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Abstract:

Identifying changes between two networks, also referred to as differential network

analysis, has brought new insights to many biological applications. A lot of

progress has been made in the development of statistical inference tools for

detecting changes between two networks, with most work focused on testing

whether two networks are exactly the same, or whether there is an edge that

is missing in one network but present in another. However, in many scientific

settings, it is often more interesting to identify nodes that have different conditional

dependency structures between two networks, which we refer to as differential hub

nodes. In this paper, we propose an inferential framework to test whether there is

at least one differential hub node in a differential Gaussian graphical model. As a

by-product, our proposed test statistic can also be used to test the hypothesis

on whether there is a differential edge and construct a confidence interval for

the corresponding differential edge. Theoretically, we show that the proposed

method yields an asymptotic valid test and that the type II error decreases to zero
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asymptotically. The proposed method is applied to both simulated data and the

Genotype-Tissue Expression (GTEx) data to evaluate whether gene regulatory

networks between males and females for different tissues are different.

Key words and phrases: Differential network; Gaussian multiplier bootstrap;

hypothesis testing; maximum degree.
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1. Introduction

Undirected graphical models have been used extensively for modeling conditional dependence

relationships among a set of random variables in many scientific domains (Markowetz and

Spang, 2007; Rubinov and Sporns, 2010). An undirected graph consists of d nodes and a set

of edges: each node represents a random variable, and an edge between two nodes indicates

that the corresponding two random variables are conditionally dependent, conditioned on all the

other variables. Given a number of independent and identically distributed random samples,

many methods were proposed to estimate a sparse undirected graphical model under various

assumptions on the random variables (Meinshausen and Bühlmann, 2006; Friedman et al., 2008;

Cai et al., 2011; Lee and Hastie, 2015; Tan et al., 2016; Yang et al., 2018). We refer the reader

to Drton and Maathuis (2017) for a review on recent developments of estimating an undirected

graph.

In many applications, the primary interest is not in estimating a particular network, but in

assessing whether there are any differences between two undirected graphs or networks. The set

of changes or differences between two networks is often referred to as the differential network

(Shojaie, 2020). Differential network analysis has been considered in many scientific disciplines

such as genomics and neuroscience (Ideker and Krogan, 2012; Jackson et al., 2016). For instance,

in the context of genomics, one may collect gene expression measurements for a set of normal

tissue samples and a set of cancer tissue samples. Locating differentially connected nodes between

gene regulatory networks of healthy individuals and cancer patients can help researchers focus on

potential genes that will lead to an understanding of the underlying disease mechanism (Ideker

and Krogan, 2012; Ha et al., 2015).

Existing work on estimating differential networks can be grouped into three different

approaches. The first approach is to estimate each network separately using methods for
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constructing sparse undirected graphical models and construct the differential network by taking

the difference between the two estimated networks. However, such an approach relies on the

assumption that each of the true underlying networks must be sparse, which may be restrictive

for many applications (Meinshausen and Bühlmann, 2006; Cai et al., 2011). The second approach

is to jointly estimate the two networks by assuming that the two networks share some similar

conditional dependencies structure. This can be done by incorporating a group lasso or fused

lasso type penalties to encourage the two networks to have similar edge sets (Mohan et al., 2014;

Danaher et al., 2014; Ma and Michailidis, 2016). The third approach estimates the differential

network directly and imposes the sparsity assumption on the differential network, i.e., such an

approach allows each of the networks to be dense (Zhao et al., 2014; Liu et al., 2014; Kim et al.,

2021). We refer the reader to Shojaie (2020) for a review of various approaches for estimating

differential networks.

While estimation procedures are well-developed for estimating differential networks, statis-

tical inference methods for differential networks are relatively lacking. In the context of a single

undirected graph, various methods were developed for inferring whether there is an edge between

two nodes, i.e., whether two random variables are conditionally independent given the others

(Jankova and Van De Geer, 2015; Janková and van de Geer, 2017; Ren et al., 2015; Tan et al.,

2016; Xia and Li, 2017; Yang et al., 2018; Yu et al., 2020). Related ideas have been generalized

to the context of differential networks, but most methods rely on separate estimations of each

network (Xia et al., 2015; Liu et al., 2017; Cai et al., 2019). Moreover, the aforementioned work

mainly focuses on testing whether two networks are exactly the same, or whether an edge is

present between two nodes in both networks.

We instead consider the problem of testing whether there exists a hub node in a differential

network, i.e., nodes that exhibit substantial variations in their connectivity between two networks.
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Figure 1: An illustration of a 5-hub (red node) of a brain network and a
genomic network.

In specific, given a graph G = (V,E), the degree of a node j ∈ V is the number of edges connected

to j, i.e., deg(j) = |{j ∈ V | (i, j) ∈ E}| and a k-hub is a node with degree larger than k.

Identifying hub nodes in a differential network is crucial to many biological scientific applications.

For instance, in the context of genomics, there may be mutated genes that lead to uncontrolled

cell growth that causes cancer, and such genes tend to have significantly different interactions

with other genes between networks for healthy and cancer subjects (Chalhoub and Baker, 2009;

Mohan et al., 2014). In the context of neuroscience, the brain connectivity network for patients

with Alzheimer’s disease was shown to be significantly different from that of healthy subjects,

and such differences between the two brain networks are hypothesized to be potentially due to

disruptions of several hub brain regions (Li et al., 2016; Kundu et al., 2019). Various methods

were developed for estimating a network or a differential network with hubs (Mohan et al., 2014;

Tan et al., 2014; Sulaimanov et al., 2019; Kim et al., 2019). On the other hand, statistical

inference procedure for testing the existence of hub nodes is relatively lacking, except the work

of Neykov et al. (2019), Lu et al. (2017), Neykov and Liu (2019), and Tan et al. (2021) in the

context of Gaussian graphical models, Ising models, and time-varying Gaussian graphical models,

respectively.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0298



Let ∆ ∈ Rd×d be the parameter matrix that encodes the difference between two networks.

That is, ∆jk = 0 if and only if both networks have the same conditional dependency structure

between the jth and kth random variables, and vice versa. Let ∆•j be the jth column of ∆. In

this paper, we develop a hypothesis testing framework for testing whether there are any hub

nodes in a differential graph based on the method proposed in Zhao et al. (2014) for two sets of

d-dimensional multivariate Gaussian random variables. In particular, we are interested in testing

H0 : max
j

∥∆•j∥0 ≤ k versus H1 : max
j

∥∆•j∥0 > k, (1.1)

where k is a user-specified constant. Hypothesis testing problem (1.1) is a challenging problem

due to its combinatorial nature, and existing approaches for testing a single edge for graphical

models cannot be directly adapted to testing (1.1). Our proposed method generalizes existing

work on combinatorial inference to the context of the differential graph (Neykov et al., 2019;

Lu et al., 2017; Neykov and Liu, 2019; Tan et al., 2021). As a by-product, hypothesis test for

entrywise changes in the differential network is also developed for the method of Zhao et al.

(2014):

H0,jk : ∆jk = 0 versus H1,jk : ∆jk ̸= 0. (1.2)

Our method complements existing procedures on hypothesis testing for differential networks

(Xia et al., 2015; Liu et al., 2017; Cai et al., 2019).

Specifically, given the estimation framework in Zhao et al. (2014), we provide a statistical

inference framework and theory for testing whether there is a differential hub between two

networks. The main idea includes constructing a debiased estimator, proving that the debiased

estimator is asymptotically normal, and proposing an algorithm that is statistically valid for

testing (1.1). In Section 2, we provide a brief review of Gaussian differential graph in Zhao
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et al. (2014). Our proposed inferential framework is detailed in Section 3. Section 4 contains the

theoretical results for the proposed framework. We conclude with some numerical studies and

data application in Section 5, and a discussion section.

Notation: For n ∈ N, we use the shorthand notation [n] = {1, 2, . . . , n}. For a matrix A,

we use Aj• and A•k to denote the jth row and kth column of A, respectively. Let λmax(A)

and λmin(A) be the maximum and minimum eigenvalue of the matrix A, respectively. Let

∥A∥max = maxjk |Ajk|, ∥A∥1,1 =
∑
j,k |Ajk|, and ∥A∥q = sup∥x∥q=1 ∥Ax∥q. In addition,

we denote the induced ℓq-norm of a matrix as ∥A∥1 = maxk
∑
j |Ajk|, ∥A∥2 = σmax(A),

and ∥A∥∞ = maxj
∑
k |Ajk|, where σmax(A) is the largest singular value of A. For a sub-

Gaussian variable X, we define the sub-Gaussian norm of X as ∥X∥ψ1 = supp≥1 p
− 1

2 (E|X|p)
1
p .

And for a sub-exponential variable X, we define the sub-exponential norm of X as ∥X∥ψ2 =

supp≥1 p
−1(E|X|p)

1
p . We denote Φ(x) as the cumulative distribution function of a standard

normal random variable. For a sequence of random variables Xn and a random variable X, we

write Xn ⇝ X if Xn converges in distribution to X.

2. A Brief Review on Estimating a Gaussian Differential Network

In this section, we provide a brief review of previous approaches to estimating Gaussian differential

networks. Let X ∼ Nd(0,ΣX) and Y ∼ Nd(0,ΣY ) be two d-dimensional random variables,

where ΣX and ΣY are the d× d covariance matrices for the two d-dimensional vectors X and

Y , respectively. For notational convenience, we denote ΘX = (ΣX)−1 and ΘY = (ΣY )
−1 as

the corresponding inverse covariance matrices of X and Y , respectively. Under the Gaussian

assumption, ΘX,jk = 0 if and only if there is an edge between Xj and Xk. In other words, the

inverse covariance matrices ΘX and ΘY encode the conditional dependence relationships among
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the random variables X and Y , respectively. Thus, under the Gaussian assumption on X and

Y , the differential network is defined as the difference between the two precision matrices, i.e.,

∆ = ΘY −ΘX .

A natural way to estimate a differential network under the Gaussian assumption on X

and Y is by minimizing the negative log-likelihood with some form of regularizations on the

parameter of interest to encourage sparsity or similarity between two networks. Let X1, . . . ,XnX

and Y1, . . . ,YnY be nX and nY random samples of X and Y , respectively. Moreover, let

Σ̂X = n−1
X

∑nX
i=1 XiX

T
i and Σ̂Y = n−1

Y

∑nY
i=1 YiY

T
i be the sample covariance matrices for X

and Y , respectively. Then, a differential graph can be estimated by solving the optimization

problem:

minimize
ΘX ,ΘY

− log det(ΘX)− log det(ΘY ) + tr(Σ̂XΘX) + tr(Σ̂YΘY ) + Pλ(ΘX ,ΘY ),

where Pλ(ΘX ,ΘY ) is a penalty function on the parameters ΘX and ΘY . One naive approach

is to estimate each network separately by adding the lasso penalty to encourage sparsity, i.e., by

setting Pλ(ΘX ,ΘY ) = λ1∥ΘX∥1,1 + λ2∥ΘY ∥1,1 (Meinshausen and Bühlmann, 2006; Yuan and

Lin, 2007; Friedman et al., 2008). Another approach is to employ a fused lasso type penalty to

encourage the two networks to be similar (Mohan et al., 2014; Danaher et al., 2014; Ma and

Michailidis, 2016). However, the aforementioned approaches assume sparsity on both ΘX and

ΘY . Such approaches limit the application of differential network analysis for problems with

potentially dense networks such as brain connectivity networks.

In this paper, we focus on the proposed method in Zhao et al. (2014) in which the differential

network is estimated directly, and thus allowing ΘX and ΘY to be dense as long as the differential

network ∆ is sparse. The main crux of their proposed method relies on the observation that
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ΣX∆ΣY − (ΣX −ΣY ) = 0. Thus, to obtain an estimate of ∆, Zhao et al. (2014) proposed to

solve the following optimization problem:

∆̂ = argmin ∥∆∥1,1, such that ∥Σ̂X∆Σ̂Y − (Σ̂X − Σ̂Y )∥max ≤ λ, (2.1)

where λ is a sparsity tuning parameter that encourages the estimated ∆ to be sparse. Optimiza-

tion problem (2.1) can be solved using a linear programming method, and we refer the reader to

Zhao et al. (2014) for details.

3. Statistical Inference

3.1 Inference on a Single Edge

In this section, we consider testing a prespecified component in ∆ as in hypothesis testing

problem (1.2):

H0,jk : ∆jk = 0 versus H1,jk : ∆jk ̸= 0.

Due to the max-norm constrained in (2.1), the estimator is no longer asymptotically normal,

and test statistics based on ∆̂ are no longer valid. To address this issue, we construct a debiased

estimator for ∆̂ that can be shown to be asymptotically normal. Similar ideas have been

considered in the context of graphical models for testing whether there is an edge between two

nodes (Jankova and Van De Geer, 2015; Janková and van de Geer, 2017; Ren et al., 2015; Tan

et al., 2016; Yang et al., 2018; Xia and Li, 2017; Xia et al., 2015; Liu et al., 2017; Cai et al.,

2019).

Motivated by Neykov et al. (2018), we construct a debiased estimator for ∆̂ obtained from
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3.1 Inference on a Single Edge

solving (2.1):

vec(∆̂d) = vec(∆̂)−V{(Σ̂X ⊗ Σ̂Y )vec(∆̂)− vec(Σ̂X − Σ̂Y )}

where V = VX ⊗ VY ∈ Rd
2×d2 can be interpreted as a bias correction matrix. The above

equation can be rewritten as

∆̂d = ∆̂−VY {Σ̂Y ∆̂Σ̂X − (Σ̂X − Σ̂Y )}VT
X , (3.1)

where VX ∈ Rd×d and VY ∈ Rd×d are to be defined in (3.4) later in this section. We now

provide an intuition for establishing asymptotic normality of the debiased estimator ∆̂d in (3.1).

Through some algebraic manipulations, ∆̂d −∆ can be partitioned into two terms, the

leading term and the remainder term, i.e., ∆̂d −∆ = Leading + Remainder, where

Leading = (VY −∆)
(
Σ̂X −ΣX

)
VT
X −VY

(
Σ̂Y −ΣY

)
(VX +∆)T ; (3.2)

Remainder ={(∆̂−∆)−VY Σ̂Y (∆̂−∆)(VXΣ̂X)T } −VY (Σ̂Y −ΣY )∆(Σ̂X −ΣX)VT
X

−VY (Σ̂Y −ΣY )∆(VXΣX − I)T − (VYΣY − I)∆(Σ̂X −ΣX)VT
X .

(3.3)

The key idea is to show that the leading term (3.2) is asymptotically normal and the remainder

term (3.3) converges to zero in probability. From (3.3), we see that the remainder term converges

to zero only if VXΣ̂X ≈ I and VY Σ̂Y ≈ I. Intuitively, we can construct the bias correction

matrices VX and VY such that the difference between VXΣ̂X and I, and VY Σ̂Y and I to be

small. However, the leading term depends also on VX and VY , and is challenging to analyze
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3.1 Inference on a Single Edge

due to the dependency between VX and Σ̂X , and VY and Σ̂Y , respectively.

The aforementioned challenge motivates the following sample splitting procedure for con-

structing VX and VY . Such a sample splitting procedure was also considered in Ma et al. (2021)

in the context of performing inference on a single Gaussian graphical model. For notational

simplicity, we assume that nX = nY = 2n, where n is a positive integer. The main crux is to

split the data into two parts D1 and D2, each of which consists of n independent samples for

both random variables X and Y . We use the first data set D1 to estimate the sample covariance

matrices Σ̂X and Σ̂Y , which are then used to estimate ∆̂ by solving the optimization problem

in (2.1). Then, we use the second data set D2 to estimate Σ̂′
X and Σ̂′

Y , which are then used to

estimate VX and VY by solving the following optimization problems:

VX = argmin ∥U∥∞, such that ∥UΣ̂′
X − I∥max ≤ λ′,

VY = argmin ∥Z∥∞, such that ∥ZΣ̂′
Y − I∥max ≤ λ′,

(3.4)

where λ′ is a tuning parameter that gives the approximation errors of VXΣ̂′
X and VY Σ̂

′
Y for

estimating I. In other words, the correction matrices VX and VY depend only on the covariance

matrices Σ̂′
X and Σ̂′

Y constructed using D2, and thus VX and VY are independent of Σ̂X and

Σ̂Y . With such a choice for VX and VY , the leading term can then be viewed as an empirical

process type quantity that can be shown to be asymptotically normal. In particular, we will

show in Section 4.1 that
√
n(∆̂d

jk − ∆jk) ⇝ N(0, ξ2jk), where ξ2jk is the asymptotic variance

defined in (4.3) in Section 4.1.

Let ξ̂jk be an estimator for ξjk defined in (4.5). Based on the above result on the asymptotic

normality of ∆̂d
jk, for a given significance level 0 < α < 1, we construct the following test statistic

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0298



3.1 Inference on a Single Edge

to test the hypothesis testing problem (1.2):

Tjk(α) =


1, |

√
n∆̂d

jk/ξ̂jk| > Φ−1
(
1− α

2

)
,

0, otherwise,

(3.5)

where Φ(·) is the cumulative distribution function of a standard normal distribution. Moreover,

we construct a (1− α)% confidence interval as

Ijk(α) = [∆̂d
jk − η(α, n), ∆̂d

jk + η(α, n)], where η(α, n) =
ξ̂jk√
n
Φ−1

(
1− α

2

)
. (3.6)

We will show in Section 4.1 that under the null hypothesis (1.2), the type I error of Tjk(α)

converges to α, and the confidence interval in (3.6) is asymptotically valid. The overall procedure

for conducting the hypothesis test for (1.2) is summarized in Algorithm 1.

Algorithm 1 Proposed method for testing H0 : ∆jk = 0.

Input: significance level α, tuning parameters λ and λ′, and the data D1

and D2.
Step 1: Construct two sets of covariance matrices: Σ̂X and Σ̂Y using
data from D1; and Σ̂′

X and Σ̂′
Y using data from D2.

Step 2: Obtain ∆̂ from solving (2.1) using data from D1.
Step 3: Obtain the bias correction matrices VX and VY in (3.4) using
data from D2.
Step 4: Construct the debiased estimator ∆̂d

jk in (3.1).

Step 5: Calculate ξ̂jk defined in (4.5).

Step 6: Reject H0 : ∆jk = 0 if |
√
n∆̂d

jk/ξ̂jk| > Φ−1(1− α/2).
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3.2 Inference on Maximum Degree

3.2 Inference on Maximum Degree

In this section, we turn to testing hypothesis problem (1.1):

H0 : max
j

∥∆•j∥0 ≤ k versus H1 : max
j

∥∆•j∥0 > k,

where k is a user-specified constant, usually based on the scientific context. Due to the

combinatorial nature of the testing problem, the debiased estimator (3.1) cannot be directly

applied to test the aforementioned problem. To this end, we propose an inferential method for

testing problem (1.1). Our method generalizes existing work on testing combinatorial graph

structure in the context of a single graphical model (Neykov et al., 2019; Lu et al., 2017; Neykov

and Liu, 2019; Tan et al., 2021).

Let E ⊆ V × V be an edge set of the differential graph defined by ∆. We first construct

the following test statistic:

TE = max
(j,k)∈E

√
n(∆̂d

jk −∆jk). (3.7)

We then approximate the distribution of TE using the Gaussian multiplier bootstrap (Cher-

nozhukov et al., 2013). Recall from (3.2) and (3.3) that ∆̂d−∆ can be decomposed as the sum of

a leading term in (3.2) and a remainder term in (3.3). Since the remainder term converges to zero

in probability, it suffices to obtain a good approximation to the leading term. To approximate

the leading term, for i = 1, . . . , n in D1, we propose the following bootstrap statistic

TBE = max
(j,k)∈E

1√
n

n∑
i=1

{(VY − ∆̂)j•
(
XiX

T
i − Σ̂X

)
VT
X,k• −VY,j•

(
YiY

T
i − Σ̂Y

)
(VX + ∆̂)Tk•}ξi,

(3.8)

where ξ1, . . . , ξn
iid∼ N(0, 1), ∆̂ is an estimator obtained from solving (2.1) using data from D1,
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and VX and VY are the bias correction matrices obtained from solving (3.4) using data from

D2. Let

c(α,E) = inf{t ∈ R
∣∣∣P(|TBE | > t|D1) ≤ α} (3.9)

be the α-quantile of the bootstrap statistic TBE given the data from D1, which can be calculated

using Monte-Carlo. In Section 4.2, we will show theoretically that, conditioned on the data D2,

the quantile of TE can be estimated accurately by the quantile of the bootstrap statistic TBE .

We now propose a method for testing (1.1) in Algorithm 2, i.e., whether the maximum

degree of the differential graph is less than or equal to a pre-specified number k. The main

crux of our proposed method is to compute the conditional quantile c(α,E) using the bootstrap

statistic, and construct a rejected edge set for edges with test statistics that are larger than

the conditional quantile. Then, the maximum degree of the rejected edge set is calculated and

the null hypothesis is rejected if the maximum degree of the rejected edge set is larger than k.

We will show that the aforementioned method leads to a valid test for hypothesis problem (1.1)

in Section 4.2. Besides the maximum degree, our proposed method can also be used to test

other combinatorial graph structures such as the number of connected subgraphs, the size of the

longest chain, and the number of isolated nodes. We refer the reader to Neykov et al. (2019)

and Lu et al. (2017) for details on other graph structures.

4. Theoretical Results

In Section 4.1, we establish the asymptotic normality of the debiased estimator ∆̂d in (3.1). We

then show that Algorithm 1 is a valid test. In particular, under the null hypothesis (1.2), the

type I error of the test statistic Tjk(α) in (3.5) converges to α, and the confidence interval in

(3.6) is asymptotically valid. In Section 4.2, we show that the conditional quantile c(α,E) of the

Gaussian multiplier bootstrap TBE in (3.7) is a consistent estimator of the quantile of TE . We
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4.1 Asymptotic Normality of the Debiased Estimator (3.1)

Algorithm 2 Method for testing maximum degree H0 : maxj ∥∆•j∥0 ≤ k.

Input: type I error α, pre-specified degree k, debiased estimator ∆̂d, edge
set E = {(i, j) ∈ V × V | i ̸= j}
Step I: Compute the conditional quantile c(α,E) = inf{t ∈ R |P(|TB

E | >
t|D1) ≤ α}.
Step II: Construct the rejected edge set R = {e ∈ E |

√
n(∆̂d

e −∆e) >
c(α,E)}.
Step III: Compute the maximum degree drej of the graph based on the
rejected edge set.
Output: Reject the null hypothesis if drej > k.

then show that the proposed method in Algorithm 2 for testing hypothesis testing problem (1.1)

is a valid test. Throughout the section, we study the asymptotic regime in which n, d, and s are

allowed to increase.

4.1 Asymptotic Normality of the Debiased Estimator (3.1)

We start with the asymptotic normality of ∆̂d. Motivated by Zhao et al. (2014), we consider

the following family of true differential graphs:

U(M, s) =
{
∆ ∈ Rd×d

∣∣ ∑
j∈[d]

∥∆•j∥0 ≤ s, ∥∆∥1 ≤ M
}
, (4.1)

where s < n and M is a constant that does not depend on n, s, and d. The family of differential

graphs we consider in (4.1) requires only that the differential graph is sparse and that each of

the inverse covariance matrices can be dense. This is particularly useful in applications such as

brain connectivity networks where each network is usually very dense. As suggested in Zhao

et al. (2014), the aforementioned is the primary advantage over estimating the differential graph

by estimating the inverse covariance matrices separately and taking the difference, in which
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4.1 Asymptotic Normality of the Debiased Estimator (3.1)

sparsity on each inverse covariance matrix is required.

Next, we impose a condition on the population covariance and inverse covariance matrices

adapted from Zhao et al. (2014). We refer the reader to Zhao et al. (2014) for further details on

the interpretation of Assumption 1.

Assumption 1. Assume that ∥ΣX∥2 = O(1), ∥ΣY ∥2 = O(1), ∥ΘX∥1 = O(1), and ∥ΘY ∥1 =

O(1). Moreover, assume that

4max{max
j

ΣX,jj ,max
j ̸=k

|ΣX,jk|,max
j

ΣY,jj ,max
j ̸=k

|ΣY,jk|} ≤ σSmin(2s)
−1,

where σSmin = minj,k{ΣX,jjΣY,jj ,ΣX,jjΣY,kk + 2ΣY,kjΣX,jk +ΣX,kkΣY,jj}.

Under Assumption 1, the following theorem establishes the asymptotic normality of the

debiased estimator ∆̂d in Theorem 4.1.

Theorem 4.1. Assume that Condition 1 holds and that ∆ ∈ U(M, s). Moreover, assume

the scaling conditions (s log d)/
√
n = o(1) and log6 d/n = o(1). Let λ = C

√
log d/n and

λ′ = C′√log d/n, where C and C′ are some sufficiently large constants. Then, conditional on

D2,

√
n(∆̂d

jk −∆jk)/ξjk ⇝ N(0, 1), ∀j, k ∈ [d], (4.2)

where

ξ2jk = {(VY −∆)j•ΣX(VY −∆)Tj•}(VX,k•ΣXVT
X,k•) + {}(VY −∆)j•ΣXVT

X,k•}2

+ (VY,j•ΣYV
T
Y,j•){(VX +∆)k•ΣY (VX +∆)Tk•}+ {VY,j•ΣY (VX +∆)Tk•}2

(4.3)

is the asymptotic variance of ∆̂d
jk.
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4.1 Asymptotic Normality of the Debiased Estimator (3.1)

By the Edgeworth expansion (Hall, 2013), we further have the convergence rate of the

asymptotic normality

sup
t

|P{
√
n(∆̂d

jk −∆jk)/ξjk ≤ t} − Φ(t)
∣∣∣ = O(1/

√
n). (4.4)

The asymptotic variance ξ2jk in (4.3) depends on population quantities of ∆, ΣX , and ΣY and

need to be estimated. Let

ξ̂2jk = {(VY − ∆̂)j•Σ̂X(VY − ∆̂)Tj•}(VX,k•Σ̂XVT
X,k•) + {(VY − ∆̂)j•Σ̂XVT

X,k•}2

+ (VY,j•Σ̂YV
T
Y,j•){(VX + ∆̂)k•Σ̂Y (VX + ∆̂)Tk•}+ {VY,j•Σ̂Y (VX + ∆̂)Tk•}2

(4.5)

be the estimated variance by substituting ΣX , ΣY and ∆ with Σ̂X , Σ̂Y and ∆̂, respectively.

In the following lemma, we show that (4.5) is a consistent estimator of (4.3).

Lemma 4.2. Under the same conditions as in Theorem 4.1, we have ξ̂jk/ξjk
p→ 1.

Combining the results in Lemma 4.2 and Theorem 4.1 with Slutsky’s theorem, we have the

following corollary on the validity of the test statistic (3.5) and confidence interval in (3.6).

Corollary 4.3. Under the same conditions as in Theorem 4.1, we have

√
n(∆̂d

jk −∆jk)/ξ̂jk ⇝ N(0, 1), ∀j, k ∈ [d]. (4.6)

Moreover, under the null hypothesis (1.2), the type I error of (3.5) is asymptotically α and the

confidence interval in (3.6) is asymptotically valid, i.e.,

lim
n→∞

P∆jk=0{Tjk(α) = 1} = α and lim
n→∞

P{∆jk ∈ Ijk(α)} = 1− α.
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4.2 Asymptotic Validity of the Inferential Method in Algorithm 2

4.2 Asymptotic Validity of the Inferential Method in Algorithm 2

In this section, we show that the conditional α-quantile of the Gaussian multiplier bootstrap

statistic TBE provides a good approximation to the distribution of TE . We then show that the

proposed inferential method in Algorithm 2 is valid for testing (1.1):

H0 : max
j

∥∆•j∥0 ≤ k versus H1 : max
j

∥∆•j∥0 > k.

That is, the proposed method in Algorithm 2 yields a type I error that is controlled at a

pre-specified level α.

We start with the following theorem that establishes the validity of the proposed Gaussian

multiplier bootstrap, conditional on the data D2 used for obtaining VX and VY .

Theorem 4.4. Assume that the conditions in Theorem 4.1 hold. Conditional on D2 and

under the scaling conditions s2{log(dn)}4/n = o(1) and {log(dn)}7/n = o(1), for any edge set

E ⊆ V × V , we have

lim
n→∞

sup
∆∈U(M,s)

P{ max
(j,k)∈E

√
n(∆̂d

jk −∆jk) > c(α,E)} ≤ α. (4.7)

The scaling conditions in the above theorem is stronger than that of the conditions in

Theorem 4.1, and is primarily needed to show the consistency of the Gaussian multiplier bootstrap.

The conditions are similar to that of Neykov et al. (2019), which arises from the high-dimensional

central limit theorem in Chernozhukov et al. (2013). We now show that our testing framework

in Algorithm 2 is asymptotic valid.

To this end, we denote the range of the maximum degree I as [IL, IU ], the default of

which is [0, d− 1]. Furthermore, let G(∆) be the graph induced by the support of ∆, and let
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4.2 Asymptotic Validity of the Inferential Method in Algorithm 2

I(∆) = I(G(∆)) be the maximum degree of the induced graph. Then, we define the parameter

space as

UM,s(IL, IU ) = {∆ ∈ U(M, s)|I(∆) ∈ [IL, IU ]}.

Moreover, denote the edge set as ESig(∆, µ) = {(j, k)||∆jk| ≥ µ
√

log d/n}, where µ is a cut-off

level parameter. Coupling Theorem 4.4 with Theorems 4.1 and 4.6 in Lu et al. (2017), we have

the following theorem that shows that the family-wise error is controlled at level α and that the

type II error is asymptotically zero.

Corollary 4.5. Assume the conditions in Theorems 4.1 and 4.4. Given I(∆), the proposed

inferential framework in Algorithm 2 for testing hypothesis problem (1.1) has the following

property:

lim sup
n→∞

sup
∆∈UM,s(IL,IU )

P∆

(
∃k ≥ I(∆) such that H0 is rejected

)
≤ α.

Moreover, for any sufficiently large µ, the expected number of type II error satisfies

lim
n→∞

E∆{I(∆)− drej} ≤ I(∆)− I{ESig(∆, µ)},

where drej is as defined in Algorithm 2.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0298



5. Simulation Studies

5.1 Inference on a Single Edge

In this section, we perform numerical studies to assess the performance of our proposed inferential

method for testing the hypothesis:

H0,jk : ∆jk = 0 versus H0,jk : ∆jk ̸= 0.

In particular, we construct the test statistic and confidence interval for ∆jk as defined in

(3.5) and (3.6), respectively. We compare our proposed method with the naive method and

the cross-fitting method. For the naive method, we construct the debiased estimators Θ̂d
X

and Θ̂d
Y separately using (S.34) in Lu et al. (2017), and take the difference (Θ̂d

Y − Θ̂d
X). We

refer the reader to Lu et al. (2017) for details. For the cross-fitting method, in addition to

obtain estimation ∆̂(1) using data from D1 and bias correction matrices V
(1)
X and V

(1)
Y using

data from D2 to construct the debiased estimator ∆̂d,(1) from Algorithm 1, we also get the

estimation ∆̂(2) using data from D2 and bias correction matrices V
(2)
X and V

(2)
Y using data from

D1 to construct the debiased estimator ∆̂d,(2). The final debiased estimator ∆̂d is defined as

∆̂d = (∆̂d,(1) + ∆̂d,(2))/2.

Let S = supp(∆) be the support of the true differential graph ∆ and let Sc be the

complement of S. To evaluate our proposed test statistic, we report the type I error and type II

error: the type I error is estimated by calculating the proportion of the constructed confidence

intervals Ijk for (j, k) ∈ Sc that do not contain zero, and type II error is estimated as the

proportion of constructed confidence intervals Ijk for (j, k) ∈ S that contain zero. In addition,

we calculate the average length of the confidence intervals over S and Sc and denote them as
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5.1 Inference on a Single Edge

AvglenS and AvglenSc , respectively.

To generate the data, we first construct ΘX and ∆. We consider two scenarios for sparse

and dense ΘX . For sparse and dense ΘX , we generate ΘX by setting the diagonal elements equal

to one and each off-diagonal element to −0.5 with probability 0.15 and 0.3, respectively. For ∆, to

evaluate the influence of its sparsity on the performance, we define SP as the sparsity probability

and the off-diagonal element of ∆ is set to be -1 with probability SP. Finally, we add ρI to

ΘX and ΘY so that they are positive definite, i.e., ρ = 0.5 + max(0,−λmin(ΘX),−λmin(ΘY )),

where λmin(ΘX) and λmin(ΘY ) are the minimum eigenvalues of ΘX and ΘY , respectively.

For both the sparse and dense models, we generate n training samples from the multivariate

normal distribution with mean zero and covariance matrices ΣX and ΣY , respectively. Note

that the total number of parameters to be estimated is O(d2), and throughout this section, we

let p = d2 for notational convenience. To implement our proposed method in Algorithm 1, we

use (n/2) samples to estimate ∆̂ in (2.1), and use the rest of the (n/2) samples to estimate

VX and VY as in (3.4). The tuning parameters λ and λ′ are set to equal
√

log d/(n/2) and√
log d/(n/2), respectively. We then construct the test statistic and confidence interval based

on (3.5) and (3.6).

Figures 2 and 3 report the type I error, type II error, and average length of the confidence

intervals over S and Sc for the sparse model when n = 800 and p = 3600. We can find that

even in the sparse model setting, only our proposed estimator is able to control the type I error

at around α = 0.05 with minimal type II error. The Type I errors for the naive method and

cross-fitting are around 0.08 and 0.06, which are larger than 0.05. In addition, as SP increases

from 0.005 to 0.025, the type I error, type II error, and the average length of confidence intervals

over S and Sc also increase on average. Furthermore, the additional numerical results for

n = {400, 600, 800}, p = {1600, 3600}, and SP = {0.005, 0.01, 0.015, 0.02, 0.025} under the sparse
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5.2 Inference on Maximum Degree

Figure 2: Type I errors and Type II errors for the sparse model when
n = 800 and p = 3600, averaged over 100 replications.

and dense models are presented in the supplement.

5.2 Inference on Maximum Degree

In this section, we conduct numerical studies to assess the performance of the proposed testing

procedure in Algorithm 2 for testing hypothesis problem (1.1). We consider the scenario in

which ΘX and ΘY are generated similar to that of Section 5.1. We generate multiple differential

networks ∆ such that the maximum degree, m, is larger than or not larger than k, where k

is a pre-specified constant in (1.1). Specifically, we construct ∆ with maximum degree m by
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5.2 Inference on Maximum Degree

Figure 3: The average length of the confidence intervals over S and Sc for
the sparse model when n = 800 and p = 3600, averaged over 100 replications.

generating an m-star graph as depicted in Figure 4. The values of the corresponding edges are

set to equal ∆jk = −1 if there is an edge between the jth and kth variables. To calculate the

type I error, we calculate the proportion of the rejected null hypothesis (1.1) when the maximum

degree of ∆ is not larger than k. On the other hand, we estimate the type II error by calculating

the proportion of the null hypothesis that is not rejected when the maximum degree m is in fact

larger than k.

The results for n = {400, 600, 800}, p = 3600, k = 5, and m ∈ {3, 4, . . . , 8} are presented in

Table 1. We see from Table 1 that our proposed method is able to control the type I error at
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5.3 Data Application

Figure 4: An m-star graph with maximum degree m and (d−m−1) isolated
nodes.

less than α = 0.05, and that the type II error decreases to zero as we increase the sample size n

for both scenarios when the model is sparse and dense.

Table 1: The type I and type II errors for our proposed method, calculated
over 500 replications.

Model Estimator p n Type I Error Type II Error
Sparse proposed method 3600 400 0.000 0.567
Sparse proposed method 3600 600 0.030 0.086
Sparse proposed method 3600 800 0.019 0.004
Dense proposed method 3600 400 0.000 0.630
Dense proposed method 3600 600 0.016 0.198
Dense proposed method 3600 800 0.016 0.039

5.3 Data Application

We now apply our proposed method to the Genotype-Tissue Expression (GTEx) data studied in

Lonsdale et al. (2013). The GTEx project began with a 2.5-year pilot phase to study tissue-
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5.3 Data Application

specific gene expression and regulation. The data was collected from 54 non-diseased tissue sites

across 549 research subjects. We focus mainly on analyzing the breast mammary and muscle-

skeletal tissues. To begin, we transform the expression counts by taking a log-transformation,

and the resulting log-transformed counts for each gene is standardized to have mean zero and

unit variance. We then employ the method in Gershoni and Pietrokovski (2017) to compute the

sex-differential expression (SDE) protein-coding genes for each tissue.

For each tissue, we choose d = 40 SDE protein-coding genes with the lowest SDE test

p-values for further analysis. The goal is to perform inference on the estimated sexual dimorphism

differential graphs between males and females for the two aforementioned breast and muscle

tissues. We are interested in testing whether there exist nodes whose interactions with other

nodes vary significantly between female and male networks for each tissue. In particular, we test

whether the maximum degree of the differential graph is larger than 10% of the total number

of nodes, i.e., k = 4 since d = 40. Our proposed method involves selecting a tuning parameter,

which we select using cross-validation. This yields λ = 1.5 for the breast mammary tissue and

λ = 5.0 for the muscle skeletal tissue. We then construct the debiased estimator in (3.1) and

employ Algorithm 2 to test the aforementioned hypothesis problem.

In Figure 5, we present the rejected edge set resulting from Algorithm 2 for the sexual

dimorphism differential graphs for each of the two tissues. For the breast mammary tissue,

there are a total of nine rejected edges in the sexual dimorphism differential graph. The

maximum degree of the rejected edge set is six, and thus the null hypothesis is rejected. In

Figure 5(a), we see that the X-linked lysine demethylase 6A (KDM6A) has six rejected edges,

indicating that the conditional dependence relationships between KDM6A and the other nodes

vary significantly between female and male. Our results coincide with that of Berletch et al.

(2013) that KDM6A, a histone demethylase with female-biased expression, can be involved in
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(a) Breast mammary tissue (b) Muscle skeletal tissue

Figure 5: The rejected edge set from Algorithm 2 for the sexual dimorphism
differential graphs for breast mammary and muscle-skeletal tissues.

the etiology of developmental and reproduction-related effects of X chromosome anomalies.

For the muscle skeletal tissue, we see from Figure 5(b) that there are a total of 16 edges

in the rejected edge set from Algorithm 2. We see that the maximum degree is six, and thus

the aforementioned null hypothesis is rejected. Specifically, KDM6A has six rejected differential

edges and DEAD-Box Helicase 3 Y-Linked (DDX3Y) has five rejected edge set. Our results

match that of Sekiguchi et al. (2004), suggesting that both genes KDM6A and DDX3Y vary

between male and female networks, where DDX3Y is in the Y chromosome region encoding a

putative DEAD-box RNA helicase protein, a mutation that can result in male infertility and

Sertoli cell-only syndrome.

6. Discussion

In this manuscript, we have developed a statistical inference framework and theory for testing

whether there exist differential hub nodes that exhibit substantial variations in their connectivity

between two networks under the assumption that the data are multivariate normal. One future
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direction is to explore whether the proposed method can be generalized to the non-Gaussian

setting such as the exponential family graphical models (Yang et al., 2015) or a class of graphical

models under the score-matching loss (Yu et al., 2020). As one of the reviewers suggested, the

proposed method may also be applicable in the streaming data set-up in which data arrives

sequentially, and we leave it for future work.

Supplementary Material

The Supplementary Material contains technical proofs of all the theoretical results and additional

numeric results.
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