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Abstract: Testing multi-dimensional white noise has been an important subject of statis-

tical inference in time series. Such test in the high-dimensional case becomes an open

problem waiting to be further investigated, especially when the dimension of a time series

is comparable to or even greater than the sample size. To detect an arbitrary form of depar-

ture from high-dimensional white noise, a few tests have been developed. Some of these

tests are based on max-type statistics, while others are based on sum-type ones. Despite

the progress, an urgent issue awaits to be resolved: none of these tests is robust to the

sparsity of the serial correlation structure. Motivated by this, we propose a Fisher’s com-

bination test by combining the max-type and the sum-type statistics, taking advantage of

the established asymptotic independence between them. This combination test can achieve

robustness to the sparsity of the serial correlation structure, and combine the advantages of

the two types of tests. We thoroughly study the theoretical properties of the proposed com-

bination test, and demonstrate its advantages over some existing tests through extensive

numerical results and an empirical analysis.

Key words and phrases: asymptotic independence, Fisher’s combination test, high-dimensional

white noise, hypothesis test, robustness.
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1. Introduction

Testing for white noise or serial correlation is an important problem in statistical

modeling and inference, especially in diagnostic checking for linear regression

and linear time series modeling. In recent years, researchers are increasingly

interested in modeling high-dimensional time series data, which are becoming

one of the most common data types, and frequently appear in many applications,

including meteorology, genomics, chemometrics, biological and environmental

research, finance and econometrics, etc. This brings further challenge to diag-

nostic checking, as we need to perform test for high-dimensional white noise,

where the dimension of time series is comparable to or even greater than the

sample size, i.e. the observed length of the time series.

For univariate time series, many widely used white noise tests have been

proposed in the literature (Li, 2004). Some of these tests have been extended for

testing multivariate time series (Hosking, 1980; Li and Mcleod, 1981), which

are, however, only suitable for the case that the dimension of the time series

is small compared to the sample size. Specifically, for univariate time series,

the celebrated Box-Pierce portmanteau test and its variations are considered to

be among the most popular omnibus tests for detecting non-specific forms of

deviation from white noise. These tests are particularly convenient in practical

applications, due to the fact that they are asymptotically distribution-free and are
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χ2-distributed under the null hypothesis (Li, 2004; Lütkepohl, 2005). However,

it is widely known that when extended to the multivariate cases, these tests suffer

slow convergence to their asymptotic null distributions (Li et al., 2019).

Recently, multivariate white noise tests have undergone rapid development.

Some new omnibus tests, such as the tests proposed by Chang et al. (2017), Li

et al. (2019) and Tsay (2020), can even deal with high-dimensional time series,

where the dimension of the time series is comparable to or even greater than the

sample size. Specifically, Chang et al. (2017) proposed a max-type test for high-

dimensional white noise, using the maximum absolute auto-correlations and

cross-correlations of the component series. Based on an approximation by the

L∞-norm of a normal random vector, the critical value of the max-type test can

be evaluated by bootstrapping from a multivariate normal distribution. Subse-

quently, Tsay (2020) proposed a rank-based max-type test for high-dimensional

white noise by using Spearman’s rank correlation, and established the limiting

null distribution based on the theory of extreme values. On the other hand, Li

et al. (2019) proposed a sum-type test for high-dimensional white noise, using

sum of squared singular values of several lagged sample autocovariance matri-

ces. Using the random matrix theory, the asymptotic normality for the test statis-

tic under the null is established under the Marcenko-Pastur asymptotic regime.

In general, the max-type test performs well in the case of sparse correla-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0300



tions, i.e. there is a small amount of large absolute auto- or cross-correlations at

any nonzero lag. In contrast, the sum-type test performs well in the case of non-

sparse correlations, which encapsulates the serial correlations within and across

all component series. These two types of tests have their own applicability, but

neither of them can perform well in both cases. In other words, neither of these

two types of tests is applicable in the case of sparse serial correlations. This mo-

tivates us to establish a new test, which can combine the advantages of both types

and is therefore applicable to sparse and non-sparse serial correlations. To this

end, we first reconsider both the max-type test and the sum-type test, and estab-

lish their asymptotic independence. Taking advantage of the newly established

independence, we propose to combine them to construct a combination test. The

general idea of constructing combination tests after establishing asymptotic in-

dependence of max-type and sum-type statistics has appeared in the literature

of independence tests and covariance matrix tests for high-dimensional random

vectors, for example, in Li and Xue (2015) and Yu et al. (2024).

To combine the asymptotically independent tests, we employ the framework

of combining the p-values of independent tests (Littell and Folks, 1971). In many

earlier literatures, the problem of combining independent tests of hypotheses

has been widely considered, such as in Pearson (1938), Fisher (1950), Wilk and

Shapiro (1968) and Naik (1969). Among these methods, the well known Fisher’s
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combination test proposed in Fisher (1950) is usually regarded as one of the best

choices, whose advantages were discussed in Littell and Folks (1971). It should

be noted that in addition to combining p-values of independent tests, there are

other ways for combining independent tests. For example, if all test statistics

asymptotically follow Gaussian distributions, then a linear combination of the

statistics can be used to construct a combined test statistic. However, in situation

where the test statistics have different types of asymptotic distributions, such

as normal distribution and Gumble distribution, it is usually difficult to directly

combine these statistics, hence combining p-values becomes more practical.

In this paper, to test high-dimensional white noise, we propose a Fisher’s

combination test by combining the p-values of the max-type and sum-type tests,

which is suitable to detect sparse and non-sparse serial correlations. Employ-

ing tools in extreme value theory and martingale’s central limit theorem, we

establish the limiting null distributions of the max-type and sum-type statistics,

respectively. Further, we establish the asymptotic independence between the two

statistics under the null hypothesis, which enables us to use Fisher’s framework

of combining independent tests. We demonstrate the advantages of the proposed

Fisher’s combination test over its competitors through extensive numerical re-

sults. In the empirical application, we demonstrate the robust performance of

the proposed Fisher’s combination test.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0300



The main contributions of this paper are listed as follows.

1. We established the limiting null distribution of the max-type statistic for

testing high-dimensional white noise, proved that this max-type test is

rate-optimal and investigated its local power function in special cases.

2. We proposed a new sum-type test for testing high-dimensional white noise,

where the relationship between the sample size and the dimension is not

constrained. This improves the existing sum-type test, which is restrict-

ed to the Marc̆enko-Pastur regime, i.e. the ratio of the sample size to the

dimension is required to go to a constant.

3. We proved the asymptotic independence between the above max-type and

sum-type test statistics under both Gaussian and non-Gaussian distribu-

tions. The establish of the independence is the most important contribution

of this paper. The proof of the non-Gaussian case, where we eliminated the

Gaussianity requirement of the error distribution, is especially novel and

can potentially be used in other context, such as in the high-dimensional

cross-sectional independence test (Feng et al., 2022), the high-dimensional

location test (Xu et al., 2016) and the high-dimensional covariance matrix

test (Li and Xue, 2015; Yu et al., 2024).

4. Based on the newly established asymptotic independence, we constructed
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the Fisher’s combination test that is suitable to detect both sparse or non-

sparse serial correlations.

5. Under a specific local alternative hypothesis, we established the asymptot-

ic independence between the max-type and sum-type test statistics. Based

on this, we obtained a lower bound of the power function of the proposed

combination test.

The rest of this paper is organized as follows. In Section 2, we describe the

problem of testing for high-dimensional white noise, reconsider the max-type

and sum-type tests, establish their asymptotic independence and then construct

the Fisher’s combination test. In Section 3, we present extensive numerical re-

sults of the proposed test in comparison with some of its competitors, followed

by an empirical application in Section 4. Then, we conclude the paper with some

discussions in Section 5, and relegate the technical proofs to Supplementary Ma-

terial.

2. Methodology

2.1 Notations and the testing problem

Consider a p-dimensional weakly stationary time series {εt}nt=1 with mean zero,

where εt = (εt1, · · · , εtp)>, t ∈ {1, · · · , n}, are identically distributed random
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2.1 Notations and the testing problem

vectors. Let Σ(k) = {σij(k)}16i,j6p
.
= cov(εt+k, εt) denote the autocovariance

of εt at lag k, and let Γ(k) = {ρij(k)}16i,j6p
.
= diag{Σ(0)}−1/2Σ(k)diag{Σ(0)}−1/2

denote the autocorrelation of εt at lag k, where for any matrix M, diag(M) de-

notes the diagonal matrix consisting of the diagonal elements of M only. Let

Σ = (σij)16i,j6p = Σ(0) and Γ = (ρij)16i,j6p = Γ(0). Let σ2
i = σii, for each

i ∈ {1, · · · , p}.

With the observations {ε1, . . . , εn}, let

Γ̂(k) = {ρ̂ij(k)}16i,j6p
.
= diag{Σ̂(0)}−1/2Σ̂(k) diag{Σ̂(0)}−1/2

denote the sample autocorrelation matrix at lag k, where

Σ̂(k) = {σ̂ij(k)}16i,j6p
.
=

1

n

n−k∑
t=1

εt+kε
T
t

denotes the sample autocovariance matrix at lag k ≥ 0 and Σ̂(k) = Σ̂(−k)> for

k < 0.

We consider the following testing problem:

H0 : {εt} is white noise v.s. H1 : {εt} is not white noise, (2.1)

where the dimension of time series p is comparable to or even greater than the
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2.2 The max-type test

sample size n. Here, we call an identically distributed time series {εt} white

noise if εt’s are independent and identically distributed following the definition

of white noise in Tsay (2005).

2.2 The max-type test

Before proposing the Fisher’s combination test for testing high-dimensional white

noise, we need to re-examine the max-type and sum-type tests, which will be

proved to be asymptotically independent and combined to construct the combi-

nation test.

Since Γ(k) = 0 for any k > 1 under H0, the max-type test statistic TMAX is

defined as

TMAX
.
= max

16k6K
Tn,k, (2.2)

which was first proposed by Chang et al. (2017), where

Tn,k
.
= max

16i,j6p
n1/2 |ρ̂ij(k)|

andK > 1 is an integer. For this max-type test statistic, Chang et al. (2017) eval-

uated the critical value by bootstrapping from a multivariate normal distribution,

which is a widely recognized practice in the case of sparse correlations.
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2.2 The max-type test

To establish the Fisher’s combination test in this paper, we first derive the

limiting null distribution of the max-type test statistic, which will be present-

ed in the following Theorem 1. Specifically, Theorem 1 states that T 2
MAX −

2 log(Kp2) + log log(Kp2) has an asymptotic extreme-value distribution when

both n and p go to infinity. Hence, a level-α test with α ∈ (0, 1) will be per-

formed by rejecting H0 when T 2
MAX − 2 log(Kp2) + log log(Kp2) is larger than

qα, i.e. the 1 − α quantile of the distribution with the cumulative distribution

function (CDF) G(y)
.
= exp

{
−π−1/2 exp(−y/2)

}
.

In deriving Theorem 1, we impose the following three conditions.

(C1) εti’s have one of the following two types of tails: (i) sub-gaussian-type

tails, i.e. there exist some constant η > 0 andM > 0, such that Eeηε2ti/σ2
i ≤

M for all i ∈ {1, · · · , p} and t ∈ {1, · · · , n}, where p satisfies log p =

o(n1/5); (ii) polynomial-type tails, i.e. for some γ0 and c1 > 0, p ≤

c1n
γ0 and for some ε > 0 and M > 0, E|εti/σi|4γ0+4+ε ≤ M for all

i ∈ {1, · · · , p} and t ∈ {1, · · · , n}.

(C2) There exists a positive constant C such that

C−1 ≤ min1≤i≤p σ
2
i ≤ max1≤i≤p σ

2
i ≤ C.

(C3) There exists % ∈ (0, 1) s.t. |ρij| ≤ % for all 1 ≤ i < j ≤ p with p ≥ 2.

|Cp|/p2 → 0 as p → ∞ if (C1)-(i) holds; and |Cp|/nε/8 → 0 if (C1)-
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2.2 The max-type test

(ii) holds. Here Cp
.
=
{

(i, j) : |Bp,(i,j)| ≥ pκp
}

and Bp,(i,j)
.
=
{

(s, l) :

|ρijρsl| ≥ δp
}

for 1 ≤ i, j ≤ p with δp, κp > 0, δp = o(1/ log p) and

κp = o(1) as p→∞.

Remark 1. Condition (C1) requires that the tail of the distributions of εti’s is

sub-gaussian-type or polynomial-type, which is the same as Condition (C2) or

(C2∗) used in Cai et al. (2013). It is a more general moment condition than the

normal distribution assumption. Condition (C2) requires that all the variances of

εti’s are bounded. Condition (C3) requires that the number of variable pairs with

strong correlation cannot be too large. Below, we provide some cases where

Condition (C3) holds. First, consider the case where Γ is a banded matrix, i.e.

ρij = 0 if |i − j| > ζ . In this case, |Cp| ≤ 2ζp, because |Bp,(i,j)| ≡ 0 when

|i − j| > ζ . Let δp = o(1/ log p) and κp = o(1). If (C1)-(i) and ζ = o(p) hold,

then Condition (C3) holds, because |Cp| = o(p2). If (C1)-(2) and ζp = o(nε/8)

hold, Condition (C3) also holds, because |Cp| = o(nε/8). Next, consider the

case where Γ has an AR(1) structure, i.e. ρij = ρ|i−j| for each i, j ∈ {1, · · · , p}.

Let δp = (log p)−2 and κp = o(1). Hence, |Cp| ≤ −2p log log p/ log ρ, because

|ρijρsl| ≥ δp is equivalent to |i − j| + |s − l| ≤ −2 log log p/ log ρ. If (C1)-(i)

holds, or if (C1)-(2) and p log log p = o(nε/8) hold, Condition (C3) holds.

Theorem 1. Assume Conditions (C1)-(C3) to hold. Then, under H0, for any
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2.2 The max-type test

y ∈ R, we have

P
{
T 2

MAX − 2 log(Kp2) + log log(Kp2) 6 y
}
→ G(y)

as n, p→∞, where G(y) = exp
{
−π−1/2 exp(−y/2)

}
.

We recall that all technical proofs are relegated to the supplementary.

Let U(c) be a set of matrices indexed by a constant c, which is given by

[{
Γ(1), · · · ,Γ(K)

}
∈ Rp×Kp : max

1≤k≤K,16i<j6p
|ρij(k)| > c(log p/n)1/2

]
.

Consider the following sparse alternative

HR
a (c)

.
=
[
F (ε1, · · · , εn) :

{
corF (εt+1, εt), · · · , corF (εt+K , εt)

}
∈ U(c)

]
,

(2.3)

where F (ε1, · · · , εn) denotes the joint distribution of {ε1, · · · , εn} and corF

denotes the autocorrelation matrix under the joint distribution F . Let Tα denote

the set of all measurable size-α tests.

The following theorem characterizes the conditions under which the power

of the proposed max-type test I{T 2
MAX−2 log(Kp2)+log log(Kp2) ≥ qα} tends

to 1 as n→∞, under the alternative HR
a (b0) for some constant b0.
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2.2 The max-type test

Theorem 2. Assume that {εt} is a strictly stationary time series and the long-

run variance γLi
.
= limn→∞ var

(
n−1/2

∑n
t=1 ε

2
it

)
is bounded for all 1 ≤ i ≤ p,

i.e. γLi ∈ (cL, cU) for some positive constant cL, cU . Then, we have

inf
F (ε1,··· ,εn)∈HR

a (b0)
P
[
I{T 2

MAX − 2 log(Kp2) + log log(Kp2) ≥ qα} = 1
]

= 1−o(1),

for all b0 > 3, where the infimum is taken over the joint distribution family

HR
a (b0) of {ε1, · · · , εn} defined in (2.3).

Theorem 2 indicates that the above max-type test can detect alternatives of

order (log p/n)1/2. In Theorem 3, we further show that this test is rate-optimal,

i.e. the rate of the signal gap, (log p/n)1/2, cannot be further relaxed.

Theorem 3. Suppose c0 < 1 is a positive constant, and let β be a positive

constant satisfying α + β < 1. If log p/n = o(1), we have

inf
Tα∈Tα

sup
F (ε1,··· ,εn)∈HR

a (c0)

P (Tα = 0) > 1− α− β

as n, p → ∞, where the supremum is taken over the joint distribution family

HR
a (c0) of {ε1, · · · , εn} defined in (2.3).

Theorem 3 indicates that any measurable size-α test cannot differentiate be-
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2.2 The max-type test

tween the null hypothesis H0 and the sparse alternative when

max
1≤k≤K,16i<j6p

|ρ(k)ij| < c0(log p/n)1/2

for some constant c0 < 1.

Remark 2. Note that if the condition c0 < 1 in Theorem 3 is not satisfied, vary-

ing power results may arise depending on the specific alternative setting, and

a universal power conclusion cannot be definitively drawn. This statement is

substantiated by the following example. Let εt1 = zt1 + ρzt−1,1, where ρ =

O(
√

log p/n) and zt1
i.i.d∼ N (0, 1) for all t ∈ {1, · · · , n}. Let εti

i.i.d∼ N (0, 1),

for all t ∈ {1, · · · , n} and i ∈ {2, · · · , p}. Hence, {εt1}nt=1 are independent

of {εti}nt=1 for each i ∈ {2, · · · , p}. As presented in Section S1 of Supple-

mentary Material, when ρ = c0
√

log p/n, we have: (1) βMAX(ρ) ∈ (0, α), if

0 < c0 < 2; (2) βMAX(ρ) = 1, if 2 < c0 < 3. On the other hand, when

√
nρ =

√
4 log p+ c1

√
log p, we have βMAX(ρ) ∈ (Φ(c1/4), α + Φ(c1/4)).

Remark 3. As mentioned in Chang et al. (2017), the max-type tests based on

asymptotic Gumble distributions usually have conservative size performance.

The proposed MAX test also has such limitation. To solve this problem, some

resampling methods can be employed, such as the bootstrap procedure used in

the max-type test proposed by Chang et al. (2017). The resampling methods
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2.3 The sum-type test

can also relax the conditions imposed on εt’s. Unfortunately, such methods gen-

erally require much heavier computational cost, especially in high-dimensional

situations. Hence, whether to use a test based on asymptotic distribution or based

on resampling heavily depends on the computation capacity.

2.3 The sum-type test

We reconsider the sum-type test, with the test statistic defined as

TSUM
.
=

1

n(n− 1)

K∑
l=1

∑∑
t6=s

ε>t εsε
>
t+lεs+l. (2.4)

It can be seen from the following Theorem 4 and Proposition 1 that under H0,

TSUM/σ̂S has an asymptotically standard normal distribution when both n and

p go to infinity, where σ̂2
S
.
= 2K

n(n−1) t̂r(Σ
2)

2

and t̂r(Σ2)
.
= 1

n(n−1)
∑∑
t6=s

(ε>t εs)
2.

Hence, a level-α test will be performed by rejecting H0 when TSUM/σ̂S is larger

than zα, i.e. the 1− α quantile of the standard normal distribution.

Note that the test statistic in (2.4) is similar to the sum-type test statistic pro-

posed by Li et al. (2019). The differences between them are twofold: first, the

test statistic in (2.4) removes the diagonal elements ε>t εtε
>
t+lεt+l from the sum-

mation to lesson the requirement on Σ; second, we use the martingale central

limit theorem to establish the limiting null distribution of the test statistic, while
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2.3 The sum-type test

Li et al. (2019) used the random matrix theory.

In deriving the asymptotic properties of TSUM, we impose the following two

conditions.

(C4) Let εt = Σ1/2zt under H0, where {zt} with zt = (zt1, · · · , ztp)> is a

sequence of p-dimensional independent random vectors with independent

components zti’s, satisfying Ezti = 0, Ez2ti = 1 and Ez4ti <∞.

(C5) tr(Σ4) = o{tr2(Σ2)}.

Remark 4. Condition (C5) is mild and holds automatically if all the eigenvalues

of Σ are bounded, i.e. Condition (C5) is weaker than the condition of bounded

eigenvalues of Σ imposed in Li et al. (2019), which indeed lessons the require-

ment on Σ. Note that Condition (C5) is also commonly adopted in the literature

of testing high-dimensional covariance matrices, such as in Chen et al. (2010).

Theorem 4. Suppose Conditions (C4)-(C5) hold. Then, under H0, we have

TSUM/σS
d→N (0, 1), where σ2

S
.
= 2K

n(n−1)tr
2(Σ2).

Following the result in Proposition 1 below, we use the above t̂r(Σ2) to

estimate tr(Σ2).

Proposition 1. If εt = Σ1/2zt and tr(Σ4) = o{tr2(Σ2)}, then under H0,

t̂r(Σ2)/tr(Σ2)
p→ 1.
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2.3 The sum-type test

Further, we present the asymptotic power function of the sum-type test

I(TSUM/σ̂S ≥ zα), when an alternative hypothesis H1 is specified. Here, we

assume that under H1, the observations {ε1, · · · , εn} follow a p-dimensional

first-order vector moving average process, abbreviated as VMA(1), of the form

H1 : εt = A0zt + A1zt−1, (2.5)

where A0,A1 ∈ Rp×p are the coefficient matrices. We consider the asymptotic

distribution of TSUM in the case of K = 1 in the following Theorem 5.

Note that the VMA process represents a relevant framework, widely dis-

cussed and employed by the recent time series literature (Brockwell and Davis,

2009; Poloni and Sbrana, 2019). The VMA process as well as its univariate ver-

sion, the MA process, are useful in modeling financial time series. For example,

the bid-ask bounce in stock trading may introduce a MA structure in a return

series, while bivariate series of monthly log returns in percentages of the IBM

stock and the S&P 500 index are modeled with VMA (Tsay, 2005).

Theorem 5. UnderH1 in (2.5) withK = 1, (TSUM−µS)/σS1
d→N (0, 1), where

µS
.
=tr(Σ̃0Σ̃1) +

2

n
tr2(Σ̃01), Σ̃0

.
= A>0 A0, Σ̃1

.
= A>1 A1, Σ̃01

.
= A>0 A1,

σ2
S1

.
=

2

n2
tr2(Σ̃2

0 + Σ̃2
1) +

6

n2
tr2(Σ̃0Σ̃1)
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2.3 The sum-type test

+
4

n

[
2 tr(Σ̃0Σ̃1)

2 + (ν4 − 3) tr
{
D2(Σ̃0Σ̃1)

}]
+

8

n2
tr(Σ̃01Σ̃

>
01)tr(Σ̃

2
0 + Σ̃2

1) +
16

n2
tr(Σ̃01Σ̃1)tr(Σ̃01Σ̃0)

+
16

n2
tr(Σ̃0 + Σ̃1)

{
tr(Σ̃>01Σ̃01Σ̃0) + tr(Σ̃01Σ̃

>
01Σ̃1)

}
+

16

n2
tr(Σ̃01)

{
tr(Σ̃2

0Σ̃
>
01) + tr(Σ̃2

1Σ̃01) + 2 tr(Σ̃1Σ̃01Σ̃0)
}

+
4

n
tr(Σ̃>01Σ̃01Σ̃

2
0 + Σ̃01Σ̃

>
01Σ̃

2
1 + 2Σ̃>01Σ̃1Σ̃01Σ̃0)

+
4

n
tr(Σ̃01Σ̃

>
01Σ̃

>
01Σ̃01) +

12

n2
tr2(Σ̃01Σ̃

>
01)

+
16

n2
tr(Σ̃01) tr(Σ̃01Σ̃

>
01Σ̃

>
01)

+
4

n2
tr2(Σ̃0Σ̃01) +

4

n2
tr2(Σ̃1Σ̃01) + rn,

and the remainder rn = o(σ2
S1). Here, for each square matrix A, D(A) denotes

the diagonal matrix consisting of the main diagonal elements of A.

Similar to Proposition 1, t̂r(Σ2)/ξ0
p→ 1 under H1 in (2.5), where ξ0

.
=

tr(Σ̃2
0 + Σ̃2

1) + 2tr(Σ̃>01Σ̃01). Hence, the asymptotic power of the proposed

sum-type test I(TSUM/σ̂S ≥ zα) under H1 in (2.5) is approximately equal to

βSUM
.
= Φ

(
µS
σS1
− zα

√
2n−1ξ0
σS1

)
. (2.6)
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2.4 Independence and Fisher’s combination test

We now further establish the asymptotic independence between TMAX and TSUM.

This will allow us to to combine the two tests via, for example, the Fisher’s

combination test, to provide a new test that can potentially benefit from both

existing tests. We first establish the independence under Gaussian errors in The-

orems 6 and under non-Gaussian errors in Theorem 7. The proof of Theorem

7 is innovative and generates a new set of tools for similar problems. Specif-

ically, let pMAX
.
= 1 − G {T 2

MAX − 2 log(Kp2) + log log(Kp2)} and pSUM
.
=

1−Φ (TSUM/σ̂S) denote the p-values with respect to the test statistics TMAX and

TSUM respectively. Based on pMAX and pSUM, the proposed Fisher’s combination

test rejects H0 at the significance level α, if

TFC
.
= −2 log pMAX − 2 log pSUM

is larger than cα, i.e. the 1 − α quantile of the chi-squared distribution with 4

degrees of freedom (Fisher, 1950; Littell and Folks, 1971).

In deriving the asymptotic independence between TMAX and TSUM, we need

to impose an additional condition as follows. Let λmin(Σ) and λmax(Σ) denote

the minimum and maximum eigenvalues of Σ, respectively.

(C6) tr−1(Σ2)(log p)γ max{λmax(Σ)Mp,M
2
p ,M

3/2
p λ

1/2
max(Σ)} → 0 for some
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2.4 Independence and Fisher’s combination test

positive constant γ > 1, where Mp
.
= max1≤i≤p

∑p
j 6=i σ

2
ij .

Remark 5. Condition (C6) requires that the covariance between each pair of

variables is not too large, which holds in many common situations. For example,

it automatically holds when all the variables are independent, i.e. Mp = 0. It

also holds if all the eigenvalues of Σ are bounded and Mp is also bounded. In

addition, if Σ is a banded covariance matrices, i.e. σij = 0 if |i − j| > k for

some fixed integer k, and all nonzero σij’s are bounded by c, then Condition

(C6) holds when λmax(Σ)(log p)γtr−1(Σ2)→ 0.

Note that Condition (C6) is significantly different from Assumption 1 (ii) of

Yu et al. (2024) for testing high-dimensional covariance matrix. For example,

when Mp = 0, we do not need to impose conditions on λi(Σ)’s. In fact, these

two type of conditions do not subset each other.

Theorem 6. Suppose εt ∼ N (0,Σ) for t = 1, · · · , n and Conditions (C2),

(C3), (C5) and (C6) hold. Then, under H0, we have

P
{
T 2
MAX − 2 log(Kp2) + log log(Kp2) ≤ x, TSUM/σ̂S ≤ y

}
→ G(x) · Φ(y),

(2.7)

as n, p→∞, i.e. TMAX and TSUM are asymptotically independent.

Further, we relax the assumption of Gaussian distribution of εt in Theorem 6
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to non-Gaussian distributions, with sub-gaussian-type or polynomial-type tails.

To establish the theoretical result under non-Gaussian distributions, Condition

(C1) is modified as follows.

(C1′) εti’s have one of the following two types of tails: (i) sub-gaussian-type

tails, i.e. there exist some constant η > 0 andM > 0, such that Eeηε2ti/σ2
i ≤

M for all i ∈ {1, · · · , p} and t ∈ {1, · · · , n}, where p satisfies log p =

o(n1/6); (ii) polynomial-type tails, i.e. for some γ0 and c1 > 0, p ≤

c1n
γ0 and for some ε > 0 and M > 0, E|εti/σi|6γ0+6+ε ≤ M for all

i ∈ {1, · · · , p} and t ∈ {1, · · · , n}.

Theorem 7. Assume Conditions (C1′) and (C2)-(C6) hold. Then, under H0, we

have

P
{
T 2
MAX − 2 log(Kp2) + log log(Kp2) ≤ x, TSUM/σ̂S ≤ y

}
→ G(x) · Φ(y),

(2.8)

as n, p→∞, i.e. TMAX and TSUM are asymptotically independent.

Remark 6. Note that relaxing the assumption of Gaussian distribution in es-

tablishing the asymptotically independence between the max-type and the sum-

type statistics is an important contribution of this paper, since all the existing

literatures on establishing such asymptotic independence, including Li and Xue
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(2015), Xu et al. (2016), Feng et al. (2022) and Yu et al. (2024), are limited

by the assumption of Gaussian distribution. In this paper, we have develope-

d a novel theoretical tool so that we can weaken the Gaussian distribution to

non-Gaussian distributions with sub-gaussian-type or polynomial-type tails. Its

theoretical framework is enlightening, which can be generalized to analogous

studies.

Based on Theorem 6 or Theorem 7, we immediately have the following

result for TFC.

Corollary 1. Assume the same conditions as in Theorem 6 or Theorem 7, then

we have TFC
d→χ2

4 as n, p→∞.

Under the alternative hypothesis (2.3), we have pMAX → 0 under the sparse

alternatives due to Theorem 2. On the other hand, under the dense alternative

hypothesis (2.5), we have pSUM → 0 if µS/σS1 →∞ due to Theorem 5.

According to the definition of TFC, if pMAX → 0 or pSUM → 0, we have

TFC →∞, hence we reject the null hypothesis.

Remark 7. Note that Conditions (C2), (C3), (C5) and (C6) are all about Σ,

which hold automatically if all the eigenvalues of Σ are bounded. This indicates

that these conditions are compatible and the intersection of these conditions is

routinely considered, which means that the scope of application of the proposed
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Fisher’s combination test is relatively broad.

Next, we show that TSUM is still asymptotically independent of TMAX under

a specific alternative hypothesis. Based on this result, we obtain a low bound of

the power function of TFC.

Theorem 8. Assume Conditions (C1′) and (C2)-(C5) hold. Assume that all

eigenvalues of Σ = cov(εt) are bounded. Let K = 1. Then, under the al-

ternative hypothesis (2.5) with

A0 =

 A011 0

0 A022

 , A1 =

 A111 0

0 0

 ,

A011 ∈ Rd×d, A022 ∈ R(p−d)×(p−d), A111 ∈ Rd×d and d = o(p), we have

P
{
T 2
MAX − 2 log(Kp2) + log log(Kp2) ≤ x, TSUM/σ̂S ≤ y

}
→ P

{
T 2
MAX − 2 log(Kp2) + log log(Kp2) ≤ x

}
P (TSUM/σ̂S ≤ y) , (2.9)

as n, p→∞, i.e. TMAX and TSUM are still asymptotically independent.

Define a minimal p-value test statistic Tmin = min{pSUM, pMAX}. Accord-

ing to Theorem 7, the minimal p-value test based on Tmin rejects the null hy-

pothesis if pSUM ≤ 1 −
√

1− α ≈ α/2 or pMAX ≤ 1 −
√

1− α ≈ α/2.
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To explain the power gain of the minimal p-value test, let βTSUM,α and βTMAX,α

denote the power functions of the sum-type test based on TSUM and max-type

test based on TMAX at significant level α, respectively. Let βTmin
denote the

power of the minimal p-value test based on Tmin at significant level α. Then,

βTmin
≥ max{βTSUM,α/2, βTMAX,α/2} for all alternative hypothesis. In addition,

according to the inclusion-exclusion principle together with Theorem 8, we have

βTmin
≥ βTSUM,α/2 + βTMAX,α/2 − βTSUM,α/2βTMAX,α/2

≥ max{βTSUM,α/2, βTMAX,α/2}

under the specific serial correlation structure considered in Theorem 8. Further,

if the condition βTMAX,α/2 ≥
βTSUM,α−βTSUM,α/2

1−βTSUM,α/2
holds, then βTmin

≥ βTSUM,α.

Similarly, βTmin
≥ βTMAX,α if βTSUM,α/2 ≥

βTMAX,α
−βTMAX,α/2

1−βTMAX,α/2
. These imply that

under the condition where the tests based on TMAX and TSUM have certain power

values, the test based on Tmin is more powerful than both of them. As mentioned

in Littell and Folks (1971), the power of a Fisher’s combination test often has

very similar power performance to a minimal p-value test. Hence, under the

above condition, the proposed Fisher’s combination test based on TFC may also

be more powerful than both the test based on TMAX and that based on TSUM.

Finally, in the following remark, we make some discussions on how the
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dimension p affects the results of the proposed tests.

Remark 8. We start the discussion from a theoretical perspective. Recall that

Condition (C1) is used in deriving the asymptotic null distribution of the max-

type statistic TMAX in (2.2). It requires that the dimension p relates to the sample

size n at: (1) the exponential rate, such as p = cen
υ for some constants c and υ, in

the case where εti’s have sub-gaussian-type tails; (2) the polynomial rate, such as

p = cnυ for some constants c and υ, in the case when εti’s have polynomial-type

tails. This indicates that under different tail types, the order requirements for the

dimension of the max-type test are significantly different in theory. In contrast,

when deriving the asymptotic null distribution of the sum-type statistic TSUM in

(2.4), after imposing Condition (C5) on Σ, there is no need to impose additional

order requirements for p. In some other literature, such as Li et al. (2019), when

establishing the asymptotic distribution of a sum-type test statistic, it is necessary

to assume that (p, n) satisfies the Marčenko-Pastur regime, i.e. p/n → c > 0.

Due to the construction of TFC , establishing its asymptotic distribution requires

more stringent conditions. Indeed, for the pair (p, n), a condition slightly more

stringent than that for TMAX is imposed.

Next, from the results of the simulation study in the following section, d-

ifferent testing methods show significant differences when the sample size is

given but the dimension increases. For example, suggested by Tables 1 and 2,
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the empirical size of the sum-type test proposed by Li et al. (2019) significantly

decreases as the dimension increases, while in contrast, our sum-type test has a

very stable size performance.

3. Numerical results

We now present some numerical results to demonstrate the performance of the

max-type test, sum-type test and Fisher’s combined probability test, abbreviated

as MAX, SUM and FC respectively, as well as their comparison with the sum-

type test proposed by Li et al. (2019), abbreviated as LY. Note that the max-

type test is based on the asymptotic results established in this paper, not the

resampling method in Chang et al. (2017).

3.1 Size performance

For the cases under H0, we let εt = Azt with zt = (zt1, · · · , ztp)> and A =

(aij)1≤i,j≤p. We consider the following two distributions of zt: (i) zt
i.i.d∼ N (0, Ip);

(ii) zti
i.i.d∼ Ga(4, 0.5)− 2, and the following three settings of A:

(I) A = Σ1/2, Σ = (σij)16i,j6p, σii = 1, i = 1, · · · , p, σij = 0.5(i − j)−2

with i 6= j;

(II) A = Σ1/2, Σ = (σij)16i,j6p, σij = 0.5|i−j|;
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(III) aij
i.i.d∼ U(−1, 1).

Tables 1 and 2 summarize the empirical size performance of MAX, LY,

SUM and FC under settings (I)-(III) with the distributions (i) and (ii), respec-

tively. The simulation results presented here, along with all subsequent results,

are derived from the mean of 1,000 repetitions. The corresponding standard

deviation is indicated in parentheses following each mean. Please note that all

empirical size values have been scaled up by a factor of 100. Results in both ta-

bles suggest that in terms of size performance, SUM is the best and MAX is the

most conservative, while FC and LY are in between. In addition, we find that FC

has much better size performance than LY in situations where p/n is relatively

large or K > 1.

3.2 Power comparison

In this subsection, we compare the empirical power performance of the above

four tests. For the cases under the alternative hypothesis, we only consider the

above distribution (i) to avoid redundancy and consider the following three new

settings of εt:

(IV) VAR(1) model: εt = Aεt−1 + zt;

(V) VMA(1) model: εt = zt + Azt−1;
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Table 1: Size performance in the case of εt = Azt with distribution (i).

K = 1 K = 2 K = 3

n p MAX LY SUM FC MAX LY SUM FC MAX LY SUM FC

Setting (I)

100 30 1.0(0.3) 4.9(0.7) 5.9(0.7) 4.4(0.6) 0.9(0.3) 2.7(0.5) 4.8(0.7) 2.9(0.5) 1.0(0.3) 1.8(0.4) 5.3(0.7) 4.0(0.6)

100 60 1.0(0.3) 2.8(0.5) 5.0(0.7) 3.1(0.5) 1.2(0.3) 2.0(0.4) 5.5(0.7) 3.1(0.5) 0.6(0.2) 1.0(0.3) 4.5(0.7) 2.1(0.5)

100 90 0.9(0.3) 1.5(0.4) 4.2(0.6) 2.7(0.5) 0.3(0.2) 0.6(0.2) 5.7(0.7) 2.4(0.5) 0.6(0.2) 0.0(0.0) 4.8(0.7) 2.3(0.5)

100 120 0.9(0.3) 1.0(0.3) 4.0(0.6) 2.3(0.5) 0.6(0.2) 0.5(0.2) 5.2(0.7) 2.1(0.5) 0.3(0.2) 0.3(0.2) 5.6(0.7) 3.1(0.5)

200 30 2.0(0.4) 4.6(0.7) 5.3(0.7) 3.9(0.6) 1.8(0.4) 3.8(0.6) 5.3(0.7) 4.5(0.7) 1.0(0.3) 4.4(0.6) 5.7(0.7) 4.3(0.6)

200 60 1.2(0.3) 3.2(0.6) 4.0(0.6) 2.8(0.5) 1.2(0.3) 3.0(0.5) 6.0(0.8) 3.7(0.6) 1.1(0.3) 1.9(0.4) 5.4(0.7) 3.3(0.6)

200 90 0.8(0.3) 3.4(0.6) 5.0(0.7) 3.7(0.6) 1.2(0.3) 2.4(0.5) 5.3(0.7) 2.9(0.5) 1.2(0.3) 0.7(0.3) 4.0(0.6) 2.2(0.5)

200 120 1.3(0.4) 3.3(0.6) 5.9(0.7) 3.6(0.6) 1.3(0.4) 1.5(0.4) 4.9(0.7) 2.4(0.5) 1.1(0.3) 1.0(0.3) 5.4(0.7) 3.2(0.6)

Setting (II)

100 30 1.5(0.4) 3.0(0.5) 4.1(0.6) 3.1(0.5) 1.1(0.3) 3.5(0.6) 5.7(0.7) 4.4(0.6) 0.8(0.3) 2.0(0.4) 4.9(0.7) 2.9(0.5)

100 60 1.6(0.4) 2.3(0.5) 4.4(0.6) 3.0(0.5) 1.0(0.3) 1.2(0.3) 5.1(0.7) 3.0(0.5) 1.6(0.4) 1.0(0.3) 5.2(0.7) 3.2(0.6)

100 90 1.2(0.3) 2.0(0.4) 5.4(0.7) 3.4(0.6) 0.6(0.2) 0.7(0.3) 3.7(0.6) 2.3(0.5) 0.3(0.2) 0.3(0.2) 5.4(0.7) 2.2(0.5)

100 120 0.8(0.3) 1.9(0.4) 5.8(0.7) 2.6(0.5) 0.9(0.3) 0.2(0.1) 6.0(0.8) 2.2(0.5) 0.2(0.1) 0.1(0.1) 5.4(0.7) 2.3(0.5)

200 30 2.1(0.5) 4.7(0.7) 5.8(0.7) 3.7(0.6) 1.6(0.4) 4.9(0.7) 6.3(0.8) 4.6(0.7) 1.3(0.4) 4.2(0.6) 6.4(0.8) 5.1(0.7)

200 60 1.5(0.4) 4.0(0.6) 5.5(0.7) 2.9(0.5) 1.5(0.4) 2.9(0.5) 5.2(0.7) 3.9(0.6) 1.8(0.4) 2.3(0.5) 6.0(0.8) 4.0(0.6)

200 90 2.2(0.5) 3.9(0.6) 5.0(0.7) 3.3(0.6) 1.3(0.4) 1.8(0.4) 5.1(0.7) 3.7(0.6) 1.2(0.3) 1.3(0.4) 5.4(0.7) 3.2(0.6)

200 120 1.0(0.3) 3.3(0.6) 5.3(0.7) 3.4(0.6) 1.7(0.4) 1.8(0.4) 6.5(0.8) 4.0(0.6) 1.5(0.4) 0.8(0.3) 4.8(0.7) 3.1(0.5)

Setting (III)

100 30 1.4(0.4) 3.8(0.6) 5.0(0.7) 4.3(0.6) 0.9(0.3) 3.7(0.6) 5.2(0.7) 3.8(0.6) 0.5(0.2) 2.2(0.5) 5.1(0.7) 3.2(0.6)

100 60 0.3(0.2) 3.0(0.5) 4.9(0.7) 2.1(0.5) 1.0(0.3) 1.7(0.4) 5.0(0.7) 2.5(0.5) 0.9(0.3) 1.1(0.3) 4.9(0.7) 2.5(0.5)

100 90 0.8(0.3) 2.7(0.5) 4.5(0.7) 3.1(0.5) 1.1(0.3) 1.1(0.3) 5.6(0.7) 4.0(0.6) 0.6(0.2) 0.7(0.3) 4.6(0.7) 2.1(0.5)

100 120 0.8(0.3) 1.7(0.4) 4.2(0.6) 2.8(0.5) 0.2(0.1) 0.8(0.3) 5.2(0.7) 2.2(0.5) 0.4(0.2) 0.1(0.1) 3.5(0.6) 2.2(0.5)

200 30 1.8(0.4) 4.5(0.7) 5.3(0.7) 4.3(0.6) 1.4(0.4) 4.5(0.7) 5.1(0.7) 4.3(0.6) 1.0(0.3) 3.0(0.5) 4.8(0.7) 3.5(0.6)

200 60 1.6(0.4) 4.1(0.6) 5.2(0.7) 3.3(0.6) 1.6(0.4) 3.1(0.5) 5.6(0.7) 3.9(0.6) 1.3(0.4) 1.7(0.4) 4.7(0.7) 2.7(0.5)

200 90 1.6(0.4) 2.8(0.5) 4.0(0.6) 2.3(0.5) 1.7(0.4) 2.3(0.5) 4.9(0.7) 4.3(0.6) 1.7(0.4) 0.9(0.3) 5.0(0.7) 3.1(0.5)

200 120 1.5(0.4) 3.5(0.6) 5.0(0.7) 3.7(0.6) 1.1(0.3) 1.3(0.4) 4.3(0.6) 2.8(0.5) 1.1(0.3) 0.8(0.3) 5.2(0.7) 3.0(0.5)
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Table 2: Size performance in the case of εt = Azt with distribution (ii).

K = 1 K = 2 K = 3

n p MAX LY SUM FC MAX LY SUM FC MAX LY SUM FC

Setting (I)

100 30 2.3(0.5) 4.7(0.7) 5.6(0.7) 5.2(0.7) 1.6(0.4) 3.1(0.5) 4.5(0.7) 4.4(0.6) 1.5(0.4) 1.2(0.3) 4.6(0.7) 3.7(0.6)

100 60 2.2(0.5) 3.0(0.5) 4.8(0.7) 3.9(0.6) 2.2(0.5) 1.0(0.3) 4.7(0.7) 3.4(0.6) 2.4(0.5) 1.0(0.3) 5.6(0.7) 5.3(0.7)

100 90 1.6(0.4) 1.9(0.4) 5.0(0.7) 4.3(0.6) 1.9(0.4) 1.3(0.4) 4.9(0.7) 4.9(0.7) 2.1(0.5) 0.0(0.0) 5.1(0.7) 4.6(0.7)

100 120 2.0(0.4) 1.9(0.4) 4.4(0.6) 4.2(0.6) 1.4(0.4) 0.2(0.1) 4.6(0.7) 3.0(0.5) 1.7(0.4) 0.0(0.0) 5.2(0.7) 3.8(0.6)

200 30 2.6(0.5) 5.7(0.7) 5.9(0.7) 5.8(0.7) 2.3(0.5) 4.8(0.7) 6.7(0.8) 6.3(0.8) 3.0(0.5) 2.0(0.4) 4.4(0.6) 3.8(0.6)

200 60 2.5(0.5) 4.1(0.6) 5.7(0.7) 5.7(0.7) 2.7(0.5) 2.9(0.5) 5.2(0.7) 4.8(0.7) 2.8(0.5) 2.1(0.5) 4.7(0.7) 5.5(0.7)

200 90 2.5(0.5) 3.0(0.5) 5.1(0.7) 4.8(0.7) 2.9(0.5) 1.9(0.4) 5.0(0.7) 4.1(0.6) 2.6(0.5) 1.1(0.3) 6.1(0.8) 5.5(0.7)

200 120 2.7(0.5) 3.0(0.5) 5.2(0.7) 4.8(0.7) 3.7(0.6) 1.0(0.3) 4.3(0.6) 4.7(0.7) 3.0(0.5) 0.4(0.2) 3.8(0.6) 3.8(0.6)

Setting (II)

100 30 1.6(0.4) 4.2(0.6) 5.2(0.7) 4.9(0.7) 2.4(0.5) 2.8(0.5) 4.8(0.7) 4.8(0.7) 2.7(0.5) 2.4(0.5) 5.9(0.7) 5.1(0.7)

100 60 2.4(0.5) 2.7(0.5) 4.5(0.7) 4.0(0.6) 2.2(0.5) 1.2(0.3) 4.9(0.7) 4.2(0.6) 2.3(0.5) 1.1(0.3) 5.4(0.7) 4.1(0.6)

100 90 2.0(0.4) 2.1(0.5) 5.4(0.7) 3.8(0.6) 1.6(0.4) 1.0(0.3) 3.9(0.6) 3.5(0.6) 1.7(0.4) 0.3(0.2) 5.2(0.7) 4.4(0.6)

100 120 1.7(0.4) 1.3(0.4) 3.9(0.6) 2.9(0.5) 1.3(0.4) 0.6(0.2) 4.1(0.6) 2.8(0.5) 1.9(0.4) 0.0(0.0) 5.4(0.7) 3.4(0.6)

200 30 2.6(0.5) 4.3(0.6) 4.7(0.7) 4.9(0.7) 2.8(0.5) 4.5(0.7) 6.1(0.8) 5.5(0.7) 2.4(0.5) 3.4(0.6) 5.4(0.7) 5.4(0.7)

200 60 3.1(0.5) 3.9(0.6) 5.5(0.7) 6.8(0.8) 3.0(0.5) 2.3(0.5) 5.1(0.7) 5.3(0.7) 2.3(0.5) 1.6(0.4) 5.0(0.7) 5.4(0.7)

200 90 3.3(0.6) 3.5(0.6) 5.3(0.7) 5.6(0.7) 2.1(0.5) 2.4(0.5) 5.0(0.7) 3.8(0.6) 2.9(0.5) 0.9(0.3) 5.0(0.7) 5.0(0.7)

200 120 3.1(0.5) 3.4(0.6) 5.8(0.7) 5.1(0.7) 2.2(0.5) 2.2(0.5) 4.9(0.7) 4.7(0.7) 3.1(0.5) 0.3(0.2) 5.8(0.7) 5.2(0.7)

Setting (III)

100 30 1.0(0.3) 4.9(0.7) 6.1(0.8) 4.8(0.7) 0.3(0.2) 3.2(0.6) 5.3(0.7) 3.5(0.6) 1.1(0.3) 2.1(0.5) 4.4(0.6) 3.2(0.6)

100 60 1.2(0.3) 2.3(0.5) 4.2(0.6) 2.9(0.5) 1.3(0.4) 2.2(0.5) 5.3(0.7) 3.8(0.6) 0.8(0.3) 1.6(0.4) 6.3(0.8) 3.7(0.6)

100 90 0.7(0.3) 2.9(0.5) 5.3(0.7) 2.8(0.5) 0.8(0.3) 0.8(0.3) 5.1(0.7) 2.4(0.5) 0.3(0.2) 0.2(0.1) 5.5(0.7) 3.1(0.5)

100 120 0.5(0.2) 1.7(0.4) 5.2(0.7) 2.5(0.5) 0.5(0.2) 0.6(0.2) 4.0(0.6) 1.6(0.4) 0.9(0.3) 0.2(0.1) 5.1(0.7) 2.3(0.5)

200 30 1.6(0.4) 4.5(0.7) 5.7(0.7) 4.4(0.6) 1.9(0.4) 4.5(0.7) 5.9(0.7) 4.5(0.7) 1.9(0.4) 4.4(0.6) 6.0(0.8) 5.1(0.7)

200 60 1.3(0.4) 4.2(0.6) 5.5(0.7) 3.8(0.6) 0.7(0.3) 2.3(0.5) 4.4(0.6) 3.0(0.5) 1.5(0.4) 1.9(0.4) 5.0(0.7) 2.9(0.5)

200 90 1.5(0.4) 3.3(0.6) 4.6(0.7) 3.7(0.6) 1.3(0.4) 2.7(0.5) 7.0(0.8) 4.0(0.6) 1.6(0.4) 1.5(0.4) 4.9(0.7) 3.1(0.5)

200 120 0.9(0.3) 2.4(0.5) 4.8(0.7) 2.9(0.5) 1.8(0.4) 2.7(0.5) 5.0(0.7) 4.2(0.6) 0.8(0.3) 1.3(0.4) 5.3(0.7) 2.8(0.5)
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3.2 Power comparison

(VI) VARMA(1) model: εt = 0.5Aεt−1 + zt + 0.5Azt−1.

Here “VAR(1)”, “VMA(1)” and “VARMA(1)” are the abbreviations of 1-order

vector autoregressive process, vector moving average process and vector au-

toregressive moving average process, respectively. Let A = (aij)1≤i,j≤p. For

the alternative hypothesis, we let the first aij 6= 0 for 1 ≤ i, j ≤ m and

aij = 0 otherwise. Note that m controls the signal strength and sparsity of

A. For the VAR(1) model, if m = 1, aij ∼ U(0.4, 0.8); if 2 ≤ m ≤ 10,

aij ∼ U(−1.4/m, 1.4/m). For the VMA(1) model, if m = 1, aij ∼ U(0.4, 0.9);

if 2 ≤ m ≤ 10, aij ∼ U(−1.8/m, 1.8/m). For the VARMA(1) model, ifm = 1,

aij ∼ U(0.4, 0.8); if 2 ≤ m ≤ 10, aij ∼ U(−1.6/m, 1.6/m). Specifically, as

m decreases, both the signal strength and sparsity of A increase. Let n = 200,

p ∈ {60, 90} and K ∈ {1, 2, 3}.

Figures 1 and 2 present the empirical power curves of MAX, LY, SUM

and FC under settings (IV)-(VI) and distribution (i) for (n, p) = (200, 60) and

(200, 90), respectively. In each panel of these figures, the abscissa m varies be-

tween 1 and 10, corresponding to the power performance of the involved tests

with different signal strength and sparsity of A. Results in both figures suggest

that in terms of empirical power performance, FC is better than its competitors in

most cases regardless A is sparse or non-sparse, which has robust performance

due to the combination of the advantages of both MAX and SUM. Although FC
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Figure 1: Power curves of the involved tests with m = 1, 2, · · · , 10 and (n, p) =
(200, 60).

does not outperform its competitors in all cases, it is indeed applicable to both

sparse and non-sparse cases of A. In contrast, MAX generally fails when A is

sufficiently dense, while SUM and LY generally fail when A is very sparse.
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Figure 2: Power curves of the involved tests with m = 1, 2, · · · , 10 and (n, p) =
(200, 90).

4. Application

In this section, we are interested in testing whether the identically distributed

error series {εt} under the Fama-French three-factor model (Fama and French,

1993) is white noise, where εt = (εt1, · · · , εtp)> and p is the number of secu-

rities. The Fama-French three-factor model is one of the most popular factor
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pricing models in finance, which has the explicit form

Yti = rti − rft = αi + βi1(rmt − rft) + βi2SMBt + βi3HMLt + εti

for t ∈ {1, · · · , n} and i ∈ {1, · · · , p}, where rti is the return of the i-th security

at time t, rft is the risk free rate at time t, Yti = rti − rft is the excess return of

the i-th security at time t and rmt is the market return at time t.

We collected the return data of the securities in the S&P 500 index and con-

sidered two forms of data compilation. First, we compiled the monthly returns

on all the securities that constitute the S&P 500 index each month over the pe-

riod from January 2005 to November 2018. Because the securities that make

up the index change over time, we only consider p = 374 securities that were

included in the S&P 500 index during the entire period. A total of T = 165

consecutive observations were obtained. The time series data on the safe rate

of return, and the market factors are obtained from Ken French’s data library

web page. The one-month US treasury bill rate is chosen as the risk-free rate

(rft). The value-weighted return on all NYSE, AMEX, and NASDAQ stocks

from CRSP is used as a proxy for the market return (rmt). The average return

on the three small portfolios minus the average return on the three big portfolios

(SMBt), and the average return on two value portfolios minus the average re-
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turn on two growth portfolios (HMLt) are calculated based on the stocks listed

on the NYSE, AMEX and NASDAQ.

Second, we compiled the weekly returns on all the securities that constitute

the S&P 500 index over the period from January 2005 to November 2018. The

weekly data were calculated using the security prices on Fridays. Similar to the

monthly data, we only considered a total of p = 381 stocks that were included

in the S&P 500 index during the entire period. We formed a total of T = 716

weekly return rates for each stock during this period after excluding the Fridays

that happened to be holidays.

Under these two forms of data compilation, we test the hypotheses in (2.1)

using the proposed Fisher’s combination test as well as its competitors, respec-

tively. Specifically, we let ε̂ti
.
= Yti−α̂i−β̂i1(rmt−rft)−β̂i2SMBt−β̂i3HMLt,

where α̂i, β̂i1, β̂i2 and β̂i3 are the ordinary least squares (OLS) estimators of αi,

βi1, βi2 and βi3, respectively. To demonstrate the usefulness of the proposed

test, we treat the residual ε̂t = (ε̂t1, · · · , ε̂tp)> as the observation of εt, instead

of considering the testing problem within the Fama-French three-factor model.

We assume that {εt} follows a VMA(1) process in (2.5). This assumption is

partially supported by the observation that for most j ∈ {1, · · · , p}, as shown in

the ACF plots in Figure 3, {ε̂tj}Tt=1 appears to have been generated by a MA(1)

process.
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Figure 3: AFC plots of the residuals of some stocks in the S&P 500 index.

We use the sliding window method for the subsequent application. Given a

fixed length n, for each τ ∈ {1, · · · , T −n}, we implement each of the involved

tests on the data compiled from the period from τ to τ+n−1, where {τ, · · · , τ+

n − 1} is the sliding window of length n. Then, we record the rate of rejecting

the null hypothesis in these T − n testing results corresponding to the T − n

sliding windows.

Due to the great complexity and diversity of the financial market, the Fama-

French three-factor model is only an approximation and the three included fac-

tors may often fail to accurately describe the generating mechanism of the excess

returns of a large number of securities. Nevertheless, it has played an important

role in pricing analysis of securities. This certainly motivates the investigation

on whether a certain factor pricing model is sufficient and whether more ad-
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Table 3: Rejecting rates for the weekly and monthly data respectively.

K = 2 K = 3

n p MAX LY SUM FC MAX LY SUM FC

Weekly data

40 381 0.74 0.19 0.83 0.93 0.72 0.24 0.63 0.86

50 381 0.86 0.26 0.79 0.98 0.83 0.32 0.63 0.94

60 381 0.88 0.34 0.73 0.98 0.87 0.39 0.57 0.97

70 381 0.89 0.46 0.58 0.98 0.90 0.41 0.64 0.99

Monthly data

40 374 0.00 0.45 0.64 0.36 0.00 0.45 0.86 0.67

50 374 0.00 0.55 0.68 0.55 0.01 0.62 0.90 0.75

60 374 0.00 0.50 0.70 0.49 0.01 0.59 0.95 0.84

70 374 0.21 0.56 0.69 0.53 0.18 0.69 0.99 0.93

vanced factor pricing models with more explanatory factors are needed. It is not

irrational to suspect that the Fama-French three-factor model is not sufficient

hence the null hypothesis may not be true, especially in the high-dimensional

situations. To this end, of course a testing method with more tendency of re-

jection may be considered to perform better, as long as the test can control the

effect size.

Table 3 summarizes the rejecting rates for each n ∈ {40, 50, 60, 70} and

each form of data compilation, where the prescribed integer K ∈ {2, 3} is used

to establish the proposed test statistics. It suggests that for the weekly data,

FC, MAX and SUM are more inclined to reject the null hypothesis than LY,
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where FC is the most powerful and MAX is the second. This may be due to the

stronger dependence of securities on time series of weekly data, compared with

the monthly data, which may lead to some correlation matrices with larger signal

strength. In such a circumstance, both the max-type and sum-type of tests can

perform well, and the Fisher’s combined probability test FC outperform them as

a combination of them.

Compared with weekly time series, the time dependence of monthly time se-

ries is much weaker, which leads to some correlation matrices with much weaker

signal strength. This may be the reason why MAX fails to deal with the month-

ly data, while SUM, FC and LY have good performance. In particular, SUM

outperform all the remaining methods in such circumstance.

Overall, SUM, LY and MAX can only have good performance in their re-

spective suitable situations, while FC can have robust performance in both situ-

ations.

5. Conclusion

Driven by the task of testing high-dimensional white noise, we adopt the strategy

of combining independent tests of hypotheses. To this end, we first rigorously

establish the asymptotic properties of an existing max-type test under both null

and alternative. We then propose a new sum-type test and establish its corre-
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sponding theoretical properties. These results are established under conditions

weaker than the existing literature. We then proceed to establish the indepen-

dence between the max-type and sum-type statistics, and employ the well known

Fisher’s combination test to form a combined test. We rigorously establish the

theoretical properties of the test in terms of both level and power. Through ex-

tensive numerical experiments, we demonstrate that the proposed test has clear

advantages in power comparison, due to its robustness to sparsity of the serial

correlation structure. Furthermore, via an empirical application, we demonstrate

the robust performance of the proposed test in testing white noise of the return

data of the S&P 500 securities under the Fama-French three-factor model.
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