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Abstract: Mixture-of-Experts (MoE) models are commonly used when there exist distinct

clusters with different relationships between the independent and dependent variables.

Fitting such models for large datasets, however, is computationally virtually impossible.

An attractive alternative is to use a subdata selected by “maximizing” the Fisher in-

formation matrix. A major challenge is that no closed-form expression for the Fisher

information matrix is available for such models. Focusing on clusterwise linear regression

models, a subclass of MoE models, we develop a framework that overcomes this challenge.

We prove that the proposed subdata selection approach is asymptotically optimal, i.e., no

other method is statistically more efficient than the proposed one when the full data size

is large.
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1. Introduction

Modern information technologies, such as cloud computing, internet of things, so-

cial networking, etc., are drivers for exponential growth of the size of datasets. Size

may now be measured by TB and even PB instead of MB and GB (Cai and Zhu,
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2015). While the extraordinary amount of data offers unprecedented opportunities

for scientific discoveries and advancement, it also poses unprecedented challenges

for analysis. These challenges are typically amplified by the complexity of the data

and the speed with which it must be analyzed. A critical question for the statistics

community is how to detect statistical relationships within high volumes of data

with a complicated structure and turn it into actionable knowledge (Bühlmann

et al., 2016).

With large datasets, relationships between input and output variables may no

longer be homogeneous. Linear models or generalized linear models, which are

effective when relationships are homogeneous, may be inadequate in the era of big

data. One strategy for dealing with heterogeneity is through Mixture-of-Experts

(MoE) models. The rationale for MoE models is to uncover hidden clusters within

the data, such that within each cluster relationships between input and output

variables can be adequately modeled by a single regression or classification model.

While any such regression or classification model may be inadequate for the en-

tire dataset, it may be just fine for a more homogeneous cluster. Flexibility and

interpretability of MoE models has resulted in their broad use in regression, classifi-

cation, and fusion applications in healthcare, finance, surveillance, and recognition

(Yuksel et al., 2012).

The flexibility that MoE models provide goes however hand in hand with a

high computational cost. The parameters of an MoE model are usually estimated

using an EM algorithm, which requires a considerable computing time for each
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iteration when the data size is large. In addition, since the EM algorithm usu-

ally converges to a local rather than global optimum (Balakrishnan et al., 2017;

Wu, 1983), different initial values of the parameters must be considered for better

estimation results. This makes this approach inefficient and daunting for large

datasets (Makkuva et al., 2019).

An attractive idea, which has received considerable attention for dealing with

massive data (full data), is selection and analysis of a much smaller subset of the

data (subdata). One possible strategy is to use a model-free sampling approach.

Some recent work includes, but is not limited to, Chang (2023) for developing a

subdata selection method for large-scale computer experiments based on expected

improvement optimization; Dai et al. (2023) for proposing adaptive subsampling

with the minimum energy criterion; and Chang (2024) for developing a stratified

sampling approach in a supervised learning framework. Model-based sampling ap-

proaches tend to perform much better when the model is, approximately, correctly

specified. They can however be poor if the model is incorrectly specified, which is

why model-free methods have gained in popularity. Nonetheless, with the flexibil-

ity of MoE models, we have found that our model-based approach based on these

models performs well on all datasets that we have studied.

Model-based sampling approaches can overcome the computational burden.

But they may reduce the information about the parameters contained in the orig-

inal full data. For example, Wang et al. (2019); Cheng et al. (2020) proved that

for linear and logistic regression models the information contained in the subdata
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selected by using popular random subsampling methods, including uniform ran-

dom sampling, is asymptotically limited by the subdata size when the full data

size becomes large.

The Information-Based Optimal Subdata Selection (IBOSS) method (Wang

et al., 2019), which selects subdata judiciously, is computationally efficient and

does not suffer from this limitation. For fitting a linear model, it is shown in Wang

et al. (2019) that, if each independent variable has a distribution in the domain of

attraction of the generalized extreme value distribution, the variances of the esti-

mators of the slope parameters based on analyzing subdata converge to zero when

the full data size grows even though the subdata size is fixed. Studying proper-

ties for information-based subdata selection under generalized linear and nonlinear

models is more challenging because there are no closed-form expressions for esti-

mators and information matrices depend on the unknown parameters. Cheng et al.

(2020) developed a two-stage IBOSS-based subdata selection algorithm for logistic

regression models and proved, for selected cases, that the information matrices

based on subdata of a fixed size increase with the full data size. Inspired by the

properties of orthogonal arrays, Wang et al. (2021) proposed an orthogonal sub-

sampling (OSS) approach for big data with a focus on linear regression models.

OSS is closely related to the IBOSS strategy since it attempts to minimize the av-

erage variance of the parameter estimators. For more related literature on subdata

selection, readers are referred to the recent review paper (Yu et al., 2023).

With the IBOSS strategy, the goal is to select subdata that maximizes a func-
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tion of the Fisher information matrix for the parameters of interest. This is even

more challenging for MoE models than for generalized linear and nonlinear mod-

els and requires novel ideas. The fact that there is no closed-form expression for

the information matrix under an MoE model prevents the use of optimal design

techniques for selecting efficient subdata, which is the strategy that was used for

linear and logistic regression models.

Focusing on the subclass of MoE models known as clusterwise linear regression

models, we address this problem by using a surrogate matrix rather than the

Fisher information matrix for guiding the subdata selection. We prove that the

surrogate matrix is asymptotically equivalent to the information matrix under some

mild conditions. We further prove that the statistical efficiency of the selection

algorithm based on the surrogate matrix is asymptotically optimal, i.e., there exists

no other method with better statistical efficiency in terms of convergence rate when

the full data size becomes large.

In what follows, Section 2 introduces clusterwise linear regression models, while

Section 3 presents the main results. Simulation studies and the analysis of real

data are presented in Sections 4 and 5, respectively. Brief conclusions and possible

future work are discussed in Section 6. All technical details are presented in the

Appendix.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0302



2. Mixture-of-Experts models and Clusterwise Linear Regression

Mixture-of-Experts models, which originated in the neural network literature (Ja-

cobs et al., 1991), are widely popular regression and classification models in ma-

chine learning due to their flexibility in modeling and appealing interpretation

(Masoudnia and Ebrahimpour, 2014). Rather than using a single model, MoE

models are based on multiple models (or experts), which are mixed and combined,

to provide great flexibility. MoE models assess how the data may be clustered

into G clusters so that separate regression or classification models can be used

in each cluster. In combination with many current regression and classification

algorithms, empirical evidence shows that MoE models are powerful tools to study

relationships among variables in a variety of settings, including healthcare, finance,

social science, etc. (Yuksel et al., 2012).

Formally, let (zTi , yi), i = 1, . . . , N , be independent, where zi = (zi1, . . . , zip)
T

is the covariate vector and yi is the response for the ith observation. We also use

xi = (1, zTi )
T . In a Mixture-of-Experts model, there are G gate functions and G

regression models (experts). While yi is modeled by xi through one of the experts,

it is unknown which expert is employed. A latent indicator vector can be used to

describe the connection. Let Ii = (Ii1, . . . , IiG), where

Iig =


1 if the gth expert is employed,

0 otherwise.

. (2.1)
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The likelihood of Iig = 1 is modeled by the gth gate function P (Iig = 1|zi). While

more complicated choices are possible, and sometimes advisable, a popular simple

choice is

P (Iig = 1|zi) = πg, g = 1, . . . , G, (2.2)

with
∑G

g=1 πg = 1.

If Iig = 1, then we can model the response yi by zi through the gth expert.

The choice of the experts depends on the nature of the responses. For example,

for a continuous response, a linear model may be appropriate for an expert; for a

categorical response, experts may consist of generalized linear models.

While MoE models were coined by Jacobs et al. (1991), the idea can be traced

back to Fair and Jaffee (1972) and Hosmer (1974), where the experts are linear

regression models. Such models, with the choice for the gate function as in (2.2),

were later called “clusterwise linear regression” (CLR) models (Späth, 1979) and

have been widely applied in the social sciences, environmental studies, engineering,

etc. (Brusco et al., 2003; Bagirov et al., 2017; Khadka and Paz, 2017). Research

on CLR models is still ongoing, especially on developing efficient algorithms for

alleviating the computational burden (Di Mari et al., 2017; Park et al., 2017). If

(zTi , yi) belongs to the gth cluster, i.e., Iig = 1, then for a CLR model we write

yi = xT
i βg + ϵi, ϵi ∼ N (0, σ2

g), (2.3)

where βg = (β0g, β1g, ..., βpg) and for any two distinct g, g′ ∈ {1, ..., G}, βg ̸= βg′ .

In the remainder, we will focus on CLR models.
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Analysis of a CLR model is primarily based on the maximum likelihood ap-

proach (DeSarbo and Cron, 1988). From (2.3), the distribution of yi is given by:

yi ∼
G∑

g=1

πgϕ(yi|xT
i βg, σ

2
g) i = 1, ..., N (2.4)

where ϕ(·|µ, σ2) is the density function for the normal distribution with mean µ and

variance σ2. For simplicity of notation, we will write ϕig instead of ϕ(yi|xT
i βg, σ

2
g).

The loglikelihood function given y = (y1, ..., yN) is then

ly =
N∑
i=1

log

(
G∑

g=1

πgϕig

)
. (2.5)

In contrast to a linear model, for a CLR model there is no closed-form ex-

pression for the MLE due to the summation over g in the loglikelihood function

(2.5). In fact, without further restrictions there is an identifiability issue. Identi-

fiability must be considered on equivalence classes of parameter vectors, so that

two parameter vectors for which one can be obtained from the other by relabel-

ing the clusters are considered to be equivalent. But even on such equivalence

classes, identifiability is not automatic. For example, if the vectors zi belong to a

(p−1)-dimensional hyperplane, then the model is not even identifiable with G = 1

(i.e., for a single expert). Fortunately, Hennig (2000) gave a sufficient condition

for identifiability of CLR model (2.3). Let Z = {z1, . . . , zN} and

h := min

{
q : Z ⊂

q⋃
i=1

Hi : Hi ∈ Hp−1

}
, (2.6)

where Hp−1 is the set of all hyperplanes of dimension p− 1.
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Theorem 1 (Theorem 2.2, Hennig (2000)). The CLR model in (2.3) is identifiable

if G < h, where G is the number of clusters and h is defined in (2.6).

The sufficient condition in Theorem 1 is relatively mild. As long as the co-

variate set Z cannot be covered by the union of G or fewer (p − 1)-dimensional

hyperplanes, identifiablity holds. Thus, loosely speaking, if the covariate values

are sufficiently rich, then the sufficient condition holds and Model (2.3) is identi-

fiable. For a big dataset, unless there are structural restrictions on the covariate

values, we can expect identifiability to be satisfied. For example, the Structural

Protein data used in Section 5 has p = 1 where the identifiability will be satisfied

if the number of clusters is less than the number of unique covariate values. In the

data, there are 129,711 unique covariate values, therefore if the number of clusters,

G < 129, 711, then identifiability is satisfied.

For a CLR model, with the unobservable indicator vector, the EM algorithm

is the workhorse for finding the MLE (Yuksel et al., 2012). For given initial values

of the parameters, the MLE is obtained by alternating between the expectation

and maximization steps until convergence. However, the EM algorithm typically

converges to a local optimum, and not necessarily to the global optimum (Wu,

1983; Balakrishnan et al., 2017). We generally need to try a large number of

initial values to improve its performance. In addition, G, the number of clusters,

is unknown. If p = 1, the number of clusters G can be determined easily by

visualization (Hastie et al., 2009). However, if p > 1, then graphical methods may

not work anymore. Some advanced techniques may be used. For example, AIC,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0302



BIC, Complete log-likelihood, etc. (Hawkins et al., 2001). Therefore we need to try

different values of G to find the best one according to some criterion, such as AIC.

Consequently, the computational cost for analyzing a CLR model is very high. For

example, for simulated data of size N = 107 and p = 10 covariates, the computing

time for fitting a linear regression model is around 0.2 seconds. In comparison, on

the same platform, it takes around 470 seconds for fitting a CLR model with G = 5

being known and only one initial value. The computation time can be significantly

increased due to the inclusion of numerous initial parameter values, as well as the

consideration of different values for G. In this era, it is not uncommon for the

data size to be in the millions or even billions, and the structure of the data can

be more complicated. While high performance computing can be helpful, fitting

MoE models for such big datasets still poses a tremendous challenge. This can be

alleviated by using carefully selected subdata.

As indicated in the Introduction, the IBOSS strategy for subdata selection

has been proven, both theoretically and empirically, to select highly informative

subdata. Extending this strategy to CLR models would be extremely appealing

for big data analysis, and would drastically reduce computational costs by fitting

a CLR model to subdata that retains as much information about the parameters

as possible.

To describe the IBOSS strategy, let I(xi) denote the information matrix for

the ith data point. With δi = 1 if the ith data point belongs to the subdata

and δi = 0 otherwise, and under the assumption of independence, the information
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matrix based on the subdata is

I(δ) =
N∑
i=1

δiI(xi). (2.7)

We want to select δ = (δ1, . . . , δN), subject to
∑N

i=1 δi = n, to maximize, in

some way, the information matrix in (2.7). For this maximization we adopt the

approach from optimal design of experiments (Kiefer and Wolfowitz, 1959), where

an interpretable function of I(δ) is used to induce a complete ordering of the

information matrices. If Ψ is this function, then, subject to
∑N

i=1 δi = n, we want

to find subdata with indicator vector δopt so that

δopt = argmax
δ

Ψ(I(δ)). (2.8)

We will refer to any subdata selected in this way as IBOSS subdata. Algorithms

for an approximate solution to this complex optimization problem can be based

on the characterization of an optimal design for the corresponding model.

For the CLR model, the information matrix for the i-th data point can be

written as I(xi) = E(
∂lyi
∂θ

∂lyi
∂θT ), where

lyi = log
( G∑

g=1

πgϕig

)
, (2.9)

and ϕig is defined in (2.5). Here θ is the vector of the G(p+3)−1 parameters, with

G(p+ 1) of them corresponding to the βg’s, G to the σ2
g ’s, and G− 1 to the πg’s.

However, the summation structure within the log function in (2.9) prevents the

derivation of a closed-form expression for I(xi). This in turn means that finding

an optimal design is elusive, so that a new approach is needed for obtaining IBOSS

subdata.
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3. Main results

3.1 Bounding the Fisher information matrix

Without a closed-form expression for I(xi), we define a matrix that is larger than

the Fisher information matrix in terms of the Loewner order and that has a closed-

form expression. We first expand a data point from (zTi , yi) to (zTi , yi, Ii), where

Ii = (Ii1, ..., IiG)
T and Iig is defined in (2.1). (Despite using the notation I both for

an information matrix and a vector of latent indicators, the meaning will always

be clear from the context.) The likelihood function under the CLR model for the

complete ith data point (zTi , yi, Ii) is then given by

LCi
=

G∏
g=1

[
ϕigπg

]Iig . (3.1)

Observe that LCi
= Lyi×LIi|yi , where LIi|yi is the likelihood function corresponding

to the conditional distribution of Ii given yi.

Corresponding to this factorization of the complete data likelihood function,

we can write the Fisher information matrix for the i-th data point in the form

of I(xi) = ICi
− IMi

, where ICi
is the complete data Fisher information matrix

(or complete information matrix for short) based on the complete data likelihood

function in (3.1) and IMi
is the information matrix corresponding to the conditional

distribution of Ii given yi. The detailed derivation is presented in the Appendix.

The expressions for ICi
and IMi

can be written as follows:

ICi
= blkdiag

(
Iβ|Ci

, Iσ2|Ci
, Iπ|Ci

)
(3.2)
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3.2 Basic Strategy

where

Iβ|Ci
= blkdiag

(
π1

xix
T
i

σ2
1

, π2
xix

T
i

σ2
2

, . . . , πG
xix

T
i

σ2
G

)
, (3.3)

Iσ2|Ci
= blkdiag

(
π1

2σ4
1

,
π2

2σ4
2

, . . . ,
πG

2σ4
G

)
, (3.4)

and

Iπ|Ci
= blkdiag

(
1

π1

,
1

π2

, . . . ,
1

πG−1

)
+

1

πG

J, (3.5)

where J is matrix of ones. The expression for IMi
is obtained by subtraction and

its diagonal is given by

(
diag(Iβ1|Mi

), . . . , diag(IβG|Mi
), Iσ2

1 |Mi
, . . . , Iσ2

G|Mi
, Iπ1|Mi

, . . . , IπG−1|Mi

)
,

where, for a square matrix A = (aij), the notation diag(A) denotes the diagonal

matrix with diagonal entries aii,

Iβg |Mi
= E

{
wig(1− wig)

(yi − xi
Tβg)

2xixi
T

σ4
g

}
,

Iσ2
g |Mi

= E

{
wig(1− wig)

[
− 1

2σ2
g

+
(yi − xi

Tβg)
2

2σ4
g

]2}
,

Iπg |Mi
= E

{
wig(1− wig)

π2
g

+
wiG(1− wiG)

π2
G

+ 2
wigwiG

πgπG

}
,

(3.6)

and wig =
πgϕig∑G
l=1 πlϕil

. A detailed derivation can be found in the Appendix.

3.2 Basic Strategy

Since we do not have a closed-form expression for IMi
, we face a significant hurdle

in identifying subdata δ∗ that maximizes det(I(δ)). To solve this dilemma, we first
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3.2 Basic Strategy

observe that for any δ, in Loewner order,

I(δ) =
∑
i∈δ

(ICi
− IMi

) ≤
∑
i∈δ

ICi
, so that

det(I(δ)) ≤ det(
∑
i∈δ

ICi
).

(3.7)

The notation
∑

i∈δ simply means that we sum only over those i for which δi = 1.

Based on (3.7), for a full data size N , if we have a strategy to find subdata δ∗
N

such that (a) δ∗
N = argmaxδ det(

∑
i∈δ ICi

) and (b)
∑

i∈δ∗N
ICi

− I(δ∗
N) → 0 when

N → ∞, then the subdata δ∗
N is asymptotically optimal for maximizing det(I(δ)).

Thus, for a fixed N , we need to identify a subdata selection strategy that

leads to a δ∗ that gives an approximate solution for (a) and that satisfies the

requirement in (b). Note that det(
∑

i∈δ ICi
) is proportional to

[
det(

∑
i∈δ xix

T
i )
]G

,

so that maximizing det(
∑

i∈δ ICi
) is equivalently to maximizing det(

∑
i∈δ xix

T
i ).

Wang et al. (2019) develop the computationally inexpensive IBOSS algorithm for

obtaining an approximate solution to precisely this problem.

Algorithm 1 (Algorithm 1 Wang et al. (2019)). With k as the subdata size and p

as the number of covariates, assume for simplicity that r = k/(2p) is an integer.

Execute the following steps:

1. Select the data points with the r smallest and r largest values for the first

covariate;

2. Sequentially, for j = 2, ..., p, exclude the data points that were previously

selected, and select the data points with the r smallest and r largest values

for the jth covariate from the remaining data points.
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3.2 Basic Strategy

Thus, δ∗ obtained by using Algorithm 1 gives an approximate solution to

the maximization of det(
∑

i∈δ ICi
). We still need to show that it also satisfies∑

i∈δ∗ IMi
→ 0 for N → ∞. To circumvent that

∑
i∈δ∗ IMi

does not have a closed-

form expression, we will show that, in the Loewner ordering, it is dominated by a

diagonal matrix that converges to 0 when N → ∞. This would immediately imply

that
∑

i∈δ∗ IMi
, which is a non-negative definite matrix, also converges to 0.

For 1 ≤ g1, g2 ≤ G, let

fi1
(
g1, g2

)
= diag

(
xix

T
i

∫
w̃i(g1, g2)∆

2
βig1

dyi

)
, (3.8)

fi2
(
g1, g2

)
=

∫
w̃i(g1, g2)∆

2
σig1

dyi, and (3.9)

fi3
(
g1, g2

)
=

∫
w̃i(g1, g2)dyi, (3.10)

where w̃i(g1, g2) =
√
πg1ϕig1πg2ϕig2 , ∆βig

=
yi−xT

i βg

σ2
g

and ∆σig
=

(yi−xT
i βg)2−σ2

g

2σ4
g

. We

consider

Qi = diag
(
blkdiag

(
Qi

β,Q
i
σ2 ,Qi

π

))
, (3.11)

where, for matrices or scalars Aℓ, ℓ = 1, ..., L, which can be of different dimensions,

blkdiag(A1, ...,AL) denotes the block diagonal matrix with A1, ...,AL along the

diagonal,

Qi
β = blkdiag

(
Qi

β1
, . . . ,Qi

βG

)
(3.12)

with Qi
βg

= 1
2

∑
g∗:g∗ ̸=g

fi1
(
g, g∗

)
,

Qi
σ2 = blkdiag

(
Qi

σ2
1
, . . . , Qi

σ2
G

)
, (3.13)
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3.3 Main Theorems

with Qi
σ2
g
= 1

2

∑
g∗:g∗ ̸=g

fi2
(
g, g∗

)
, and

Qi
π = blkdiag

(
Qi

π1
, . . . , Qi

πG−1

)
, (3.14)

with, for 1 ≤ g ≤ G− 1, Qi
πg

= 1
2

( ∑
g∗:g∗ ̸=g

fi3(g,g
∗)

π2
g

)
+ 1

2

( ∑
g∗:g∗ ̸=G

fi3(G,g∗)
π2
G

)
+ fi3(g,G)

πgπG
.

With this notation, the following theorem holds.

Theorem 2. Assuming that yi ∼
∑G

g=1 πgϕ(x
T
i βg, σ

2
g), then, for any δ, it holds

that diag(
∑

i∈δ IMi
) ≤

∑
i∈δ Q

i in terms of the Loewner ordering.

With the help of Theorem 2, we can show that
∑

i∈δ IMi
vanishes under certain

conditions for subdata selected by Algorithm 1.

3.3 Main Theorems

Let µz = (µz1, ..., µzp)
T and Σz = ΦzρΦz be a full rank covariance matrix, where

Φz = blkdiag(σz1, . . . , σzp) is a diagonal matrix of standard deviations and ρ =

(ρjj′)p×p is a correlation matrix.

Theorem 3. Let z1, ..., zN be iid, where zi = (zi1, zi2, ..., zip)
T . Assuming that yi ∼∑G

g=1 πgϕ(x
T
i βg, σ

2
g), where xT

i = (1, zTi )
T , and δ∗ corresponds to subdata selected

by Algorithm 1, then the convergence in probability,
∑

i∈δ∗ IMi

P−→ 0(Gp+3G−1)×(Gp+3G−1),

will be achieved when N → ∞ under one of the following conditions:

(a) zi ∼ N(µz,Σz) and for any triplet (g, g′, j) with g, g′ ∈ {1, ..., G}, g ̸= g′ and

j ∈ {1, ..., p}, it holds that
p∑

l=1

ρljσzj(βg,l − βg′,l) ̸= 0;
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3.3 Main Theorems

(b) zi ∼ LN(µz,Σz) and for any triplet (g, g′, j) with g, g′ ∈ {1, ..., G}, g ̸= g′ and

j ∈ {1, ..., p}, it holds that βg,j − βg′,j ̸= 0 and
∑

l∈Lmin,j

(
βg,l − βg′,l

)
̸= 0, where

Lmin,j =
{
l
∣∣ ρlj = ρmin,j ; l = 1, ..., p

}
and ρmin,j = min

l
ρlj < 0.

The condition in (a) on the parameter space Θ ⊂ RG(p+3)−1 is rather mild.

If the condition is not satisfied, the parameter space will be reduced to a lower-

dimensional subspace. The condition in (b) is more restrictive due to the require-

ment ρmin,j < 0, which is needed for technical reasons.

In view of Theorem 3, and guided by the basic strategy formulated at the

beginning of this subsection, we propose the following algorithm for fitting a CLR

model for a large dataset:

Algorithm 2. With k as the subdata size and p as the number of covariates, assume

for simplicity that r = k/(2p) is an integer. Execute the following steps:

1. Run Algorithm 1 to select the subdata δ∗;

2. Using the EM algorithm, fit the CLR model using the subdata selected in

Step 1.

While Theorem 3 establishes that the basic strategy works, it sheds no light

on the statistical or computational efficiency of Algorithm 2. The next theorem

and the empirical results in Sections 4 and 5 show that the statistical efficiency

of Algorithm 2 is asymptotically optimal. We will return to the computational

efficiency in Section 4.
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3.3 Main Theorems

Theorem 4. Let z1, ..., zN , where zi = (zi1, zi2, ..., zip), be iid and let k be the size of

the subdata. Assume that r = k/(2p) is an integer. Let yi ∼
∑G

g=1 πgϕ(x
T
i βg, σ

2
g),

where xT
i = (1, zTi )

T , and let β̂δ∗
g be the estimator of βg, g = 1, . . . , G, under

Algorithm 2.

(a) If condition (a) in Theorem 3 holds, then, when N → ∞,

V (AN β̂
δ∗

g ) →
σ2
g

πg

 1
k

0

0 1
4r
(Φzρ

2Φz)
−1

 (3.15)

where AN = blkdiag(1,
√
logN, . . . ,

√
logN).

(b) If condition (b) in Theorem 3 holds then, when N → ∞,

V (BN β̂
δ∗

g ) →
2σ2

g

kπg

 1 −νT

−ν pΨ+ ννT

 , (3.16)

where BN = blkdiag
(
1, exp(σz1

√
2 logN), ..., exp(σzp

√
2 logN)

)
, ν =

(
e−µz1 , ..., e−µzp

)T
,

and Ψ = blkdiag
(
e−2µz1 , ..., e−2µzp

)
.

In addition, in both cases, the convergence rate for V (β̂δ∗
g,j), g = 1, . . . , G, is asymp-

totically optimal.

Remark: Theorem 4 delivers two important messages. First, in terms of sta-

tistical efficiency, the convergence rate of the proposed algorithm is asymptotically

optimal. Second, it shows that for a fixed subdata size, we retain rich informa-

tion about the regression parameters in the subdata. These desirable theoretical

properties are confirmed by simulation studies in Section 4.
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Notice that, while the ρmin,j < 0 condition in (b) is more restrictive due to

the technical reasons, the simulation studies in Section 4 indicate the asymptotic

results still hold even this condition is not satisfied.

4. Simulation Studies

This section presents simulation studies to evaluate the performance of the pro-

posed algorithm in terms of mean squared error for parameter estimation and

computing time. We compare our method to obtaining subdata by random sam-

pling (Random) to analyzing the full data (Full), with the latter serving as a

benchmark.

In this simulation, we assume that the number of clusters G is known. The

full data of size N is generated from a CLR model with p = 10, G = 5, and

π1 = 0.1, π2 = 0.1, π3 = 0.2, π4 = 0.3, and π5 = 0.3. We set σg = g and

βT
g =

(
βg,0,β

T
g,1

)
where βT

g,1 =

(
g, g+1, . . . , g+9

)
and βg,0 = g for g = 1, 2, 3, 4, 5.

For the covariance matrix of the covariates, Σz, we use Σzij = 0.51{i̸=j} . The

covariate vectors zi are independent and identically distributed as N(0,Σz) or

LN(0,Σz). For each of these, the simulation is repeated 100 times and empirical

mean squared errors (MSE) for estimating the intercept and slope parameters are

computed as MSEβ0 = 1
100

100∑
s=1

5∑
g=1

(β̂
(s)
g,0 − βg,0)

2 and MSEβ1 = 1
100

100∑
s=1

5∑
g=1

∣∣∣∣∣∣β̂(s)
g,1 −

βg,1

∣∣∣∣∣∣2
2
, respectively.

For full data sizes N = 105, 2×105, 4×105, 8×105, 1.6×106 with fixed subdata

size k = 10000, Figures 1 and 2 display the comparison of different methods for
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(a) MSE (b) CPU Time (in seconds)

Figure 1: Comparing different methods for estimating slope parameters when co-

variates are multivariate normal, subdata size k = 10000, and full data size N

varies

estimating the slope parameters with multivariate normal and lognormal covariate

distributions, respectively. In both Figure 1 (a) and Figure 2 (a), it is seen that

the MSE for the IBOSS method decreases as the full data size increases. This is

consistent with the result of Theorem 4.

Both Figure 1 (b) and Figure 2 (b) show the computing time t (in seconds) for

each method across different full data sizes. Computing times were obtained by

running Julia 1.8.5 code on an Inspiron 16 plus with 32GB ram and Intel Core i7-

12700H. The computing times for FULL increase linearly with the full data sizes on

the log-scale. The computing time (including subdata selection and data analysis)

for the IBOSS and Random methods are virtually constant across different full
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(a) MSE (b) CPU Time (in seconds)

Figure 2: Comparing different methods for estimating slope parameters when co-

variates are multivariate lognormal, subdata size k = 10000, and full data size N

varies

(a) Normal (b) LogNormal

Figure 3: Relative Efficiencies of different methods for slope parameters, subdata

size k = 10000, and full data size N varies
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data sizes. The computing time for IBOSS is even shorter than that for Random,

which is due to faster convergence of the EM algorithm with IBOSS subdata than

with Random subdata.

To address the trade-off between computing time and statistical efficiency, one

could define the relative efficiency for method A compared to IBOSS as

EffA =
MSEIBOSS/MSEA

TimeA/T imeIBOSS

,

where TimeA is the CPU time for method A. If EffA = 0.5, say, one could think

of this as IBOSS only needing half the CPU time of method A to achieve the

same MSE, or as IBOSS achieving half the MSE of method A with the same CPU

time. Figure 3 presents these relative efficiencies (on a log-scale) for Random and

Full for different full data sizes N and subdata size k = 10000. Figure 3 shows

that the relative efficiencies for Random and Full are smaller if covariates follow

the multivariate Lognormal distribution. Also, over the range studied here, the

relative efficiencies for Random and Full tend to decrease when the full data size

N increases.

5. Application on Structural Protein Data

In this section, we compare the performance of different methods on Structural

Protein Data that was originally made available through the Protein Data Bank

(PDB)1 . Biomedical researchers can use the PDB to investigate various illnesses

1Data is retrieved from https://www.kaggle.com/shahir/protein-data-set
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and develop new medicines and solutions that are vital to human existence. In

this data set, we analyze the relationships between two variables: the explanatory

variable, Structure Molecular Weight, and the response variable, Residue Count.

After data cleaning, the full data size is N = 140, 913. Notice that while the

response variable is a count, the response values cover a wide range from 2 to

313,236 with 129,711 unique values.

Considering the choice G = 3, the estimated parameters for two of the three

clusters exhibit remarkable similarity. This observation strongly suggests that

G = 2 is a more suitable choice. To compare this method to Random, we compute

the MSEs for the slope parameters by using 500 bootstrap samples of size n, using

n = 2× 104, 4× 104, and 8× 104. The original data is treated as the population of

interest. Bootstrap samples then function as samples drawn from that population.

This mirrors the relationship between a population distribution and a randomly

drawn sample in simulation studies in Section 4. Subdata of size k = 1000 is used,

both for IBOSS and Random. The MSEs for the slopes are defined as in Section 4

except that we replace βg,1 by the slope estimates from the full data, β̂FULL
g,1 .

Figure 4 (a) shows that IBOSS has a smaller MSE for the estimation of slope

parameters than Random. Also, as n increases, the MSE for IBOSS decreases,

which is consistent with Theorem 4. For comparing computing time, Figure 4 (b)

demonstrates a similar pattern as in the simulation studies. Figure 5 shows that

relative efficiencies for Random and Full tend to decrease when n increases, which

is also consistent with results in the simulation studies.
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(a) MSE (b) CPU Time (in seconds)

Figure 4: Comparing different methods for estimating slope parameters based on

500 bootstrap samples of different size n for the Structural Protein Data

6. Conclusions and Future Work

The size of data sets continues to grow, along with increased heterogeneity in data

sets. Mixture-of-Experts (MoE) models are powerful and versatile for modeling

and understanding heterogeneous data, but fitting them is computationally ex-

pensive, especially for large data sets. One efficient strategy to address this issue

is the IBOSS strategy proposed by Wang et al. (2019). It not only reduces the

computational burden by selecting subdata but also retains high statistical effi-

ciency. This paper developed the IBOSS subdata strategy for Clusterwise Linear

Regression (CLR) models, a subclass of the MoE models. We proved that, under

relatively mild conditions, the IBOSS subdata selection algorithm proposed by

Wang et al. (2019) can be used for Clusterwise Linear Regression Model (CLR)
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Figure 5: Relative Efficiencies of different methods for slope parameters based on

500 bootstrap samples of different size n for the Structural Protein Data
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models. More importantly, we proved that this strategy is asymptotically optimal.

The theoretical results are confirmed by simulation studies and a real example.

There remain important unanswered questions that are beyond the scope of

this paper and that need more research. First, different clusters may have different

support in the covariate space for a general MoE model with gate functions that

depend on the covariates. In this case, IBOSS as applied for CLR models may

not work well. For example, if there is a cluster in which none of the points

have any extreme covariate values, we will completely miss that cluster in the

subdata. Deriving an IBOSS strategy for general MoE models will be much harder

because the more complicated gate functions make the information matrix even

more complicated. The path of finding an appropriate matrix that has a closed-

form expression and that bounds the actual information matrix could still work,

but how to find an appropriate bounding matrix will need additional research.

Second, the model in each cluster can be a generalized linear regression model or

other nonlinear model rather than a linear regression model. This too will make

the information matrix and developing an IBOSS subdata selection strategy only

more complicated.

While we do not have answers to these questions yet, we expect that these

can be resolved in the future by methods akin to those used in this paper. Also,

the IBOSS strategy is motivated by results in the optimal design of expriments

literature, and we believe that the wealth of knowledge and resources in that

literature will continue to provide great guidance for developing innovative and
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superior subdata techniques and algorithms for general MoE models and many

other models.
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Appendix

A. The Fisher Information Matrix

We start with the first derivatives of the log-likelihood with respect to the param-

eters:

∂lyi
∂βββg

=
πg

∂ϕig
∂βββg∑G

l=1 πlϕil
= wig

∂logϕig

∂βββg
for g = 1, . . . , G,

∂lyi
∂σ2

g

=
πg

∂ϕig

∂σ2
g∑G

l=1 πlϕil
= wig

∂logϕig

∂σ2
g

for g = 1, . . . , G, and

∂lyi
∂πg

=
ϕig−ϕiG∑G
l=1 πlϕil

= (
wig

πg
− wiG

πG
) for g = 1, . . . , G− 1.
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This leads to the following expressions for the second derivatives of the log-likelihood

with respect to the parameters:

∂2lyi
∂βββg∂βββT

g

=
∂logϕig

∂βββg

∂wig

∂βββT
g

+ wig
∂2logϕig

∂βββg∂βββT
g

=wig(1− wig)
∂logϕig

∂βββg

∂logϕig

∂βββT
g

+ wig
∂2logϕig

∂βββg∂βββT
g

,

where
∂logϕig

∂βββg
= (yi−xi

Tβββg)xi

σ2
g

and
∂2logϕig

∂βββg∂βββT
g
= −xixi

T

σ2
g

for 1 ≤ g ≤ G,

∂2lyi
∂σ2

g∂σ
2
g

= wig(1− wig)

[
∂logϕig

∂σ2
g

]2
+ wig ·

∂2logϕig

∂(σ2
g)

2
,

where
∂logϕig

∂σ2
g

= − 1
2σ2

g
+ (yi−xi

Tβββg)2

2σ4
g

and
∂2logϕig

∂(σ2
g)

2 = 1
2σ4

g
− (yi−xi

Tβββg)2

σ6
g

for 1 ≤ g ≤ G,

and

∂2lyi
(∂πg)2

= − (ϕig − ϕiG)
2

(
∑G

l=1 πlϕil)2
,

for 1 ≤ g ≤ G− 1.

The Fisher information matrix is now obtained by taking the negative expec-

tation for all second-order derivatives, leading to the form

I(xi) =


Iβββ(xi) Iβ,σ2β,σ2β,σ2(xi) Iβ,πβ,πβ,π(xi)

ITβ,σ2β,σ2β,σ2(xi) Iσ2σ2σ2(xi) Iσ2,πσ2,πσ2,π(xi)

ITβ,πβ,πβ,π(xi) ITσ2,πσ2,πσ2,π(xi) Iπππ(xi)


Furthermore,

Iβββ(xi) =



Iβββ1(xi) Iβββ1βββ2(xi) · · · Iβββ1βββG
(xi)

Iβββ1βββ2(xi) Iβββ2(xi) · · · Iβββ2βββG
(xi)

...
...

. . .
...

Iβββ1βββG
(xi) Iβββ2βββG

(xi) · · · IβββG
(xi)


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where

Iβββg(xi) =− E
(
wig(1− wig)

∂logϕig

∂βββg

∂logϕig

∂βββT
g

+ wig
∂2logϕig

∂βββg∂βββT
g

)
=πg

xix
T
i

σ2
g

− E
(
wig(1− wig)

(yi − xi
Tβββg)

2xixi
T

σ4
g

) (A.17)

for g = 1, ..., G;

Iσ2σ2σ2(xi) =



Iσ2
1
(xi) Iσ2

1σ
2
2
(xi) · · · Iσ2

1σ
2
G
(xi)

Iσ2
1σ

2
2
(xi) Iσ2

2
(xi) · · · Iσ2

2σ
2
G
(xi)

...
...

. . .
...

Iσ2
1σ

2
G
(xi) Iσ2

2σ
2
G
(xi) · · · Iσ2

G
(xi)


where

Iσ2
g
(xi) =− E

{
wig(1− wig)

[
∂logϕig

∂σ2
g

]2
+ wig

∂2logϕig

∂(σ2
g)

2

}

=E

{
wig

[(yi − xi
Tβββg)

2

σ6
g

− 1

2σ4
g

]}
− E

{
wig(1− wig)

[
∂logϕig

∂σ2
g

]2}

=

∫
R

πgϕig∑G
l=1 πlϕil

[(yi − xi
Tβββg)

2

σ6
g

− 1

2σ4
g

]
(

G∑
l=1

πlϕil)dyi − E

{
wig(1− wig)

[
∂logϕig

∂σ2
g

]2}

=

∫
R
πgϕig

[(yi − xi
Tβββg)

2

σ6
g

− 1

2σ4
g

]
dyi − E

{
wig(1− wig)

[
∂logϕig

∂σ2
g

]2}

=
πg

2σ4
g

− E

{
wig(1− wig)

[
− 1

2σ2
g

+
(yi − xi

Tβββg)
2

2σ4
g

]2}

(A.18)

for g = 1, ..., G; and

Iπππ(xi) =



Iπ1(xi) Iπ1π2(xi) · · · Iπ1πG−1
(xi)

Iπ1π2(xi) Iπ2(xi) · · · Iπ2πG−1
(xi)

...
...

. . .
...

Iπ1πG−1
(xi) Iπ2πG−1

(xi) · · · IπG−1
(xi)


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where

Iπg(xi) =− E

{
− (ϕig − ϕiG)

2

(
∑G

g=1 πgϕig)2

}

=E

{
w2

ig

π2
g

+
w2

iG

π2
G

− 2
wigwiG

πgπG

}

=
1

πg

+
1

πG

− E

{
wig(1− wig)

π2
g

+
wiG(1− wiG)

π2
G

+ 2
wigwiG

πgπG

} (A.19)

for g = 1, ..., G− 1.

B. The proofs of main results

Before we present a proof of Theorem 2, we need the following lemma.

Lemma 1. Assuming yi ∼
∑G

g=1 πgϕ(x
T
i βg, σ

2
g), then the following inequalities

hold for any 1 ≤ g1, g2 ≤ G, g1 ̸= g2:

diag
(
Exix

T
i wig1wig2∆

2
βββig1

)
≤ 1

2
fi1
(
g1, g2

)
,

E
(
wig1wig2∆

2
σσσig1

)
≤ 1

2
fi2
(
g1, g2

)
,

E (wig1wig2) ≤
1

2
fi3
(
g1, g2

)
.

(B.20)

Here the first inequality is under the Loewner ordering.

Proof. Since the proofs of all inequalities are similar, we only provide the proof for

the first inequality.

diag
(
E
(
xix

T
i wig1wig2∆

2
βββig1

))
= diag

(
xix

T
i

∫ πg1ϕig1
πg2ϕig2∑G

g=1 πgϕig
∆2

βββig1
dyi

)
≤ diag

(
xix

T
i

∫ πg1ϕig1
πg2ϕig2

πg1ϕig1
+πg2ϕig2

∆2
βββig1

dyi

)
≤ diag

(
xix

T
i

∫
1
2

√
πg1ϕig1πg2ϕig2∆

2
βββig1

dyi

)
= 1

2
fi1
(
g1, g2

)
. (B.21)
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Now we are ready to prove Theorem 2.

Proof of Theorem 2. By (A.17) and the definition of ∆βββig
, we have

diag
(
Iβββg |Mi

)
= diag

(
xixi

T
∑

g∗:g∗ ̸=g

Ewigwig∗∆
2
βββig

)
.

Similarly, by (A.18) and the definition of ∆σσσig
, we have

Iσσσ2
g |Mi

=
∑

g∗:g∗ ̸=g

Ewigwig∗∆
2
σσσig

and by (A.19), we have

Iπππg |Mi
= E

( ∑
g∗:g∗ ̸=g

(
wigwig∗

π2
g

+
wiGwig∗

π2
G

)
+ 2

wigwiG

πgπG

)
.

By Lemma 1 and the definition of QQQi, the conclusion follows.

Proof of Theorem 3. By Theorem 2, the result follows if we show that
∑

i∈δ∗ Q
i P−→

0(Gp+3G−1)×(Gp+3G−1). This follows if, for all i ∈ δ∗ and g ̸= g′,

fi1(g, g
′)

P−→ 0(p+1)×(p+1),

fi2(g, g
′)

P−→ 0, and (B.22)

fi3(g, g
′)

P−→, 0

where fi1, fi2 and fi3 are defined in (3.8) - (3.10). We prove the two cases separately.

Case (a):

For any covariate, Algorithm I is guaranteed to select r data points with the r

largest values for the covariate in the full data and r data points with the r smallest
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values of the covariate in the full data. However, when selecting data points based

on covariate l, l ≥ 2, some or all of the data points with the r largest and r smallest

values for the lth covariate may already have been selected. So, Algorithm I may

select data points in which none of the values are among the r largest or r smallest

values for any covariate. However, what we can guarantee for the subdata δ∗

selected by Algorithm I is the following. For any i ∈ δ∗, there exists a ji ∈ {1, ..., p}

and mi ∈ {1, ..rp,N − rp + 1, ..., N} so that xi = (1, z
(mi)1
ji

, ..., z(mi)ji , ..., z
(mi)p
ji

),

where z(mi)j is the m
th
i order statistic of {z1j, ..., zNj} and z

(mi)l
j is the concomitant

of z(mi)j for the lth covariate, l ̸= j. Without loss of generality, let ji = 1. For

i = 1, ..., N and g = 1, ..., G, define γig = xT
i βg. Then we have

fi1(g, g
′) = diag

(
xix

T
i

∫
w̃i(g, g

′)∆2
βig

dyi

)
= diag

(
xix

T
i

) ∫
R
√
πgπg′

(yi−γig)
2

σ4
g

1√
2πσgσg′

exp
{
− (yi−γig)

2

4σ2
g

− (yi−γig′ )
2

4σ2
g′

}
dyi

= diag
(
xix

T
i

) ∫
R
√
πgπg′

(yi−γig)
2

σ4
g

1√
2πσgσg′

exp
{
−

y2i −2
σ2
g′γig+σ2

gγig′

σ2
g+σ2

g′
yi+

γ2igσ
2
g′+γ2

ig′σ
2
g

σ2
g+σ2

g′

2·
2σ2

gσ
2
g′

σ2
g+σ2

g′

}
dyi

= diag
(
xix

T
i

) ∫
R
√
πgπg′

√
2σgσg′

σ2
g+σ2

g′

(yi−γig)
2

σ4
g

ϕ
(

σ2
g′γig+σ2

gγig′

σ2
g+σ2

g′
,
2σ2

gσ
2
g′

σ2
g+σ2

g′

)
exp

{
− (γig−γig′ )

2

4(σ2
g+σ2

g′ )

}
dyi

= diag
(
xix

T
i

)√2πgπg′σgσg′

σ2
g+σ2

g′

[
2σ2

g′/σ
2
g

σ2
g+σ2

g′
+

(xT
i βg−xT

i βg′ )
2

(σ2
g+σ2

g′ )
2

]
exp

{
− (xT

i βg−xT
i βg′ )

2

4(σ2
g+σ2

g′ )

}
= diag

(
xix

T
i

)√2πgπg′σgσg′

σ2
g+σ2

g′

[
2σ2

g′/σ
2
g

σ2
g+σ2

g′
+

(
βg,0−βg′,0+z(mi)1

(βg,1−βg′,1)+
∑p

l=2 z
(mi)l
1 (βg,l−βg′,l)

)2
(σ2

g+σ2
g′ )

2

]
×

exp
{
−
(
βg,0−βg′,0+z(mi)1

(βg,1−βg′,1)+
∑p

l=2 z
(mi)l
1 (βg,l−βg′,l)

)2
4(σ2

g+σ2
g′ )

}
(B.23)

where xT
i = (1, z(mi)1, z

(mi)2
1 ..., z

(mi)p
1 ). From the results in Examples 2.8.1 and 5.5.1

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0302



of Galambos (1987), when (zi1, ..., zip) ∼ N(µz,Σz)

z(mi)1 = µz1 − σz1

√
2logN +OP (1), mi = 1, ...rp, (B.24)

z(mi)1 = µz1 + σz1

√
2logN +OP (1), mi = N − rp+ 1, ..., N, (B.25)

z
(mi)l
1 = µz1 − ρl1σz1

√
2logN +OP (1), mi = 1, ...rp, (B.26)

z
(mi)l
1 = µz1 + ρl1σz1

√
2logN +OP (1), mi = N − rp+ 1, ..., N. (B.27)

We distinguish between mi ∈ {1, ..., rp} and mi ∈ {N − rp + 1, ..., N}. First,

for mi ∈ {1, ...rp}, by (B.24) and (B.26) we have xT
i =

(
1,−ρ11σz1

√
2logN +

Op(1), . . . ,−ρp1σz1

√
2logN +Op(1)

)
, so that (B.23) can be written as

diag
(
xix

T
i

)√2πgπg′σgσg′

σ2
g+σ2

g′

[
2σ2

g′/σ
2
g

σ2
g+σ2

g′
+

(
−
√
2logN

p∑
l=1

ρl1σz1(βg,l−βg′,l)+Op(1)
)2

(σ2
g+σ2

g′ )
2

]
×

exp
{
−

(
−
√
2logN

p∑
l=1

ρl1σz1(βg,l−βg′,l)+Op(1)
)2

4(σ2
g+σ2

g′ )

}
. (B.28)

Second, for mi ∈ {N − rp + 1, ..., N}, by (B.25) and (B.27) we have xi =(
1, ρ11σz1

√
2logN + Op(1), . . . , ρp1σz1

√
2logN + Op(1)

)
, so that (B.23) can be

written as

diag
(
xix

T
i

)√2πgπg′σgσg′

σ2
g+σ2

g′

[
2σ2

g′/σ
2
g

σ2
g+σ2

g′
+

(√
2logN

p∑
l=1

ρl1σz1(βg,l−βg′,l)+Op(1)
)2

(σ2
g+σ2

g′ )
2

]
× (B.29)

exp
{
−

(√
2logN

p∑
l=1

ρl1σz1(βg,l−βg′,l)+Op(1)
)2

4(σ2
g+σ2

g′ )

}
. (B.30)

With the condition for Case (a),
p∑

l=1

ρl1σz1(βg,l − βg′,l) ̸= 0, this implies that

when N → ∞, (B.28)
P−→ 0(p+1)×(p+1) and (B.30)

P−→ 0(p+1)×(p+1). Consequently

fi1(g, g
′)

P−→ 0(p+1)×(p+1).
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Case (b): By the same argument as in the proof of Case (a), it suffices to show

that, for all i ∈ δ∗,

fi1
(
g, g′)

P−→ 000(p+1)×(p+1)

fi2(g, g
′)

P−→ 0

fi3(g, g
′)

P−→ 0

(B.31)

for any pair (g, g′). Since proofs of the three convergences are similar, we only

show a proof of the first one and use the same notation as in the proof for part

(a) of Theorem 3. Without loss of generality, set ji = 1. By the same argument

as used in (B.23), we have

fi1(g, g
′) = diag

(
xix

T
i

)√2πgπg′σgσg′

σ2
g+σ2

g′

[
2σ2

g′/σ
2
g

σ2
g+σ2

g′
+

(
βg,0−βg′,0+z(mi)1

(βg,1−βg′,1)+
∑p

l=2 z
(mi)l
1 (βg,l−βg′,l)

)2
(σ2

g+σ2
g′ )

2

]
×

exp
{
−
(
βg,0−βg′,0+z(mi)1

(βg,1−βg′,1)+
∑p

l=2 z
(mi)l
1 (βg,l−βg′,l)

)2
4(σ2

g+σ2
g′ )

}
, (B.32)

where xT
i = (1, z(mi)1, z

(mi)2
1 ..., z

(mi)p
1 ). From the results in Theorem 6 of Wang

et al. (2019), when (zi1, ..., zip) ∼ LN(µµµz,ΣΣΣz),

z(mi)1 = exp
(
− σz1

√
2logN

)
OP (1), mi ∈ {1, ..., rp}; (B.33)

z(mi)1 = exp
(
σz1

√
2logN

)
OP (1), mi ∈ {N − rp+ 1, ..., N};(B.34)

z
(mi)l
1 = exp

(
− ρl1σz1

√
2logN

)
OP (1), mi ∈ {1, ..., rp}; (B.35)

z
(mi)l
1 = exp

(
ρl1σz1

√
2logN

)
OP (1), mi ∈ {N − rp+ 1, ..., N}.(B.36)

As in the proof for Case (a), we consider the cases mi ∈ {1, ..., rp} and mi ∈

{N − rp + 1, ..., N}. First, for mi ∈ {1, ..., rp}, by (B.33) and (B.35), (B.32) can
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be written as

diag
(
xix

T
i

)√2πgπg′σgσg′

σ2
g+σ2

g′

[
2σ2

g′/σ
2
g

σ2
g+σ2

g′
+

A2
1

(σ2
g+σ2

g′ )
2

]
× exp

{
− A2

1

4(σ2
g+σ2

g′ )

}
, (B.37)

where

xi =

(
1, exp

{
− ρ11σz1

√
2logN

}
OP (1) , . . . , exp

{
− ρp1σz1

√
2logN

}
OP (1)

)
and

A1 = βg,0 − βg′,0 +OP (1)

[
exp
{
− ρmin,1σz1

√
2logN

}
×

∑
l∈Lmin,1

(
βg,l − βg′,l

)
+

∑
l /∈Lmin,1

(
exp
{
− ρljσz1

√
2logN

}
(βg,l − βg′,l)

)]
.

With the condition on the parameters for Case (b), we have that ρmin,j < 0 and∑
l∈Lmin,j

(
βg,l − βg′,l

)
̸= 0. Thus (B.37)

P−→ 000(p+1)×(p+1) when N → ∞.

Second, for mi ∈ {N − rp+1, ..., N}, by (B.34) and (B.36), (B.32) can be written

as

diag
(
xix

T
i

)√2πgπg′σgσg′

σ2
g+σ2

g′

[
2σ2

g′/σ
2
g

σ2
g+σ2

g′
+

A2
2

(σ2
g+σ2

g′ )
2

]
× exp

{
− A2

2

4(σ2
g+σ2

g′ )

}
(B.38)

where

xi =

(
1, exp

{
ρ11σz1

√
2logN

}
OP (1) , . . . , exp

{
ρp1σz1

√
2logN

}
OP (1)

)
and

A2 = βg,0 − βg′,0 +OP (1)

[
exp
{
σz1

√
2logN

}
×
(
βg,1 − βg′,1

)
+

∑
l>1

(
exp
{
ρl1σz1

√
2logN

}
(βg,l − βg′,l)

)]

With the condition on the parameters for Case (b), we have βg,1 − βg′,1 ̸= 0. Thus

(B.38)
P−→ 000(p+1)×(p+1) when N → ∞. Thus the conclusion follows.
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Proof of Theorem 4. For Case (a), by Theorem 6 in Wang et al. (2019), when

zi ∼ N(µz,Σz),

∑
i∈δ∗

xix
T
i =

k 0

0 4r logNΦzρ
2Φz

+OP (
√

logN) (B.39)

and

AN

(∑
i∈δ∗

xix
T
i

)−1

AN =

 1
k

0

0 1
4r
(Φzρ

2Φz)
−1

+OP

( 1

(
√
logN

)
. (B.40)

Notice that I(δ∗) =
∑

i∈δ∗ ICi
−
∑

i∈δ∗ IMi
. By Theorems 2 and 3, we have∑

i∈δ∗ IMi

P−→ 0(Gp+3G−1)×(Gp+3G−1) when N → ∞, which implies that I(δ∗)
P−→∑

i∈δ∗ ICi
when N → ∞. By the expressions for ICi

and Iβ|Ci
in (3.2) and (3.3),

respectively, the desired conclusion follows from (B.40).

For Case (b), also by Theorem 6 in Wang et al. (2019), when zi ∼ LN(µz,Σz),

∑
i∈δ∗

xix
T
i =

k vT

v Ω,

 (B.41)

where, with vT = (v1, . . . , vp) and Ω = (Ωj1j2)p×p,

Ωjj = r exp
(
2σzj

√
2 logN

){
e2µzj + op(1)

}
,

Ωj1j2 = 2r exp
{
(σzj1 + σzj2)

√
2 logN

}
op(1), and

vj = r exp
(
σzj

√
2 logN

){
eµzj + op(1)

}
and

BN

(∑
i∈δ∗

xix
T
i

)−1

BN =
2

k

 1 −νT

−ν pΨ+ ννT

+ oP (1). (B.42)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0302



REFERENCES

By a similar argument as for Case (a), the desired conclusion follows.

Next we want to show that δ∗ provides the fastest convergence rate for V (β̂δ
g,j)

P−→

0 among all subdata δ of size k. We consider Case (a) only since the proof

for Case (b) is similar. From (3.7), for any δ with subdata size k, we have

I(δ)−1 ≥
(∑

i∈δ ICi

)−1
in Loewner order, and further we have {I(δ)−1}jj ≥

{
(∑

i∈δ ICi

)−1}jj ≥
(
{
∑

i∈δ ICi
}jj
)−1

for all j. Then for estimating the slope pa-

rameters of the gth cluster with any subdata δ, we have

V (β̂δ
g,j) ≥

σ2
g

πg

(
∑
i∈δ

z2ij)
−1 ≥

σ2
g

πg

min
(
(kz2(1)j)

−1, (kz2(N)j)
−1
)

=
σ2
g

kπg

min
(
(µz1 + σz1

√
2logN + oP (1))

−2, (µz1 + σz1

√
2logN + oP (1))

−2
)

(B.43)

for j = 1, ..., p. From (B.43), for any δ, the lower bound of the convergence rate

of V (β̂δ
g,j) is 1/ logN . On the other hand, from (3.15), it is clear V (β̂δ∗

g,j) achieves

this lower bound.
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