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Abstract:

Granger causality has been employed to investigate causality relations between components of

stationary multiple time series. We generalize this concept by developing statistical inference

for local Granger causality for multivariate locally stationary processes. Our proposed local

Granger causality approach captures time-evolving causality relationships in nonstationary pro-

cesses. The proposed local Granger causality is well represented in the frequency domain and

estimated based on the parametric time-varying spectral density matrix using the local Whittle

likelihood. Under regularity conditions, we demonstrate that the estimators converge to multi-

variate normal in distribution. Additionally, the test statistic for the local Granger causality is

shown to be asymptotically distributed as a quadratic form of a multivariate normal distribu-

tion. For practical demonstration, the proposed local Granger causality method uncovered new

functional connectivity relationships between channels in brain signals. Moreover, the method

was applicable to topological data analysis to identify structural changes in financial data.

Key words and phrases: Brain signals, Local Granger causality, Local Whittle likelihood, Mul-

tivariate locally stationary processes, Time-varying spectral density matrix, Topological data

analysis
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1. Introduction

Statistical inference for cause and effect remains at the forefront of many studies in-

cluding biology, medicine, physical systems, environmental science, public health, policy

and finance. However, there remain challenges on inference because causality is notori-

ously difficult to establish. Granger causality, proposed in Granger (1963) and Granger

(1969), is a milestone of causal inference in dynamic models. In broad terms, Granger

causality from a time series {Yt} to another series {Xt} measures the predictive ability

from the series {Yt} to {Xt}. If the predictive ability of (Xs, Ys)s<t on Xt is not different

from the predictive ability of (Xs)s<t on Xt, then there is “no Granger causal relation-

ship” from the series {Yt} to {Xt}. Thus, Granger causality analysis is important for

determining whether or not a set of variables contains useful information for improving

the prediction of another set of variables. Measures of linear dependence and feedback

between components of a multivariate time series in both time and frequency domains

have been considered in Geweke (1982) and Geweke (1984). In Hosoya (1991), a refine-

ment of the above measures was proposed, which also has a well-defined representation

in the frequency domain.

The inference for Granger causality using ARIMA modeling for nonstationary pro-

cesses dates back to Sims et al. (1990). The paper elucidated nonstandard limiting

distributions for Granger causality tests. Toda and Phillips (1993, 1994) considered the

Wald test for cointegrated processes and derived that the test statistic is asymptotically

distributed as a χ2-distribution under the null hypothesis. Granger and Lin (1995) con-
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sidered the Granger causality for nonstationary bivariate cointegrated processes. Other

theoretical considerations can be found in Dolado and Lütkepohl (1996); Yamada and

Toda (1998), to name a few. A numerical comparison for ARIMA models has been in-

vestigated in Clarke and Mirza (2006). A thorough treatment of the Granger causality

for multivariate time series was discussed in Lütkepohl (2005).

In this paper, we propose a local Granger causality (LGC) measure based on the

locally stationary process. A locally stationary process has a Cramér-like representa-

tion but its transfer function is allowed to change over time. Formal models for the

time-varying spectra of nonstationary processes have been developed since this con-

cept was introduced in Priestley (1965). A more theoretically rigorous framework for

multivariate locally stationary processes have been formulated in Dahlhaus (2000). To

estimate the time-varying spectral density of a locally stationary process, Neumann

and von Sachs (1997) developed a wavelet estimator based on the pre-periodogram.

The parameter estimation for an evolutionary spectral was discussed in Dahlhaus and

Giraitis (1998). Local inference for locally stationary time series was investigated in

Dahlhaus (2009). Moreover, Dahlhaus and Polonik (2009) constructed the estimation

theory for the weak convergence of the empirical spectral processes. To the best of our

knowledge, despite the recent progress on models that capture nonstationary behavior,

local Granger causality has not yet been developed. To address this limitation, this

paper undertakes the task of developing this local concept because many time series

phenomena display Granger causality behavior that changes over the course of time

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0317



(e.g., electroencephalograms and stock market indices). Thus, the contribution of this

paper is a rigorous framework for statistical inference for LGC.

We focus on multivariate locally stationary processes to develop the statistical in-

ference for LGC. Statistical inference for multivariate stationary processes has been dis-

cussed in Hannan (1970), Taniguchi and Kakizawa (2000), Shumway and Stoffer (2000)

and references therein. A nonparametric method was developed in Taniguchi et al.

(1996) to test the cross-relationships between multiple time series. The discriminant

analysis for multivariate locally stationary processes based on the likelihood ratio was

considered in Sakiyama and Taniguchi (2004). A SLEX model was proposed in Huang

et al. (2004) to develop a discriminant scheme that can extract local features of time

series. Several models were also considered for bivariate and multivariate nonstationary

data using the SLEX basis which consists of well-localized Fourier-like waveforms (See

Ombao et al. (2001) and Ombao et al. (2005)).

As noted, the goal of this paper is to develop statistical inference for LGC for mul-

tivariate locally stationary processes. In particular, LGC is expressed in the frequency

domain using the foundational ideas on Granger causality for stationary processes. We

develop a procedure for parameter estimation based on the local Whittle likelihood and

derive the asymptotic distribution of the estimators. Under regularity conditions, the

estimates are shown to converge to multivariate normal in distribution. The parame-

terized Granger causality, however, converges to normal or a quadratic form of normal

random variables, which depends on the gradient of the causality measure. To illustrate

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0317



1.1 Notations

the potential impact of the proposed LGC, we analyzed the log-returns of the financial

data and multichannel electroencephalogram (EEG) data. Using the proposed method,

the local Granger causality analyses produced insightful results such as new relation-

ships between different brain signals and different topological structures between pre-

and post-global financial crisis.

The remainder of the paper is organized as follows. In Section 2, we propose the

local Granger causality. The properties of the local Granger causality are detailed

immediately behind the definition. In Section 3, we develop statistical inference for

local Granger causality based on the local Whittle estimation for multivariate locally

stationary processes. In Section 4, we apply the proposed local Granger causality

measure to EEG data and financial data. The proofs for the theoretical results are

relegated to Section S3.

1.1 Notations

Om×M denotes an m × M zero matrix; Ip denotes the p × p identity matrix; For any

matrix A, let ‖A‖∞ := max1≤i≤p

∑p
j=1|aij|. For a square matrix A, |A| denotes its de-

terminant.
d−→ denotes the convergence in distribution. Additionally, let l be a function

such that

l(j) :=


1, |j| ≤ 1,

|j| ln1+κ|j|, |j| > 1,

(1.1)

for some constant κ > 0.
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2. Local Granger Causality

In this section, we introduce the concept of local Granger causality in the frame-

work of locally stationary processes. Let Xt,T = (X
(1)
t,T , . . . , X

(p)
t,T )

T be a sequence of

p-dimensional multivariate stochastic processes

Xt,T =
∞∑

j=−∞

At,T (j)ϵt−j, (2.1)

where the sequences {At,T (j)}j∈Z satisfy the following conditions: there exists a positive

constant CA such that

sup
t,T

‖At,T (j)‖∞ ≤ CA

l(j)
, (2.2)

and there exists a sequence of continuous functions A(·, j) : [0, 1] → R such that

(i) supu‖A(u, j)‖∞ ≤ CA

l(j)
;

(ii) supj

∥∥∥At,T (j)− A
(

t
T
, j
)∥∥∥

∞
≤ CA

l(j)
T−1;

(iii) V
(
‖A(·, j)‖∞

)
≤ CA

l(j)
,

where V (f) is the total variation of the function f on the interval [0, 1], i.e., V is defined

as

V (f) = sup
{ m∑

k=1

|f(xk)− f(xk−1)|; 0 ≤ x0 < · · · < xm ≤ 1, m ∈ N
}
.

The process (2.1) is usually referred to as the multivariate locally stationary process.

We impose the following assumptions on the process (2.1) for the estimation theory

later on.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0317



Assumption 1. For the process in (2.1), let ϵt be independent and identically dis-

tributed with Eϵt = 0 and Eϵtϵ
⊤
t = K, where the matrix K exists and all elements are

bounded by CK. Furthermore, all elements in the rth moment of ϵt exist and bounded

by C
(r)
ϵ .

Let m and M be two positive integers such that p = m + M . Suppose Xt,T =(
X

(1)
t,T

⊤
,X

(2)
t,T

⊤)⊤
, X

(1)
t,T ∈ Rm, X

(2)
t,T ∈ RM , has the time-varying spectral density matrix

f(u, λ) with the partition

f(u, λ) =

f(u, λ)11 f(u, λ)12

f(u, λ)21 f(u, λ)22

 :=
1

2π
A(u, λ)KA(u,−λ)⊤, u ∈ [0, 1], (2.3)

where A(u, λ) :=
∑∞

j=−∞ A(u, j) exp( ijλ). Let Σ(u) be the one-step-ahead prediction

error covariance matrix based on the time-varying spectral density matrix f(u, λ) with

the same partition. By the Kolmogorov’s formula for multiple time series, we have

detΣ(u) = exp

(
1

2π

∫ π

−π

ln
(
det 2πf(u, λ)

)
dλ

)
, for any u ∈ [0, 1],

(see Hannan (1970), p.162).

Let H(τ1, τ2) = sp(X
(1)
t,T , 1 ≤ t ≤ τ1;X

(2)
t,T , 1 ≤ t ≤ τ2) be the closed linear subspace

generated by {X(1)
t,T , 1 ≤ t ≤ τ1;X

(2)
t,T , 1 ≤ t ≤ τ2}. Especially, we use H(τ1, 0) and

H(0, τ2) to express the closed linear subspace generated by {X(1)
t,T , t ≤ τ1}, {X(2)

t,T , t ≤

τ2}, respectively.

Introducing a companion process

Y
(2)
t,T = X

(2)
t,T − E

(
X

(2)
t,T | H(t, t− 1)

)
, (2.4)
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we propose the local Granger causality measure from {X(2)
t,T } to {X(1)

t,T } as

GC(2→1)(u) =
1

2π

∫ π

−π

FGC(u, λ)dλ, (2.5)

where

FGC(u, λ) = ln
|f(u, λ)11|∣∣∣f(u, λ)11 − 2πg(u, λ)12Σ̃(u)

−1
22 g(u, λ)21

∣∣∣ .
Here, g(u, λ) is the time-varying spectral density matrix of the process {

(
X

(1)
t,T

⊤
,Y

(2)
t,T

⊤)⊤}
(see Propositions 1 and 2 below), and Σ̃(u) is an (M ×M)-matrix

Σ̃(u)22 = Σ(u)22 − Σ(u)21Σ(u)
−1
11 Σ(u)12.

Remark 1. Let us briefly provide an interpretation of the local Granger causality

measure GC(2→1)(u) in (2.5). Given a localized model around u ∈ (0, 1), i.e.,

Xt(u) =

X
(1)
t (u)

X
(2)
t (u)

 =
∞∑

j=−∞

A(u, j)ϵt−j,

the original Granger causality measure for stationary processes from {X(2)
t (u)} to

{X(1)
t (u)} is defined as the log-ratio of the one-step-ahead prediction error based only

on the process {X(1)
t (u)} to that based on the process {Xt(u)} itself.

Mathematically speaking, the log-ratio in the original Granger causality measure is

given by

G̃C
(2→1)

(u) = ln
det Cov

(
X

(1)
t+1(u)− E

(
X

(1)
t+1(u) | X

(1)
t (u)

))
det Cov

(
X

(1)
t+1(u)− E

(
X

(1)
t+1(u) | Xt(u)

)) .
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The proposal of (2.5) follows from the Kolmogorov’s formula, and incorporated the

natural decomposition of frequency measure considered in Hosoya (1991).

As it has been seen, the proposal of the local Granger causality (2.5) is moti-

vated by Hosoya’s measure of causality (a term first coined in Granger and Lin (1995))

in combination with the nonstationary version of Kolmogorov’s formula by Dahlhaus

(1996). The companion process {Y (2)
t,T } in (2.4) is introduced in order to remove

the possible effect brought by the nonorthogonality between residuals of predictions

E
(
X

(1)
t,T | H(t− 1, t− 1)

)
and E

(
X

(2)
t,T | H(t− 1, t− 1)

)
.

We now start to explain properties of the proposed local Granger causality. Denote

by Σt,T the one-step-ahead prediction error covariance matrix, i.e.,

Σt,T = var
[
Xt,T − E

(
Xt,T | H(t− 1, t− 1)

)]
.

Proposition 1. The companion process {Y (2)
t,T } is a locally stationary process with the

time-varying spectral density

g(u, λ)22 =
1

2π
Σ̃(u)22. (2.6)

Proof. From the definition of {Xt,T} in (2.1), we have

Xt,T − E
(
Xt,T | H(t− 1, t− 1)

)
= At,T (0)ϵt.
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By the following formula (see Lemma 2.2 in Hosoya (1991)),

X
(2)
t,T − E

(
X

(2)
t,T | H(t, t− 1)

)
=
{
X

(2)
t,T − E

(
X

(2)
t,T | H(t− 1, t− 1)

)}
−Σt,T,21Σ

−1
t,T,11

{
X

(1)
t,T − E

(
X

(1)
t,T | H(t− 1, t− 1)

)}
,

and we find that

Y
(2)
t,T = ϵ

(2)
t − Σt,T,21Σ

−1
t,T,11ϵ

(1)
t =

(
−Σt,T,21Σ

−1
t,T,11 IM

)
ϵt.

In view of Example 2.3 (i) in Dahlhaus (2000), {Y (2)
t,T } is locally stationary. A straight-

forward calculation gives the expression of g(u, λ)22 in (2.6).

Let H(2)(τ) be the closed linear subspace generated by {Y (2)
t,T , 1 ≤ t ≤ τ}. The

Hosoya measure is defined as

HM
(2→1)
t,T := ln

det var
[
X

(1)
t,T − E

(
X

(1)
t,T | H(t− 1, 0)

)]
det var

[
X

(1)
t,T − E

(
X

(1)
t,T | σ{H(t− 1, 0) ∪H(2)(t− 1)}

)] . (2.7)

For any fixed u ∈ [0, 1], the time-varying spectral matrix f(u, λ) has a factorization

f(u, λ) =
1

2π
Λ(u, e−iλ)Λ(u, eiλ)∗, z ∈ D, (2.8)

(see Rozanov, 1967).

Proposition 2. Suppose all eigenvalues of A(u, λ)A(u,−λ)⊤ are bounded from below

by some constant C > 0 uniformly in u and λ, and all components of A(u, λ) are

differentiable in u and λ with bounded derivatives (∂/∂u)(∂/∂λ)A(u, λ)ab for a, b ∈

{1, 2, . . . , p}. It holds that

|GC(2→1)(t/T )− HM
(2→1)
t,T | = ot(1) + OT (1),
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where the ot(1) term is uniform in T and the oT (1) term is uniform in t.

Proof. From Proposition 1, we see that the process {
(
X

(1)
t,T

⊤
,Y

(2)
t,T

⊤)⊤} is locally sta-

tionary. In view of Lemma 2.3 in Hosoya (1991), we see that the process has the

time-varying spectral density matrix g(u, λ) with g(u, λ)11 = f(u, λ)11 and

g(u, λ)21 = g(u,−λ)⊤12

=
(
−Σ(u)21Σ(u)

−1
11 IM

)
Λ(u, 0)Λ(u, eiλ)−1

f(u, λ)11

f(u, λ)12

 . (2.9)

A direct computation shows that the process
{
X

(1)
t,T −E

(
X

(1)
t,T | σ{H(t−1, 0)∪H(2)(t−

1)}
)}

is still locally stationary and has the time-varying spectral density

g(u, λ)11 − g(u, λ)12g(u, λ)
−1
22 g(u, λ)21.

Inspection of Theorem 3.2 in Dahlhaus (1996) for the nonstationary version of Kol-

mogorov’s formula reveals that

det var
[
X

(1)
t,T − E

(
X

(1)
t,T | H(t− 1, 0)

)]
= exp

(
1

2π

∫ π

−π

ln
(
det 2πf(t/T, λ)11

)
dλ

)
+ ot(1) + oT (1), (2.10)

and

det var
[
X

(1)
t,T − E

(
X

(1)
t,T | σ{H(t− 1, 0) ∪H(2)(t− 1)}

)]
= exp

(
1

2π

∫ π

−π

ln
(
det 2π

(
g(t/T, λ)11 − g(t/T, λ)12g(t/T, λ)

−1
22 g(t/T, λ)21

))
dλ

)

+ ot(1) + oT (1). (2.11)
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Combining (2.10) and (2.11) yields the desired result.

The local Granger causality measure can be regarded as the limit of that constructed

by the Wigner-Ville spectrum. To be specific, let ft,T (λ) be the Wigner-Ville spectrum

of the process {Xt,T}, i.e.,

ft,T (λ) =
1

2π

∞∑
s=−∞

Cov
(
X[t−s/2],T ,X[t+s/2],T

)
exp(−iλs),

(see Martin and Flandrin (1985)). The measure of the Wigner-Ville spectrum now is

GC
(2→1)
t,T =

1

2π

∫ π

−π

FGCt,T (λ) dλ,

where

FGCt,T (λ) = ln
|ft,T (λ)11|∣∣∣ft,T (λ)11 − 2πgt,T (λ)12Σ̃

−1
t,T,22gt,T (λ)21

∣∣∣
and Σ̃(u) is an (M ×M)-matrix

Σ̃t,T,22 = Σt,T,22 − Σt,T,21Σ
−1
t,T,11Σt,T,12.

Proposition 3. Suppose f(u, λ) is uniformly Lipschiz continuous with respect to u and

λ. For any sequence t/T → u, We have

∣∣∣GC(2→1)(u)−GC
(2→1)
t,T

∣∣∣ = o(1).

Proof. We only show that

1

2π

∫ π

−π

(
ln|f(u, λ)11| − ln|ft,T (λ)11|

)
dλ = o(1),

to see the difference in the numerator. The denominator can be proved similarly.
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Let us consider the scalar process α∗X
(1)
t,T with the Wigner-Ville spectrum fα

t,T (λ) :=

α∗ft,T (λ)11α for any α ∈ Cm. Comparing it with fα(u, λ) = α∗f(u, λ)11α, by Theo-

rem 2.2 in Dahlhaus (1996), we see that∫ π

−π

|fα
t,T (λ)− fα(u, λ)|2 dλ = o(1),

which implies that ∫ π

−π

|fα
t,T (λ)− fα(u, λ)| dλ = o(1), (2.12)

since by the Cauchy-Schwarz inequality, we have∫ π

−π

|fα
t,T (λ)− fα(u, λ)| dλ ≤

√
2π
(∫ π

−π

|fα
t,T (λ)− fα(u, λ)|2 dλ

)1/2
.

By Taylor’s expansion, we have

ln|ft,T (λ)11| = ln|f(u, λ)11|+ Tr
[
f(u, λ)−1

11

(
ft,T (λ)11 − f(u, λ)11

)]
+ o
(
Tr
[
f(u, λ)−1

11

(
ft,T (λ)11 − f(u, λ)11

)])
. (2.13)

Remembering that f(u, λ) = 1
2π
Λ(u, e−iλ)Λ(u, eiλ)∗ from (2.8), we see that there exists

an m×m Hermitian matrix B such that f(u, λ)−1
11 = B∗B, and thus

Tr
[
f(u, λ)−1

11

(
ft,T (λ)11 − f(u, λ)11

)]
= Tr

[
B
(
ft,T (λ)11 − f(u, λ)11

)
B∗
]
, (2.14)

which is a sum of quadratic forms fα
t,T (λ)− fα(u, λ). Applying (2.12) to (2.14) yields∫ π

−π

Tr
[
f(u, λ)−1

11

(
ft,T (λ)11 − f(u, λ)11

)]
dλ = o(1),

and by observing (2.13), we conclude that

1

2π

∫ π

−π

ln|f(u, λ)11| − ln|ft,T (λ)11| dλ = o(1).
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Remark 2. The construction of a linear predictor in practice for the locally stationary

process may be of interest to some readers. It can be shown that the predictor for

the locally stationary process and that for the stationary approximation are asymptot-

ically equivalent under adequate conditions. In contrast, we focus on the nonstationary

version of Kolmogorov’s formula found in Dahlhaus (1996). We elucidated that our

local causality measure, as the limit of the measure constructed by the Wigner-Ville

spectrum, is a unique measure for multivariate locally stationary processes.

3. Statistical Inference for Local Granger Causality

In this section, we develop the foundations for statistical inference for local Granger

causality. The proofs of the theoretical results are relegated to Section S3.

3.1 Local Whittle estimation

Let {Xt,T} be the multivariate locally stationary process defined by (2.1) with the time-

varying spectral density f(u, λ) defined by (2.3). The starting point is local estimation

by fitting a parametric spectral density model fθ(λ), θ ∈ Θ ⊂ Rd, to f(u, λ).

Consider the observation stretch (X1,T , . . . ,XT,T ) and define IT (u, λ) to be the

pre-periodogram matrix

IT (u, λ) =
1

2π

∑
ℓ:1≤[uT+1/2±ℓ/2]≤T

X[uT+1/2+ℓ/2],TX
⊤
[uT+1/2−ℓ/2],T exp(− iλℓ). (3.1)
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3.1 Local Whittle estimation

Note that the pre-periodogram IT (u, λ) was first introduced in Neumann and von Sachs

(1997).

We define the spectral divergence L(θ, u) between the parametric spectral density

and the time-varying spectral density as

L(θ, u) =
∫ π

−π

ln det fθ(λ) + Tr
(
f(u, λ)f−1

θ (λ)
)
dλ. (3.2)

For any fixed u ∈ [0, 1], define θ0(u) as

θ0(u) := argmin
θ∈Θ

L(θ, u). (3.3)

Let uk := k/T . The sample analogue LT of the spectral divergence is defined as

LT (θ, u) =
1

T

T∑
k=1

1

bT
K
(u− uk

bT

)∫ π

−π

ln det fθ(λ) + Tr
(
IT (uk, λ)f

−1
θ (λ)

)
dλ, (3.4)

and the local Whittle estimator of θ̂T (u) is defined as

θ̂T (u) := argmin
θ∈Θ

LT (θ, u). (3.5)

Remark 3. In the literature, the local Whittle estimation has been applied not only

to short-memory locally stationary processes but also to long-memory processes (e.g.

Chan and Palma (2020)). Especially, Chan and Palma (2020) shares similarities with

our approach in that they also established the central limit theorem by considering the

higher-order cumulants of the local Whittle estimator. In contrast, we here consider

the local Whittle estimator, incorporating a kernel function K, for multivariate locally

stationary processes, whereas their work considered the estimator for univariate locally

stationary long-memory processes by segmenting observations into blocks of size N
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3.1 Local Whittle estimation

and bounding the coefficients by their shifts. To keep brevity of our paper, we list

assumptions and the central limit theorem in the following, and relegate the proof to

the Supplementary Materials.

We impose the following assumptions on the class of time-varying spectral densities

and the kernel function K in (3.4) to investigate the asymptotic properties of the local

Whittle estimator (3.5). As a remark, we may make the same assumptions about

the mapping u 7→ A(u, j) since the smoothness condition of the time-varying spectral

density matrix f(u, λ) directly follows from the regularity properties of u 7→ A(u, j).

Assumption 2.

(i) The time-varying spectral density matrix f(u, λ) is continuously differentiable with

respect to u for u ∈ (0, 1).

(ii) K : R → R is a nonnegative, bounded symmetric continuous function of bounded

variation with a compact support [−1, 1] satisfying
∫
K(x) dx = 1. Let

Kb(x) :=
1

b
K
(x
b

)
,

where b := bT → 0, as T → ∞.

We now specify the regularity conditions for the parametric model fθ(λ) and the

local parameter θ(u). For the brevity, let θ := θ(u) when u does not matter.

Assumption 3.

(i) For any fixed u ∈ [0, 1], θ(u) ∈ Θ, where Θ is a compact subset of Rd.
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3.1 Local Whittle estimation

(ii) For any fixed u ∈ [0, 1], fθ(1)(u) 6= fθ(2)(u) on a set of positive Lebesgue measure, if

θ(1)(u) 6= θ(2)(u).

(iii) The parametric spectral density matrix fθ(λ) is bounded away from 0 for each

component, and is continuously differentiable with respect to λ for λ ∈ (−π, π).

(iv) For any θ ∈ Θ, fθ is positive definite and it is twice continuously differentiable

with respect to θ.

(v) For any fixed u ∈ [0, 1],

(v-a) θ0(u) ∈ Θ is the unique minimizer of L(θ, u) and lies in the interior of Θ.

(v-b) the following matrix is positive definite:

Mu
f =

∫ π

−π

[
∂2

∂θ∂θ⊤Tr
{
f−1
θ (λ)f(u, λ)

}
+

∂2

∂θ∂θ⊤ ln det fθ(λ)

]
dλ

First, let us consider the asymptotics for the sample analog of the spectral diver-

gence LT (θ, u).

Theorem 1. Suppose Assumptions 1, 2 and 3 hold. For any u ∈ (0, 1), if b−1
T =

o
(
T (lnT )−6

)
and bT = o(T−1/5), then we have

√
TbT

(
LT (θ, u)− L(θ, u)

) d−→ N (0,VL(u)).

as T → ∞, where

VL(u) = 4π

∫ 1

−1

K(v)2 dv

(∫ π

−π

Tr
(
f(u, λ)f−1

θ (λ)f(u, λ)f−1
θ (λ)

)
dλ

+
1

2

p∑
r,t,v,w=1

∫ π

−π

∫ π

−π

(
f rt
θ (λ1)f

vw
θ (λ2)γ̃rtvw(u;−λ1, λ2,−λ2)

)
dλ1 dλ2

)
, (3.6)
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3.1 Local Whittle estimation

where γ̃ is the fourth-order spectral density of the process.

Remark 4. Inspection of the proof of Theorem 1 reveals that the main order of bias is

O(T 1/2b
5/2
T ) and the asymptotic variance is of order O(T−1b−1

T ). The optimal order of

the bandwidth bT can be determined by equating squared bias and variance. Thus, we

obtain the optimal order bT = O(T−1/3) and the mean square error is O(T−2/3). This

optimal order is similar to the one derived in Künsch (1989) in the context of statistical

inference for stationary time series.

Let Mu
f,0 be

Mu
f,0 =

∫ π

−π

[
∂2

∂θ∂θ⊤Tr
{
f−1
θ (λ)f(u, λ)

}
+

∂2

∂θ∂θ⊤ ln det fθ(λ)

]
θ=θ0(u)

dλ.

Now we establish the asymptotic normality of the local estimator θ̂T (u).

Theorem 2. Suppose Assumptions 1, 2 and 3 hold. For any u ∈ (0, 1), if b−1
T =

o
(
T (lnT )−6

)
and bT = o(T−1/5), then we have

√
TbT

(
θ̂T (u)− θ0(u)

) d−→ N (0,V(u)), (3.7)

as T → ∞, where V(u) := (Mu
f,0)

−1Vθ(u)(Mu
f,0)

−1 and

Vθ(u)ab = 4π

∫ 1

−1

K(v)2 dv

×

(∫ π

−π

Tr
[
f(u, λ)

{
∂

∂θa
f−1
θ (λ)

}
f(u, λ)

{
∂

∂θb
f−1
θ (λ)

}]
dλ

+
1

2

p∑
r,t,v,w=1

∫ π

−π

∫ π

−π

( ∂

∂θa
f rt
θ (λ1) ·

∂

∂θb
f vw
θ (λ2)γ̃rtvw(u;−λ1, λ2,−λ2)

)
dλ1 dλ2

)
, (3.8)

(a, b = 1, . . . , d), where γ̃ is the fourth-order spectral density of the process.
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3.2 Inference for causality measures

In this subsection, we develop the statistical inference for the local Granger causality

measure (2.5) based on the parametric model {fθ(u) | θ(u) ∈ Θ}. Denote by Σθ(u) the

parametric one-step-ahead prediction error matrix, and by gθ(u) the parametric model

for the companion process (2.4). Note that the matrix gθ(u) is uniquely determined by

the model fθ(u) and the matrix Σθ(u) (see, e.g., (2.6) and (2.9)).

Suppose fθ(u), Σθ(u) and gθ(u) have the same partition as (2.3). To make the

statistical inference feasible, we impose the following assumption on the parametric

models.

Assumption 4. For any θ ∈ Θ,∫ π

−π

ln|fθ(λ)| dλ > −∞.

Assumption 4 is usually referred to as the maximal rank condition. This condition

guarantees that the fitted model is full-rank and the model does not contain a perfectly

predictable process; Otherwise, the Granger causality measure (2.5) for the fitted model

may be not well-defined for the case that the denominator of the fraction inside the

logarithm is 0. Under Assumption 4, fθ(u)(λ) is non-degenerate a.e. and Σθ(u) is positive

definite for any fixed u ∈ [0, 1]. Now the parametric local Granger causality for (2.5) is

GC(2→1)(u; θ) =
1

2π

∫ π

−π

FGC
(
λ;θ(u)

)
dλ, (3.9)

where

FGC(λ; θ) = ln
|fθ(λ)11|∣∣∣fθ(λ)11 − 2πgθ(λ)12Σ̃

−1
θ,22gθ(λ)21

∣∣∣ .
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The main results are described in the following.

Theorem 3. Suppose Assumptions 1, 2, 3 and 4 hold. If we have, for some i = 1, . . . , d,

∂

∂θi
FGC

(2→1)
θ (λ)

∣∣∣
θ=θ0(u)

6= 0, for some λ ∈ (−π, π], (3.10)

uniformly in u ∈ [0, 1], and if b−1
T = o

(
T (lnT )−6

)
and bT = o(T−1/5), then we have

√
TbT

(
GC(2→1)(u; θ̂T )−GC(2→1)(u;θ0)

)
d−→ N (0,VGC(u)),

where

VGC(u) =
(
∇GC(2→1)(u;θ0)

)⊤
V(u)

(
∇GC(2→1)(u;θ0)

)
,

and

∇GC(2→1)(u;θ0) =

(
∂

∂θ1
GC(2→1)(u;θ0), . . . ,

∂

∂θd
GC(2→1)(u;θ0)

)⊤

with

∂

∂θi
GC(2→1)(u;θ) =

1

2π

∫ π

−π

∂

∂θi
FGC

(2→1)
θ(u) (λ) dλ.

There are situations when condition (3.10) may not be satisfied. That is, for some

u ∈ (0, 1),

∂

∂θ
FGC

(2→1)
θ (λ)

∣∣∣
θ=θ0(u)

= 0, a.e. λ ∈ (−π, π]. (3.11)

In this case, we centralize GC(2→1)(u; θ̂T ) as CGC(u; θ̂T ), i.e.,

CGC(u; θ̂T ) := GC(2→1)(u; θ̂T )−GC(2→1)(u;θ0). (3.12)

Then we have the following result.
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Theorem 4. Suppose that Assumptions 1, 2, 3 and 4 hold. In addition, assume (3.11)

with

H(u, λ) :=
∂2

∂θ∂θ⊤FGC
(2→1)
θ (λ)

∣∣∣
θ=θ0(u)

6= Od×d, for some λ ∈ (−π, π],

for u ∈ (0, 1). Let

H(u) =
1

2π

∫ π

−π

H(u, λ) dλ. (3.13)

Then if b−1
T = o

(
T (lnT )−6

)
and bT = o(T−1/5), the following result holds

2TbTCGC(2→1)(u; θ̂T )
d−→ N

(
0,V(u)

)⊤H(u)N
(
0,V(u)

)
, (3.14)

where the normal distribution N
(
0,V(u)

)
is defined in Theorem 2. In particular, if

V(u)−1/2H(u)V(u)−1/2 is an idempotent matrix, then the right hand side of (3.14) has

a chi-squared distribution χ2
ν with the degrees of freedom

ν = Tr(V(u)−1/2H(u)V(u)−1/2).

Let us summarize Assumptions 1–4 before we give an example satisfying these

assumptions. Assumption 1 is a condition for innovation processes. Assumptions 2–3

are regularity conditions for the local Whittle estimation. They could be replaced by

other regularity conditions (e.g. regularity conditions in Chan and Palma (2020)) for

the parameter estimation by the local Whittle estimator. Assumption 4 is a condition

to ensure that the fitted model is full-rank and the model is not a perfectly predictable

process by a linear operation on the past. See Hannan (1970, Chapter III, Section 5)

for perfectly predictable processes.
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Example 1 (Time-varying vector autoregression model). Suppose the multivariate

locally Gaussian stationary process (2.1) has the time-varying spectral density

f(u, λ) =
1

2π

(
I2 + A(u) exp( iλ)

)−1

σ11 σ12

σ12 σ22

(I2 + A(u)⊤ exp(− iλ)
)−1

,

where A(u) =

α11(u) α12(u)

α21(u) α22(u)

 and α12(u) ≡ 0.

We adopt the following parametric spectral density fθ(λ) for model fitting.

fθ(λ) =
1

2π

(
I2 +

a11 a12

a21 a22

 exp( iλ)

)−1

×

s11 s12

s12 s22


(
I2 +

a11 a12

a21 a22


⊤

exp(− iλ)

)−1

,

where θ = (a11, a12, a21, a22, s11, s12, s22)
⊤. From the definition (3.9), we have

GC(2→1)(u; θ) =
1

2π

∫ π

−π

− ln
∣∣∣1− 2πgθ(λ)12

(
Σ̃θ,22

)−1

gθ(λ)21fθ(λ)
−1
11

∣∣∣ dλ.
Thus, FGC

(2→1)
θ (λ) is

FGC
(2→1)
θ (λ) = − ln

∣∣∣1− 2πgθ(λ)12

(
Σ̃θ,22

)−1

gθ(λ)21fθ(λ)
−1
11

∣∣∣.
A straightforward computation leads to

∂

∂θ
FGC

(2→1)
θ (λ)

∣∣∣
a12=0

= 0, for any λ ∈ (−π, π].

In addition, it holds that

∂2

∂a212
FGC

(2→1)
θ (λ)

∣∣∣
θ=θ0(u)

=
2(σ11σ22 − σ2

12)
2

σ4
11

|1− α11(u) exp( iλ)|2

|1− α22(u) exp( iλ)|2
> 0;
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and for all λ ∈ (−π, π],

∂2

∂θi∂θj
FGC

(2→1)
θ (λ)

∣∣∣
θ=θ0(u)

= 0, for θi 6= a12 or θj 6= a12.

Let θ̂T =
(
α̂11(u), α̂12(u), α̂21(u), α̂22(u), σ̂11, σ̂12, σ̂22

)⊤
be the local Whittle estima-

tor defined in (3.5). Applying Theorem 4, we obtain

TbT
σ4
11

(∫ 1

−1
K(v)2 dv

)−1

(
1 + α11(u)2 − 2α11(u)α22(u)

)(
σ11σ22 − σ2

12

)2CGC(u; θ̂T )
d−→ χ2

1, (3.15)

since

H(u)22 =
1

2π

∫ π

−π

∂2

∂a212
FGC

(2→1)
θ (λ)

∣∣∣
θ=θ0(u)

dλ

=
2
(
1 + α11(u)

2 − 2α11(u)α22(u)
)(
σ11σ22 − σ2

12

)2(
1− α22(u)2

)
σ4
11

,

and

V(u)22 =
(
1− α22(u)

2
) ∫ 1

−1

K(v)2 dv.

3.3 Hypothesis testing for causality measures

We now address the hypothesis testing problem for the local measures GC(2→1). Suppose

that we want to test for local causality at a particular rescaled time u ∈ [0, 1]. Define

the local hypothesis H
(2→1)
0 to be

H
(2→1)
0 : GC(2→1)(u) = c. (3.16)

We consider two cases of the null hypothesis (3.16): (i) c = 0, and (ii) c > 0.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0317



3.3 Hypothesis testing for causality measures

Let us first consider the case (i) c = 0. For any fixed u ∈ [0, 1], with the shorthand

θ = θ(u), we have

GC(2→1)(u; θ) =
1

2π

∫ π

−π

ln
|fθ(λ)11|∣∣∣fθ(λ)11 − 2πgθ(λ)12

(
Σ̃θ,22

)−1

gθ(λ)21

∣∣∣ dλ,
and thus, GC(2→1)(u; θ) = 0 if and only if

|fθ(λ)11| =
∣∣∣fθ(λ)11 − 2πgθ(λ)12

(
Σ̃θ,22

)−1

gθ(λ)21

∣∣∣. (3.17)

Here, fθ(λ)11 and 2πgθ(λ)12

(
Σ̃θ,22

)−1

gθ(λ)21 are both Hermitian. Thus, the equality

(3.17) holds if

2πgθ(λ)12

(
Σ̃θ,22

)−1

gθ(λ)21 = Om×m.

It follows that gθ(λ)12 = Om×M , since
(
Σ̃θ,22

)−1

is positive definite. Since gθ(λ)12 =

Om×M , it is straightforward to see that

∂

∂θ
FGC

(2→1)
θ (λ) = 0,

which is the case we considered in Theorem 4.

Accordingly, for the local hypothesis H
(2→1)
0 : GC(2→1)(u) = 0, we take

S†(u) := 2T bT GC(2→1)(u; θ̂T )

as the test statistic. Then we have the following result.

Theorem 5. Suppose Assumptions 1, 2, 3 and 4 hold. Under the null hypothesis

H
(2→1)
0 : GC(2→1)(u) = 0, if b−1

T = o
(
T (lnT )−6

)
and bT = o(T−1/5), it holds that

S†(u)
d−→ N

(
0,V(u)

)⊤H(u)N
(
0,V(u)

)
.

where N
(
0,V(u)

)
is defined in Theorem 2.
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Remark 5. The matrix H(u) in (3.13) is unknown in general, but it is determinable

from the parameterization of fθ(λ). In practice, the matrix H(u) should be replaced

with its plug-in version

H(u; θ̂T ) :=
1

2π

∫ π

−π

∂2

∂θ∂θ⊤FGC
(2→1)
θ (λ)

∣∣∣
θ=θ̂T (u)

dλ

to construct an asymptotic (1−α) confidence interval for GC(2→1)(u). Instead, in some

situation, for instance, as a continuation of Example 1, if we take

S̃†(u) := T bT
σ̂4
11

(∫ 1

−1
K(v)2 dv

)−1

(
1 + α̂11(u)2 − 2α̂11(u)α̂22(u)

)(
σ̂11σ̂22 − σ̂2

12

)2CGC(2→1)(u; θ̂T )

as a sample version of the left hand side in (3.15), then the confidence interval is

[0, χ2
1,1−α], where χ

2
1,1−α denotes the (1−α) quantile of the chi-squared distribution with

1 degree of freedom. It is straightforward to see that the test by S̃†(u) is consistent. If

the null hypothesis is rejected, then the conclusion is that at level α there is sufficient

evidence to suggest that there exists local Granger causality from one series to another

at rescaled time u ∈ [0, 1].

We now move on to the second case (ii) c > 0. The Wald type test statistic S∗(u)

is

S∗(u) = TbT

(
GC(2→1)(u; θ̂T )− c

)
×
[(

∇GC(2→1)(u; θ̂T )
)
V(u)

(
∇GC(2→1)(u; θ̂T )

)⊤]−1 (
GC(2→1)(u; θ̂T )− c

)
. (3.18)

The following result is a direct consequence of Theorem 3.
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Theorem 6. Suppose Assumptions 1, 2, 3 and 4 hold. Under the null hypothesis

H
(2→1)
0 : GC(2→1)(u) = c > 0, if b−1

T = o
(
T (lnT )−6

)
and bT = o(T−1/5), we have

S∗(u)
d−→ χ2

d,

where χ2
d is a chi-squared distribution with the degrees of freedom d.

Remark 6. The covariance matrix V(u) in (3.18) is usually unknown, and thus, we have

to construct a consistent estimator V̂(u) instead. If the process {Xt,T} is non-Gaussian,

we have to take the estimation of the fourth-order spectral density of the process into

account. We refer to Taniguchi (1982) or Keenan (1987) for further details.

4. Data Analysis

In this section, we apply local Granger causality to two real datasets – EEG data and

financial data.

4.1 EEG data

We provide a brief description of the data. The EEG signals are sampled at the rate of

100 Hertz. The recordings are taken from channels the central channels (C3, C4, Cz),

parietal channels (P3, P4) and the temporal channels (T3, T4, T5) which correspond

roughly to the central, parietal and temporal brain cortical regions (See Figure 1).

The original dataset has 32680 time points for each channel (i.e., the period of the

observation is 326.8 seconds). This dataset was previously analyzed in Ombao et al.

(2005) and Schröder and Ombao (2019). However, none of these two papers addressed
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the very important issue of causality. This is the first paper that examined local Granger

causality features in this data.

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp2

F4F3

P3 P4

A1 A2

INION

NASION

Fp1
T3

P3

50 100 150

-200

-100

100

200

Data from Channels T3 and P3

Figure 1: EEG channels, adapted from Wikimedia Commons, public domain (left) and

the data from channels T3 and P3 (right).

Local Granger causality was estimated and tested at every rescaled time point

uk = 2.1k/326.8 and uk = 4.2k/326.8, due to the computational cost of the local

Whittle estimation. This is equivalent to estimating and testing every 2.1 and 4.2

seconds respectively. We refer to these partial data as one at regular intervals of 2.1

seconds and 4.2 seconds. As for the Whittle estimation, we locally fitted VARMA(1,

1) model to the data and took the bandwidth bT as bT = T−1/4, where T is the length

of theses partial data. In Figure 2, we show the logarithm of local Granger causality

between two specific channels P3 (left parietal) and T3 (left temporal). These two

channels are of primary interest because the patient suffered from left temporal lobe
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epilepsy - though the precise location is quite close to the parietal lobe. Thus the seizure

focus is the left temporal lobe and any abnormalities in the EEG are captured in the

T3 and P3 channels. The 95% confidence intervals are shown below: the dashed one is

computed from the data at regular intervals of 4.2 seconds; the dotted one is computed

from the data at regular intervals of 2.1 seconds.

The partial data at regular intervals of 2.1 seconds and 4.2 seconds share a very

similar move of the logarithm of local Granger causality and the 95% confidence inter-

vals are also very similar. In general, the higher temporal resolution the sampling is,

theoretically more accurate the estimates are. In our simulation results, the estimates

from the data at regular intervals of 2.1 seconds are as good as that of 4.2 seconds.

The analysis suggests that T3 does not cause P3 in the Granger sense, but P3 causes

T3 in the Granger sense at latest after the rescaled time u = 0.15. This is a quite

interesting finding because previous analyses have focused on the T3 channel because

of the distinctly large amplitudes immediately post-seizure onset. However, the novel

finding here is that the direction of Granger causality actually flows from P3 to T3.

This suggests that, despite the relatively lower amplitude changes in P3, it still explains

the future large amplitude fluctuations in T3.

Next, we further investigate the local causalities between the central channels C3,

Cz and C4 at regular intervals of 4.2 seconds. Figure 3 represents the numerical results

of the causality from the column to the row. For example, the middle plot in the

first row shows the causality from the channel C3 to Cz. Still, the 95% confidence
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intervals are below the dashed lines without markers and the logarithms of local Granger

causalities are shown by the dashed lines with triangle markers. From Figure 3, the

conclusion is that channel the left central channel C3 does not cause central channel Cz.

Moreover, the right central channel C4 does not cause channels C3 and Cz - in the local

Granger sense. In other cases, local Granger causality changes across the evolution

of the epileptic seizure which confirms the dynamic activity of the brain. This is a

new finding since all previous analyses were limited to modeling dependence using only

coherence which accounts for contemporaneous dependence; that is, there was no phase

or lead-lag analysis. Moreover, this novel finding is quite interesting because a change

in the causality structure was captured even before the onset of the epileptic seizure,

which was approximately at u = 0.5.
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Figure 2: The logarithm of local Granger causality (LLGC) from the channel T3 to P3

(left) and that from the channel P3 to T3 (right) during the rescaled time u ∈ [0, 1]. The

LLGC for data at regular intervals of 4.2 seconds is shown in dashed line with triangle

markers, and that for those of 2.1 seconds are shown in dotted line with circle markers.

The dashed line without markers shows the upper 95% confidence levels computed

from the data at regular intervals of 4.2 seconds, while the dotted line without markers

shows the upper 95% confidence levels computed from the data at regular intervals of

2.1 seconds.

Similarly, we studied the causalities between the temporal channels T3, T5, T4

at regular intervals of 4.2 seconds. The plots of the numerical results are shown in

Figure 4. Remember that the channels T3 and T4 are symmetrically located at both

the left and right temporal cortical regions, respectively. The plots suggest that T3

and T4 do not cause each other in the local Granger sense. Furthermore, the channel

T5, also on the left temporal cortical region, uniformly causes T3 in the data which

is another interesting novel finding. It is already known to the neurologist that the

patient has left temporal lobe epilepsy and that seizure events are generally initiated
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in the “left temporal” region (which is the area covered by the T3 and T5 channels).

Using the novel proposed concept of local Granger causality, the analysis produced a

highly specific result of brain functional connectivity, that is, the direction goes from

T5 to T3 and not the other way around. As an additional result, P3 and P4 do not

cause each other uniformly in the local Granger sense at 95% confidence level.
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Figure 3: Plots of the logarithms of local Granger causality from the channels C3, Cz,

C4 in the column to the channels C3, Cz, C4 in the row. The 95% confidence intervals

are below the dashed lines without markers; The dashed lines with triangle markers

show the logarithms of local Granger causalities.
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Figure 4: Plots of the logarithms of local Granger causality from the channels T3, T5,

T4 in the column to the channels T3, T5, T4 in the row. The 95% confidence intervals

are below the dashed lines without markers; The dashed lines with triangle markers

show the logarithms of local Granger causalities.

4.2 Stock market data

The dataset is the weekly log-returns of the closing stock prices of two financial groups

(Mitsubishi and Mizuho) in the Nikkei index. For brevity, two financial groups are

denoted by A and B here. The weekly data are from 2006 January 1st to 2010 December

26th, so the length of the data is T = 260. In this data analysis, we fitted VARMA(2,
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0) model locally to the data. Similar to the bandwidth choice in EEG data analysis,

we also used the bandwidth bT as bT = T−1/4 for these stock market data.

In our data analysis, we compute local Granger causality GCA→B(u) and GCB→A(u)

for rescaled time u ∈ {1/T, . . . , 1}. In general, Granger causality is not symmetric (e.g.,

the analysis of EEG data) and we regard

{(
GCA→B(u),GCB→A(u)

)
∈ R2

}
u= 1

T
,...,1

(4.1)

as a point cloud in R2. We separate local Granger causality in (4.1) into two parts: (1)

from 2006 January 1st to 2008 June 29th; (2) from 2008 July 6th to 2010 December

26th. The part (1) and part (2) have the same length, i.e., the length of each part is

130.

We apply computational topology tools, persistence diagram, persistence barcode,

persistence landscape, to capture the feature of these data points of local Granger causal-

ity (See, e.g. Fasy et al. (2014), for the details of the persistence diagram and persistence

barcode). The plots of the persistence diagram and the persistence barcode are shown

in Figure 5. The permutation test is applied to the point clouds (1) and (2) to test for

equal topologies of the point clouds (1) and (2). In other words, the null hypothesis is

no statistical difference between the persistence landscapes of local Granger causality.

The result is statistically significant at the significance level of 0.01. It is known that

there is a financial crisis between 2007 and 2008. Through the analysis of local Granger

causality, we detected the structural change of the causality between these two financial

data.
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Figure 5: (Above) the persistence diagram of local Granger causality (left); and the

persistence barcode of local Granger causality (right) during the period (1). (Below)

the persistence diagram of local Granger causality (left); and the persistence barcode

of local Granger causality (right) during the period (2).

5. Conclusion

The primary contribution of this paper is statistical inference for local Granger causality

for multivariate time series under the framework of multivariate locally stationary pro-

cesses. Our proposed concept of local Granger causality is a generalization of Geweke’s

measure and Hosoya’s measure - both of which were developed only for stationary pro-
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cesses. Our proposed generalization is well characterized in the frequency domain and

has the advantage of being able to capture time-evolving causality relationships. We

developed a procedure for hypothesis testing for the existence of the local Granger

causality from a parametric point of view. We demonstrate, through the analysis of

real data, the efficiency and efficacy of this procedure to find the time-evolving aspects

of the local Granger causality, which could be overlooked by the existing method for

causality analysis. Our current approach to data analysis involves hypothesis test-

ing on a coordinate-by-coordinate basis, presenting challenges associated with multiple

testings. However, it is important to highlight that we proposed the Granger causality

under a local time frame u. Testing at u implies causality within the local time frame,

reflecting the characteristics of locally stationary processes. This makes the testing

meaningful and significant.

In summary, we proposed a consistent method to detect the time change of the

local Granger causality. While our proposed method is nonparametric, we note that a

procedure for stationary processes was developed in Taniguchi et al. (1996). This could

serve as an inspiration for constructing a nonparametric method for locally stationary

processes to test for the local Granger causality, and compare the performance of both

approaches. For multiple time series, to investigate the time change of the local Granger

causality also suffers from the curse of dimensionality. There are many remaining chal-

lenges including dimension reduction in terms of causality between each component of

multiple time series. In addition to the Lasso method in Tibshirani (1996), most penal-
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ized estimation procedures could be added to our parametric approach to shrink some

minor causality between components. A frequency-specific local causality approach will

also be elucidated in our future work.

Supplementary Materials

The online supplementary materials provide some technical parts of the paper due to

the space limit.
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