
Statistica Sinica Preprint No: SS-2023-0312 
Title Bayesian Inference of Spatially Varying Correlations via 

the Thresholded Correlation Gaussian Process 
Manuscript ID SS-2023-0312 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202023.0312 

Complete List of Authors Moyan Li,  
Lexin Li and 
Jian Kang 

Corresponding Authors Jian Kang 
E-mails jiankang@umich.edu 



Statistica Sinica Page 1

Bayesian Inference of Spatially Varying Correlations

via the Thresholded Correlation Gaussian Process

Moyan Li1, Lexin Li2 and Jian Kang1

1University of Michigan, Ann Arbor and 2University of California, Berkeley

Abstract: A central question in multimodal neuroimaging analysis is to understand the association be-

tween two imaging modalities and to identify brain regions where such an association is statistically sig-

nificant. In this article, we propose a Bayesian nonparametric spatially varying correlation model to make

inference of such regions. We build our model based on the thresholded correlation Gaussian process

(TCGP). It ensures piecewise smoothness, sparsity, and jump discontinuity of spatially varying correla-

tions, and is well applicable even when the number of subjects is limited or the signal-to-noise ratio is low.

We study the identifiability of our model, establish the large support property, and derive the posterior

consistency and selection consistency. We also develop a highly efficient Gibbs sampler and its variant

to compute the posterior distribution. We illustrate the method with both simulations and an analysis of

functional magnetic resonance imaging data from the Human Connectome Project.

Key words and phrases: Bayesian modeling; Gaussian process; Multimodal correlation analysis; Neu-

roimaging analysis.
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1. Introduction

Multimodal neuroimaging is now prevailing in neuroscience research, where different types

of brain images are collected for a common set of subjects. Common imaging modalities

include anatomic magnetic resonance imaging (MRI), resting-state or task-based functional

MRI (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), among

many others. Multimodal neuroimaging analysis aggregates such diverse but often com-

plementary information, consolidates knowledge across different modalities, and produces

improved understanding of neurological disorders. See Uludağ and Roebroeck (2014) and

Zhu et al. (2023) for some excellent reviews on multimodal neuroimaging analysis.

A central question in multimodal neuroimaging analysis is to understand the association

between two imaging modalities and to identify brain regions where such an association is

statistically significant. This question is of great scientific interest. For instance, Zhu et al.

(2014) surveyed and showed joint analysis of fMRI and DTI reveals important interplays

between brain functions and structures. Cavaliere et al. (2018) showed fMRI and PET to-

gether improve the characterization of patients with consciousness disorder. Li et al. (2019)

jointly analyzed two PET modalities with different nuclear tracers, and identified brain re-

gions where the tau protein and glucose metabolism are strongly correlated to facilitate the

understanding of Alzheimer’s disease pathology. Harrewijn et al. (2020) studied resting-

state and task-based fMRI, and found that functional connectivities during the rest and the

dot-probe task are positively correlated, which conforms to and further extends the current
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studies of human cognitive behaviors.

In this article, we propose a Bayesian nonparametric spatially varying correlation model

to address the question of estimation and inference of spatial regions where two imaging

modalities are significantly correlated. We build our model based on the thresholded cor-

relation Gaussian process (TCGP), which ensures piecewise smoothness, sparsity, as well

as jump discontinuity of spatially varying correlations, and works well even when the num-

ber of subjects is limited or the signal-to-noise ratio is small. We study the identifiability

of our model, establish the large support property, and derive the posterior consistency and

selection consistency. We derive the full conditional distributions, propose a Gibbs sam-

pling algorithm that is highly efficient, and propose a hybrid mini-batch MCMC to further

improve the computational efficiency. We apply our proposed method to jointly analyze

the resting-state and working memory task-based fMRIs from a study of the Human Con-

nectome Project, and identify a number of scientifically meaningful brain regions that offer

useful insights for cognitive neuroscience research.

Our proposal is related to but also substantially different from the existing literature on

multimodal correlation analysis and Bayesian inference.

For multimodal correlation analysis, there are, broadly speaking, three categories of so-

lutions. The first category is voxel-wise analysis, which estimates the correlation at each

voxel separately, then conducts massive voxel-wise significance tests with false discovery

control. This approach is computationally easy to implement, but it does not incorporate
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any spatial or scientific knowledge into statistical inference. Besides, the number of vox-

els, and thus the number of tests, is huge, whereas the number of subjects in most studies

is limited. As a result, voxel-wise analysis often suffers from a particularly low detection

power. Although the random field theory has been suggested for multiple testing correction

so to improve voxel-wise analysis (Worsley et al., 2004), it does not fully address the low

power issue, and is also not directly applicable in our problem due to the complex structure

of spatially varying correlations. The second category is region-wise analysis, which first

summarizes, usually by averaging, the imaging signals within each brain region defined by

some pre-specified brain atlas, then carries the correlation analysis at the region level. Al-

though region-wise analysis generally enjoys a better power than voxel-wise analysis, it is

sensitive to the choice of brain atlas. More importantly, the voxels within the same region

may not always share the same correlation patterns. Averaging the signals by regions may

weaken or cancel out significant correlations. The third category merges voxel-wise and

region-wise analysis. In particular, Li et al. (2019) adapted the spatially varying coefficient

model, which is widely used in neuroimaging analysis but generally for a different purpose

(e.g., Zhu et al., 2014; Li et al., 2017, 2021), to the problem of multimodal correlation anal-

ysis. They proposed a multi-step procedure, which first fits a spatially varying coefficient

model and obtains a smoothed correlation estimate at the voxel level, then applies a graph

clustering algorithm to partition the brain into regions with homogeneous correlations, and

finally carries out a likelihood ratio test at the region level to identify the regions where two
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imaging modalities are significantly correlated. However, this procedure involves multiple

tuning parameters, and the testing results may be sensitive to their choices. In addition, due

to multiple steps of estimation, it is difficult to establish the theoretical guarantees for the

final inference method.

For Bayesian modeling and inference, our proposal also makes a number of useful con-

tributions. First of all, we propose a new Bayesian nonparametric prior, i.e, the thresholded

correlation Gaussian process, for spatially varying correlation coefficients that are sparse

and piecewise smooth over the space. It is constructed under a Bayesian hierarchical model,

by thresholding a Gaussian process of the variances for another two correlated Gaussian

processes. Our model targets the second-order correlations between two modalities. Relat-

edly, Bhattacharya and Dunson (2011) proposed a multiplicative Gamma process shrinkage

prior with latent factors to model high-dimensional covariance matrices. Nevertheless, their

method places the sparsity on the individual latent factors, whereas we need to impose the

sparsity at the voxel level, and the sparsity on the latent factors does not lead to the sparsity

on the voxels. In addition, our model hinges on the idea of thresholding a Gaussian process.

A similar strategy has been adopted in prior constructions for modeling sparse regressions

or spatially varying functions, i.e., either thresholding Gaussian random variables (Naka-

jima and West, 2013; Ni et al., 2019; Cai et al., 2020), or thresholding Gaussian processes

(Kang et al., 2018; Wu et al., 2024). However, none of those priors are readily applicable

for Bayesian analysis of spatially varying correlations as in our setting. Recently, there are
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several literature focuses on Bayesian brain connectivity analysis. For instance, Chen et al.

(2016) introduced a novel Bayesian hierarchical model designed to infer brain connectivity.

This model unifies voxel-level and region-level connectivity by acknowledging the distribu-

tion of voxel connectivity between regions. Lukemire et al. (2021) developed an integrative

Bayesian approach for jointly modeling multiple brain networks, which provides a system-

atic inferential framework for network comparisons. However, our proposal addresses a

completely different problem, which aims to infer spatially varying correlations between

two image modalities.

Second, we contribute to posterior computations for Bayesian models with threshold-

ing type priors. Most existing solutions resort to gradient based MCMC algorithms (Roberts

and Rosenthal, 1998; Girolami and Calderhead, 2011), where a smooth approximation of the

thresholding function is required to get the analytically tractable first derivative (Cai et al.,

2020; Wu et al., 2024). There have also been recent advances in developing new sampling

algorithms (e.g., Ahn et al., 2012; Chen et al., 2014; Nishimura et al., 2020). However, these

algorithms usually converge relatively slowly, and require multiple tuning parameters. By

contrast, instead of using a gradient-based MCMC, we derive the full conditional distribu-

tions, and propose a Gibbs sampler algorithm that is highly efficient. Besides, the proposed

posterior computation algorithm is general, and can be applied to other Bayesian models

with thresholding priors as well.

Finally, we are among the first to study the theoretical properties of Bayesian analysis
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of spatially varying correlations. Particularly, we show that the proposed TCGP has a large

prior support on a wide class of sparse, piecewise smooth, and spatially varying correlation

functions. We establish the posterior consistency based upon the foundational work of Choi

(2005); Ghosal and Roy (2006); Tokdar and Ghosh (2007). However, it is far from a simple

extension, as it involves a two-level Bayesian hierarchical model, multiple Gaussian pro-

cesses, as well as some thresholding functions. To address these challenges, we propose an

equivalent model representation for the transformed data, where the spatially varying corre-

lation coefficients become model parameters that specify the mean of the transformed data.

This equivalent formulation substantially simplifies the theoretical analysis in the original

model. In light of the sparsity, we further establish the selection consistency of activation

regions with nonzero correlation coefficients.

The rest of the article is organized as follows. We develop our spatially varying corre-

lation model in Section 2. We derive the theoretical properties in Section 3, and the Gibbs

sampling algorithm in Section 4. We carry out the simulations in Section 5, and analyze the

fMRI data in Section 6. We relegate all technical proofs to the Supplementary Material.

2. Spatially Varying Correlation Model

In this section, we first propose our Bayesian spatially varying correlation model and the

correlation Gaussian process. We then present an equivalent model formulation.
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2.1 Nonparametric model and correlation Gaussian process

Suppose the observed data consist of n subjects, each with two imaging modalities. Suppose

these two imaging modalities are well aligned in a d-dimensional compact spatial space

B ⊂ Rd, which is generally true for multimodal neuroimaging. Suppose each image consists

of measurements at m voxel locations Bm = {v1, . . . , vm} ⊆ B, and we often use v, v′ ∈ B

to denote some generic voxel locations in B. Let Y1,i(v) and Y2,i(v) denote the two imaging

measures at location v, for subject i = 1, . . . , n. We consider the following model:

Yk,i(v) = µk,i(v) + εk,i(v), εk,i(v) ∼ N
(
0, τ 2k (v)

)
, for k = 1, 2, (2.1)

where µk,i(v) are the spatially varying functions that represent the expected values of Yk,i(v),

εk,i(v) are the random noises that are mutually independent over k, i, v, and follow a normal

distribution N(·, ·) with mean zero and variance τ 2k (v), k = 1, 2.

We next propose a novel prior model for µ1,i(v) and µ2,i(v):

µ1,i(v) = η+,i(v) + η−,i(v), µ2,i(v) = η+,i(v)− η−,i(v), for i = 1, . . . , n,

η+,i ∼ GP(0, κ+), η−,i ∼ GP(0, κ−),

(2.2)

where η+,i and η−,i are two independent Gaussian processes given κ+ and κ−, and η+,i and

η−,i capture the positive and negative correlations between the two modalities, respectively.

We further assume that κ+ and κ− are of the form,

Statistica Sinica: Preprint 
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κ+(v, v
′) = σ+(v)σ+(v

′)κ(v, v′), κ−(v, v
′) = σ−(v)σ−(v

′)κ(v, v′), (2.3)

where σ2
+(v) and σ2

−(v) are the spatially varying variance functions for η+,i(v) and η−,i(v),

respectively, and κ(·, ·) is a stationary correlation kernel function. There are various choices

for the kernel κ(·, ·); for instance, we employ a Matérn kernel in our implementation,

κ(v, v′) =
21−γ1

Γ(γ1)

{
√
(2γ1)

∥v − v′∥
γ2

}γ1

Bγ1

{
√
(2γ1)

∥v − v′∥
γ2

}
, (2.4)

where Γ(·) is the gamma function,Bγ1(·) is the modified Bessel function of the second kind,

and γ1 and γ2 are two positive hyperparameters that can be determined by the Bayes factor.

To impose the sparsity as well as to ensure the identifiability, we require that σ2
+(v)σ

2
−(v) =

0. In other words, only one of the two terms σ2
+(v) and σ2

−(v) is nonzero.

Finally, we impose that the variance functions are of the form,

σ+(v) = Gω{ξ(v)}, σ−(v) = Gω{−ξ(v)}, ξ(v) ∼ GP(0, κ), (2.5)

where Gω(x) = xI(x > ω) is a thresholding function with the thresholding parameter

ω ≥ 0 and I(·) the indicator function, ξ(v) is a spatially varying function that determines

both σ+(v) and σ−(v) through Gω(x)(·). As a prior specification, we assume ξ(v) follows

another Gaussian process with mean zero and correlation kernel κ(·, ·), and κ(·, ·) is the

same as that in (2.3). Note that the construction in (2.5) ensures σ2
+(v) and σ2

−(v) are

uniquely determined by ξ(v), and σ2
+(v)σ

2
−(v) = 0.
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Following the prior specifications (2.2) to (2.5), and integrating out µ1,i(v) and µ2,i(v)

in (2.1), we obtain the spatially varying correlation function between Y1,i(v) and Y2,i(v) as,

ρ(v) = Corr
{
Y1,i(v), Y2,i(v)

∣∣ ξ(v), τ 21 (v), τ 22 (v)}
=

G2
ω{ξ(v)} −G2

ω{−ξ(v)}
[G2

ω{ξ(v)}+G2
ω{−ξ(v)}+ τ 21 (v)]

1/2
[G2

ω{ξ(v)}+G2
ω{−ξ(v)}+ τ 22 (v)]

1/2
.

(2.6)

We say that ρ(v) in (2.6) follows a thresholded correlation Gaussian Process, as formally

defined below.

Definition 1 Given any nonzero spatially varying variance functions τ 21 (v) and τ 22 (v), and

the thresholding parameter ω ≥ 0, suppose ξ(v) ∼ GP(0, κ), then ρ(v) in (2.6) follows a

thresholded correlation Gaussian process, denoted as ρ ∼ TCGP(ω, κ, τ 21 , τ
2
2 ).

Under this construction, with probability one, a correlation Gaussian process is between -1

and 1, and enjoys both piecewise smoothness and sparsity.

We make a few remarks regarding our model setup.

First, our proposed model encompasses a large class of spatially varying functions that

are piecewise smooth, sparse, and jump discontinuous, the features that we commonly en-

counter in neuroimaging data (Zhu et al., 2014). Moreover, instead of specifying a voxel-

wise prior, our TCGP incorporates the spatial information of the image, leading to poten-

tially more accurate detection. We note that, our choice to model spatial correlation as a

piecewise smoothness function is rooted in the observation that spatially contiguous voxels

often exhibit similar correlation patterns (Li et al., 2019). Due to the anatomical and func-
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tional connections between different brain regions, neighboring regions often show similar

patterns of structural or functional organizations. Consequently, the correlation between two

modalities tends to vary smoothly within these contiguous regions, resulting in piecewise

smoothness in the correlation image. In addition, the correlation image derived from brain

images of two modalities may also display jump discontinuities, attributed to abrupt changes

or transitions in the underlying relations between the two modalities. Jump discontinuities

frequently manifest at boundaries between different brain regions or tissue types. For in-

stance, abrupt shifts in correlation values may occur at boundaries between grey matter and

white matter, or between cortical and subcortical structures. These boundaries signify dis-

tinct anatomical or functional transitions, leading to discontinuities in the correlation image.

Second, our prior model focuses on the correlation between the two image modalities,

and does not directly specify the correlation between the two modalities at two different

voxels, mainly because it is not our primary target of interest. Nevertheless, our prior speci-

fications implicitly take into account the cross-voxel correlations through Gaussian process.

Third, the introduction of ξ(v) ensures that at least one of σ2
+(v) and σ2

−(v) equals 0. If

σ2
+(v) = 0 and σ2

−(v) ̸= 0, then η+(v) = 0 and η−(v) ̸= 0, indicating a negative correlation

between the two imaging modalities at this voxel. Conversely, if σ2
+(v) ̸= 0 and σ2

−(v) = 0,

then a positive correlation exists. Furthermore, if −ω ≤ ξ(v) ≤ ω, σ2
+(v) = σ2

−(v) = 0.

In this case, η+(v) = η−(v) = 0, which imposes sparsity and indicates that there is no

significant correlation between these two imaging modalities at this specific location. On

Statistica Sinica: Preprint 
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the other hand, if ξ(v) were not introduced, the spatial correlation is given by:

ρ(v) =
σ2
+(v)− σ2

−(v)

{σ2
+(v) + σ2

−(v) + τ 21 (v)}
1/2 {σ2

+(v) + σ2
−(v) + τ 22 (v)}

1/2
.

In the instances where ρ(v) = 0, it is possible for σ2
+(v) = σ2

−(v) to take very large values,

suggesting that two sets of σ2
+(v) and σ2

−(v) could yield the same distribution of Y1i and Y2i.

This unidentifiability of σ2
+(v) and σ2

−(v) poses serious challenges for subsequent MCMC

convergence. At some locations, σ2
+(v) and σ2

−(v) may escalate significantly while ρ(v)

remains zero. Therefore, it is crucial to introduce ξ(v) to ensure the identifiability.

2.2 Equivalent model representation

To facilitate both theoretical investigation and posterior computation, we next derive an

equivalent representations of model (2.1) under the prior specifications (2.2) to (2.5).

We first note that, from (2.5) and (2.6), σ+(v) and σ−(v) can be uniquely determined by

ρ(v), in that, given τ 21 (v) and τ 22 (v),

σ+(v) = Gω{ξ(v)} = s
{
ρ(v); τ 21 (v), τ

2
2 (v)

}
,

σ−(v) = Gω{−ξ(v)} = s
{
−ρ(v); τ 21 (v), τ 22 (v)

}
,

(2.7)

where

s(x; t1, t2) =

[
2t1t2

{(t1 − t2)2 + 4x−2t1t2}1/2 − (t1 + t2)

]1/2

I(x > 0),

Statistica Sinica: Preprint 
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for any x ∈ [−1, 1], t1, t2 > 0. We next consider a transformation of the observed images

{Y1,i(v), Y2,i(v)}, the average Y+,i(v) = {Y1,i(v) + Y2,i(v)}/2, and the contrast Y−,i(v) =

{Y1,i(v)− Y2,i(v)}/2. Denote

E+,i(v) =
η+,i(v)

σ+(v)
, E−,i(v) =

η−,i(v)

σ−(v)
. (2.8)

By (2.7), model (2.1) is equivalent to

Y+,i(v) = s
{
ρ(v); τ 21 (v), τ

2
2 (v)

}
E+,i(v) + ε+,i(v),

Y−,i(v) = s
{
−ρ(v); τ 21 (v), τ 22 (v)

}
E−,i(v) + ε−,i(v),

(2.9)

where ε+,i(v) and ε−,i(v) are random noises that are independent over i, v, and follow a

normal distribution with mean zero and variance {τ 21 (v)+τ 22 (v)}/4. The covariance between

ε+,i(v) and ε−,i(v) is {τ 21 (v)− τ 22 (v)}/{τ 21 (v) + τ 22 (v)}.

Following the prior specifications (2.2) to (2.5), we have the equivalent prior specifica-

tions for E+,i(v), E−,i(v), and ρ(v) as,

E+,i ∼ GP(0, κ), E−,i ∼ GP(0, κ), ρ | τ 21 , τ 22 ∼ TCGP(ω, κ, τ 21 , τ
2
2 ), (2.10)

where κ(·, ·) is the correlation kernel as specified in (2.3) and (2.5), and in our modeling

process, we use the Matérn kernel as specified in (2.4) for κ(·, ·). Figure 1 gives a graphical

illustration of our nonparametric Bayesian spatially varying correlation model. In our sub-
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Figure 1: Graphical illustration of the proposed Bayesian spatially varying correlation
model. The transformed image Y±,i(v) are modeled based on (2.9).

sequent theoretical and numerical analysis, we focus on the equivalent transformed model.

Before the proposed correlation analysis, we normalize {Yk,i(v)}ni=1 across all the sub-

ject for each voxel, thus these two imaging modalities are in the same scale and variation.

This ensures the validity of our analysis. In addition, we spatially align the two imaging

modalities. The general idea is to map the two images into some common representation

space. There are multiple ways to achieve such an alignment, including image registration

(Chen et al., 2021; Gholipour et al., 2007), feature-based alignment (Toews et al., 2013;

Calhoun and Adali, 2008; Zhu et al., 2014), and machine learning-based alignment (Wang

et al., 2021; Liu et al., 2014). In Section 6, as a specific example, we give more details on

how we align resting-state and task fMRI images.

Statistica Sinica: Preprint 
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3. Theory

In this section, we study the model identifiability, derive the large support property, and

establish the posterior and selection consistency.

3.1 Notations and definitions

We begin with some notations and definitions. For any vector v = (v1, . . . , vd)
T ∈ Rd, let

∥v∥p =
(∑d

l=1 |vl|
p
)1/p

denote the Lp-norm, p ≥ 1, and ∥v∥∞ = maxdl=1 |vl| the supre-

mum norm. For any real function f on the region B, let ∥f∥p =
{∫

B |f(v)|
p dv

}1/p de-

note the Lp-norm, p ≥ 1, and ∥f∥∞ = supv∈B |f(v)| be the supremum norm. Suppose

B is a compact convex set. Recall there are n subjects, and m spatial locations for each

image. Denote Y± = {Y T
±,1, . . . , Y

T
±,n}T, where Y±,i = {Y±,i(v1), . . . , Y±,i(vm)}T. Further-

more, denote our parameter of interest as θ(·) =
{
ρ(·), ET

+(·), ET
−(·)

}T, where E±(·) =

{E±,1(·), . . . , E±,n(·)}T, and the true parameter θ0(·) =
{
ρ0(·), ET

+,0(·), ET
−,0(·)

}T.

Definition 2 Define Cq(B) as a set of differentiable functions of order q defined on B, such

that a function f ∈ Cq(B) has the partial derivative,

Dbf(v) =
∂∥b∥1f

vb11 . . . vbdd
(v) =

∑
∥a∥1+∥b∥1≤q

Db+af(u)

a!
(v − u)a +Rq(v, u),

where b = (b1, . . . , bd)
T ∈ Zd+, a ∈ Zd+, Z+ denotes the set of non-negative integers, u ∈ Rd,

and the remainder Rq(v, u) satisfies the following properties: (i) Given any point v0 of B

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0312



Statistica Sinica Page 16

and any constant ϵ > 0, there is a constant δ > 0, such that if v and u are any two points

of B with ∥v − v0∥1 < δ and ∥u − v0∥1 < δ, then |Rq(v, u)| ≤ ∥v − u∥q−∥b∥1
1 ϵ; (ii) If

∥Dbf∥∞ ≤ C <∞ for some constant C, then |Rq(v, u)| ≤ (C∥v − u∥q+1
1 )/(q + 1)!.

Definition 3 Define Θρ =
{
ρ(v) ∈ (−1, 1) : v ∈ B

}
as a collection of spatially varying

correlation functions that satisfy the following properties: (i) There exist two disjoint non-

empty open sets R−1 and R1 with R1 ∩ R−1 = ∅, such that ρ(v) is smooth over R−1 ∪

R1, i.e., ρ(v)I
(
v ∈ R−1 ∪R1

)
∈ Cα

(
R−1 ∪R1

)
, with α = ⌈d/2⌉ + 1, the least integer

greater than or equal to d/2; (ii) ρ(v) = 0 for v ∈ R0, ρ(v) > 0 for v ∈ R1, and

ρ(v) < 0 for v ∈ R−1, where R0 = B − (R−1 ∪R1) and R0 − (∂R1 ∪ ∂R−1) ̸= ∅;

(iii) ρ(v) is a discontinuous function and is bounded away from zero for any v /∈ R0, i.e.,

γ = infv/∈R0 |ρ(v)| > 0.

Definition 4 Define ΘE = {E(v) ∈ Rn : ∥E(v)∥22 = Cv} for some constant Cv <∞.

In summary, Θρ is the collection of all piecewise smooth, sparse, and jump discontinu-

ous correlation functions ρ(v) defined on B, where γ in Definition 3 represents the minimum

nonzero effect size of the correlation functions that have discontinuity jumps, and ΘE is the

collection of the spatially varying functionsE(v) that satisfy the second moment constraints.

3.2 Model identifiability and large support

We first show that model (2.9) is identifiable, then show that the prior specification in (2.10)

has a large support. We begin with a regularity condition.

Statistica Sinica: Preprint 
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Assumption 1 The true correlation function ρ0 is piecewise smooth, sparse, and jump dis-

continuous, in that ρ0 ∈ Θρ. In addition, the true functions E+,0 and E−,0 have constant

second moments with respect to the location v, i.e., E+,0 ∈ ΘE and E−,0 ∈ ΘE .

Assumption 1 essentially specifies the class of true functions that we target. Denote V(ρ) =

{v : ρ(v) ̸= 0}, and V(ρ′) = {v : ρ′(v) ̸= 0}. The next proposition shows that model

(2.9) is identifiable. Specifically, ρ(v) is identifiable for all v ∈ B, and E+(v), E−(v) are

identifiable for v ∈ V(ρ) ∪ V(ρ′). The identifiability of E+(v) and E−(v) is constrained on

V(ρ) ∪ V(ρ′) because when ρ(v) = 0, s{ρ(v)} = 0 in model (2.9).

Proposition 1 (Identifiability) Suppose Assumption 1 holds. Then model (2.9) is identifi-

able. That is, if the probability distributions of {Y+, Y−} under θ =
{
ρ, ET

+, E
T
−
}T and

θ′ =
{
ρ′, E ′

+
T, E ′

−
T
}T are equal, then we have ρ = ρ′ for v ∈ Bm, and θ = θ′ for

v ∈ V(ρ) ∪ V(ρ′).

To ensure the large-support property, we introduce another condition on the correlation

kernel function κ(·, ·). The same condition was imposed in Ghosal and Roy (2006) as well.

Assumption 2 The correlation kernel κ(·, ·) satisfies that, for any v ∈ B, κ(v, ·) has con-

tinuous partial derivatives up to order 2α + 2, where α = ⌈d/2⌉ + 1. In addition, suppose

κ(v, v′) =
∏d

l=1 κl(vl − v′l; νl), for any v = (v1, . . . , vd)
T, and v′ = (v′1, . . . , v

′
d)

T ∈ [0, 1]d,

where κl(·; νl) is a continuous, nowhere zero, symmetric density function on R with param-

eter νl ∈ R+, for l = 1, . . . , d.
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The next theorem shows that our prior specification in (2.10) is desirable, in that it has

support over a large class of sparse, piecewise smooth and jump discontinuous spatially

varying correlation functions. That is, there is a positive probability that θ =
{
ρ, ET

+, E
T
−
}T

concentrates on an arbitrarily small neighborhood of any true parameter in the parameter

space Θ = Θρ ×ΘE ×ΘE .

Theorem 1 (Large Support) Suppose Assumptions 1 and 2 hold. Under the prior specifi-

cation in (2.10), for any ϵ > 0, pr
(
∥θ − θ0∥∞ < ϵ

)
> 0, where pr(·) denotes a probability

measure on the Borel set of Θ.

3.3 Posterior consistency

Next, we establish the posterior consistency, then the selection consistency.

Assumption 3 There exist constants d/(2α) < ν0 < 1, C0 > 0, C1 > 0, and N ≥ 1, with

α = ⌈d/2⌉+ 1, such that C0n
d ≤ m ≤ C1n

2αν0 for all n > N .

Assumption 3 imposes that the number of spatial locations m should be of the polynomial

order of the sample size n. The lower bound indicates that m needs to be sufficiently large

to ensure that the posterior distribution of the spatially varying coefficient function concen-

trates around the true value. The upper bound ensures that a sufficient amount of information

is collected across subjects to identify the population level true parameters.

The next theorem shows that, under the proposed prior, the posterior distribution of θ
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concentrates in an arbitrarily small neighborhood of the true parameter θ0, when the number

of subjects n and the number of spatial locations m are sufficiently large.

Theorem 2 (Posterior Consistency) Suppose Assumptions 1, 2 and 3 hold. Under model

(2.9) and the prior specification in (2.10), for any ϵ > 0, as m→ ∞ and n→ ∞,

pr
(
{θ ∈ Θ : ∥θ − θ0∥1 < ϵ}

∣∣Y+, Y−) → 1 in P(m,n)
θ0

-probability,

where P(m,n)
θ0

denotes the distribution of {Y+, Y−} given the true parameter θ0, and pr(· |

Y+, Y−) denotes the posterior probability measure on the Borel set of Θ given data {Y+, Y−}.

The next theorem shows that, with probability tending to one, we can identify the true

activation regions that have positive correlations, negative correlations, and no correlations,

respectively, when both n and m tend to infinity.

Theorem 3 Suppose the same conditions in Theorem 2 hold. Then, as m → ∞ and n →

∞,

pr
(
sgn{ρ(v)} = sgn{ρ0(v)}, v ∈ B

∣∣Y+, Y−) → 1 in P(m,n)
θ0

-probability,

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and sgn(0) = 0.
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4. Posterior Computation

In this section, we first adopt the Karhunen-Loève expansion to simplify the model to a

finite number of parameters. We next derive the full conditional distributions of the model

parameters, and develop an efficient Gibbs sampling algorithm. We also propose a hybrid

mini-batch MCMC to further improve the computational efficiency.

4.1 Karhunen-Loève approximation

Model (2.9) involves three Gaussian processes, for E+,i(v), E−,i(v), and ξ(v), respectively,

and all hinge on the infinite dimensional correlation kernel function κ(·, ·). We first adopt

the usual strategy of Karhunen-Loève expansion to simplify the model to a finite num-

ber of parameters. Specifically, consider the spectral decomposition of the kernel func-

tion, κ (v, v′) =
∑∞

l=1 λlψl(v)ψl (v
′), where {λl}∞l=1 are the eigenvalues in descending

order, and {ψl(v)}∞l=1 are the corresponding orthonormal eigenfunctions. By Mercer’s

Theorem (Mercer, 1909), we can represent the Gaussian processes in our model by the

Karhunen-Loève (KL) expansion, E+,i(v) =
∑∞

l=1 ei,l,+ψl(v), E−,i(v) =
∑∞

l=1 ei,l,−ψl(v)

and ξ(v) =
∑∞

l=1 clψl(v), where cl, ei,l,± are Karhunen-Loève coefficients. We further trun-

cate the above expansions by focusing on the leading L eigenvalues and eigenfunctions,

where L can be determined following the usual practice of principal components analysis

that retains a certain percentage of total variation. That is, we compute the variance percent-

age asR =
∑L

l=1 λl/
∑∞

l=1 λl, where λl is the lth largest eigenvalue of the covariance kernel,
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and we approximate the denominator
∑∞

l=1 λl by a summation of truncated series
∑L′

l=1 λl.

Following Wu et al. (2024), we choose the smallest L such that the variance percentage R

exceeds 60%, while we set L′ = 900. In our numerical analyses, we have found such a

choice achieves a good balance between computational cost and model fitting performance.

Based on the Karhunen-Loève truncation, model (2.1) becomes,

Y+,i(v) = Gω

{
L∑
l=1

clψl(v)

}{
L∑
l=1

ei,l,+ψl(v)

}
+ ε+,i(v),

Y−,i(v) = Gω

{
−

L∑
l=1

clψl(v)

}{
L∑
l=1

ei,l,−ψl(v)

}
+ ε−,i(v).

(4.1)

Recall that Bm = {v1, . . . , vm} denotes the set of locations where the imaging data are

observed, and let Y = {Y1,i(v), Y2,i(v), i = 1, . . . , n, v ∈ Bm} denote the imaging data

observed at the set of voxels in Bm. Then all the parameters in our model include:

Θ̃ =
{
{cl}Ll=1,

{
{ei,l,+}Ll=1, {ei,l,−}Ll=1

}n
i=1
, {τ 21 (v), τ 22 (v)}v∈Bm , ω

}
. (4.2)

We specify their prior distributions as,

cl ∼ N(0, λl), ei,l,± ∼ N(0, λl), τ 21 (v), τ
2
2 (v) ∼ IG(aτ , bτ ), ω ∼ U(aω, bω), (4.3)

That is, we impose a normal distribution for the Karhunen-Loève coefficients cl, ei,l,±, where

λl is the eigenvalue of the kernel κ(v, v′) as specified above. We impose an inverse Gamma
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prior for the variance terms τ 21 (v), τ
2
2 (v), with shape aτ and scale bτ , and we choose some

small values for aτ , bτ , so that this prior is non-informative. We also impose a uniform prior

for the thresholding parameter ω, with range from aω to bω, and we choose aω, bω based on

the quantiles of |ξ(v)|v∈Bm . It is also possible to consider other types of prior for ω, e.g.,

an exponential distribution. Note that the conditional prior for ω allows it to be adaptively

learnt in a fully Bayesian way in our Gibbs sampling. This is different from the gradient

based MCMC methods, which require a smooth approximation of the thresholding function.

4.2 Gibbs sampling

We first present a general result that is useful for deriving the full conditional distributions

of some of our key parameters. We note that this result is both new and general, and can

be applied to deriving the Gibbs sampler for other types of models involving thresholded

Gaussian processes.

Proposition 2 Consider a random variable θ, and two sets of functions fp(θ) = a1pθ
2 +

a2pθ + a3p, and hk(θ) = b1kθ
2 + b2kθ + b3k, where alp, blk are some coefficients, l = 1, 2, 3,

p = 1, . . . , P, k = 1, . . . , K. Suppose the density of θ is proportional to

exp

{
P∑
p=1

fp(θ)I(θ > Lp) +
K∑
k=1

hk(θ)I(θ < Uk)

}
, (4.4)

where Uk, Lp are some thresholding coefficients. Then,

(i) If at least one of {a1p, . . . , a1P , b1k, · · · , b1K} is not equal to 0, then θ follows a mixture
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of truncated normal distributions.

(ii) If a1p = b1k = a2p = b2k = 0 for all p, k, and at least one of {a3p, . . . , a3P ,

b3k, . . . , b3K} is not equal to 0, then θ follows a mixture of uniform distributions.

(iii) If a1p = b1k = 0 for all p, k, and at least one of {a2p, · · · , a2P , b2k, · · · , b2K} is not

equal to 0, then θ follows a mixture of exponential distributions.

We next derive the full conditional distributions of our model parameter Θ̃ in (4.2).

Specifically, we first derive the full conditionals of {cl}Ll=1 and ω, both of which are based on

Proposition 2. We then derive the full conditionals of {ei,l,±}L,nl=1,i=1 and {τ 21 (v), τ 22 (v)}v∈Bm ,

both of which have closed forms thanks to their conjugate priors. Let Θ̃\θ be the set of

parameters in Θ̃ but without θ.

The full conditional of cl is a mixture of truncated normal distributions, as we show in

the Supplementary Material, Section S3.2. This is because the density of cl is of the form,

π(cl | Y, Θ̃\cl) ∝ exp

 m∑
j=1

ψl(vj)>0

[
g+(cl; vj)I{cl > T+(vj)}+ g−(cl; vj)I{cl < T−(vj)}

]

+
m∑
j=1

ψl(vj)<0

[
g+(cl; vj)I{cl < T+(vj)}+ g−(cl; vj)I{cl > T−(vj)}

] .

Given the location vj , g±(cl; vj) are two quadratic functions of cl, and T±(vj) are two scalars,

whose detailed forms are given in the Supplementary Material, Section S3.2. If we set
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fp(θ) = g+(cl; vj), hk(θ) = g−(cl; vj) for those locations vj satisfying ψ1(vj) > 0, and set

fp(θ) = g−(cl; vj), hk(θ) = g+(cl; vj) otherwise, then the density of cl satisfies the condition

of Proposition 2(i), and thus it follows a mixture of truncated normal distributions.

The full conditional of ω is a mixture of uniform distributions, as we show in the Sup-

plementary Material, Section S3.3. This is because the density of ω is of the form,

ω | Y, Θ̃\ω ∼ exp

[∑m
j=1

aω<ξ(vj)<bω

C+(vj)I{ω < ξ(vj)}+
∑m

j=1
aω<−ξ(vj)<bω

C−(vj)I{ω < −ξ(vj)}
]
.

Given the location vj , ξ(vj) =
∑L

l=1 clψl(vj), C±(vj) are two scalars, whose detailed forms

are given in the Supplementary Material, Section S3.3. If we set hk(θ) = C+(vj) for those

vj satisfying aω < ξ(vj) < bω, and set hk(θ) = C−(vj) for those locations satisfying

aω < −ξ(vj) < bω, then the density of ω satisfies the condition of Proposition 2(ii), and thus

it follows a mixture of uniform distributions. We make two additional remarks. First, we

specify the prior of ω as U(aω, bω), where we choose aω, bω to have a non-informative prior.

In practice, we may adopt the empirical Bayes idea, by running the Gibbs sampling once

with a non-informative prior first, then using the quantile values of the sorted {|ξ(v)|}v∈Bm

to refine the range of the uniform distribution for ω. The refinement is fully included in the

posterior sampling procedure, where aω and bω are adaptively changed based on the value

of {|ξ(v)|}v∈B in each iteration. This can further improve the convergence behavior of the

algorithm. Second, if we specify the prior of ω as an exponential distribution, then we may

apply Proposition 2(iii) to obtain the full conditional of ω.
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We present the derivations of the full conditionals of ei,l,± and τ 2k (v) and summarize the

Gibbs sampling for the TCGP in Algorithm S1 in the Supplementary Material, Section S3.

4.3 Hybrid mini-batch MCMC

The proposed Gibbs sampler is computationally efficient in general. Meanwhile, the com-

plexity of computing the full conditional of cl is O(m2), where m is the total number of

voxels. When m is large, this step can be expensive. We next propose a hybrid mini-batch

MCMC, with two key components, to further improve the computational efficiency.

The first component is to develop an adaptive proposal function in Gibbs sampling. We

note that the Gibbs sampler can be viewed as a special case of Metropolis–Hastings, in

which the newly proposed state is always accepted with probability one, and the proposal

function in Metropolis–Hastings corresponds to the full conditional distribution in the Gibbs

sampler. There have been some recent progress developing scalable MCMC methods (Wu

et al., 2022). However, those algorithms mainly focus on how to more efficiently evaluate

the ratio of the likelihood function at each iteration, instead of focusing on the proposal

function. Moreover, their aims are not to perform Bayesian inference from the exact poste-

rior, but rather to exploit the tempered posterior with an efficient MCMC sampler to obtain

a better solution from the global optimization.

We propose an adaptive proposal function, by subsampling voxel locations, instead of

individual subjects. More specifically, let Bms ⊂ Bm denote a random subset of all the
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observed locations Bm, Yms the corresponding imaging data observed at those voxels in

Bms , andms = |Bms| the cardinality of Bms . Recognizing that the Gibbs sampler is a special

case of Metropolis–Hastings, the proposal function for the parameter θ ∈ Θ̃ is P{θ|Θ̃\θ, Y },

which is the full conditional distribution of θ. Instead of using the entire imaging data Y to

derive the full conditional distribution of θ, we propose to use a mini-batch of data Yms to

obtain the proposal function P{θ|Θ̃\θ, Yms}. The acceptance ratio of θ is,

ϕ(θ′, θ) = min

[
1,

Πv/∈Bms
P{Y (v)|θ′, Θ̃\θ}

Πv/∈Bms
P{Y (v)|θ, Θ̃\θ}

]
,

whose derivation is given in the Supplementary Material, Section S3.6. In this case, the

computational complexity of sampling cl is reduced from O(m2) to O(m2
s).

The second component is to consider a hybrid version of mini-batch. This is because,

when keeping using the mini-batch of voxels during the whole sampling process, the Markov

chain may converge to local modes, and may also converge slowly. To overcome these

issues, we propose to use the full dataset after, say, every T0 iterations of using the mini-

batch data.

We summarize the hybrid mini-batch MCMC procedure in Algorithm S5 in the Sup-

plementary Material, Section S3. In our implementation, we set ms = m/16 and T0 = 20,

which leads to a good empirical performance. We also carry out a sensitivity analysis in the

Supplementary Material, Section S4.3, and find that the result is not sensitive to ms and T0,

as long as they are in a reasonable range.
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5. Simulations

We consider a d = 3 example that mimics the Human Connectome Project data analyzed in

Section 6. More specifically, we obtain the posterior means of cl, ei,l,±, ω and τ 2k (v), k = 1, 2

from our Human Connectome Project data analysis, then generate Y+, Y− following model

(4.1). We simulate the noise εk,i from the normal distribution with mean zero and variance

ζkτ
2
k (v), k = 1, 2.

To apply the proposed method, we employ the Matérn kernel in (2.4) in our data anal-

ysis. We set the prior hyperparameters aτ = bτ = 0.001 to obtain a non-informative prior,

and choose aω and bω adaptively as the minimum and the maximum of |ξ(v)|v∈Bm
, respec-

tively, from each iteration. We run the Gibbs sampler for 1000 iterations, with the first 200

iterations as the burn-in. We also run the hybrid mini-batch MCMC for 1200 iterations,

with the first 400 iterations as the burn-in. We claim a voxel having a nonzero correlation by

simply thresholding the posterior inclusion probability at 0.5, an approach commonly used

in Bayesian analysis. We also compare with a number of alternative solutions, including

the voxel-wise analysis, the region-wise analysis, and the integrated analysis method of Li

et al. (2019) with two different thresholding values, 0.90 and 0.95, following the analysis in

Li et al. (2019). We evaluate the performance of each method by the sensitivity, specificity,

and false discovery rate.

We first set ζk = 1 which represents the same noise level as the Human Connectome

Project data and vary the sample size. We consider two cases where n = 500 and n = 900.
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The image resolution is 91× 109× 91 with m = 117, 293 voxels in the brain region. Table

1 reports the results averaged over 100 data replications, and Figure 1 visualizes the result

for one data replication when n = 900. The red, yellow and blue regions represent the

true positive, the false negative, and the false positive regions, respectively. We see that our

proposed method clearly outperforms the alternative solutions. In particular, the voxel-wise

analysis suffers from a low detection power, the region-wise analysis yields a high false

discovery rate, and the integrated method of Li et al. (2019) is sensitive to the thresholding

parameter. With the 90% threshold, the integrated method enjoys a better sensitivity and

specificity, but yields a larger false discovery rate, whereas with the 95% threshold, it can

well control the false discovery rate, is not as powerful. We also observe that the proposed

method TCGP performs the best across different values of n. Meanwhile, it maintains a

competitive performance even when n is relatively small. Besides, in Figure 1, we only

show the result for the positively correlated regions, as the result for the negative correlated

regions is very similar. Finally, we briefly remark on the computational time of the two

Gibbs samplers. On a laptop with 2 cores, 3.1GHz clock speed and 8GB memory, the

Gibbs sampler algorithm took about 150 minutes for one data replication, while the hybrid

algorithm took about 50 minutes, with the mean acceptance ratio around 0.3.

We then consider two noise levels, or equivalently the signal strengths, with ζk = 5

for a weak signal, and ζk = 0.5 for a strong signal when the sample size is set as n =

904 following the Human Connectome Project data. We also conduct 2D simulations to
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Table 1: Simulation results of the 3D image example with the varying sample size n. Reported are
the average sensitivity, specificity, and FDR, with standard error in the parenthesis, based on 100
data replications. Six methods are compared: the voxel-wise analysis, the region-wise analysis, the
integrated method of Li et al. (2019) with two thresholding values, 0.95 and 0.90, and the proposed
Bayesian method with the Gibbs sampler and the hybrid mini-batch MCMC.

Sample size Method
Positive Correlation Negative Correlation

Sensitivity Specificity FDR Sensitivity Specificity FDR

n=500 Voxel-wise 0.023 (0.001) 1.000 (0.000) 0.004 (0.001) 0.041 (0.005) 1.000 (0.000) 0.005 (0.002)
Region-wise 0.307 (0.003) 0.944 (0.002) 0.330 (0.010) 0.485 (0.003) 0.966 (0.003) 0.398 (0.010)
Integrated(0.95) 0.623 (0.005) 0.990 (0.005) 0.145 (0.005) 0.877 (0.004) 0.988 (0.004) 0.190 (0.009)
Integrated(0.90) 0.897 (0.010) 0.950 (0.005) 0.305 (0.008) 0.905 (0.004) 0.948 (0.005) 0.320 (0.010)
TCGP (Gibbs) 0.903 (0.005) 0.991 (0.001) 0.074 (0.007) 0.911 (0.002) 0.975 (0.003) 0.075 (0.003)
TCGP (Hybrid) 0.901 (0.002) 0.990 (0.002) 0.076 (0.006) 0.910 (0.004) 0.973 (0.002) 0.081 (0.002)

n=900 Voxel-wise 0.120 (0.005) 1.000 (0.001) 0.002 (0.001) 0.182 (0.001) 1.000 (0.000) 0.002 (0.001)
Region-wise 0.587 (0.003) 0.901 (0.002) 0.531 (0.010) 0.627 (0.006) 0.824 (0.005) 0.532 (0.003)
Integrated(0.95) 0.731 (0.005) 0.995 (0.001) 0.020 (0.004) 0.892 (0.005) 0.970 (0.000) 0.092 (0.002)
Integrated(0.90) 0.938 (0.010) 0.974 (0.003) 0.300 (0.005) 0.917 (0.008) 0.966 (0.002) 0.311 (0.003)
TCGP (Gibbs) 0.931 (0.002) 0.994 (0.001) 0.047 (0.003) 0.925 (0.001) 0.987 (0.001) 0.058 (0.002)
TCGP (Hybrid) 0.931 (0.003) 0.994 (0.001) 0.049 (0.003) 0.921 (0.003) 0.977 (0.001) 0.081 (0.002)

further illustrate the superiority of the proposed method. All the results are reported in the

Supplementary Material, Section S4.1.

6. Analysis of Human Connectome Project Data

In this section, we further illustrate our method with an fMRI dataset from the Human Con-

nectome Project. Our specific goal is to study the association between the resting-state fMRI

and the memory task-related fMRI, and identify brain regions where the resting-state and

task-related brain activities are strongly associated. This type of analysis is useful, as there

has been increasing interest in recent years to predict task-related brain activations from

resting-state fMRI (Tavor et al., 2016; Jones et al., 2017; Cohen et al., 2020). It also reveals

numerous brain regions and offers useful insights to understand brain activities during rest

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0312



Statistica Sinica Page 30
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(0.95)
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(Gibbs)
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Figure 2: Simulation results of the 3D image example for n = 900 with ζk = 1. The 2D slices
of positively correlated regions identified by the voxel-wise analysis, the region-wise analysis, the
integrated method of Li et al. (2019) with two thresholding values, 0.95 and 0.90, and the proposed
Bayesian method with the Gibbs sampler and the hybrid mini-batch MCMC. The red, yellow and
blue regions represent the true positive, the false negative, and the false positive regions, respectively.

and working memory tasks.

The dataset we analyze consists of n = 904 subjects with both resting-state and task

fMRI scans. We preprocess both types of images following the usual pipelines. The pre-

processing of resting-state fMRI includes correction for distortions and head motion, re-

moval of slowest temporal drifts and structured non-neuronal artifact (Smith et al., 2013),

whereas the preprocessing of task fMRI includes gradient unwarping, motion correction,
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distortion correction, and grand-mean intensity normalization (Barch et al., 2013). More-

over, we map both resting-state and task fMRI originally in 4D space onto some common

3D space. Specifically, for resting-state fMRI, we compute the fractional amplitude of low-

frequency fluctuations (fALFF) at each voxel (Zou et al., 2008), which quantifies the am-

plitude of the low frequency oscillations in fMRI signals to reflect the local brain activities

during the resting state. For task fMRI, we employ statistical parametric mapping (Penny

et al., 2011), by fitting a generalized linear model for the time series at each voxel on the

stimulus design matrix convoluted by the hemodynamic function, where the intensity values

at individual voxels are the estimated regression coefficients that represent the strength of

brain activation in response to the task. For both types of fMRI, the resulting images reside

in a 3D spatial space, whereas the temporal dimension has been collapsed. In addition, we

regress out potential confounding variables of age and sex using the image-on-scalar ap-

proach (Zhu et al., 2014). Finally, we register and align both images to the standard MNI

space (Mazziotta et al., 2001), and the resulting image dimensions for both resting-state and

task fMRI are 91× 109× 91, with m = 117, 293 voxels in the brain mask.

We apply the proposed methods to this data. We employ the Matérn kernel in (2.4) in

our data analysis. We choose the number of leading eigenvalues L as the smallest value

such that the variance percentage exceeds 60% and obtain L = 540. We set the prior

hyperparameters aτ = 0.001, bτ = 0.001, and choose aω and bω as the 75% quantile and

100% quantile of {|ξ(v)|}v∈B, respectively. The choice of aω is based on the belief that at
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Table 2: Results of Human Connectome Project data analysis. Reported are the activation
regions containing more than 100 voxels that are declared having a nonzero correlation.
AAL refers to the automatic anatomical labeling.

Regions with positive correlations

AAL Regions Cluster Size Activation Center Mean Std. PIP

Precentral-L 385 (45.4, 6.75, 42.95) 0.39 0.07 0.79
Frontal-Sup-R 141 (-25.6, 60.5, 19.2) 0.30 0.05 0.64
Frontal-Sup-R 329 (-26.4, 8.0, 65.2) 0.35 0.08 0.62
Frontal-Mid-L 643 (33.7, 32.9, 42.2) 0.35 0.04 0.59
Frontal-Inf-Tri-R 218 (-51.9, 28.0, 22.6) 0.21 0.06 0.64
Calcarine-R 200 (-13.8, -87.4, 3.64) 0.37 0.05 0.69
Cuneus-L 120 (-0.4, -87.4, 22.6) 0.33 0.04 0.65
Lingual-R 144 (-10.4, -75.3, -4.5) 0.35 0.05 0.62
Parietal-Sup-L 187 (20.0, -67.4, 53.7) 0.35 0.05 0.53
Parietal-Sup-L 108 (26.0, -52.8, 62.4) 0.40 0.06 0.58
Parietal-Sup-R 165 (-29.2, -20.9, 68.3) 0.30 0.08 0.76
Parietal-Inf-L 253 (47.2, -46.1, 49.7) 0.40 0.05 0.59
Angular-R 209 (-46.9, -60.2, 44.7) 0.43 0.03 0.70
Temporal-Sup-L 331 (54.3, -31.8, 18.0) 0.40 0.05 0.82
Temporal-Mid-L 104 (63.1, -25.7, 1.38) 0.41 0.07 0.56

Regions with negative correlations

AAL Regions Cluster Size Activation Center Mean Std. PIP

Precentral-L 115 (28.6, -23.1, 65.4) -0.44 0.03 0.90
Precentral-R 183 (-54.4, 8.0, 36.0) -0.40 0.08 0.59
Frontal-Mid-L 191 (28.2, 52.2, 12.7) -0.39 0.06 0.78
Rolandic-Oper-L 186 (-45.6, -14.5, 15.9) -0.36 0.14 0.58
Supp-Motor-Area-L 120 (1.1, -7.9, 66.1) -0.36 0.05 0.71
Supp-Motor-Area-R 143 (-6.9, -13.3, 69.5) -0.38 0.07 0.85
Calcarine-R 183 (-15.4, -68.8, 10.5) -0.32 0.06 0.65
Lingual-L 292 (10.5, -75.0, -5.5) -0.28 0.04 0.79
Lingual-R 286 (-21.2, -86.3, -9.0) -0.38 0.05 0.80
Occipital-Sup-L 111 (16.0, -89.8, 25.0) -0.40 0.06 0.80
Occipital-Sup-R 147 (-25.2, -89.9, 26.2) -0.37 0.04 0.77
Occipital-Inf-R 122 (-38.8, -81.7, -3.2) -0.44 0.05 0.56
SupraMarginal-L 191 (58.8, -25.7, 30.8) -0.37 0.04 0.83
SupraMarginal-R 121 (-58.2, -36.9, 28.3) -0.38 0.03 0.98
Paracentral-Lobule-R 147 (-5.7,-30.5, 70.4) -0.33 0.04 0.63
Temporal-Mid-L 109 (58.6, -36.3, 7.7) -0.43 0.05 0.55

most 25% voxels have non-zero correlations. We perform sensitivity analysis on the small

changes of prior specification for the threshold parameters in the Supplementary Material,

Section S4.4. We run the Gibbs sampler for 1000 iterations, with the first 200 iterations as

the burn-in. We also run the hybrid mini-batch MCMC for 1200 iterations, with the first 400

iterations as the burn-in. We again claim a voxel having a nonzero correlation by simply
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thresholding the posterior inclusion probability at 0.5.

Table 2 summarizes the estimated activation regions with strong positive or negative

correlations. Here we only report those regions containing more than 100 voxels that are

declared having a nonzero correlation. We also map those estimated regions to the auto-

matic anatomical labeling (AAL) brain atlas, and report where each estimated activation

region is located, the cluster size, the activation center coordinates, the mean and the stan-

dard deviation of the correlation in a specific cluster, and the posterior inclusion probability.

We make the following observations. We identify a region in angular gyrus that has the

highest positive mean correlation. This finding agrees with the literature, as intensive re-

search has shown that angular gyrus is involved in cognitive processes related to language,

number processing, spatial cognition, memory retrieval, and attention (Farrer et al., 2008;

Seghier, 2013). We also identify a region with strong positive correlations in middle tem-

poral gyrus and superior parietal gyrus. The former region is connected with numerous

cognitive processes including recognition of known faces, audio-visual emotional recog-

nition, and accessing word meaning while reading (Acheson and Hagoort, 2013), and the

latter is critically involved in information manipulation in working memory (Koenigs et al.,

2009). In addition, we identify two regions in lingual gyrus with strong negative correla-

tion, while lingual gyrus is believed to play an important role in visual memory and word

processing (Leshikar et al., 2012). Figure 3 shows the identified activation regions with

significant correlations.
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Supplementary Material

In the Supplement Material, we first present the proofs of all the theoretical results in the pa-

per, along with a number of useful lemmas. We next derive the full conditional distributions

of the model parameters, and present some additional numerical results.
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(a) Positive correlation map

(b) Negative correlation map

Figure 3: Results of Human Connectome Project data analysis. The sagittal slices of activa-
tion regions with significant correlations. Panel (a) shows the slices of positive correlation
map and the associated inclusion probability map. Panel (b) shows the slices of negative
correlation map and the associated posterior inclusion probability map.
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