the updated values of the other parameters. The resulting
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2.2 Likelihood-free Gibbs-SMC (ABC-GSMC)

Gibbs kernel Kt can then be approximated as a product of these con-

ditional distributions, i.e., Kt =
∏D

d=1 f
t
d(θt,d|Sobs,θt,−d), where θt,−d =

(θt,1, ..., θt,d−1, ..., θt−1,d+1, ..., θt−1,D)
⊺. Though the Gibbs kernel is constructed

with invariant distribution πϵt , updating the particle θ in one cycle does

not guarantee its convergence. This can be addressed by a follow-up im-

portance weighting process. Selecting Kt as an MCMC kernel leads to a

weight update

w
(i)
t ∝ π(θ

(i)
t )∑N

j=1w
(j)
t−1

∏D
d=1 f

t
d(θ

(i)
t,d|Sobs,θ

(j)
t,−d)

. (2.1)

The resulting likelihood-free Gibbs-SMC algorithm is in Algorithm 2.

The algorithm initially follows a similar procedure to rejection ABC,

where a first pool of samples (θ(i), S(i))Ni=1 is obtained using a relatively

large threshold ϵ1. In t-iteration, D regression models f t
d(θd|S, θ−d) are

fitted using the set of samples from the previous iteration. The particles

are then resampled based on their importance weights, and each parti-

cle θ(i) is subsequently updated in a Gibbs manner from the distribution

f t
d(θd|Sobs,θ−d). The weights are computed for each particle before transi-

tioning to the next iteration.

It is worthy to note that a variety of suitable regression techniques can

be employed to construct the models fd(θd|S, θ−d). These techniques in-

clude but are not limited to generalized linear models (GLMs), nonparamet-

ric models, Lasso, neural networks, random forest, and others. Following
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2.2 Likelihood-free Gibbs-SMC (ABC-GSMC)

Algorithm 2 Likelihood-free Gibbs-SMC

Initialize ϵ1 > ϵ2 > ... > ϵT , set population indicator t = 1
for i = 1 : N do

repeat sample θ∗ ∼ π(θ);
generate a dataset yi ∼ f(y|θ∗) until ||(S(yi),Sobs|| < ϵt.

Set θ
(i)
t = θ∗ and w

(i)
t = 1/N .

end for
for t = 2 : T do

for d = 1 : D do
Fit a suitable regression model θd|S, θ−d ∼ f t

d(θd|S, θ−d) using

the samples (θ
(i)
t−1,S(y

i
t−1))

N
i=1 from the previous iteration t− 1.

end for
for i = 1 : N do

Sample θ
(i)∗∗
t from the weighted set {θj

t−1, w
j
t−1}Nj=1.

for d = 1 : D do
repeat sample θ

(i)∗
t,d ∼ f t

d(θd|Sobs,θ−d);

generate a dataset yit with updated θ
(i)∗
t,d until ||(S(yit),Sobs|| <

ϵt.
Set θ

(i)∗
t = (θ

(i)∗
t,1 , ..., θ

(i)∗
t,d , θ

(i)
t−1,d+1, ..., θ

(i)
t−1,D).

end for

Set θ
(i)
t = θ

(i)∗
t and w̃

(i)
t =

π(θ
(i)
t )∑N

j=1 w
(j)
t−1

∏D
d=1 f

t
d(θ

(i)
t,d|Sobs,θ

(j)
t,−d)

.

end for
Normalise the weights w

(i)
t = w̃

(i)
t /

∑N
j=1 w̃

(j)
t .

end for
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2.2 Likelihood-free Gibbs-SMC (ABC-GSMC)

Rodrigues et al. (2020), we propose two ways to draw samples from each

conditional regression model. The first is to assume a parametric error

distribution, so that a new sample can be drawn directly from the fitted

distribution. For example, a normal error assumption leads to a normal

distribution for θd. The second approach deals with the nonparametric re-

gression case. Specifically, at iteration t of SMC, we obtain the empirical

distribution F̂t,r of the residuals r
(i)
t,d = θ

(i)
t,d− θ̂

(i)
t,d, where θ̂

(i)
t,d is the fitted value

of θ
(i)
t,d. A new value of θ

(i)∗
t,d is then given by θ

(i)∗
t,d = µ̂ + r, where r ∼ F̂t,r

and µ̂ = E(θ
(i)
t,d|Sobs,θ

(i)
t,−d).

The concept of utilizing regression adjustment models to approximate

conditional distributions was also adopted in the work of Rodrigues et al.

(2020), where they employed this approximation to construct a Gibbs-type

Markov chain Monte Carlo (MCMC) sampler. However, in our SMC frame-

work, the idea is more naturally suited for several reasons. Firstly, fitting

a separate regression model for each parameter θd in every iteration of the

Gibbs sampler incurs a significant computational burden, particularly when

considering a typically long number of MCMC iterations. Although the au-

thors suggest fitting the models only once prior to the Gibbs sampler to

mitigate this issue, this would result in a substantial decrease in the algo-

rithm’s accuracy. While in the SMC framework, the regression models are

fitted once per SMC iteration, resulting in reduced computational require-

ments compared to the MCMC approach. Additionally, it is common for

the number of SMC iterations to be considerably smaller than the number
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2.3 Properties of the Gibbs kernel

of MCMC iterations. Secondly, ABC-MCMC may encounter difficulties in

navigating regions of low posterior density since it is unlikely to generate a

dataset that closely resembles the observed dataset. In contrast, ABC-SMC

mitigates this issue through the utilization of an importance sampling mech-

anism, which helps avoid getting stuck in regions of low posterior density

(Sisson et al., 2007).

In the next section, we show that our Gibbs kernel minimizes the vari-

ance of the unnormalized importance weights in Eq (2.1).

2.3 Properties of the Gibbs kernel

The Gibbs kernel Kt proposed in the previous section serves as the

forward kernel within the SMC framework. As a forward kernel, it gener-

ates new particles based on the previous set of particles. Conversely, the

backward kernel Lt−1(θt−1|θt) is utilized to assign importance weights to

the particles, determining their relative significance during the subsequent

resampling step. The weights in Eq (2.1) are obtained using the optimal

choice for Lt−1 to minimize the variance of the incremental weight ∆w
(i)
t ,

defined as follows:

w
(i)
t ∝ w

(i)
t−1∆w

(i)
t . (2.2)

According to Del Moral et al. (2006), the optimal backward kernel takes

the form:

Lt−1(θ|θ′) =
πt−1(θ

′)Kt(θ
′|θ)∫

πt−1(u)Kt(u|θ)du
, (2.3)
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2.3 Properties of the Gibbs kernel

which leads to the weights update as follows:

w
(i)
t = w

(i)
t−1

πt(θ
(i)
t )∫

πt−1(θt−1)Kt(θt−1|θ(i)t )dθt−1

. (2.4)

However, in the ABC context, computing the integration in the denomina-

tor is infeasible. As a result, Del Moral et al. (2006); Sisson et al. (2007)

propose to approximate πt−1(dθ) with an SMC point-wise approximation

π̂t−1(dθ) =
∑N

i=1w
(i)
t−1δθ(i)t−1

(dθ). This approximation leads to the following

weights update:

w̃
(i)
t = π

(
θ
(i)
t

)
/

N∑
j=1

w
(j)
t−1Kt

(
θ
(i)
t | θ(j)t−1

)
.

Consider the case where θt = (θt,1, ..., θt,D) and we only want to update

the d-th component θt,d. It is established in Del Moral et al. (2006) that the

proposal distribution minimizing the variance of the incremental weights

is a Gibbs update, i.e., Kt(θt−1|θt) = δθt−1,−d
(θt,−d)πt(θt,d|θt,−d), where

θt,−d = (θt,1, ..., θt,d−1, θt,d+1, ..., θt,D). Now in this paper we propose to

update θt by updating each d-th component θt,d in a Gibbs style. It is

straightforward to establish that the proposal distribution is:

Kt(θt|θt−1) =
D∏

d=1

πt(θt,d|(θt,1, ..., θt,d−1, θt−1,d+1, ..., θt−1,D)). (2.5)

The following theorem establishes that equation (2.5) is the optimal Markov

kernel.
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2.3 Properties of the Gibbs kernel

Theorem 1. The sequence of kernels {Lk}(k = t, ..., T ) minimizing the

variance of the unnormalized importance weights w
(i)
t is given by

Lt(θt−1|θt) =
D∏

d=1

πt−1(θt−1,d|(θt−1,1, ..., θt−1,d−1, θt,d+1, ..., θt,D)). (2.6)

The proof of Theorem 1 is a straightforward adaptation of that in

Del Moral et al. (2006).

Remark 1. In our approach, we utilize a Gibbs kernel with an invari-

ant distribution πt, enabling the use of an approximation for the backward

Markov kernel. This approximation is based on the reversal kernel sug-

gested in Del Moral et al. (2012) and takes the form:

Lt−1(θt−1|θt) =
πt(θt)Kt(θt|θt−1)

πt(θt−1)
. (2.7)

By adopting this backward kernel approximation, we obtain a weight update

that is more computationally efficient, although it may come at the cost of

increased variance in the weights.

In this work, we adopt the backward kernel in Equation (2.6) and the

associated weights update as it provides the minimum variance of the in-

cremental weights.
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3. Simulations

3.1 General linear model

We consider a general linear model (GLM) that has been studied by

Kousathanas et al. (2016). The model has m statistics S that is a linear

function of parameters θ, S = Cθ + ϵ, ϵ ∼ N(0, I), where C is a square

design matrix, and the error vector ϵ follows a multivariate normal distribu-

tion. Assuming noninformative priors for the parameters θ, their posterior

distribution is a multivariate normal, θ|S ∼ N ((C′C)−1C′s, (C′C)−1) .

Following Kousathanas et al. (2016), we construct the design matrices C

cyclically. This configuration ensures that all parameters receives input

from every statistic, but with varying contributions from each statistic.

For the estimation, we set θ = 0 and use uniform priors U(−10, 10)

for all the parameters. We then evaluate the performance of ABC-GSMC

and ABC-Gibbs across increasing parameter dimensions. This simulation

setting inherently favors ABC-Gibbs, because the conditional distribution

of θd given S and other parameters is a normal distribution with mean

being a linear combination of S and other parameters, which can be easily

learned with a linear regression model without including any interaction

terms. Therefore, for both ABC-Gibbs and ABC-GSMC, we learn each of

the conditional distributions of θ by a single linear regression. For ABC-

GSMC, as dimensionality increases, the tolerance is adjusted accordingly.

Hence, we set the threshold ϵ as (5, 4, 3, 2, 1)× p/4, where p represents the
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3.1 General linear model

dimension of θ. Ultimately, we obtain N = 1000 samples. For ABC-Gibbs,

we conduct 20,000 iterations. We assess the performance of ABC-Gibbs

and ABC-GSMC by calculating the total variation distance (L1) between

the inferred and the true posterior distribution, and then averaging over

each dimension.

Figure 1 shows the mean L1 distance between the true and estimated

marginal posterior distributions obtained by both ABC-Gibbs and ABC-

GSMC as the number of parameters increases from 3 to 10. Interestingly,

we observe that both methods exhibit similar performance in terms of es-

timation accuracy. Neither method’s performance is significantly affected

by dimensionality. This finding suggests that ABC-GSMC adeptly man-

ages varying-dimensional parameters, demonstrating its flexibility in such

contexts.

Figure 1: The mean L1 distance between the true and estimated marginal posterior
distributions for increasing numbers of parameters.
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3.2 Gaussian mixture example

We conduct simulation studies to evaluate the sampling efficiency and

accuracy of our method and compare to other popular ABC approaches.

We first consider a Gaussian mixture model example following Nott et al.

(2014). The likelihood function of this model has an explicit form, which

provides an easy way to assess the performance of ABC methods. Con-

sider θ = (θ1, . . . , θp) ∈ Rp, b = (b1, . . . , bp), where each bi follows a

Bernoulli distribution with P (bi = 0) = w ∈ (0, 1), and Σ is a p by p

covariance matrix with Σii = 1 and Σij = ρ for 1 ≤ i ̸= j ≤ p. Let

µ(b, θ) = ((1− 2b1)θ1, . . . , (1− 2bp)θp), i.e., the i-th component of µ(b, θ)

is θi with probability of w, and −θi with probability of 1 − w. Given

θ and b, S is generated from a p-dimensional normal distribution, i.e.,

S | θ, b ∼ N(µ(b, θ),Σ). In other words, each component of S follows a

two-component Gaussian mixture distribution, and in total S has 2p mix-

ture components.

We first consider p = 2, and set w = 0.3, ρ = 0.7. In our implemen-

tation, we choose observed summary statistic Sobs = (5/2, 5/2), tolerance

ϵ ∈ {5, 3, 1}, and N = 1000. We use the Euclidean distance ∥S − Sobs∥ to

measure the discrepancy between the simulated summary statistic S and

the observed one Sobs. We use independent uniform(−80, 80) as the prior

for each component of θ. For our proposed method (ABC-GSMC), we first

use linear regression adjustment to approximate the conditional distribu-

tion of each element of θ. To facilitate a fair comparison, we use the same
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Figure 2: Posterior density of θ1 obtained by SMC-ABC and ABC-GSMC.

setting when implementing SMC-ABC. We choose the transition kernel as

N(θ,Σ1) where Σ1 is a two-dimensional identity matrix.

Figure 2 shows the posterior density of θ1 obtained by SMC-ABC and

our proposed ABC-GSMC methods. By comparing the posterior from three

updates (t = 1, 2, 3) with the truth (dashed line), we find a significant

improvement. In the first update, the fit is not satisfactory as expected,

since the parameters are sampled from the prior and the tolerance value is

large (e.g., 5). For the third update, both methods manage to approximate

the true posterior very well.

Next we let the parameter dimension p take values in {2, . . . , 5}, and

evaluate the sampling efficiency and posterior approximation accuracy for

both methods. We consider four iterations with the threshold ϵ ∈ {20, 5, 3, 1}.

For ABC-GSMC, we still use the linear regression adjustment to approx-

imate the conditional distribution of each element of θ. For SMC-ABC,

we use the a Gaussian transition kernel N(θ,Σ1) with Σ1 = I2. For the
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first iteration, note that both SMC-ABC and ABC-GSMC are essentially

drawing samples from the prior of θ. Therefore we only compare their per-

formance starting from the second iteration. For each method, we calculate

the acceptance rate, defined as R = Naccept/Nsample, where Naccept is the

number of accepted particles and Nsample is the number of total particles

being sampled. We repeat this process for ten times and report the average

acceptance rate for both methods in Figure 3 panel (a) while varying the

parameter dimension p from 2 to 5. We find that both methods have an

acceptance rate that decreases as p increases, which is as expected because

it is harder to satisfy ∥S−Sobs∥ < ϵ as p increases. Meanwhile our proposed

ABC-GSMC method always has a higher acceptance rate than SMC-ABC

because SMC-ABC only uses a random perturbation for the particle while

ABC-GSMC is based on a more accurate regression-based conditional dis-

tribution approximation.

We further compare the acceptance rates for both SMC-ABC and ABC-

GSMC over first several iterations (t) and parameter dimension p in Table

1. The first iteration is the same for both methods because the particles

are sampled from the prior. For the next two iterations (t = 2, 3), the ac-

ceptance rate increases significantly because a better proposal distribution

is used. As the acceptance threshold continues to decrease, the acceptance

rate starts to decrease for t = 4. Under all scenarios, ABC-GSMC has a

higher acceptance rate, and the gain is substantial when p is large. Figure 3

and Table 1 confirm the excellent performance of our proposed ABC-GSMC
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in terms of estimation accuracy and sampling efficiency.

Table 1: Acceptance rate during each iteration t.

Dimension p 2 3 4 5
SMC-ABC(t = 1) 0.05063 0.00829 0.00123 0.00016
ABC-GSMC(t = 1) 0.05063 0.00829 0.00123 0.00016
SMC-ABC(t = 2) 0.05666 0.01585 0.00432 0.00113
ABC-GSMC(t = 2) 0.10440 0.03532 0.01334 0.00533
SMC-ABC(t = 3) 0.15765 0.04278 0.01287 0.00346
ABC-GSMC(t = 3) 0.22381 0.09552 0.04029 0.12526
SMC-ABC(t = 4) 0.01958 0.00222 0.00022 0.00002
ABC-GSMC(t = 4) 0.03931 0.00703 0.00114 0.00009

We further examine the posterior density of θ1 obtained by ABC re-

jection sampling (ABC-REJ), SMC-ABC, and our proposed ABC-GSMC

when p = 5. In order to obtain 1,000 posterior samples for ABC-REJ,

we generate a total of 60,000,000 samples and then accept the best 1,000

particles. The posterior densities of θ1 are given in panel (b) of Figure 3.

Both SMC-ABC and ABC-GSMC have a significantly better performance

than ABC-REJ, and ABC-GSMC is doing slightly better than SMC-ABC,

especially when θ1 is around 0.

Sensitivity to regression models: We also evaluate the sensitivity

of our method to difference choices of the regression model. We set p = 5

and consider a Gaussian mixture model, with threshold ϵ ∈ {30, 20, 10, 5, 3, 2, 1}

for iteration t = 1 to 7. We firstly consider three regression models (linear,

quadratic, and cubic) to approximate the conditional of θ. The posterior

distribution of θ1 (at the 7th iteration) is given in Figure 4 and the num-

ber of particles required to produce 1000 samples is given in Table 2. By
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Figure 3: (a) Acceptance rate and parameter dimension p; and (b) posterior distribution
of θ1 obtained by several methods.

using the same threshold, all three regression models yield a similar level

of estimation accuracy. Interestingly, the numbers of required particles are

about the same when the threshold is large (e.g., t ≤ 5). As the threshold

decreases down to 1, both quadratic and cubic regressions need a larger

number of sampled particles (hence more computational time) because the

model does not provide a good fit to approximate the conditional distribu-

tion.

An alternative approach is to select a flexible nonparametric regression

model, particularly when the true relationship between the parameter θd
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Figure 4: Posterior distribution of θ1 obtained by different regression models (linear,
quadratic, and cubic)

Table 2: Number of particles needed for each iteration t

Regression model t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
Linear 5557 9240 15266 19142 24327 122527
Quadratic 6898 10314 16282 22056 30817 311736
Cubic 6077 9606 15111 19613 31753 512213

and the summary statistics is non-linear. However, in this specific exam-

ple, we did not observe significant improvements when using random forest

or neural network regressions. Our conjecture is that while nonparamet-

ric regression models may globally fit the relationship between θd and the

summary statistics more accurately, linear regression is sufficiently effec-

tive in approximating π(θd|Sobs, θ−d) when θ−d is fixed at a specific value.

This aspect is crucial for our algorithm, as it uses π(θd|Sobs, θ−d) to guide

the movement of the particles, which is then corrected by the re-weighting

step in the subsequent stage. Consequently, even a coarse approximation
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performs well, making our method robust to the choice of regression models.

Performance under high dimensionality: To investigate the per-

formance of our method under an increasing dimensionality of parameter

space, we compare our method with ABC-Gibbs proposed by Rodrigues

et al. (2020). ABC-Gibbs approximates full conditional distributions of

posterior with regression-based models using synthetic (simulated) param-

eter value and summary statistic pairs. Notably, in this scenario, the full

conditional distributions of θ and b are analytically tractable, encompassing

numerous interaction terms within θ and b. To adequately approximate the

conditional distributions, one needs to include all interaction terms in the

regression model. However, this endeavor quickly becomes impractical as

the dimensionality p expands. For instance, with p = 5, each regression

model entails 9 regressors, yielding over 6,000 interaction terms of various

orders. So we only incorporate first-order interaction terms in ABC-Gibbs

for our comparison. We run ABC-Gibbs for 20,000 iterations. For ABC-

GSMC, we use the same settings in the previous comparisons. Note that

we only use a simple linear regression model without any interaction. We

assess the performance of ABC-Gibbs and ABC-GSMC by calculating the

total variation distance (L1) between the inferred and the true posterior

distribution across various values of p. The L1 distance is calculated for

each dimension, and the average value is utilized for comparison. Figure 5

illustrates the mean L1 distance for both methods across varying numbers

of parameters. Remarkably, we observe that the performance of both meth-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0332



3.3 Banana prior model

ods remains consistent regardless of dimensionality, as they are specifically

engineered to manage high-dimensional parameters. Notably, ABC-GSMC

outperforms ABC-Gibbs consistently by having a lower L1 estimation er-

ror. This advantage primarily arises from the less accurate approximation

of conditional distributions by ABC-Gibbs. In contrast, ABC-GSMC, be-

ing inherently a sequential Monte Carlo method, relies less on conditional

approximation for its efficacy.

Figure 5: The mean L1 distance between the true and estimated marginal posterior
distributions for increasing numbers of parameters.

3.3 Banana prior model

Next we consider the simulation example used in Section 3.1 of Li et al.

(2017), where the name of ‘banana prior’ comes from the shape of the

prior distribution. Let y = (y1, . . . , yp) follow a p-dimensional Gaussian

distribution N(θ,Σ) with θ = (θ1, . . . , θp) and Σ = diag(σ0, . . . , σ0). We
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then consider the ‘twisted prior’ on θ following Haario et al. (1999),

π(θ) ∝ exp

{
− θ21
200

− (θ2 − bθ21 + 100b)2

2
−

p∑
j=3

θ2j

}
.

This prior can be viewed as a modification of the usual independent Gaus-

sian prior over components of θ except now θ1 and θ2 are dependent where

the strength of dependence is decided by the parameter b. We follow

the same setting with Li et al. (2017) by choosing σ0 = 1 and b = 0.1

such that θ1 and θ2 are strongly dependent. We set p = 5, the observed

yobs = (10, 0, 0, 0, 0), and the summary statistic S = y, i.e., no information

loss.

To estimate the posterior of θ, we apply both SMC-ABC and ABC-

GSMC methods and choose the threshold ϵ ∈ {10, 8, 5, 3, 1}. For each

iteration, the number of accepted particles is set as 1,000. We use the Eu-

clidean distance to measure the discrepancy between the simulated and the

observed summary statistics. The linear regression is used to approximate

the conditional distributions of parameters. For SMC-ABC, we use a Gaus-

sian kernel N(θ,Σ1) for parameter perturbation with Σ1 is a covariance

matrix with diagonal elements of 1 and off-diagonals of 0.3. For implemen-

tation, we draw a total of 275,726 and 68,686 samples for SMC-ABC and

ABC-GSMC, respectively. For ABC-REJ, we generate 280,000 and 70,000

parameter samples from the prior to generate simulated data and calculate

the summary statistics, and then obtain 1,000 samples for parameter esti-
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mation. Contour plots for the estimated posterior π(θ1, θ2 | Sobs) obtained

by three methods are shown in Figure 6. The true density is marked as

blue dashed line for comparison. For ABC-REJ, there is a considerable

improvement as we increase the number of samples from 70,000 to 280,000.

Still it misses the dependence structure between θ1 and θ2. Both SMC-ABC

and ABC-GSMC manage to capture the dependence structure better than

ABC-REJ, while ABC-GSMC clearly has the best performance among all

three methods in comparison. We further evaluate the Kullback–Leibler

(KL) divergence between the estimated and true posterior of (θ1, θ2) in

Table 3. Our proposed ABC-GSMC performs uniformly better than SMC-

ABC at each iteration, and has a clear advantage over ABC-REJ. All these

findings confirm the strong performance of our method when there exists a

strong dependence between parameters of interest.

Table 3: KL divergence between the estimated posterior and the truth.

Method t = 1 t = 2 t = 3 t = 4 t = 5
SMC-ABC 2.3896 2.0128 1.3911 0.6072 0.2860
ABC-GSMC 2.3991 1.2633 0.7481 0.3316 0.1859
ABC-REJ (70000) - - - - 0.9503
ABC-REJ (280000) - - - - 0.5795

Performance under high correlation: To further understand the

performance of ABC-GSMC in scenarios with highly correlated parameters,

we conduct a comparative evaluation against ABC-Gibbs. It is important

to note that in this investigation, the conditional distribution of θ1 and θ2

potentially encompasses quadratic terms of both variables. Therefore, for
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Figure 6: Posterior distribution of (θ1, θ2) obtained by several methods.

ABC-Gibbs, we approximate these conditional distributions using a regres-

sion model that incorporates quadratic terms. In contrast, for ABC-GSMC,

we adopt a simpler approach by employing a regular linear model that does

not include quadratic terms. Figure 7 shows the KL divergence between the

true and estimated posterior distributions of (θ1, θ2) across varying values

of b. It is evident that as b increases, indicating a rise in the correlation

between θ1 and θ2, ABC-Gibbs encounters greater difficulty in achieving

precise posterior estimations. In contrast, the performance of ABC-GSMC

remains unaffected by the increasing dependence between θ1 and θ2. The

diminished performance of ABC-Gibbs can be attributed to its Gibbs na-

ture, which is prone to challenges such as becoming trapped in local modes,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0332



, resulting in reduced efficiency. In contrast, ABC-GSMC employs the

Gibbs step solely to steer parameter movements, effectively avoiding the

limitations associated with Gibbs updates. This strategic distinction en-

ables ABC-GSMC to overcome the inherent limitations of Gibbs sampling

and maintain its effectiveness.

Figure 7: The KL divergence between the true and estimated posterior of (θ1, θ2) under
different dependence levels.

4. A cell movement and proliferation example

4.1 Background

Cell motility and proliferation are important components of many bi-

ological processes. Cell motility can cause random movement of cells, and

together with cell proliferation, can lead to tumor metastasis (Swanson

et al., 2003) or wound healing (Zahm et al., 1997). Many medical treat-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0332



4.1 Background

ments are based on affecting the rate of cell movement or proliferation. In

order to assess the effectiveness of medical treatments, it is often necessary

to measure the rates of cell movement and proliferation. However, the like-

lihood function of the stochastic model of cell diffusion is often intractable.

A common approach is to use the ABC method to estimate parameters

(Johnston et al., 2014; Vo et al., 2015). A main challenge is that the ob-

served data is often in the form of images, and it is difficult to reduce the

dimensionality of summary statistics to a level suitable for the use of ABC

methods while retaining the information contained in the images.

The scratch assay (Fronza et al., 2009) is a commonly used method

for collecting information on cell diffusion and proliferation, and can be

used to measure cell migration in vitro. It is easy-to-implement and low-

cost. Once the cells have formed a single layer completely covering the test

substance (i.e., a fused monolayer), a “scratch” is produced by separating

the cells. The cells are then imaged at regular time intervals, and these

images are converted into summary statistics for further analysis. Due to

the curse of dimensionality associated with the high-dimensional summary

statistics, previous studies on cell motility and proliferation analyzed the

images based on intervals of one hour or more, even when the imaging time

interval was less than one hour. In Johnston et al. (2014), cells were imaged

every 5 minutes for 12 hours, but in their actual analysis, the authors only

considered the cell imaging pictures from the 4th, 8th, and 12th hours,

rather than selecting all the cell imaging pictures for analysis. Our aim
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is to make use of all available cell imaging pictures, which contain more

information on cell motility and proliferation. Here, we use the proposed

likelihood-free Gibbs sequential Monte Carlo algorithm to analyze the cell

movement and proliferation model and examine how this method performs

under high-dimensional summary statistics.

We follow Price et al. (2018) and use a random walk model to simulate

the processes of cell movement and proliferation. When setting up the

model, we assume that cell imaging is taken every 5 minutes and lasts for

12 hours, so the time label is t = {1, 2, ..., 144}. Consider a two-dimensional

lattice with size of R times C. Let X t
x,y ∈ {0, 1} represent whether a

cell is observed at position (x, y) at time t, where x ∈ {1, 2, ..., R} and

y ∈ {1, 2, ..., C}. Then we use X t to represent the position information

matrix at time t. Here, we follow Price et al. (2018) and calculate the

Hamming distance between X t and X t−1 as the summary statistic st:

st =
R∑

x=1

C∑
y=1

|X t
x,y −X t−1

x,y |.

We also use the total number of cells K observed on the lattice at the end

of the experiment as another summary statistic reflecting cell proliferation

information. Therefore, we have a 145-dimensional summary statistic s =

(s1, s2, . . . , s144, K).

We use a random walk model to simulate the movement and prolifera-

tion process of cells. Suppose that there are N(t) cells on the observation
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lattice at time t. Then within any given time interval, we can randomly

choose N(t) cells repeatedly, with a possibility of choosing the same cells

multiple times. The chosen cells are then assigned with a probability of

Pm to move. For example, as shown in Figure 8, cells can move in any

direction (east, west, south, north) to their adjacent areas, and the proba-

bility of moving in each direction is 1/4. If the new position after moving

is empty, i.e., there is no cell present at that location, then the movement

is successful. If there is a cell on the target position after moving, that

move fails. Similarly, when dealing with cell proliferation, we repetitively

select N(t) cells and assign them a probability Pp to proliferate. The cells

can proliferate in any direction (east, west, south, and north) with an equal

probability of 1/4. If the adjacent area selected for proliferation is empty,

proliferation will succeed; otherwise, proliferation will fail (Simpson et al.,

2013).

This biological process is entirely determined by the movement and

proliferation of cells. In practice, scientists are more concerned with the

diffusion rate and the growth rate of cells. In the random walk model,

these are reflected by the cell movement probability Pm and proliferation

probability Pp. For data generation, we set Pm = 0.3, Pp = 0.001, the

observation lattice dimension R = 27 and C = 36. At t = 0, we generate

N(0) = 110 cells with their locations randomly distributed at the lattice

locations x ∈ {1, . . . , 13}, y ∈ {1, . . . , 36}. The observed data Mobs =

{Mobs
1 , . . . ,Mobs

144 and summary statistics sobs = (sobs1 , . . . , sobs144, K
obs) can
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then be generated based on the random walk model.

Figure 8: Cell movement and proliferation model demonstration

4.2 Results

We use a uniform distribution on (0, 1) as the prior for cell movement

probability Pm, and another uniform distribution on (0, 0.01) for cell prolif-

eration probability Pp. The latter is to reflect the a priori knowledge about

small values of Pp. When implementing SMC-ABC and ABC-GSMC, we

consider four iterations with a threshold of ϵ = {2000, 1500, 1000, 800} and

set the number of accepted particles to be N = 1000. We use linear re-

gression to approximate the conditional distribution. For SMC-ABC, we

use N(x,Σ2) with Σ2 = diag(0.1, 0.1) as the perturbation kernel. If the pa-

rameter falls into [0, 1] after perturbation, we consider it successful (since

we are estimating a probability) and use it to generate simulated data and

summary statistics. To alleviate a fair comparison, we use the same setting

for SMC-ABC and ABC-GSMC.

We summarize the estimated posterior distribution of Pm and Pp as
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boxplots in Figure 9. Compared to the true parameter value (horizon-

tal dashed line), SMC-ABC tends to overestimate both parameters, while

ABC-GSMC manages to rapidly capture the true value after the first two

iterations. The gain in efficiency is also significant by our method.

When implementing SMC-ABC, we obtain a total of 13,947 success-

ful samples (parameter values between 0 and 1 after perturbation). For

ABC-GSMC, that number is 5,699. We also implement ABC-REJ by sam-

pling 15,000 and 6,000 times from the prior, generating the simulated data

and calculating the summary statistics. We then proceed with a threshold

of 1/15 and 1/6 to obtain 1,000 parameter values and name these meth-

ods as ABC-REJ(6000) and ABC-REJ(15000). We report their posterior

summaries together with those obtained by SMC-ABC and ABC-GSMC

in Table 4. Despite some minor underestimation issue, our method still

enjoys the smallest estimation bias and its estimation efficiency is much

better than SMC-ABC and ABC-REJ. When estimating a small probabil-

ity such as Pp = .001, our method achieves a desirable level of accuracy

at the second iteration, only requiring a much smaller number of sampled

particles. All these findings highlight the excellent utility of our method

when dealing with high-dimensional summary statistics.

In the study of cell proliferation and diffusion, most existing research

analyzes imaging data from a few time points. Price et al. (2018) suggest

that using more imaging data of cells can provide more accurate parameter

estimation. In our study, as we assume the use of all time points of cell
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imaging, and use the random walk model to approximate the cell diffusion

and proliferation process. Therefore, after obtaining parameters, we gener-

ate 144 observation matrices accordingly and calculate the corresponding

summary statistics. This is undoubtedly a time-consuming process, and

each simulation data requires huge computing power. When the quality

of the sampled parameters is poor, it will cause a serious computational

burden. Compared to the existing methods such as SMC-ABC and ABC

rejection sampling, our method provides a valuable alternative.

Figure 9: Boxplots for estimated parameters (true value marked as dashed line).
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Table 4: Posterior summaries (95% credible interval, posterior mean, and standard de-
viation) for Pm and Pp estimation.

Pm (true = .3) Pp (true=.001)
Method 95% CI mean sd 95% CI mean sd
SMC-ABC (0.3209,0.3323) 0.3266 0.0915 (0.0020,0.0021) 0.0021 0.0013
ABC-GSMC (0.2991,0.2999) 0.2995 0.0066 (0.0006,0.0007) 0.0006 0.0001
ABC-REJ(6000) (0.2682 ,0.2769) 0.2726 0.0708 (0.0038,0.0042) 0.0040 0.0028
ABC-REJ(15000) (0.2833,0.2895) 0.2864 0.0500 (0.0025,0.0028) 0.0027 0.0021

5. Discussion

In this paper, we propose a likelihood-free Gibbs sequential Monte Carlo

(ABC-GSMC) method, which uses the accepted parameter values and sum-

mary statistics from each iteration to fit a regression model to approximate

the conditional distribution. Compared to the original SMC-ABC method

that perturbs parameters randomly, our method updates parameters by

sampling from approximation of the conditional distribution, guiding the

perturbation of parameters more specific. As a result, the number of par-

ticles required to achieve the same estimation accuracy as the SMC-ABC

method is much smaller, leading to a higher computational efficiency.

Several directions remain open in future research. Firstly, in the im-

plementation of the ABC-GSMC method, we manually set the sequence of

threshold values. When the threshold sequence is not well designed, the

algorithm may get stuck in a certain iteration, and it may take a long time

to proceed to the next iteration. Therefore, we can consider using effective

sample size to adaptively determine the threshold required for each iter-
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ation. Secondly, we could incorporate wasserstein distance to our model,

to avoid the selection of summary statistics. Lastly, other flexible regres-

sion models can also be used in the ABC-GSMC algorithm for conditional

distribution approximation, such as deep learning.
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Tavaré, S., D. J. Balding, R. C. Griffiths, and P. Donnelly (1997). Inferring coalescence times

from dna sequence data. Genetics 145 (2), 505–518.

Toni, T., D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf (2009). Approximate bayesian

computation scheme for parameter inference and model selection in dynamical systems.

Journal of the Royal Society Interface 6 (31), 187–202.

Vo, B. N., C. C. Drovandi, A. N. Pettitt, and G. J. Pettet (2015). Melanoma cell colony ex-

pansion parameters revealed by approximate bayesian computation. PLOS computational

biology 11 (12), e1004635.

Zahm, J.-M., H. Kaplan, A.-L. Hérard, F. Doriot, D. Pierrot, P. Somelette, and E. Puchelle

(1997). Cell migration and proliferation during the in vitro wound repair of the respiratory

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0332



REFERENCES

epithelium. Cell motility and the cytoskeleton 37 (1), 33–43.

Zhu, W., T. Zuo, and C. Wang (2023). Approximate bayesian computation with semiparametric

density ratio model. Journal of Nonparametric Statistics, 1–16.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0332


	Introduction
	Likelihood-free Gibbs SMC
	SMC-ABC
	Likelihood-free Gibbs-SMC (ABC-GSMC)
	Properties of the Gibbs kernel

	Simulations
	General linear model
	Gaussian mixture example
	Banana prior model

	A cell movement and proliferation example
	Background
	Results

	Discussion



