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Abstract: In this paper, we propose a new homogeneous test for two high-

dimensional random vectors. Our test is built on a new measure, the so-called

characteristic distance, which can completely characterize the homogeneity of

two distributions. The newly proposed metric has some desirable properties, for

example, it possesses a clear and intuitive probabilistic interpretation, and can

be used to address the high-dimensional distance inference. Theoretically, the

limiting behaviors under the conventional fixed dimension and high-dimensional

distance inference are thoroughly investigated. Simulation studies and real data

analysis are presented to illustrate the finite-sample performance of the proposed

test statistic.

Key words and phrases: Characteristic distance, High Dimensionality, Test of

Homogeneity, U-statistic, Permutation procedure.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0299



1. Introduction

Over the past decades, the problem of assessing the homogeneity of two

high-dimensional data has often appeared in various research areas. In some

specific situations, the researchers want to measure whether two samples

are generated from the same population. One example can be found in

clustering analysis, where before constructing the groups, it is recommended

to verify whether it is really necessary. For this, a formal test of the null

hypothesis that two samples have been drawn from the single population is

essential to prevent misjudgment.

The research on measuring and testing the homogeneity of two popula-

tions has a long history. For univariate data, the most traditional tools are

the Smirnov maximum deviation test (Smirnoff, 1939) and Wald Wolfowitz

runs (Wald, 1940), whose multivariate and multidimensional extensions

have been widely discussed, examples include the Darling (1957), Bickel

(1969), Friedman (1979), among others. Recent years see another attempt

to address the homogeneity between two random vectors by using the em-

pirical characteristic function. Fernández (2008) based on the empirical

characteristic function proposed a class of tests for the two sample prob-

lems. Liu (2015, 2019) exploited jackknife empirical likelihood with em-

pirical characteristic function to study the homogeneity test between two
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random vectors. Lee (2020) considered another scenario where the obser-

vations were subject to measurement error. Despite the aforementioned

existing results, the methods still have some defects. For example, the

test statistics are often implicit and therefore cannot be used as a general

measure of homogeneity.

Another line of work is based on distance and kernel-based tests for

equality of distributions. Székely (2004) and Baringhaus (2004) indepen-

dently introduced energy distance to test whether two populations are iden-

tically distributed. Gretton (2012) proposed the maximum mean difference

to measure the difference between two probability distributions. Sejdinovic

(2013) through the corresponding relationship between positive definite ker-

nels and semimetrics of negative type, established the equivalent relation-

ship between generalized energy distance and maximum mean difference.

For a further review of the kernel-based two-sample test, we refer the read-

ers to Harchaoui (2013).

Homogeneity test of two populations based on the energy distance and

maximum mean difference, due to its attractive characteristics, the zero

metric completely describes the homogeneity between two random vectors,

and nonparametric method has the characteristics of fast calculation speed,

not only been widely used in multivariable cases, but also further devel-
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oped in high-dimensional statistical inference. Biswas (2014) modified the

energy distance and proposed a two sample test in the case of high di-

mension low sample size. Li (2018) proposed the location and scale differ-

ence test statistics, and studied its asymptotic distribution when the di-

mensionality diverges with sample size fixed. Further, Chakraborty (2021)

pointed out that the energy distance based on ordinary euclidean distance

could not detect the difference between distributions in high-dimensional

cases, therefore, it improved the energy distance and proposed a new high-

dimensional two sample test. Zhu (2021) based on the permutation test,

investigated the properties of energy distance and maximum mean differ-

ence in the case of high dimensional and low/medium sample size setting.

Gao (2023) proposed to investigate the properties of the sample maximum

mean difference under the situation of high-dimensionality and developed

a new studentized test statistic. In addition, Kim (2020) generalized the

energy distance through projection-averaging to obtain a robust test for

the high dimensional two-sample problem. Pan (2018) introduced a new

metric, called the ball divergence, to detect the difference between two

probability measures in separable Banach spaces. Sarkar (2020) introduced

a new high-dimensional two sample homogeneity test by modifying some

popular graph-based two-sample tests. Qiu (2021) proposed a robust high-
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dimensional heterogeneity test for two populations based on the Cramér-von

Mises test. Liu (2022) generalized the classic Wilcoxon–Mann–Whitney test

through using pairwise distances of all observations. Other recent develop-

ments include Ramdas (2015), Zhao (2015), Zhou (2017), Sarkar (2018),

Mukhopadhyay (2020), Yan (2023), among others.

The tests based on energy distance performs well in detecting the loca-

tion shift, and the ball divergence enjoys a comparable power in detecting

the scale difference. Thus, inspired by Székely’s energy distance and Pan’s

ball divergence, we are very much interested in constructing a homogeneous

test for two high-dimensional random vectors, which can not only maintain

desirable performance in detecting the location shift, but also be compara-

ble in detecting the scale difference.

To achieve this purpose, a new two-sample test is introduced in the

present study. Specifically, we first construct a metric with integration and

standardization skills in a high-dimensional vector space, called character-

istic distance, to measure and test the homogeneity between two random

vectors. This new metric eliminates the divergence of high-dimensional

inner products and the periodicity of feature functions, and can be suc-

cessfully used for high-dimensional distance inference. The characteristic

distance is nonnegative and is equal to zero if and only if two populations
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are identically distributed. Then, an empirical estimator of the character-

istic distance is defined and the asymptotic theory of our test is studied

systematically, including the consistency and the asymptotic distributions

under the null hypothesis and the alternative hypothesis. Simulation stud-

ies and real data applications show that the new test is comparable to

existing methods and more powerful in many cases. Next, we will list the

main contributions.

• Characteristic distance: A new metric is proposed to character-

ize the homogeneity between two vectors, with some attractive features.

Firstly, zero distance completely characterizes the homogeneity of two dis-

tributions. Secondly, this approach possesses a clear and intuitive prob-

abilistic interpretation. Thirdly, this metric can be used to address the

high-dimensional distance inference.

• Closed form expression: By building on the relevant theory of

moment estimation and U-statistic, our test statistic has a simple closed-

form expression.

• Multivariate limiting distribution: Based on the asymptotic

properties of the general U-statistic, the limiting distribution of the pro-

posed test statistic is discussed when the sample size tends to infinity and

the dimension fixed.
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• High-dimensional behavior: A high-dimension regime is consid-

ered where the sample size and the dimension tend to infinity simultane-

ously. Under this regime, the consistency and the asymptotic distribution

are investigated systematically.

The rest of the paper is organized as follows. Section 2 introduces a

new metric and defines its corresponding empirical version. In Section 3

and 4, the limiting behavior under the conventional fixed dimension and

high-dimensional distance inference are studied, including the strong con-

sistency and the asymptotic distributions under the null hypothesis and

the alternative hypothesis. In Section 5, simulation studies and real data

analysis are carried out to illustrate the usefulness of our proposed method.

A brief discussion is presented in Section 6.

2. Characteristic distance

Suppose X = (X1, · · · , Xp), Y = (Y1, · · · , Yp), p ≥ 1, throughout this

paper, we focus on testing whether X and Y are generated from the single

population, that is,

H0 : fX(t) = fY (t) versus H1 : fX(t) 6= fY (t),

where fX(t) and fY (t) stand for the characteristic functions of X and Y

respectively. Below for ease of argument, we will introduce some notations.
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Given a random vector X, the expectation and covariance matrix of X

are denoted by µX and ΣX respectively. Similarly, µY and ΣY stand for the

expectation and covariance matrix with respect to Y. Suppose {Xn}∞n=1 is a

sequence of random variables and {an}∞n=1 is a real sequences, we use Xn =

OP (an) if, for any ε > 0, there exists M > 0 such that P (|Xn/an| > M) < ε

for large n. We write Xn = oP (an), if Xn/an
P−→ 0. The symbol

∑∗
i1,··· ,im

denotes summation over the m! permutations (i1, · · · , im) of (1, · · · , n). Let

X ⊥⊥ Y indicate that X is independent of Y , and X1 ∼ X represents that

X1 and X are identically distributed. For any vectors t ∈ Rp and s ∈ Rp,

we denote 〈t, s〉 the corresponding inner product, and ‖ · ‖2 stands for the

square module of a complex number.

Note if

fX(t) = fY (t),

then ∫
‖E(ei〈X,t〉)− E(ei〈Y,t〉)‖2w(t)dt = 0, w(t) ≥ 0.

So for

fX(t) = fY (t),

we have

E‖E(ei〈X,X
′〉 | X ′)− E(ei〈Y,X

′〉 | X ′)‖2 = 0.
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Further note that the support for X may be asymmetric but t ∈ Rp,

hence, we choose X ′ −X ′′ to replace X ′. In addition, due to the fact that

the high-dimensional vector inner product may not converge, to address

this issue, we need to further standardize it. Inspired by these views, a new

metric — characteristic distance is introduced to measure the homogeneity

of two distributions, defined as follows.

Definition 1. (Characteristic distance)

Suppose X ′, X ′′
i.i.d.∼ X, Y ′, Y ′′

i.i.d.∼ Y, and X ⊥⊥ Y, sup
16i6p

EX2
i < ∞,

sup
16i6p

EY 2
i <∞, the characteristic distance of X and Y is defined as

CD(X,Y ) (2.1)

= E


∥∥∥∥∥∥∥∥E
e

i
〈X ′′, X −X ′〉√
V ar〈X ′′, X −X ′〉

∣∣∣∣∣X −X ′

− E

e
i

〈Y,X −X ′〉√
V ar〈X ′′, X −X ′〉

∣∣∣∣∣X −X ′


∥∥∥∥∥∥∥∥
2

+ E


∥∥∥∥∥∥∥∥E
e

i
〈X,Y − Y ′〉√

V ar〈Y ′′, Y − Y ′〉
∣∣∣∣∣Y − Y ′

− E

e
i
〈Y ′′, Y − Y ′〉√
V ar〈Y ′′, Y − Y ′〉

∣∣∣∣∣Y − Y ′


∥∥∥∥∥∥∥∥
2

:= A+ C.

Remark 1. As can be seen from (2.1), CD(X, Y ) is composed of two parts,

and each of which can be used to test equality of distributions, the reason

we do this is for fairness and to ensure that when constructing (2.1), the

information extracted from X is just as numerous as Y.

The following proposition establishes the characteristic property of CD(X, Y ),
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which is the keystone to our testing procedure.

Proposition 1. CD(X, Y ) is nonnegative and has the characteristic prop-

erty

CD(X, Y ) = 0 if and only if X ∼ Y.

Next, based on the theory of moment estimates and U-statistic, we

will give the empirical form of CD(X, Y ). Note that CD(X, Y ) contains

nuisance parameters V ar〈X ′′, X − X ′〉 and V ar〈Y ′′, Y − Y ′〉, therefore,

when giving the estimator of CD(X, Y ), we need to give the estimates of

V ar〈X ′′, X−X ′〉 and V ar〈Y ′′, Y −Y ′〉 firstly. In the existing methods, when

the sample size and data dimension tend to infinity simultaneously, the

estimators of the above parameters can be obtained by estimating the trace

of the covariance matrix, but this method is relatively cumbersome. Hence,

this paper will use the definition of U-statistic to estimate the unknown

parameters.

Definition 2. (Empirical characteristic distance)

Suppose X1, . . . , Xn is a sample of size n from a population X, and

Y1, . . . , Ym is a sample of size m from a population Y , X ⊥⊥ Y, then the
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sample statistic is defined by

Un,m (2.2)

=
1(

n

4

)(
m

2

) n∑
j<q<k<k′

m∑
l<l′

ψsA(Xj, Xq, Xk, Xk′ ;Yl, Yl′)

+
1(

n

2

)(
m

4

) n∑
k<k′

m∑
j<q<l<l′

ψsC(Xk, Xk′ ;Yj, Yq, Yl, Yl′)

:= An,m + Cn,m.

That is

An,m =
1(

n

4

)(
m

2

) n∑
j<q<k<k′

m∑
l<l′

ψsA(Xj, Xq, Xk, Xk′ ;Yl, Yl′),

and

Cn,m =
1(

n

2

)(
m

4

) n∑
k<k′

m∑
j<q<l<l′

ψsC(Xk, Xk′ ;Yj, Yq, Yl, Yl′),

where

ψsA(Xj, Xq, Xk, Xk′ ;Yl, Yl′)

=
1

4!2!

∑
τ∈π(j,q,k,k′)

∑
γ∈π(l,l′)

ψA(Xτ(1), Xτ(2), Xτ(3), Xτ(4);Yγ(1), Yγ(2)),
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and

ψA(Xj, Xq, Xk, Xk′ ;Yl, Yl′)

= cos
〈Xk −Xk′ , Xj −Xq〉√

Un
+ cos

〈Yl − Yl′ , Xj −Xq〉√
Un

− cos〈Xk − Yl′ , Xj −Xq〉√
Un

− cos〈Xk′ − Yl, Xj −Xq〉√
Un

,

Un =
1(
n

3

) n∑
u<v<s

ϕ(Xu, Xv, Xs),

ϕ(Xu, Xv, Xs) =
1

3
(〈Xu, Xv −Xs〉2 + 〈Xv, Xu −Xs〉2 + 〈Xs, Xv −Xu〉2).

Similarly

ψsC(Xk, Xk′ ;Yj, Yq, Yl, Yl′)

=
1

2!4!

∑
τ∈π(k,k′)

∑
γ∈π(j,q,l,l′)

ψC(Xτ(1), Xτ(2);Yγ(1), Yγ(2), Yγ(3), Yγ(4)),

and

ψC(Xk, Xk′ ;Yj, Yq, Yl, Yl′)

= cos
〈Xk −Xk′ , Yj − Yq〉√

Um
+ cos

〈Yl − Yl′ , Yj − Yq〉√
Um

− cos〈Xk − Yl′ , Yj − Yq〉√
Um

− cos〈Xk′ − Yl, Yj − Yq〉√
Um

,

Um =
1(
m

3

) m∑
u<v<s

1

3
(〈Yu, Yv − Ys〉2 + 〈Yv, Yu − Ys〉2 + 〈Ys, Yv − Yu〉2).
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By (2.2), it is easy to establish the asymptotic behavior, however, when

we do simulation studies, such a formula is computationally expensive for

large-scale datasets, hence we give an equivalent form of it.

Definition 3. (Empirical characteristic distance)

Suppose X1, . . . , Xn is a sample of size n from a population X, and

Y1, . . . , Ym is a sample of size m from a population Y , X ⊥⊥ Y, then the

sample statistic is defined by

Tn,m = Ãn,m + C̃n,m, (2.3)

where

Ãn,m =
1

n(n− 1)(n− 2)(n− 3)

∗∑
j,q,k,k′

cos
〈Xj −Xq, Xk −Xk′〉√

Un

+
1

n(n− 1)m(m− 1)

∗∑
j,q

∗∑
l,l′

cos
〈Xj −Xq, Yl − Yl′〉√

Un

− 2

n(n− 1)(n− 2)m

∗∑
j,q,k

m∑
l=1

cos
〈Xj −Xq, Xk − Yl〉√

Un
,

and

C̃n,m =
1

m(m− 1)(m− 2)(m− 3)

∗∑
j,q,l,l′

cos
〈Yj − Yq, Yk − Yk′〉√

Um

+
1

n(n− 1)m(m− 1)

∗∑
j,q

∗∑
k,k′

cos
〈Yj − Yq, Xk −Xk′〉√

Um

− 2

nm(m− 1)(m− 2)

n∑
k=1

∗∑
j,q,l

cos
〈Yj − Yq, Xk − Yl〉√

Um
.
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Below with some minor algebraic rearrangements, we will establish the

equivalence between the sample statistics (2.2) and (2.3).

Proposition 2. For any sample size n,m, we have Un,m = Tn,m.

3. Main Theorems in multivariate case

In this section, we will investigate the large sample properties of the pro-

posed test statistic under the asymptotic regime where the dimension is

fixed while the sample sizes n,m tend to infinity. More specifically, our

first step is to establish the consistency of our approach, and then discuss

the asymptotic distributions under nul hypothesis and alternative hypoth-

esis. To proceed, we will establish the following theorem firstly.

Theorem 1. Suppose n,m → ∞, sup
16i6p

EX2
i < ∞, sup

16i6p
EY 2

i < ∞, then

we have

〈X1 −X2, Z
∗
1 − Z∗2〉√

Un
=
〈X1 −X2, Z

∗
1 − Z∗2〉√

V ar〈X ′′, X −X ′〉
+OP

(
1√
n

)
,

and

〈Y1 − Y2, Z∗3 − Z∗4〉√
Um

=
〈Y1 − Y2, Z∗3 − Z∗4〉√
V ar〈Y ′′, Y − Y ′〉

+OP

(
1√
m

)
,

where X1, X2, Z
∗
1 , Z

∗
2 , Z

∗
3 , Z

∗
4 are mutually independent, and X1, X2 ∼ X,

Y1, Y2 ∼ Y , Z∗1 , Z
∗
2 , Z

∗
3 , Z

∗
4 follow either FX or FY .

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0299



Theorem 2. Suppose n,m→∞, sup
16i6p

EX2
i <∞, sup

16i6p
EY 2

i <∞,then

Un,m
a.s.−→ CD(X, Y ).

Theorem 2 illustrates that when the sample size tends to infinity, Un,m is

the strongly consistent estimation of CD(X, Y ). In addition, CD(X, Y ) = 0

if and only if X and Y are drawn from the single population, so the statistic

we propose can be applied to test the homogeneity of two random vectors.

The next theorem discusses the asymptotic distribution of Un,m. Note

under the null hypothesis, the statistics An,m and Cn,m are two degenerate

U-statistics. Therefore, based on Theorem 1 and the asymptotic theory of

nonparametric statistics, we can obtain that the test statistic converges in

distribution to a mixture of χ2 distribution, stated as below.

Theorem 3. Suppose n,m → ∞, and n
n+m

→ θ ∈ [0, 1], sup
16i6p

EX2
i < ∞,

sup
16i6p

EY 2
i <∞, then under the null hypothesis, we have

nm

n+m
Un,m

D−→
∞∑
k=1

2λk[(ak(θ)Z1k + bk(θ)Z2k)
2 − (a2k(θ) + b2k(θ))],

where

Q(x,y;x′,y′) = φ
(2,0)
A (x,x′) + φ

(1,1)
A (x,y) + φ

(1,1)
A (x′,y′) + φ

(0,2)
A (y,y′),
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and

φ
(2,0)
A (x,x′)

= E

(
cos

〈X1 −X2,x− x′〉√
V ar〈X ′′, X −X ′〉

)
+ E

(
cos
〈X1 −X2, Y1 − Y2〉√
V ar〈X ′′, X −X ′〉

)

− E

(
cos
〈X1 −X2,x− Y2〉√
V ar〈X ′′, X −X ′〉

)
− E

(
cos
〈X1 −X2,x

′ − Y1〉√
V ar〈X ′′, X −X ′〉

)
,

φ
(1,1)
A (x,y)

= E

(
cos
〈X1 −X2,x−X〉√
V ar〈X ′′, X −X ′〉

)
+ E

(
cos

〈X1 −X2, Y − y〉√
V ar〈X ′′, X −X ′〉

)

− E

(
cos

〈X1 −X2,x− y〉√
V ar〈X ′′, X −X ′〉

)
− E

(
cos
〈X1 −X2, X − Y 〉√
V ar〈X ′′, X −X ′〉

)
,

φ
(0,2)
A (y,y′)

= E

(
cos〈X1 −X2, X3 −X4〉√

V ar〈X ′′, X −X ′〉

)
+ E

(
cos〈X1 −X2,y− y′〉√
V ar〈X ′′, X −X ′〉

)

− E

(
cos〈X1 −X2, X3 − y′〉√

V ar〈X ′′, X −X ′〉

)
− E

(
cos〈X1 −X2, X4 − y〉√

V ar〈X ′′, X −X ′〉

)
.

Furthermore, the function Q(x,y;x′,y′) mentioned above has the following

spectral decomposition

Q(x,y;x′,y′) =
∞∑
k=1

λkfk(x,y)fk(x
′,y′),

where λk and fk are the eigenvalues and eigenfunctions of Q(x,y;x′,y′)

respectively, and

a2k(θ) = (1− θ)EX [EY fk(X, Y )]2, b2k(θ) = θEY [EXfk(X, Y )]2,
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Z1k, Z2k
i.i.d.∼ N(0, 1), k = 1, 2, · · · .

To exploit characteristic distance for homogeneity testing between two

probability distribution, it is very important to determine the significance

threshold. However, it can be seen from Theorem 3 that there are some

unknown parameters in the asymptotic distribution, thus it is difficult to

obtain the significance threshold. Therefore, in our simulation studies, we

will use the permutation test procedure to get the empirical significance

threshold.

The next theorem establishes the asymptotic normality of the test

statistic under the alternative hypothesis.

Theorem 4. Assume n,m → ∞, and n
n+m

→ θ ∈ [0, 1], sup
16i6p

EX2
i < ∞,

sup
16i6p

EY 2
i <∞, then under the alternative hypothesis, we can obtain√
nm

n+m
(Un,m − CD(X, Y ))

D−→ N(0, (1− θ)δ21,0 + θδ20,1) + ζ̃ ,

where

g(1,0)(Xk) = φ
(1,0)
A,1 (Xk) + φ

(1,0)
A,2 (Xk) + φ

(1,0)
A,3 (Xk) + φ

(1,0)
A,4 (Xk) + φ

(1,0)
C,1 (Xk) + φ

(1,0)
C,2 (Xk),

g(0,1)(Yl) = φ
(0,1)
A,1 (Yl) + φ

(0,1)
A,2 (Yl) + φ

(0,1)
C,1 (Yl) + φ

(0,1)
C,2 (Yl) + φ

(0,1)
C,3 (Yl) + φ

(0,1)
C,4 (Yl),

and

V ar(g(1,0)(Xk)) = δ21,0, V ar(g(0,1)(Yl)) = δ20,1,
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ζ̃ = −
√

1− θEHA(X1, X2, X3, X4;Y3, Y4)−
√
θEHC(X3, X4;Y1, Y2, Y3, Y4).

The limiting distribution of the test under null hypothesis is a mixture

of χ2 distribution, however, it is very different under H1. That’s because

in this case, An,m and Cn,m are nondegenerate. Therefore, under suitable

regular conditions, our proposed statistic converges in distribution to a

normal distribution.

4. Main Theorems in high dimensional case

In this section, we will provide the asymptotic behavior of the test statistic

in the high-dimensional case. In order to draw these conclusions, some

technical assumptions are listed below.

(A1) (µX − µY )τ (ΣX + ΣY )(µX − µY ) = O(p), tr(ΣX + ΣY )2 = O(p).

(A2) E 〈X1, X2 −X3〉4 + E 〈Y1, Y2 − Y3〉4 = O(p2), X1, X2, X3
i.i.d.∼ X,

Y1, Y2, Y3
i.i.d.∼ Y.

Remark 2. Assumption (A1) made in Kim (2020) is satisfied when µ =

(u, · · · , u)τ and the covariance matrix is unit matrix, it is very important

in proving the asymptotic convergence. For assumption (A2), when µ =

(0, · · · , 0)τ and covariance matrix is Σ, by proposition A.1 (see Chen, 2010),

it can be proved that (A2) is true. Details are as follows.
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Note that

E 〈X1, X2 −X3〉4 = 4{3tr2Σ2 + 6tr(Σ4) + 6∆tr(Σ2 ◦ Σ2) + ∆2

n∑
i,j=1

(Σij)
4},

and

tr(Σ2 ◦ Σ2) ≤ tr(Σ4) = o(tr2(Σ2)),
n∑

i,j=1

(Σij)
4 ≤ tr2(Σ2),

thus

E 〈X1, X2 −X3〉4 = O(tr2(Σ2
X)) = O(p2).

In a similar way, we have E 〈Y1, Y2 − Y3〉4 = O(p2). This implies the as-

sumption (A2) holds.

Theorem 5. Assume n,m, p→∞, if condition (A1), (A2) hold, then√
V ar(〈X −X ′, X ′′〉)

Un
− 1 = OP

(
1√
n

)
,

and √
V ar(〈Y − Y ′, Y ′′〉)

Um
− 1 = OP

(
1√
m

)
.

Furthermore

〈X1 −X2, Z
∗
1 − Z∗2〉√

Un
=
〈X1 −X2, Z

∗
1 − Z∗2〉√

V ar〈X ′′, X −X ′〉
+OP

(
1√
n

)
,

and

〈Y1 − Y2, Z∗3 − Z∗4〉√
Um

=
〈Y1 − Y2, Z∗3 − Z∗4〉√
V ar〈X ′′, X −X ′〉

+OP

(
1√
m

)
,
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where X1, X2, Z
∗
1 , Z

∗
2 , Y1, Y2, Z

∗
3 , Z

∗
4 are mutually independent, X1, X2 ∼ X,

Y1, Y2 ∼ Y , Z∗1 , Z
∗
2 , Z

∗
3 , Z

∗
4 follow either FX or FY .

Theorem 6. Assume n,m, p→∞, if condition (A1), (A2) hold, then

Un,m
a.s.−→ CD(X, Y ).

Theorem 7. Suppose n,m, p → ∞ n
n+m

→ θ ∈ [0, 1], if condition (A1),

(A2) hold, then under the null hypothesis, we can obtain

nm

n+m
Un,m

D−→
∞∑
k=1

2λk[(ak(θ)Z1k + bk(θ)Z2k)
2 − (a2k(θ) + b2k(θ))],

where ak(θ), bk(θ), λk, Z1k, Z2k, · · · are the same as those provided in The-

orem 3, k = 1, 2, · · · .

It is easy to see from Theorem 7 that in this case, the test statistic

proposed in this paper has the same asymptotic behavior as Theorem 3. In

fact, under the null hypothesis, by using Taylor expansion, we can find that

the dominating part of Un,m in high-dimensional distance inference is the

same as the conventional fixed dimension, and this part is asymptotically

chi-square via H-decomposition (see Koroljuk, 1994), while the other parts

convergence to zero in probability. Therefore, based on Slutsky’s theorem,

we can come to this conclusion.

The next theorem discusses the asymptotic theory of the proposed

method under the alternative hypothesis.
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Theorem 8. Assume n,m, p → ∞ and n
n+m

→ θ ∈ [0, 1], if condition

(A1), (A2) hold, then under the alternative hypothesis, we can obtain

√
nm

n+m
(Un,m − CD(X, Y ))

D−→ N(0, (1− θ)δ21,0 + θδ20,1) + ζ̄ ,

where δ21,0, δ
2
0,1 are the same as those provided in Theorem 4, and

ζ̄ = −
√

1− θEH̃A(X1, X2, X3, X4;Y3, Y4)−
√
θEH̃C(X3, X4;Y1, Y2, Y3, Y4).

Theorem 8 illustrates that the limiting alternative distribution under

the situation of high-dimensionality is determined by the random vector

with the smaller sample size.

Remark 3. Theorems 5 -8 listed in this section only cover a small portion

of the regime in high dimensions. The reason is that regime of high dimen-

sions implies the situation of “big p, small n,m” or “big p, big n,m”. The

former refers to the fact that when the dimension grows to infinity while

the sample sizes n and m are held fixed, i.e., high dimension low sample size

(HDLSS). While the latter assumes that p, n and m tend to infinity simul-

taneously. Furthermore, it should be noted that Theorems 5-8 established

in this study are valid when n,m, p→∞ and assumptions (A1) and (A2)

satisfy. Therefore, they cannot cover the full regime of high dimensions.
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5. Numerical Study

In this section, we will conduct some simulation studies and real data anal-

ysis to compare the empirical performance of the proposed test statistic

with other competitive nonparametric two sample tests, such as the en-

ergy distance in Székely (2004), the ball divergence in Pan (2018) and the

maximum mean discrepancy in Gretton (2012). We call them the ED test,

the BD test and the MMD test, respectively. Throughout the simulation

studies, we will use the Gaussian kernel for the MMD test, and the band-

width is chosen to be the median distance between pairs of points in the

aggregate samples. In addition, under the 0.05 significance level, we will use

the permutation procedure to obtain the P -value of different tests with 200

permutations. The simulations will be repeated 400 times to approximate

the empirical size and power of each test.

5.1 Simulation studies

In the simulation study, several numerical examples are considered. Specif-

ically, when the sample size tend to infinity but the dimension is fixed,

we will use multivariate normal distributions to evaluate the finite sample

performance of different test procedures with means

µ(0) = (0, · · · , 0)τ , µ(1) = (0.5, · · · , 0.5)τ , and
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5.1 Simulation studies

when p is odd number

µ(2) = (0.5, · · · , 0.5︸ ︷︷ ︸
bp/2c

, 0,−0.5, · · · ,−0.5︸ ︷︷ ︸
bp/2c

)τ ,

when p is even number

µ(2) = (0.5, · · · , 0.5︸ ︷︷ ︸
bp/2c

,−0.5, · · · ,−0.5︸ ︷︷ ︸
bp/2c

)τ ,

and covariance matrices:

1. Identity matrix (denoted by Ip), where σi,i = 1 and σi,j = 0 for i 6= j.

2. Banded matrix (denoted by ΣBand), where σi,i = 1, σi,j = 0.6 for

|i− j| = 1, σi,j = 0.2 for |i− j| = 2 and σi,j = 0 otherwise.

3. Autocorrelation matrix (denoted by ΣAuto), where σi,i = 1 and

σi,j = 0.2|i−j| when i 6= j.

For Type-I error rates evaluation, the following three models are con-

sidered.

Example 5.1. Suppose Xk = (Xk1, · · · , Xkp) and Yl = (Yl1, · · · , Ylp) with

k = 1, · · · , n and l = 1, · · · ,m. We generate independent identically dis-

tributed samples from the models:

1. Xk ∼ N(µ(0), Ip) and Yl ∼ N(µ(0), Ip).

2. Xk ∼ N(µ(0),ΣBand) and Yl ∼ N(µ(0),ΣBand).

3. Xk ∼ N(µ(0),ΣAuto) and Yl ∼ N(µ(0),ΣAuto).

For the power evaluation, we consider several models as below.
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5.1 Simulation studies

Example 5.2. Suppose Xk = (Xk1, · · · , Xkp) and Yl = (Yl1, · · · , Ylp) with

k = 1, · · · , n and l = 1, · · · ,m. We generate independent identically dis-

tributed samples from the models:

1. Xk ∼ N(µ(0), Ip) and Yl ∼ N(µ(1), Ip).

2. Xk ∼ N(µ(0),ΣBand) and Yl ∼ N(µ(1),ΣBand).

3. Xk ∼ N(µ(0),ΣAuto) and Yl ∼ N(µ(1),ΣAuto).

4. Xk ∼ N(µ(0), Ip) and Yl ∼ N(µ(2), Ip).

5. Xk ∼ N(µ(0),ΣBand) and Yl ∼ N(µ(2),ΣBand).

6. Xk ∼ N(µ(0),ΣAuto) and Yl ∼ N(µ(2),ΣAuto).

Example 5.3. Suppose Xk = (Xk1, · · · , Xkp) and Yl = (Yl1, · · · , Ylp) with

k = 1, · · · , n and l = 1, · · · ,m. We generate independent identically dis-

tributed samples from the models:

1. Xk ∼ N(µ(0), Ip) and Yl ∼ N(µ(0), 0.5 · Ip).

2. Xk ∼ N(µ(0),ΣBand) and Yl ∼ N(µ(0), 0.5 · ΣBand).

3. Xk ∼ N(µ(0),ΣAuto) and Yl ∼ N(µ(0), 0.5 · ΣAuto).

Under the multivariate case, the empirical size and power of each test

are reported in Table 1. As expected, when two populations are identi-

cally distributed, the Type-I error rates could be well-controlled for each

test. In Examples 5.2 and 5.3, it is evident that variables X and Y follow

different distributions. The results reported in Table 1 show that, among
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5.1 Simulation studies

all multivariate normal location alternatives, whether the signal is in the

same direction or not, the ED and our proposed method are more powerful

than those based on ball divergence and maximum mean difference. For

example, when n = m = 50, and p = 5, for data samples from Example 5.2,

in (3), the empirical power of ED, BD, MMD and our approach are 0.9975,

0.9575, 0.9525 and 0.9925 respectively. However, when detecting the scale

shift, the results are very different. The BD test is powerful in all cases, the

performance of the MMD test is equivalent to or better than the test based

on the proposed homogeneity metric, while the ED test performs worst.

For high-dimensional distance inference, the data-generating scheme is

similar to the conventional fixed dimension but with

µ(1) = (0.2, · · · , 0.2)τ , µ(2) = (0.2, · · · , 0.2︸ ︷︷ ︸
bp/2c

,−0.2, · · · ,−0.2︸ ︷︷ ︸
bp/2c

)τ ,

and in example 5.3, the models are changed to

Yl ∼ N(µ(0), 0.75 · Ip), Yl ∼ N(µ(0), 0.75 · ΣBand), Yl ∼ N(µ(0), 0.75 · ΣAuto),

respectively.

In the high-dimensional case, the empirical size and power for different

test procedures are reported in Table 2, Table 3 and Table 4. As shown in

Table 2, at the significance level of 0.05, the empirical sizes of the aforemen-

tioned test procedures are all close to 0.05, indicating that these methods
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5.1 Simulation studies

Table 1: Empirical size and power for different test procedures.

n = m p CD ED BD MMD

(1) 50 4 0.0575 0.0650 0.0500 0.0650

(1) 50 5 0.0500 0.0525 0.0600 0.0450

(2) 50 4 0.0600 0.0675 0.0450 0.0500

5.1 (2) 50 5 0.0600 0.0600 0.0675 0.0525

(3) 50 4 0.0550 0.0475 0.0400 0.0550

(3) 50 5 0.0375 0.0450 0.0500 0.0400

(1) 50 4 0.9900 0.9950 0.9575 0.9675

(1) 50 5 0.9925 0.9975 0.9775 0.9950

(2) 50 4 0.8525 0.9000 0.7975 0.8025

(2) 50 5 0.8825 0.9400 0.8350 0.8250

(3) 50 4 0.9650 0.9700 0.9125 0.9125

5.2 (3) 50 5 0.9925 0.9975 0.9575 0.9525

(4) 50 4 0.9900 0.9950 0.9675 0.9725

(4) 50 5 0.9750 0.9850 0.9275 0.9575

(5) 50 4 0.8850 0.9800 0.8700 0.9650

(5) 50 5 0.8550 0.9175 0.7625 0.8400

(6) 50 4 0.9825 0.9950 0.9375 0.9700

(6) 50 5 0.9725 0.9700 0.9200 0.9475

(1) 50 4 0.8375 0.5025 0.9900 0.8675

(1) 50 5 0.8750 0.5575 1.0000 0.9275

(2) 50 4 0.5200 0.3575 0.9200 0.7050

5.3 (2) 50 5 0.5400 0.3900 0.9675 0.8400

(3) 50 4 0.7700 0.4700 0.9950 0.8475

(3) 50 5 0.8425 0.5750 0.9975 0.9175
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5.1 Simulation studies

Table 2: Empirical size for different test procedures.

Model Methods

n = m = 50 n = m = 70 n = m = 90

p = 50 p = 100 p = 50 p = 100 p = 50 p = 100

CD 0.0600 0.0575 0.0500 0.0375 0.0650 0.0550

(1)

ED 0.0650 0.0700 0.0500 0.0650 0.0600 0.0675

BD 0.0700 0.0500 0.0400 0.0475 0.0425 0.0450

MMD 0.0575 0.0500 0.0500 0.0575 0.0675 0.0550

CD 0.0525 0.0425 0.0625 0.0550 0.0650 0.0650

(2)

ED 0.0750 0.0675 0.0375 0.0550 0.0500 0.0450

BD 0.0625 0.0400 0.0550 0.0650 0.0600 0.0625

MMD 0.0475 0.0300 0.0700 0.0625 0.0600 0.0450

CD 0.0600 0.0575 0.0500 0.0500 0.0625 0.0425

(3)

ED 0.0725 0.0475 0.0550 0.0650 0.0550 0.0550

BD 0.0650 0.0600 0.0650 0.0500 0.0575 0.0600

MMD 0.0525 0.0650 0.0650 0.0625 0.0525 0.0525
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5.2 Real Data Example

can control the type I error well.

For power evaluation, when detecting the location shift in multivariate

normal distribution (Example 5.2), it can be seen from Table 3: (i) When

p is fixed, the power for all test procedures increases with the increase of n;

(ii) In most settings, regardless of the signal is in the same direction or in the

opposite direction, the empirical power of the ED test and our approach is

similar and within the highest-power group, although they are drawn from

a very different perspective; (iii) The power of BD test procedure is poor,

and the MMD test is somewhat in between.

When a scale difference is detected (Example 5.3), the performance

completely changes. Now BD testing has maintained desirable performance,

and always belongs to the group with the highest power. The ED test

performs the worst in all cases. As for our approach, when n,m and p are

smaller, it is less competitive than the BD and MMD test in terms of power.

However, as the sample size n,m and dimension p increase, this difference

gradually decreases.

5.2 Real Data Example

In this section, we will apply the proposed test procedure to two scenarios:

gene-set testing and benchmark dataset testing.
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5.2 Real Data Example

Table 3: Empirical power for different test procedures.

Model Methods
n = m = 50 n = m = 70 n = m = 90

p = 50 p = 100 p = 50 p = 100 p = 50 p = 100

CD 0.8950 0.9575 0.9625 0.9950 0.9900 0.9975

(1)
ED 0.9775 1.0000 0.9925 1.0000 1.0000 1.0000

BD 0.5925 0.8475 0.7350 0.9050 0.8100 0.9575

MMD 0.9075 0.9825 0.9475 1.0000 0.9800 1.0000

CD 0.8200 0.9500 0.8925 0.9800 0.9550 1.0000

(2)
ED 0.8125 0.9800 0.9125 0.9800 0.9575 1.0000

BD 0.5400 0.7225 0.6075 0.8025 0.7475 0.9225

MMD 0.6100 0.8325 0.7025 0.8900 0.7950 0.9500

CD 0.9500 0.9950 0.9700 0.9950 0.9900 1.0000

(3)
ED 0.9800 1.0000 0.9750 1.0000 0.9975 1.0000

BD 0.6600 0.8050 0.7400 0.9250 0.8200 0.9625

MMD 0.8725 0.9725 0.9075 0.9925 0.9425 0.9975

CD 0.8700 0.9625 0.9575 0.9925 0.9925 1.0000

(4)
ED 0.9600 1.0000 0.9925 1.0000 0.9950 1.0000

BD 0.5975 0.8450 0.6925 0.9375 0.7775 0.9600

MMD 0.8925 0.9925 0.9625 1.0000 0.9900 1.0000

CD 0.8000 0.9300 0.8975 0.9800 0.9275 0.9975

(5)
ED 0.8425 0.9800 0.9000 0.9900 0.9550 1.0000

BD 0.5125 0.6975 0.6375 0.8250 0.7300 0.8600

MMD 0.6250 0.8200 0.7375 0.8975 0.8125 0.9500

CD 0.9325 0.9800 0.9775 0.9975 0.9900 1.0000

(6)
ED 0.9600 1.0000 0.9925 1.0000 0.9950 1.0000

BD 0.6825 0.8150 0.7650 0.9050 0.8475 0.9575

MMD 0.8250 0.9750 0.9200 0.9950 0.9550 0.9975
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Table 4: Empirical power for different test procedures.

Model Methods

n = m = 50 n = m = 70 n = m = 90

p = 50 p = 100 p = 50 p = 100 p = 50 p = 100

CD 0.5850 0.7075 0.7700 0.8850 0.8400 0.9575

(1)

ED 0.3550 0.4725 0.4225 0.6700 0.5150 0.7900

BD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MMD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CD 0.3400 0.4975 0.4450 0.6050 0.5000 0.7550

(2)

ED 0.2225 0.3375 0.2600 0.4600 0.3250 0.5500

BD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MMD 0.9525 1.0000 0.9725 1.0000 0.9875 1.0000

CD 0.5125 0.6375 0.6225 0.8325 0.7550 0.9175

(3)

ED 0.2825 0.4725 0.3975 0.6675 0.5575 0.7600

BD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MMD 0.9950 1.0000 0.9975 1.0000 1.0000 1.0000
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5.2 Real Data Example

5.2.1 Gene-set testing

Identifying differentially expressed genes is of great significance for some

treatments, and it is the latest development in genetics research (see Barry,

2005; Nettleton, 2008). In this section, we will apply the proposed homo-

geneity test to reanalyze the acute lymphoblastic leukemia (ALL) dataset,

which can be downloaded via the R package (see Li, 2009). For this data

set, it consists of 128 patients with T-cell or B-cell leukemia, and each with

12625 genes expression. Since these two types of cells are different tissues,

we treat them separately, usually focusing on B-cell tumors. Note that in

B-cell type leukemia, there are two different molecular classes: B-cell ALL

with the BCR/ABL fusion and cytogenetically normal NEG B-cell ALL.

Therefore, in this article, we are interested in identifying differentially ex-

pressed genes between BCR/ABL (sample size n = 37) and NEG (sample

size m = 42). Next, for convenience’s sake, we carry out a data preprocess-

ing for gene-filtering based on the strategy of Gentleman (2005), leaving

2391 genes for analysis. For each of these genes, at the significance level

of 0.05, we will use the proposed two-sample test with false discovery rate

(FDR) control (Benjamini, 1995), as well as ED, BD, and MMD with FDR,

to detect the differences between BCR/ABL and NEG, respectively.

For each of the 2391 genes, at the significance level of 0.05, the number
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of differentially expressed genes detected by ED, BD, MMD, and CD tests

is 131, 101, 121, and 130, respectively. This illustrates that the ED test

and our approach are more powerful than the other two tests.

5.2.2 Benchmark dataset testing

We also consider exploring the potential difference between two high-dimensional

distributions on the following two benchmark data sets: Strawberry data

and SmallKitchenAppliances data. These two datasets can be downloaded

from UCR Time Series Classification Archive (https://www.cs.ucr.edu/

~eamonn/time_series_data_2018/). For Strawberry data, there are 351

strawberry and 632 non-strawberry purees, with a length of 235 for each

data point. For SmallKitchenAppliances data, it contains three classes.

Here for simplicity, we only use the data: Kettle and Microwave, with obser-

vation values of 250 for both types, and a length of 720 for each data point.

In addition, to facilitate analysis of the problems, following the procedures

of Biswas (2014) and Sarkar (2020), for eachm = n ∈ {20, 30, 40, 50, 60, 70},

randomly sample n points from each class, and use the tests mentioned

above, to analyze whether these two classes come from the single popula-

tion.

Power comparison for the two datasets is shown in Fig. 1. The left panel
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Figure 1: benchmark dataset testing

of Fig. 1 demonstrates that the ED, BD, and MMD have very high power for

Strawberry data with relatively low sample size. For our method, with the

increase of sample size, it quickly catches up with the above three test pro-

cedures. In addition, from the right panel of Fig. 1, we can clearly see that

BD and MMD tests have a remarkable performance in high-dimensional and

low sample size, while the ED test is less sensitive. As for our approach, as

the sample size increases, its performance is greatly improved.
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5.3 Comparison of computational complexity

In this section, we will provide a comparison between the new approach

and the existing methods concerning computation burden.

The computational complexity of CD is O((n + m)4p) if we compute

it exactly from (2.3), where n,m and p are the size and dimension of the

sample set, respectively. As compared with the complexities of the previous

test procedures, such as O((n+m)2p) for exact ED, O((n+m)2p) for MMD,

and O(n2logn + m2logm) for the BD test, the proposed test procedure

evidently loses a speed gain. Therefore, in the simulation studies and real

data analysis, our approach is the most time-consuming.

Therefore, driven by the potential computational burden associated

with characteristic distance, in high-dimensional settings, we only discuss

the cases of n = m = 50, 70, 90 and p = 50, 100. Also, considering the

trends in empirical size and power of different tests, which are already vis-

ible in the above simulation settings, we did not consider scenarios where

the sample size and the dimension are much lager.

Although computational complexity does play an important role in

practical implementation, we opt not to pursue this further in this arti-

cle. In future work, the authors will strive to improve the shortcomings in

computational complexity.
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6. Discussion

In this paper, we introduce a new two sample test, which is very useful

in high-dimensional distance inference. The new metric proposed in this

paper has several appealing features, including a zero distance that charac-

terizes the homogeneity between two random vectors, as well as consistency

against any alternative hypothesis. The simulation results show that the

proposed test performs better in most cases. The study of acute lym-

phoblastic leukemia data and benchmark data sets further illustrates the

feasibility and practicability of the proposed test procedure.

Besides the homogeneous test problems, our proposed method can also

be applied to other issues. For example, the goodness-of-fit test, clustering,

change-point detection, and so on. We expect the characteristic distance

to be more effective for these statistical problems.

Supplementary Materials

Additional supporting materials can be found in the Supplementary Mate-

rials, including proof of the theoretical results presented in Sections 2-4, as

well as some additional simulation results.
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