
Statistica Sinica Preprint No: SS-2023-0290 
Title Two Kernel-based Feature Screening Procedures for 

High-dimensional Response Data 
Manuscript ID SS-2023-0290 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202023.0290 

Complete List of Authors Yuke Shi,  
Na Li,  
Qizhai Li,  
Dongdong Pan and 
Jinjuan Wang 

Corresponding Authors Jinjuan Wang 
E-mails wangjinjuan@bit.edu.cn 



Statistica Sinica

Two Kernel-based Feature Screening Procedures for

High-dimensional Response Data

Yuke Shi1,2, Na Li3, Qizhai Li1,2, Dongdong Pan4, and Jinjuan Wang5,∗

1LSC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences.

2School of Mathematical Sciences, University of Chinese Academy of Sciences.

3School of Applied Science, Beijing Information Science and Technology University.

4School of Mathematics and Statistic, Yunnan University.

5School of Mathematics and Statistics, Beijing Institute of Technology.

∗Corresponding author. E-mail: wangjinjuan@bit.edu.cn.

Abstract:

We consider feature screening for high-dimensional response data without and

with the existence of confounding factors. First, we introduce kernel covariance

and kernel correlation for high-dimensional associaiton analysis, and further pro-

pose partial kernel covariance and partial kernel correlation that can handle situa-

tions with confounding factors. Then, based on the kernel correlation and partial

kernel correlation, we propose two feature screening procedures. Both screening

procedures possess sure screening property and ranking consistency property, and

are complementary to each other by respectively dealing with situations without

and with the existence of confounding factors. The proposed procedures make no
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assumptions on model, and are suitable for high-dimensional response variable

and non-Euclidean data. Extensive simulation results and a real data analysis

demonstrate the satisfying performances and advantages of the proposed proce-

dures over existing methods.

Key words and phrases: Feature screening, high-dimensional response variable,

kernel correlation, partial kernel correlation, confounding factors.

1. Introduction

High-dimensional responses are frequently encountered in feature screen-

ing analysis nowadays. For example, in both gene expression experiments

and genetic pleiotropic association studies that often search for disease-

associated genetic variants among hundreds of thousands of variants, the

responses are usually high-dimensional, which are expression levels of tens

of thousands of genes in the former analysis and are hundreds of human

complex traits in the latter study, respectively (Gratten and Visscher, 2016;

Zhang et al., 2017; Watanabe et al., 2019).

A good strategy to complete such searching is feature screening ac-

companied with association analysis. There exist many variable screening

procedures dealing with diverse situations. For example, feature screening

procedures for linear model (Fan and Lv, 2008), generalized linear model

(Fan and Song, 2010), non-parametric additive model (Fan, Feng and Song,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0290



2011), varying-coefficient model (Fan, Ma and Dai, 2014), semiparametric

single-index model (Li, Zhong and Zhu, 2012), quantile regression model

(He, Wang and Hong, 2013), and categorical data analysis (Cui, Li and

Zhong, 2015; Xie et al., 2020) have been developed, among others. But

these procedures can handle only one response at a time, and thus need

to be repeatedly conducted in situations of multiple responses and high-

dimensional responses. This repetition can cause substantial power loss,

attributable not only to the requirements for multiple hypothesis testing

and correction but also to its failure to employ on the association informa-

tion among response variables.

To take the association information into consideration, some methods

that can handle multiple responses have been proposed. For example, Li,

Zhong and Zhu (2012) introduced the DC-SIS procedure for multiple re-

sponses based on distance correlation (Székely et al., 2007). But DC-SIS

has been found to perform poorly for heavy-tailed data (Mai and Zou,

2015). Shao and Zhang (2014) proposed an adaptable approach to screen

out variables that have limited influence on particular facets of the condi-

tional distribution, such as conditional quantiles, based on the concept of

martingale difference correlation (MDC). He, Zhou and Zou (2021) devel-

oped an mRCC procedure utilizing rank canonical correlation coefficients,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0290



which is specifically tailored for multiple responses.

Though the methods described above can handle multiple responses,

they are not adequate for high-dimensional responses. So feature screening

procedures that can deal with high-dimensional responses are much needed.

Among techniques dealing with high-dimensional data, kernel-based meth-

ods have proven to be powerful since they can efficiently capture dependence

among random variables by mapping them into a felicitous reproducing ker-

nel Hilbert space (RKHS).

Therefore, we investigate and propose new feature screening methods

from the perspective of kernel functions for high-dimensional response data.

We introduce the kernel correlation (kCor) coefficient, and propose a fea-

ture screening procedure named KC-SIS, to screen the vital predictors that

are potentially related to the high-dimensional responses of interest. Addi-

tionally, to deal with situations where confounding factors exist, we further

propose the partial kernel correlation (pkCor) coefficient, and develop a

new pkCor-based feature screening procedure named PKC-SIS.

Both proposed screening procedures exhibit the following merits. First,

KC-SIS and PKC-SIS can handle not only ultrahigh-dimensional predictors

but also high-dimensional responses. Second, KC-SIS and PKC-SIS possess

sure screening property and ranking consistency property, which guarantee
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that potentially response-related features are obtained with high probabil-

ity. Third, KC-SIS and PKC-SIS are non-parametric screening procedures

that do not specify any parameter models, making them robust to data

outliers and model misspecification. Fourth, the implementation of KC-SIS

and PKC-SIS is simple and convenient for practical application. Last but

not least, both KC-SIS and PKC-SIS exhibit applicability across various

data types, including continuous, discrete, Euclidean, and non-Euclidean

data, provided a kernel function is accessible.

The rest of the article is organized as follows. Section 2 provides the

necessary preliminaries for kernel covariance and kernel correlation, and

introduces the partial kernel covariance and partial kernel correlation co-

efficients. In Section 3, two screening procedures, KC-SIS and PKC-SIS,

are proposed with their theoretical properties developed. Extensive simu-

lations are conducted in Section 4 to demonstrate the performances of the

proposed procedures. And an application of PKC-SIS to a heterogeneous

stock mice dataset is conducted to show its practical application in Section

5. Section 6 demonstrates conclusion remarks.
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2. Kernel-based Coefficients for Association Analysis

In this section, we provide a brief review of the kernel covariance (kCov) and

the kernel correlation (kCor), which are used to capture the independence of

high-dimensional random variables. Subsequently, we introduce the partial

kernel covariance (pkCov) and the partial kernel correlation (pkCor), which

take into account the presence of additional confounding factors. Through-

out the article, let |a| be the absolute value of a ∈ R, R+ = [0,∞), and

||b|| =
√
b>b be the Euclidean norm of b ∈ Rl, where Rl is the l-dimensional

real number space, l is a positive integer and the superscript > indicates

the transpose of a vector or a matrix.

2.1 Kernel covariance and kernel correlation

Let U and V be two random variables taking values in two separable metric

spaces U and V, and HU and HV be the corresponding RKHSs defined by

two measurable kernels kφ and kψ, respectively, with E
{
kφ(U,U)

}
< ∞

and E
{

(kψ(V, V )
}
< ∞. The kCov of U and V is defined as the square
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2.1 Kernel covariance and kernel correlation

root of A2
kφ,kψ

(U, V ) which equals to

A2
kφ,kψ

(U, V ) = EU,VEŨ ,Ṽ
{
kφ(U, Ũ)kψ(V, Ṽ )

}
+EUEŨ

{
kφ(U, Ũ)

}
EVEṼ

{
kψ(V, Ṽ )

}
−2EU,V

[
EŨ
{
kφ(U, Ũ)}EV̂

{
kψ(V, V̂ )

}]
,

where (Ũ , Ṽ ) and (Û , V̂ ) are independent copies of (U, V ) (Sejdinovic et al.,

2013).

If kφ and kψ are characteristic kernels, the corresponding kCov is a

measure of independence, i.e., A2
kφ,kψ

(U, V ) = 0 if and only if U and V

are independent (Lyons, 2013). As shown in Fukumizu et al. (2008), the

Gaussian kernel kG(a, ã) = exp
(
− 1

2σ2 ||a − ã||2
)

(σ > 0), Laplacian kernel

kL(a, ã) = exp
(
− λ

l∑
i=1

|ai − ãi|
)

(λ > 0), and another two kernels with

kI(b, b̃) =
l∏

i=1

(
bi + b̃i + α

)−1
(α > 0) and kII(b, b̃) = exp

{
− β

l∑
i=1

(bi +

b̃i)
1/2
}

(β > 0) are all characteristic kernels, where a = (a1, . . . , al)
> ∈ Rl,

ã = (ã1, . . . , ãl)
> ∈ Rl, b = (b1, . . . , bl)

> ∈ R+
l , b̃ = (b̃1, . . . , b̃l)

> ∈ R+
l , with

R+
l being the l-dimensional positive real number space.

The kernel variance is defined as A2
kφ

(U) = A2
kφ,kφ

(U,U), and the

squared kCor is

R2
kφ,kψ

(U, V ) =


A2
kφ,kψ

(U, V )√
A2
kφ

(U)A2
kψ

(V )
, A2

kφ
(U)A2

kψ
(V ) > 0,

0, A2
kφ

(U)A2
kψ

(V ) = 0,
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2.1 Kernel covariance and kernel correlation

Then based on the Cauchy-Schwarz inequality, we have 0 6 R2
kφ,kψ

(U, V ) 6

1.

Comparable to the distance correlation introduced by Szekely (2007),

which derives from Euclidean distance computations, kCor provides an

readily computable sample analog. Moreover, kCor demonstrates a height-

ened versatility in its applicability, particularly when quantifying indepen-

dence among random variables that traverse complex topological domains.

Denote n independent observations of (U, V ) as (ui,vi) with ui =

(ui1, . . . , uip)
> and vi = (vi1, . . . , vim)>, i = 1, . . . , n. Calculate two ker-

nel matrices Gkφ = (gkφ,il)n×n =
{
kφ(ui,ul)

}
n×n and Skψ = (skψ ,il)n×n ={

kψ(vi,vl)
}
n×n, i, j = 1, . . . , n. Following the definition in Székely and

Rizzo (2014), the U -centered version of G̃kφ = (g̃kφ,il)n×n can be obtained

through

g̃kφ,il =


gkφ,il − 1

n−2

n∑
l=1
l 6=i

gkφ,il − 1
n−2

n∑
i=1
i6=l

gkφ,il + 2
(n−1)(n−2)

∑
16i<l6n

gkφ,il, i 6= l,

0, i = l.

And the U -centered kernel matrix S̃kψ = (s̃kφ,il)n×n can be calculated simi-

larly. Then a good estimator of kCov is given by

Â2
kφ,kψ

(U, V ) =
2

n(n− 3)

∑
16i<l6n

g̃kφ,ils̃kψ ,il.
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2.2 Partial kernel variance and partial kernel correlation

and the squared sample kCor can be naturally defined by

R̂2
kφ,kψ

(U, V ) =


Â2
kφ,kψ

(U, V )√
Â2
kφ

(U)Â2
kψ

(V )
, Â2

kφ
(U)Â2

,kψ
(V ) > 0,

0, Â2
kφ

(U)Â2
kψ

(V ) = 0,

where Â2
kφ

(U) = Â2
kφ

(U,U) is the sample kernal variance. Similar to

the properties of distance covariance and distance correlation proposed in

Székely and Rizzo (2014), we have the following proposition.

Proposition 1. Assume E
{
kφ(U,U)

}
< ∞ and E

{
kψ(V, V )

}
< ∞, then

the estimators have the following properties:

lim
n→∞

Â2
kφ,kψ

(U, V ) = A2
kφ,kψ

(U, V ), lim
n→∞

R̂2
kφ,kψ

(U, V ) = R2
kφ,kψ

(U, V ) almost surely;

(2.1)

0 6 R̂2
kφ,kψ

(U, V ) 6 1. (2.2)

2.2 Partial kernel variance and partial kernel correlation

Now we consider measuring the independence between U and V with the

existence of confounding variable W . Suppose the random variable W takes

values in the separable metric spaces W, and the measurable positive defi-

nite kernels kη of the corresponding RKHSHW satisfies E
{
kη(W,W )

}
<∞.

Inspired by the idea of partial distance covariance proposed by Székely and

Rizzo (2014) which is initially rooted in Euclidean distance, we propose
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2.2 Partial kernel variance and partial kernel correlation

partial kernel covariance (pkCov) that applies to diverse kernel functions,

to encompass more flexibility. The extended notion pkCov is defined as

follows:

Bkφ,kψ ;kη(U, V ;W ) =


A2
kφ,kψ

(U, V )−
A2
kφ,kη

(U,W )A2
kψ ,kη

(V,W )

A2
kη

(W )
, A2

kη
(W ) > 0,

A2
kφ,kψ

(U, V ), A2
kη

(W ) = 0.

And the corresponding pkCor defined as

Qkφ,kψ ;kη(U, V ;W ) =

R2
kφ,kψ

(U, V )−R2
kφ,kη

(U,W )R2
kψ ,kη

(V,W )√
1−R4

kφ,kη
(U,W )

√
1−R4

kψ ,kη
(V,W )

, R2
kφ,kη

(U,W ) 6= 1 and R2
kψ ,kη

(V,W ) 6= 1,

0, R2
kψ ,kη

(U,W ) = 1 or R2
kψ ,kη

(V,W ) = 1.

The pkCor conceptually equals to kCor when U (or V ) and W are inde-

pendent, which will be validated later in the simulation section.

The sample pkCov and pkCor can be defined as follows. Denote n

independent observations of W as wi = (wi1, . . . , wiq)
>, i = 1, . . . , n, and

the corresponding kernel matrix as Skη = (skη ,il)n×n =
{
kη(wi,wl)

}
n×n.

Then the sample pkCov is defined by

B̂kφ,kψ ;kη(U, V ;W ) =


Â2
kφ,kψ

(U, V )−
Â2
kφ,kη

(U,W )Â2
kψ ,kη

(V,W )

Â2
kη

(W )
, Â2

kη
(W ) > 0,

Â2
kφ,kψ

(U, V ), Â2
kη

(W ) = 0,
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and the sample pkCor is

Q̂kφ,kψ ;kη(U, V ;W ) =
R̂2
kφ,kψ

(U, V )− R̂2
kψ ,kη

(U,W )R̂2
kψ ,kη

(V,W )√
1− R̂4

kφ,kη
(U,W )

√
1− R̂4

kψ ,kη
(V,W )

, R̂2
kψ ,kη

(U,W ) 6= 1 and R̂2
kψ ,kη

(V,W ) 6= 1,

0, R̂2
kψ ,kη

(U,W ) = 1 or R̂2
kψ ,kη(V,W ) = 1.

The following proposition demonstrates the consistency of these estimators.

Proposition 2. Suppose E(kφ(U,U)) < ∞, E(kψ(V, V )) < ∞, and

E(kη(W,W ) <∞, then the estimators have the following properties:

lim
n→∞

B̂2
kφ,kψ

(U, V ) = B2
kφ,kψ

(U, V )and lim
n→∞

Q̂2
kφ,kψ

(U, V ) = Q2
kφ,kψ

(U, V ) almost surely;

(2.3)

0 6 Q̂2
kφ,kψ

(U, V ) 6 1. (2.4)

3. Sure Independence Screening Procedures

In this section, a model-free marginal screening procedure based on kCor

named KC-SIS and a partial marginal screening procedure based on pkCor

named PKC-SIS are proposed to screen out irrelevant variables effectively.

3.1 Screening procedure based on kCor

Let X = (X1, . . . , Xp)
> be a p-dimensional predictor with support X and

Y = (Y1, . . . , Ym)> be an m-dimensional response variable with support Y .
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3.1 Screening procedure based on kCor

We consider the problem of feature screening when both p and m diverge

with sample size n, where the dimension of predictors p can far exceed n.

Define the conditional distribution function of Y given X as F (Y |X). And

denote the index set for active predictors of the true active model as

G =
[
j : F (Y |X) functionally depends on Xj, j = 1, . . . , p

}
,

whose cardinality is s = |G|, and denote Ḡ = {1, 2, · · · , p}/G to be the

index set for inactive predictors. To screen out inactive predictors, for

j = 1, · · · , p, denote

Rj = R2
kφ,kψ

(Xj, Y )

for any given kernels kφ and kψ. And their estimators can be calculated as

R̂j = R̂2
kφ,kψ

(Xj, Y ), j = 1, · · · , p.

Then predictors with corresponding estimators R̂j ≥ c∗ can be treated as

active predictors, where c∗ = cn−τ is a preassigned threshold value defined

later in the Assumption 2. Since c∗ is unknown, we propose the following

KC-SIS procedure to screen out inactive predictors with a given constant

L:

(1) Select two suitable kernels kφ and kψ, and an model size integer L

which is suggested to be L = n/ log(n) in literature;

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0290



3.1 Screening procedure based on kCor

(2) Use the observations to calculate R̂1, . . . , R̂p;

(3) Choose Xj with the top L largest values among R̂1, . . . , R̂p.

To investigate the statistical properties of KC-SIS, we make the follow-

ing three assumptions.

Assumption 1. There exist positive constants t′ > 0 and $ > 0

such that for all 0 < t 6 t′,

sup
p

max
16j6p

E
[

exp
{
k2$
φ (Xj, Xj)t

}]
< +∞

and

sup
m
E
[

exp
{
k2$
ψ (Y, Y )t

}]
< +∞.

Assumption 2. There exist positive constants c > 0 and 0 < τ < 1/2

such that for any j = 1, · · · , p,

min
j∈G

Rj > 2cn−τ .

Assumption 3. There exists positive constant c′ > 0 such that

lim inf
p→∞

inf
m

[
min
j∈G

Rj −max
j′∈Ḡ

Rj′
}
> c′.

Remark 1. Assumption 1 is explicitly satisfied when utilizing bounded

characteristic kernels, such as the Gaussian kernel kG and Laplacian kernel
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3.1 Screening procedure based on kCor

kL. In comparison to assumptions underlying DC-SIS in Li, Zhong and Zhu

(2012), the condition posited in Assumption 1 is less stringent. Therefore,

the KC-SIS method can effectively handle heavy-tailed variables by com-

pressing them into finite values via these bounded characteristic kernels.

According to Assumption 2, the minimum association signal of active fea-

tures cannot be too small, which is widely used in variable screening studies

(Fan and Lv, 2008; Li, Zhong and Zhu, 2012). Assumption 3 indicates that

the marginal utility Rj can distinguish active predictors from inactive ones

immaculately. And it is a comparatively weaker condition than the partial

orthogonality condition which assumes Rj > 0 for j ∈ G and Rj = 0 for

j ∈ Ḡ (Huang, Horowitz and Ma, 2008).

The following theorem presents the sure screening property and ranking

consistency property of KC-SIS, whose proofs are given in the supplemen-

tary material.

Theorem 1. (1) Under Assumption 1, for any τ > 0, γ > 0 and 1− 2γ −

2τ > 0, there exist positive constants c1, c2, c3, and c4 such that

P
(

max
16j6p

∣∣R̂j −Rj

∣∣ > cn−τ
)
6 c1p exp

(
− c2n

1−2γ−2τ
)

+ c3p exp
(
− c4n

γ$
)
,

when n is sufficiently large.
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3.2 Screening procedure based on pkCor

(2) Under Assumptions 1,2 and 3,

P (G ⊆ Ĝ) > 1− sc1 exp
(
− c2n

1−2γ−2τ
)
− sc3 exp

(
− c4n

γ$
)
.

where Ĝ =
{
j : R̂j ≥ cn−τ , j = 1, . . . , p

}
and s = |G|.

(3) [Ranking Consistency Property] Under Assumptions 1,2 and 3, for

log(p) = o(nν) with 0 < ν < min{1− 2γ − 2τ, γ$},

lim inf
n→∞

{min
j∈G

R̂j −max
j′∈Ḡ

R̂j′} > 0, a.s.

Remark 2. If we choose γ = (1−2τ)/($+ 2), the result (2) in Theorem 1

can be rewritten as P (G ⊆ Ĝ) ≤ c5p exp
{
−c6n

$
$+2

(1−2τ)
}

for some constants

c5 and c6. It shows that KC-SIS can handle non-polynomial dimensionality

of order log p = o
{
n

$
$+2

(1−2τ)
}

.

3.2 Screening procedure based on pkCor

Next, we propose the sure independent screening procedure based on pkCor.

With the existence of confounding variables, define the index set for the true

active predictors as

Gz =
{
j : Q2

kφ,kψ ;kη(Xj, Y ;Z) 6= 0 for some Y ∈ Y , j = 1, . . . , p
}
,

where size sz = |Gz|, and Z = (Z1, . . . , Zq)
> is a q-dimensional random

variable with support Z. Denote Ḡz = {1, · · · , p}/Gz as index set for the
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3.2 Screening procedure based on pkCor

inactive predictors. Define

Qj = Q2
kφ,kψ ;kη(Xj, Y ;Z), j = 1, . . . , p.

Then predictor Xj can be treated as active predictor when

Q̂j = Q̂2
kφ,kψ ;kη(Xj, Y ;Z) ≥ czn

−τz , j = 1, . . . , p,

where czn
−τz is a preassigned threshold value defined later in Assumption

5. Then we propose the following PKC-SIS procedure with a given constant

L to screen out irrelevant predictors:

(1) Select three suitable kernels kφ, kψ and kη, and set the model size as

L which is recommended to be L = n/ log(n);

(2) Use the sample to calculate Q̂1, . . . , Q̂p;

(3) Choose Xj with the top L largest values among Q̂1, . . . , Q̂p.

To verify the sure screening property, we present the following three

regularity assumptions in addition to Assumptions 1-3.

Assumption 4. There exist positive constants t′′ > 0 and $z > 0

such that for all 0 < t 6 t′′,

E
[

exp
{
k2$z
η (Z,Z)t

}]
< +∞.
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3.2 Screening procedure based on pkCor

Assumption 5. There exist positive constants cz > 0 and 0 < τz <

1/2, such that

min
j∈Gz

Qj > 2czn
−τz .

Assumption 6. There exist a positive constant c′′ > 0 such that

lim inf
p→∞

inf
m
{min
j∈Gz

Qj −max
j′∈Ḡz

Qj′} > c′′.

Then we present the sure screening property and ranking consistency

property of PKC-SIS in the following theorem.

Theorem 2. (1) Under Assumptions 1 and 4, for any τz > 0, $∗ =

min{$,$z} > 0, γz > 0 and 1−2γz−2τz > 0, there exist positive constants

c∗1, c∗2, c∗3, and c∗4 such that

P
(

max
16j6p

∣∣Q̂j −Qj

∣∣ > cn−τz
)
6 c∗1p exp(−c∗2n1−2γz−2τz) + c∗3p exp(−c∗4nγz$

∗
),

when n is sufficiently large.

(2) Under Assumptions 1, 2, 4, and 5,

P (Gz ⊆ Ĝz) > 1− szc∗1 exp(−c∗2n1−2γz−2τz)− szc∗3 exp(−c∗4nγz$
∗
),

where Ĝz =
{
j ∈ {1, . . . , p} : Q̂j ≥ czn

−τz
}

and sz = |Gz|.

(3) [ Ranking Consistency Property] Under Assumptions 1, 3 , 4, and 6,

for log(p) = o(nνz) with 0 < νz < min{1− 2γz − 2τz, γz$
∗},

lim inf
n→∞

{min
j∈Gz

Q̂j −max
j′∈Ḡz

Q̂j′} > 0, a.s.
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3.3 Kernel choice

Remark 3. In PKC-SIS, if we chose γz = (1−2τz)/($z + 2), the result (2)

in Theorem 2 is equal to P (Gz ⊆ Ĝz) ≤ c∗5p exp
{
−c∗6n

$∗
$∗+2

(1−2τz)
)}

for some

constants c∗5 and c∗6. It shows that KC-SIS can handle the non-polynomial

dimensionality of order log p = o
{
n

$∗
$∗+2

(1−2τz)
}

.

3.3 Kernel choice

Since the proposed statistics are kernel-based, the choice of kernel functions

may affect their performances. To elucidate the impact of kernel choice,

we conduct simulations to compare the efficacy of Gaussian kernel and

Laplacian kernel, both commonly utilized in scenarios involving continuous

outcomes, within the framework of KC-SIS. Detailed simulation outcomes,

available in the supplementary material, demonstrate that these two kernels

yield comparable effects on the performance of the novel procedure. This

suggests that opting for the Gaussian kernel is a prudent choice in situations

where empirical knowledge is lacking. In addition to the Gaussian kernel,

alternative kernels can be employed to tailor to diverse data characteristics

and incorporate specific empirical knowledge. For example, when analyzing

positive real numbers, kernel functions such as kI and kII, as discussed in

Section 2.1 may be considered.
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3.3 Kernel choice

It is imperative to note that the application of characteristic kernels is

not mandatory and should be approached with careful consideration. For

instance, although the linear kernel may not be characteristic, it exhibits

optimal performance under a linear model with normality. This arises from

the fact that the marginal utility Rj in the linear regression model trans-

forms into the Pearson correlation coefficient between Xj and Y which also

equals zero if and only if Xj and Y are independent. Therefore it is possi-

ble that the sure screening properties of KC-SIS and PKC-SIS remain valid

even when using uncharacteristic kernels under appropriate assumptions.

Since diverse kernels can be employed in the proposed KC-SIS and

PKC-SIS procedures and the optimal kernel is always unknown beforehand,

it is advisable to use multiple candidate kernels to enhance statistical power

and analysis efficiency. Specifically, we can build a composite kernel based

on a set of reproducing kernels {ki}Mi=1 via k̃ =
M∑
i=1

ωiki with ωi > 0 and

M∑
i=1

ωi = 1, and apply this new composite kernel to the statistics construc-

tion. Screening procedures based on the composite kernel is more robust

against the underlying data structures and association patterns, thus can

achieve satisfying performances in diverse situations. A rational strategy

to determine the non-negative weight ωi is to set ωi = 1/tr(Ki), where tr(·)

represents the trace of a matrix (Zhan et al., 2017).
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4. Simulation Studies

In this section, we conduct extensive simulations to investigate the perfor-

mances of KC-SIS and PKC-SIS by comparing with the existing methods

DC-SIS (Li, Zhong and Zhu, 2012), MDC-SIS (Shao and Zhang, 2014) and

the Kendall’s τ - based mRCC (He, Zhou and Zou, 2021), in both situations

without and with confounding factors.

To accommodate different relationships, diverse scenarios are consid-

ered, and 500 repetitions are conducted in each scenario to evaluate the

performances. The following three criteria are employed in the comparison,

which are commonly adopted in the literature on feature screening:

(1) S: the minimum model size to include all active predictors. We re-

port the 5%, 25%, 50%, 75%, and 95% quantiles of S out of 500

replications;

(2) Ps: the proportion that an individual active predictor is selected for

a given model size L in the 500 replications;

(3) Pa: the proportion that all active predictors are selected for a given

model size L in the 500 replications.

Among these criteria, S quantifies the capability of a screening procedure

to detect all active predictors, and methods with smaller quantiles of S
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4.1 Without the existence of confounding factors

are less conservative, since they select less variables to detect all active

predictors. The criteria Ps and Pa assess the screening procedure from the

perspective of selecting an single predictor and selecting all true predictors,

respectively.

4.1 Without the existence of confounding factors

In this subsection, independence testing without the existence of confound-

ing factors are considered. Due to the incompatibility of mRCC with high-

dimensional response models, we will exclude its implementation in these

scenarios. For ease of presentation, we apply the Gaussian kernel to both Xj

and Y in KC-SIS, i.e., kG(xij, xlj) = exp(−||xij−xlj||21/σ2
xj

) and kG(yi,yl) =

exp(−||yi − yl||2m/σ2
y), i, l = 1, . . . , n, where the shape parameters σ2

xj
and

σ2
y are typically selected as the median of {||xij − xlj||21 : 1 6 i, l 6 n} and

{||yi − yl||2m : 1 6 i, l 6 n}, respectively, j = 1, . . . , p.

Two types of scenarios are considered, where the sample size is set to

be n = 200, and the dimension p = 2000. In the following scenarios, the

candidate multivariate predictor X = (X1, . . . , Xp)
> is generated from the

normal distribution N(0p,Σp) where covariance matrix structure has an

autoregressive pattern, i.e., Σp = (σil)p×p = (ξ|i−l|)p×p with ξ = 0.8, and

the error term εj is independently generated from a normal distribution
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4.1 Without the existence of confounding factors

N(0, 1) for j = 1, . . . ,m. Three choices of L are regularly considered in the

screening procedure (Li, Zhong and Zhu, 2012; Shao and Zhang, 2014), i.e.,

L1 = [n/ log n], L2 = 2[n/ log n] and L3 = 3[n/ log n], where [a] denotes the

integer part of a. The specific settings of each scenario are as follows.

• Scenario 1. Consider the following two heteroscedastic high-dimensional

response models, where the dimension of response is set to be m =

300.

(1.a) Each response is generated as

Yj = β∗1jX1 + β∗2jX2X3 + β∗3jX4X5 + exp(X20 +X21 +X22)εj,

for j = 1, . . . , 300, where the parameters β∗lj are independently

generated from a uniform distribution U(0, 1) for l = 1, 2, 3 and

j = 1, . . . , 300.

(1.b) Each response is generated as

Yj = α∗1β
∗
1jX1 + α∗2β

∗
2jX2 + α∗3β

∗
3jX3 + α∗4β

∗
4jX4 + α∗5β

∗
5jX5

+ exp(X20 +X21 +X22)εj,

for j = 1, . . . , 300, where the parameter (α∗1, α
∗
2, α

∗
3, α

∗
4, α

∗
5) =

(1, 0.8, 0.6, 0.4, 0.2) and β∗ljs are independently generated from a

uniform distribution U(0, 1) for l = 1, . . . , 5 and j = 1, . . . , 300.
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4.1 Without the existence of confounding factors

• Scenario 2. Consider the following multivariate response models gen-

erated from Li, Zhong and Zhu (2012). In this setting, response Y =

(Y1, . . . , Ym)> is generated from the normal distribution N(0m,ΣY |X),

where ΣY |X = (σX,il)m×m with σX,il = σ
|i−l|
X and σX = sin(0.8X1 +

0.6X2 + 0.4X3 + 0.2X4), a more complex autoregressive associaton

pattern. Three different dimensions m = 20, 50, 100 are considered,

and the corresponding scenarios are denoted as Scenarios (2.a), (2.b)

and (2.c), respectively.

We report the values of S under Scenario 1 in Table 1. It can be

seen that all the quantiles for S of the proposed KC-SIS are smaller than

their counterparts of DC-SIS and MDC-SIS. This indicates that the novel

KC-SIS is less conservative than DC-SIS and MDC-SIS, thus is more ef-

ficient. Additionally, we provide visual representations of Ps and Pa in

Figure 1. It can be seen that KC-SIS achieves a conspicuous success in

identifying all active variables in heteroscedastic Models (1.a) and (1.b),

whereas DC-SIS and MDC-SIS merely capture association signals of vari-

ables X20, X21 and X22. For example, in Model (1.b), all eight active pre-

dictors are selected by KC-SIS with the model size L2, while the selected

rates of (X1, X2, X3, X4, X5) are all lower than 69% by DC-SIS, and all the

chosen proportions of (X20, X21 and X22) are lower than 5% by MDC-SIS.
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4.2 With the existence of confounding factors

The simulation results of S, Ps and Pa under Scenario 2 are illus-

trated in Table 2 and Figure 2. Among all the methods considered, KC-SIS

demonstrates the most favorable performance, characterized by the smallest

quantiles, as depicted in Table 2. This observation underscores its superior

efficiency, attributable to its minimal conservativeness. Table 2 indicates

that KC-SIS performs significantly better than the rest three competitors in

variable selection regardless of the dimension of Y . In Figure 2, it indicates

KC-SIS demonstrates satisfactory performance in identifying all active vari-

ables. However, both DC-SIS and MDC-SIS exhibit notable deficiencies,

particularly in the selection of X4. It appears that mRCC is substantially

inferior to the other three methods across all these three models. For in-

stance, in Model (2.a), 71% of X4 is selected by KC-SIS for the model size

L1, as opposed to 51% by DC-SIS, 53% by MDC-SIS and 6% by mRCC.

4.2 With the existence of confounding factors

In scenarios that accommodate additional confounding factors, the finite

sample performance of PKC-SIS is investigated by comparing with those

of KC-SIS, DC-SIS and mRCC. For simplicity, the Gaussian kernels are

applied to Xj, Y and Z, respectively, in PKC-SIS. Being the same as sce-

narios without confounding factors, in this subsection, the sample size is
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4.2 With the existence of confounding factors

set as n = 200 and the dimension is p = 2000. In the following two sce-

narios, data X = (X1, . . . , Xp)
> is generated from the normal distribution

N(0p,Σp) where covariance matrix structure has an autoregressive pattern,

i.e., Σp = (σil)p×p = (ξ|i−l|)p×p with ξ = 0.8, and the error term εj is inde-

pendently generated from a normal distribution N(0, 1) for j = 1, . . . ,m.

The same three choices of L as before are considered in the screening pro-

cedure. The specific settings for the considered two scenarios are as follows.

• Scenario 3. Consider the following two heteroscedastic high-dimensional

response model. The jth predictor X∗j is generated by letting Z ∼

N(1, 1) and X∗j = Xj + Z, j = 1, . . . , p, and the jth response is

Yj = 3X∗1 + 3 sin(X∗11) + 3|Z|3 + exp(X∗11 +X∗12)εj, j = 1, . . . , 300.

(4.1)

Yj = 3X∗1 + 3X∗1X
∗
11 + 3|Z|3 + exp(X∗11 +X∗12)εj, j = 1, . . . , 300.

(4.2)

Model (3.a) has in a linear term X∗1 and a nonlinear term sin(X∗11),

and Model (3.b) embodies an interaction term X∗1X
∗
11.

• Scenario 4. Consider multivariate responses. First generate unob-

served multivariate variables Y ∗ = (Y ∗1 , . . . , Y
∗
m)> with m = 5 from a
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4.2 With the existence of confounding factors

normal distribution N(0m,ΣY |X), where the covariance matrix is

ΣY ∗|X = (σX,il)m×m =
(
σ
|i−l|
X

)
m×m

=
{

sin(0.8X1 + 0.6X2)|i−l|
}
m×m

.

Then observed responses via the following two models:

Yj = Y ∗j + 0.3Z, j = 1, . . . ,m. (4.3)

Yj = Y ∗j + 0.1|Z|3, j = 1, . . . ,m. (4.4)

where Z ∼ N(1, 1).

Table 3 and Figure 3 summarize the simulation results of S, Ps and Pa

under Scenario 3. It is evident from the results that PKC-SIS displays the

lowest level of conservativeness, followed by KC-SIS, DC-SIS and MDC-

SIS. This observation suggests that while KC-SIS outperforms DC-SIS and

MDC-SIS in terms of efficiency, the incorporation of confounding factors,

when present, enhances efficiency further. For example, in Model (3.a),

the 25% quantile of the minimum model size S is 14.8 for PKC-SIS, in

contrast to 19.0 for KC-SIS, 92.0 for DC-SIS and 1973.0 for MDC-SIS. Due

to its low sensitivity in capturing active predictors in additive models with

heteroscedastic errors, DC-SIS has less chance to select the predictor X1

than PKC-SIS and KC-SIS in Model (3.a), whereas MDC-SIS performs the

worst in capturing all the predictors across all methods.
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The results corresponding to scenario 4 are presented in Table 4 and

Figure 3. It can be seen that PKC-SIS performs significantly better than

DC-SIS and mRCC, and slightly outperforms KC-SIS in both two models.

For example, in Model (4.b), when ξ = 0.8, the 95% quantile of the mini-

mum model size S is 13.3 for PKC-SIS, compared to that of 18.0 for KC-SIS,

743.0 for DC-SIS, 1071.0 for MDC-SIS, and 1445.5 for mRCC. Note that

KC-SIS still achieves satisfactory results when the variable Z is independent

of X, thereby confirming the theoretical equivalence between PKC-SIS and

KC-SIS when the confounding factors are independent of either predictors

or response variables.

5. Application to Stock Mice Genome-wide Data

Mice are a key model organism for understanding the gene function in

mammals. Valdar et al. (2006) recorded 12,226 SNPs and 101 phenotypes

of 667 mice to conduct researches on their association relationships. In this

work, we apply the proposed PKC procedure to this dataset to identify

the phenotype-predisposing SNPs, which is crucial for understanding the

shared etiology among complex phenotypes.

We first perform quality control on both SNPs and phenotyps. Specif-

ically, SNPs with missing values and minor allele frequencies outside the
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range of 0.05 to 0.95 are removed, resulting in 5,796 SNPs remain to be

further analyzed. And phenotypes with missing rate larger than 0.15 are

deleted, and the remaining missing data is imputed via mean imputation,

leading to 97 phenotypes for subsequential analysis.

In genetic association analysis, population stratification is a significant

confounding factor that can lead to numerous false positive findings. To

address this issue, we adopt the R package AssocTests (Wang, Zhang and

Li, 2020) to select the top 10 significant eigenvalues as the population strat-

ification confounding factors. This approach is in line with many previous

studies such as those in Price et al. (2006) and Li and Yu (2008).

After quality control on data and adjustment on confounding factors,

we apply PKC-SIS, DC-SIS and mRCC to screen out irrelevant predictors

in this mice dataset, where the model size is L = [n/ log n] with n being the

sample size. Besides, we choose the top four SNPs from each method to

be representatives of the significant associations found in this applicaiton.

PKC-SIS select rs13482952, rs3705058, CEL-17 31069801, and rs3023110,

among which SNPs rs3657760 and rs13480933 have been announced to be

associated with the phenotypes in Valdar et al. (2006). For DC-SIS, the top

four ranked SNPs are rs3685424, rs3659789, rs6168647, and rs3717220. And

mRCC identifies rs6222023, rs13478330, UT 5 74.043446, and rs6163111 as
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the top four ranked SNPs. However, none of these eight SNPs are reported

in Valdar et al. (2006). This suggests the advantages of the proposed PKC-

SIS over other existing methods.

6. Concluding Remarks

We consider feature screening procedures for high-dimensional response

data, which is an important issue but receive less attention in literature.

To fill this gap, we propose two feature screening procedures, the kernel

correlation-based KC-SIS and partial kernel correlation-based PKC-SIS,

with KC-SIS suitable for situations without confounding factors and PKC-

SIS suitable for those with the existence of confounding factors. Both

screening procedures are non-parametric, with no need on model restric-

tions, which makes them robust against outliers and model misspecification.

And they possess sure screening property and ranking consistency property

that guanrantee their utility in practice. Additionally, both KC-SIS and

PKC-SIS are applicable to a variety of data types, including continuous

and discrete data, Euclidean and non-Euclidean data, and light-tailed and

hevay-tailed data.
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Supplementary Materials

The proofs of Theorems 1 and 2, as well as additional numerical simulations

on one-dimensional response variable models, two distinct kernels, and other

popular machine learning approaches, can be found in the Supplementary

Material.
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Figure 1: The proportions of Ps and Pa in Scenario 1 with L1 = [n/ log n],

L2 = 2[n/ log n], L3 = 3[n/ log n], n = 200, and p = 2000.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0290



X1 X2 X3 X4 ALL

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

0.00

0.25

0.50

0.75

1.00

(2.a)

P
r
o
p
o
r
t
i
o
n
s Methods

KC-SIS
DC-SIS
MDC-SIS
mRCC

X1 X2 X3 X4 ALL

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

0.00

0.25

0.50

0.75

1.00

(2.b)

P
r
o
p
o
r
t
i
o
n
s Methods

KC-SIS
DC-SIS
MDC-SIS
mRCC

X1 X2 X3 X4 ALL

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

0.00

0.25

0.50

0.75

1.00

(2.c)

P
r
o
p
o
r
t
i
o
n
s Methods

KC-SIS
DC-SIS
MDC-SIS
mRCC

Figure 2: The proportions of Ps and Pa in Scenario 2 with L1 = [n/ log n],

L2 = 2[n/ log n], L3 = 3[n/ log n], n = 200, and p = 2000.
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Figure 3: The proportions of Ps and Pa in Scenarios 3 and 4 with L1 =

[n/ log n], L2 = 2[n/ log n], L3 = 3[n/ log n], n = 200, and p = 2000.
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Table 1: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model

size S out of 500 replications in Scenario 1, n = 200 and p = 2000.

Model Method 5% 25% 50% 75% 95%

(1.a) KC-SIS 12.0 14.0 18.0 30.0 92.1

DC-SIS 23.0 24.0 25.0 938.0 1864.4

MDC-SIS 809.7 1406.8 1683.0 1866.5 1972.0

(1.b) KC-SIS 8.0 9.0 11.0 12.0 15.0

DC-SIS 447.1 1255.5 1587.0 1803.0 1949.1

MDC-SIS 1269.7 1604.0 1793.0 1903.0 1985.1

Table 2: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum

model size S out of 500 replications in Scenario 2 with ξ = 0.8, n = 200

and p = 2000.

Model Method 5% 25% 50% 75% 95%

(2.a) KC-SIS 4.0 4.0 10.0 54.0 418.3

DC-SIS 4.0 9.0 35.0 162.3 702.5

MDC-SIS 4.0 8.0 33.0 144.5 626.1

mRCC 86.7 454.3 956.5 1499.8 1871.7

(2.b) KC-SIS 4.0 5.0 18.5 96.3 500.4

DC-SIS 4.0 13.8 69.5 251.3 843.4

MDC-SIS 4.0 11.8 59.5 208.5 857.8

mRCC 204.8 666.8 1138.5 1552.3 1902.4

(2.c) KC-SIS(G) 4.0 8.0 36.0 155.0 796.5

DC-SIS 5.0 26.0 110.5 432.0 1149.8

MDC-SIS 5.0 19.8 88.0 369.8 1034.2

mRCC 362.0 883.8 1318.5 1657.0 1933.1
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Table 3: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum

model size S out of 500 replications in Scenario 3 with ξ = 0.8, n = 200

and p = 2000.

Model Method 5% 25% 50% 75% 95%

(3.a) PKC-SIS 9.0 14.8 30.5 103.5 516.2

KC-SIS 9.0 19.0 60.0 225.0 810.7

DC-SIS 19.0 92.0 302.5 715.5 1405.0

MDC-SIS 1880.9 1973.0 1993.0 1999.0 2000.0

(3.b) PKC-SIS 7.0 10.0 15.0 33.3 165.1

KC-SIS 7.0 11.0 23.0 76.0 421.1

DC-SIS 15.0 60.0 213.5 578.8 1320.3

MDC-SIS 1887.8 1974.0 1993.0 1999.0 2000.0

Table 4: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model

size S out of 500 replications in Scenario 4 with n = 200 and p = 2000.

Model Method 5% 25% 50% 75% 95%

(4.a) PKC-SIS 2.0 2.0 2.0 2.0 3.1

KC-SIS 2.0 2.0 2.0 2.0 4.0

DC-SIS 2.0 3.0 13.0 46.3 260.4

MDC-SIS 2.0 4.0 17.0 61.8 294.4

mRCC 65.9 372.5 881.5 1414.3 1854.3

(4.b) PKC-SIS 2.0 2.0 3.0 13.3 106.0

KC-SIS 2.0 2.0 4.0 18.0 152.1

DC-SIS 6.0 72.0 280.5 743.0 1379.4

MDC-SIS 14.0 159.8 526.0 1071.0 1633.6

mRCC 76.6 417.5 929.5 1445.5 1898.1
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