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Abstract: We propose to estimate a parametric regression with truncated data

built on the mode value, where the dependent variable is subject to left trunca-

tion by another random variable. We construct a kernel mode-based objective

function with a constant bandwidth for estimation and suggest a modified mode

expectation-maximization algorithm to numerically estimate the model. The

asymptotic normal distribution of the proposed estimator is derived under mild

conditions. To efficiently construct confidence intervals for the resulting estima-

tor, we develop a mode-based empirical likelihood method, where the asymptotic

distribution of the empirical log-likelihood ratio is shown to follow a chi-square

distribution. Furthermore, by combining the kernel mode-based objective func-

tion with the SCAD penalty, a variable selection procedure for the parameters is

introduced and its oracle property is established. Monte Carlo simulations and

real data analysis related to housing market are presented to show the finite sam-

ple performance of the developed estimation and variable selection procedures.

Key words and phrases: Empirical likelihood, Mode-based regression, Random

truncation, Robust estimation, Variable selection.
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1. Introduction

The concept of the mode is attractive as the value of highest probability

density. The mode can be defined without moment conditions and could

provide another understanding of the data, i.e., capture the “most likely”

values. Owing to these appealing features, regression models based on the

mode value, denoted as Mode(Y | X) for random variables (Y,X) (modal

regression), have received significant attention recently (Yao and Li, 2014;

Ullah et al., 2022, 2023), which can provide a valuable alternative to ex-

isting regressions. In addition, mode-based regression can be utilized as

an alternative to robust regression to achieve robustness and efficiency in

the presence of outliers or heavy-tailed distributions (Wang and Li, 2021;

Wang, 2024). Due to space constraints, we provide more explanations on

the distinction between modal regression and mode-based regression, as

well as their respective advantages, in the supplementary file. However, all

existing methods related to mode-based regression assume that the data

are fully observed, which may be unrealistic in practical applications.

Truncated data, occurring when sample observations are restricted to

some intervals, have been extensively studied in the literature. There ex-

ists a large number of research in mean or quantile regression to handle

the truncated data since the early works of Amemiya (1973) and Hausman

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0288



and Wise (1977). However, most of these estimation procedures tend to

be complicated and computationally intensive due to the fact that E(Y |

X) ̸= E(Y | X, Y ≥ y∗), where y∗ is fixed at a prespecified value. Lee

(1989, 1993) proposed estimating the regression line for truncated data by

imposing a mode restriction on the error distribution. Because Mode(Y |

X) = Mode(Y | X, Y ≥ y∗) generally holds for a known truncated point

y∗, we can conduct mode estimation directly with observable data points to

recover the “most likely” relationship between Y and X. Nevertheless, the

objective function operated in Lee (1989, 1993) is challenging to estimate in

consequence of the presence of indicator function and maximum operator.

In this paper, we mainly concentrate on investigating parametric regres-

sion built on the mode value through a kernel objective function, in which

the dependent variable is subject to left truncation by another random vari-

able. Different from fixed truncation, random truncation corresponds to a

biased sampling, where observations of variables (Y,X) are interfered by

another independent random variable T such that all three quantities of

Y,X, and T are observable only if Y ≥ T . Many researchers have delved

into randomly truncated data in the context of mean or quantile regression

by using a weighted estimation procedure; see Wang (1989), He and Yang

(2003), Zhou (2011) and the references therein. In this paper, we extend the
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weighted method to mode-based linear regression for randomly truncated

data. Since there is no explicit expression for the resulting mode-based esti-

mator, we also suggest a modified mode expectation-maximization (MEM)

algorithm to numerically estimate the model.

As shown in Section 3, estimating the asymptotic covariance of the

mode-based estimator numerically poses a challenge due to the presence of

unknown terms. Also, in small sample sizes, confidence intervals formulated

on asymptotic normality may experience significant coverage challenges, es-

pecially when the data distribution is nonnormal. To reliably construct con-

fidence intervals, we utilize the empirical likelihood method (Owen, 1988,

1990) placed on the suggested kernel mode-based estimation. Compared

to the normal approximation method, the developed empirical likelihood

procedure can avoid the plug-in estimation for the limit variance and deter-

mine the shape of confidence intervals completely by data. The resulting

empirical log-likelihood ratio is proved to satisfy the standard nonparamet-

ric Wilks’ theorem, leading to a mode-based confidence interval.

Furthermore, for the practical selection of important covariates, we pro-

pose an efficient mode-based variable selection procedure by leveraging the

Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001)

with randomly truncated data. By inheriting the properties of the suggested
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kernel mode-based estimation, the new variable selection procedure exhibits

good robustness and efficiency. To circumvent the computationally inten-

sive cross-validation approach, an extended Bayesian information criterion

(BIC) is employed to consistently select the regularization parameter in the

SCAD penalty. Because of the irregular of the SCAD penalty at the origin,

we combine the suggested MEM algorithm with local quadratic approxima-

tion to develop a penalized MEM algorithm for numerically estimating.

The rest of the paper is organized as follows. In Section 2, we devote to

the presentation of the applicability of mode value for truncated data with

fixed truncation. In Section 3, we propose a parametric truncated regression

model established on the mode value for randomly truncated data. In Sec-

tion 4, we develop a mode-based variable section procedure with randomly

truncated data. In Section 5, we present numerical studies to illustrate the

finite sample performance of the suggested estimation and variable selection

procedures. We conclude the paper in Section 6. All additional numerical

and technical results are relegated to the supplementary file.

2. Motivation for Mode-Based Estimation

As a measure of center, the mode has the advantage of robustness since it

concentrates on the majority of data points. Moreover, the mode, unlike

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0288



the mean, can be accurately approximated provided that the truncation is

not excessively severe. We illustrate the use of mode by focusing on a para-

metric regression for truncated data within the latent variable framework.

Consider a truncated parametric regression model

Y = XTβ + ε, (2.1)

where Y ∈ R is the dependent variable, X ∈ Rp is the vector of covariates,

β = (β1, · · · , βp)
T is an unknown vector of parameters, and ε is the indepen-

dent and identically distributed (i.i.d.) error with an unknown distribution

function that may depend on the covariates X. To capture the conditional

mode estimator, we assume that Mode(ε | X) = 0. The dependent variable

and covariates are only revealed if the dependent variable Y ≥ y∗, where y∗

is a known truncation point. For simplicity, we let y∗ = 0 in this section.

Let ε denote the unobserved random variable without truncation and

ε∗ represent the unobserved random variable with truncation. Therefore,

ε∗ = ε | ε ≥ −XTβ. Generally, we will have E(ε∗) ̸= E(ε), but Mode(ε∗) =

Mode(ε) with the assumption of the existence of a global unique mode when

truncation is not beyond the mode (see Figure S1 in the supplementary file).

We then obtain the following lemma to support the identification of β.
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Lemma 1. Suppose that Mode(ε | X) = 0, P [Mode(Y | X) = XTβ >

0] > 0, and E[XXT | Mode(Y | X) = XTβ > 0] is positive definite. Conse-

quently, the parameter β in (2.1) can be identified based on the mode value

since

E[XXT | Mode(Y | X) > 0]−1E[XMode(Y | X) | Mode(Y | X) > 0]

=E[XXT | XTβ > 0]−1E[XXTβ | XTβ > 0] = β.

Lemma 1 indicates that mode-based estimation can yield a consistent

estimator for truncated data, which does not depend on the functional form

of the distribution of the residuals. We thereupon define the corresponding

estimator that can be interpreted as the solution of a population analogy to

the above identification lemma. Suppose that {Yi,Xi}ni=1 are the observed

i.i.d. samples from the conditional distribution of (Y ∗,X) given the event

Y ∗ ≥ y∗ = 0, we can maximize the following function to estimate β

Qn(β) =
1

nh0

n∑
i=1

K

(
Yi −XT

i β

h0

)
, (2.2)

where K(·) is a kernel function and h0 is a bandwidth. As argued by Yao

and Li (2014) and Ullah et al. (2021, 2022, 2023), the choice of kernel func-

tion does not play much important role in mode estimation. We thus choose
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Gaussian kernel for K(·) in this paper for conducting numerical analysis.

Further elaboration is provided in the supplementary file to elucidate how

(2.2) facilitates the attainment of the mode-based estimator.

Maximizing the objective function (2.2) can be equivalently formulated

as solving the following estimating equation

1

nh2
0

n∑
i=1

K(1)

(
Yi −XT

i β̂

h0

)
Xi = 0p×1, (2.3)

where β̂ is the resulting mode-based estimator and K(1)(·) represents the

first derivative with respect to β. Note that K(1)(·) is a bounded score

function since it will go to zero when the tuning parameter h approaches

infinity, providing support for kernel mode-based estimation to achieve ro-

bustness. Because the corresponding asymptotic result of β̂ can be treated

as a special case of Theorem 2 in Section 3, we omit the detailed theoretical

illustration here. In the supplementary file, we demonstrate that the pro-

posed kernel mode-based estimation can produce more accurate estimates

compared to least squares estimation through a simulation example.
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3. Mode-Based Estimation under Random Truncation

In contrast to the fixed truncation discussed in Section 2, in this section,

we approximately treat random truncation effects under mode content and

utilize truncated data to estimate the parameter β defined in (2.1).

3.1 Model and Identification

Let (Yk, Tk,Xk), 1 ≤ k ≤ N , be a sequence of i.i.d. random vectors, where

Yk is independent of Tk and the sample size N is deterministic but unknown.

Suppose that Y and T have, respectively, unknown distribution functions

F and G. Under random truncation, some observations would be missing

and only a subsequence {(Yki , Tki ,Xki) : 1 ≤ i ≤ n} can be observed. The

size of the actually observed sample, n ≤ N , is binomially distributed, i.e.,

0 < α = P (Y ≥ T ) < 1. Without possible confusion, we shall denote the

observable subsequence by (Ui, Vi,Wi) : i = 1, · · · , n subject to Ui ≥ Vi,

where Ui = Yki , Vi = Tki , and Wi = Xki . Conditional on the value of n,

those observed random variables are still i.i.d.. Note that if we multiple each

variable by -1, the model can be converted to a right-truncated regression.

Let F (y) = P (Y ≤ y), G(t) = P (T ≤ t), and F (y,x) = P (Y ≤ y,X ≤

x). Denote (aF , bF ) as the support of Y or F , where aF = inf{y : F (y) > 0}

and bF = sup{y : F (y) < 1}, and (aG, bG) as the support of T or G, where
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3.1 Model and Identification

aG = inf{t : G(t) > 0} and bG = sup{t : G(t) < 1}. Random truncation

restricts the observation range of Y and T , under which the conditional

distributions F0(y) = P (Y ≤ y | Y ≥ aG) and G0(t) = P (T ≤ t | T ≤ bF )

can be estimated nonparametrically. To ensure F0 = F , we assume that

aG ≤ aF is satisfied, whereas G is identifiable, i.e., G = G0, only when bG ≤

bF and
∫∞
aF

dF/G < ∞ (necessary but not sufficient); see Woodroofe (1985).

We denote any distribution function that is affiliated with the truncated

random variables by a superscript ∗ in what follows. Because the original

data (Yk, Tk,Xk) , 1 ≤ k ≤ N are i.i.d., the observed data {Ui, Vi,Wi}ni=1

still remain i.i.d. with a common distribution F ∗(u, v,w) = P [U ≤ u, V ≤

v,W ≤w] = P [Y ≤ u, T ≤ v,X ≤ w | Y ≥ T ] = α−1
∫
aG≤x≤u

∫
z≤w

G(x∧v)

dF (x, z), where x ∧ v = min(x, v). According to Stute (1993) and He and

Yang (2003), the distribution functions of U , V , and W involved with a

truncated random variable are defined as F ∗(u) = P (U ≤ u) = 1
α

∫ u

−∞G(y)

F (dy), G∗(v) = P (V ≤ v) = 1
α

∫∞
−∞G(v ∧ y)F (dy), F ∗(u,w) = P (U ≤

u,W ≤ w) = 1
α

∫ u

−∞

∫ w

−∞G(y)F (dy, dx), and are estimated by their corre-

sponding empirical distribution functions

F ∗
n(u) = n−1

n∑
i=1

I{Ui≤u}, G∗
n(v) = n−1

n∑
i=1

I{Vi≤v},

F ∗
n(u,w) = n−1

n∑
i=1

I{Ui≤u,Wi≤w},

(3.1)
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3.1 Model and Identification

in which I{·} is the indicator function. Define R(·) by R(y) = G∗(y)−F ∗(y)

= α−1G(y) [1− F (y−)] with the corresponding empirical estimator being

Rn(y) = n−1

n∑
i=1

I{Vi≤y≤Ui} = G∗
n(y)− F ∗

n

(
y−
)
, (3.2)

where F (y−) represents the left-continuous version of F (y).

Constructing a mode-based estimate for β requires estimating the un-

known terms F (y), G(t), and α, which are crucial components of the mode-

based estimation framework. According to Woodroofe (1985), the product-

limit estimates, Fn and Gn provided below, are asymptotically optimal

nonparametric estimators for F (y) and G(t)

Fn(y) = 1−
∏
Ui≤y

[
1− F ∗

n{Ui}
Rn(Ui)

]
and Gn(t) = 1−

∏
Vi>t

[
1− G∗

n{Vi}
Rn(Vi)

]
, (3.3)

where the curly bracket g{t} denotes the difference g(t) − g(t−), in which

g(t−) represents the left-continuous version of g(t), and an empty product

is set to equal one. Without ties among the U ’s and V ’s, (3.3) simplifies to

become Fn(y) = 1−
∏

Ui≤y

[
1− 1

nRn(Ui)

]
and Gn(t) = 1−

∏
Vi>t

[
1− 1

nRn(Vi)

]
.

To estimate β in (2.1), we shall first estimate α by cause of the unknown
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3.1 Model and Identification

value of N . Following He and Yang (1998), we use the estimator

αn(y) =
Gn(y) [1− Fn (y

−)]

Rn(y)
(3.4)

to estimate α for any y such that Rn(y) > 0, which is shown to be inde-

pendent of Y . Furthermore, they showed αn → α almost surely as n → ∞.

Thereafter, one can obtain the nonparametric estimate of F (y,x) as follows

Fn(y,x) = αn

∫
u≤y

∫
w≤x

1

Gn(u)
F ∗
n(du, dw). (3.5)

We then come back to our main problem, which is to estimate the mode-

based coefficient β under random left truncation. According to Kemp and

Santos Silva (2012) and Yao and Li (2014), when we observe {Yi,Xi}ni=1

without truncation, we should maximize (2.2) to obtain the mode-based

estimate, which can be clearly reexpressed as in the integral form

∫
1

h
K

(
y − xTβ

h

)
dF̂n(y,x), (3.6)

where F̂n(y,x) is the empirical distribution of {Yi,Xi}ni=1. In the left trunca-
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3.1 Model and Identification

tion case, we replace F̂n(y,x) in (3.6) by Fn(y,x) defined in (3.5) and obtain

∫
1

h
K

(
y − xTβ

h

)
dFn(y,x) =

∫
u≤y

∫
w≤x

αn

Gn(u)

1

h
K

(
u−wTβ

h

)
dF ∗

n(u,w).

Based on the above results, we can finally estimate the unknown pa-

rameter vector β by maximizing a weighted kernel objective function

Qn(β) =
αn

nh

n∑
i=1

1

Gn (Ui)
K

(
Ui −WT

i β

h

)
, (3.7)

where the resulting mode-based estimator is defined as β̂. It is interesting

to point out that the objective function (3.7) reduces to the traditional ker-

nel mode-based objective function if no (or fixed) truncation (i.e., α = 1)

is present in the data. We subsequently have the following theorem.

Theorem 1. The kernel mode-based objective function (3.7) can be utilized

to achieve the estimator of QN(β) =
1

Nh

∑N
i=1 K

(Yi−XT
i β

h

)
without trunca-

tion as n → ∞, that is, |Qn(β)−QN(β)| = op(1) and

E
[
α

h

1

G (U)
K

(
U −WTβ

h

) ∣∣∣ X] = E
[
1

h
K

(
Y −XTβ

h

) ∣∣∣ X] ,
which implies that the true parameter vector β0 under the left truncated

assumption satisfies that β0 = argmaxE
[
1
h

α
G(U)

K
(

U−WTβ
h

)]
= E

[
1
h
K
(

Y−XTβ
h

)]
.
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3.1 Model and Identification

Algorithm 1: MEM Algorithm under Random Truncation

Data: Sample observations {(Ui, Vi,Wi)}ni=1 and bandwidth h.
Result: Final kernel mode-based estimate β̂.
while two consecutive solutions are not close enough, i.e.,

∥β̂
(m)

− β̂
(m−1)

∥ > 10−4 do

if current estimate β̂
(m)

with iterative indicator m ≥ 1 then

E-Step: Calculate weight π(i | β̂
(m)

) with

[Gn (Ui)]
−1K

(
Ui−WT

i β̂
(m)

h

)
∑n

i=1[Gn (Ui)]−1K

(
Ui−WT

i β̂
(m)

h

) ∝
1

Gn (Ui)
K

(
Ui −WT

i β̂
(m)

h

)
,

which is nonnegative and sums to one.
M-Step: Update the estimate with log-maximization

argmax
n∑

i=1

π(i | β̂
(m)

) log

[
1

Gn (Ui)
K

(
Ui −WT

i β

h

)]
=(WTΦW)−1WTΦU,

where U = (U1, · · · , Un)
T is an n× 1 vector,

W = (WT
1 , · · · ,WT

n )
T is an n× p matrix, and Φ is an n× n

diagonal matrix with diagonal elements {π(i | β̂
(m)

)}ni=1.
end

end

Different from mean regression, we do not have an explicit expression for

the proposed mode-based estimator. To numerically estimate the model, we

suggest a modified MEM algorithm shown above, which includes E-Step for

calculating weights and M-Step for maximizing the log-objective function.

The rationale behind this algorithm is that the outliers are likely to suffer

large residuals and hence get downweighted through E-Step. Following Yao
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3.2 Asymptotic Properties

and Li (2014), we can show that the log-Qn(β) in M-Step does not decrease

after each iteration. As a result, the sequence of estimates generated by the

algorithm will monotonically converge towards at least a local maximum.

On account of the use of Gaussian kernel, the updated values of unknown

parameters can have a closed form in M-Step, which renders the MEM

algorithm highly stable and flexible. The simulation studies in Section 5

indicate that the convergence is typically achieved within 50 iterations. In

practice, the initial value β̂
(0)

can be chosen as the median or Huber esti-

mate. Notice that for numerical estimation, we allow for the existence of

local modes in the data (see simulation study in the supplementary file).

To ensure the achieving of global maximum, we can try different initial

estimates and compare the values of kernel mode-based objective function.

3.2 Asymptotic Properties

The development of statistical properties for the resulting mode-based esti-

mator is not trivial, as there exist truncation effects in the objective function

and the bandwidth h is treated as a constant. To investigate the theoretical

proprieties, we impose some technical conditions outlined below.

C1 The true value of parameter β0 lies within the interior of the known

compact parameter space, which is a subset of Rp.
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3.2 Asymptotic Properties

C2 The distribution functions F and G are continuous and aG ≤ aF . Ad-

ditionally,
∫

dF
1−F

< ∞,
∫

dF
G2 < ∞, and E[∥X∥2/G(Y )] < ∞, where

the integral sign
∫
denotes integration from −∞ to +∞.

C3 The kernel function K(·) : R → R is a nonnegatively symmetric den-

sity function with bounded support and integrates to one.

C4 There exists a constant C > 0 such that E{supY:|Y−ε|<C |K
(3)
h (Y)|} <

∞, where Kh(·) = h−1K(·/h) is the rescaled kernel and K
(c)
h (·) de-

notes the cth derivative of Kh(·).

C5 The first derivative of the kernel objective function satisfies E[K(1)
h (ε) |

X] = 0. Also, the functions E[K(2)
h (ε) | X] and E{[K(1)

h (ε)]2/G(Y ) |

X} are all continuous in relation to X. Furthermore, E[K(2)
h (ε) | X] <

0 and E{[K(1)
h (ε)]2/G(Y ) | X} is finite for any h > 0.

C6 The bandwidth h is a constant and is independent of sample size n.

C7 There is a constant s > 2 such that E∥X∥2s < ∞. Also, E{[K(2)
h (ε) |

X]XXT} is finite and non-singular.

Due to space limitations, comments pertaining to the aforementioned

conditions are included in the supplementary file. After that, the following
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3.2 Asymptotic Properties

asymptotic results can be obtained, where for j, k = 1, · · · , p, we denote

σjk =α

{∫
K

(1)
h (ε)XjK

(1)
h (ε)Xk

G(Y )
F (dY, dX)

+

∫ ∫
Y≤s

K
(1)
h (ε)XjF (dY, dX)

∫
Y≤s

K
(1)
h (ε)XkF (dY, dX)

[1− F (s)]G2(s)
G(ds)

}
.

Theorem 2. With the conditions C1-C7 held, when n → ∞,

(i) the mode-based maximum of Qn(β) occurs at β̂ such that

∥β̂ − β0∥ = Op(n
−1/2);

(ii) the mode-based estimator satisfying the consistency result in (i) has the

following asymptotic property

√
n
(
β̂ − β0

)
d→ N

(
0,E

{
[K

(2)
h (ε) | X]XXT

}−1

ΣE
{
[K

(2)
h (ε) | X]XXT

}−1
)
,

where “
d→” denotes convergence in distribution and Σ is a p × p positive

definite matrix with the element σjk.

When Y is absent of truncation (or has fixed truncation), that is all

data can be fully observed, then Gn(Ui) = 1 and α = 1. In this case, the
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3.2 Asymptotic Properties

asymptotic normality in Theorem 2 would be reduced to

√
n(β̂ − β0)

d→ N
(
0, {E[K(2)

h (ε) | X]}−2E{[K(1)
h (ε)]2 | X}Cov−1(X)

)

with a finite covariance matrix Cov(X). It can be seen that the resulting

large sample properties do not depend on any moment conditions on the

random error, which enables resulting mode-based estimator to be robust

against outliers or heavy-tailed distributions. This intuitively suggests that

β̂ enjoys a
√
n-consistency property even when Var(ε) is infinite.

To select the bandwidth h in a data-driven way, we employ a cross-

validation (CV) approach specifically tailored to the kernel mode-based

function

CV (h) =
n∑

i=1

Kh

(
Ui −WT

i β̂[−i]

)
, (3.8)

where β̂[−i] is the solution from (3.7) after deleting the ith subject. When

utilizing a Gaussian kernel for K(·), (3.8) can be interpreted as leaving out

the ith projection error from the estimation process. We shall demonstrate

that CV(h) performs well in our numerical examples listed in Section 5.
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3.3 Mode-Based Empirical Likelihood

3.3 Mode-Based Empirical Likelihood

In small samples, normal approximation confidence intervals for β might

lack accuracy, as certain unknown terms in the asymptotic variance need to

be estimated. Alternatively, we propose an empirical likelihood method to

construct confidence intervals by establishing mode-based auxiliary random

vectors, which has the ability to restrict side information and automatically

determine the geometry of confidence intervals; see Chen and Van Keilegom

(2009). This empirical likelihood approach enables us to make inferences

for any linear combination of coefficients.

Taking into account the influence of truncated data, for a fixed β, we

establish a weighted auxiliary random vector as follows

Ξi(β) = G−1 (Ui)K
(1)
h (εi)Wi. (3.9)

Let p1, p2, · · · , pn denote nonnegative numbers summing to unity. Build-

ing upon the result from Theorem 1 such that E[αG−1(Ui)K
(1)
h (εi)Wi |

Xi] = E[K(1)
h (εi)Xi | Xi], we can get E[αΞi(β) | Xi] = αE[Ξi(β) | Xi] =

E[K(1)
h (εi) Xi | Xi] = XiE[K(1)

h (εi) | Xi]. With the condition E[K(1)
h (εi) |

Xi] = 0 for β = β0 in condition C5, we can arrive at E[Ξi(β) | Xi] = 0.

This result holds if and only if β = β0, which follows from the fact that
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3.3 Mode-Based Empirical Likelihood

E[K(1)
h (εi) | Xi] = 0 is unique to the true parameter β0. Thereupon, the

empirical log-likelihood ratio statistic of β can be defined as

L0(β0) = −2max

{
n∑

i=1

log(npi) : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piΞi(β0) = 0

}
.

Since L0(β0) contains unknown terms, a natural way is to replace them by

their estimates. Using the standard Lagrange multiplier method such that∑n
i=1 log(npi) − γ(1 −

∑n
i=1 pi) − λT

β0

∑n
i=1 piΞi(β0), where γ and λβ0

are

Lagrange multipliers, we can obtain γ = −n and pi = 1/{n[1+λT
βΞi(β0)]}.

Therefore, the empirical log-likelihood ratio evaluated at true parameter

value is

L(β0) = 2
n∑

i=1

log
{
1 + λT

β0
Ξi(β0)

}
, (3.10)

where λβ0
, a p× 1 vector of Lagrange multipliers, is the solution of

1

n

n∑
i=1

Ξi(β0)

1 + λT
βΞi(β0)

= 0 (3.11)

by putting pi = 1/{n[1+λT
βΞi(β0)]} into the constraint

∑n
i=1 piΞi(β0) = 0.

In addition, with the constraint pi ≥ 0 and
∑n

i=1 pi = 1, the function∑n
i=1 log(npi) = n log(n) +

∑n
i=1 log(pi) is maximized by pi = 1/n, which

is derived by solving the Lagrange function
∑n

i=1 log(pi)− γ(1−
∑n

i=1 pi).
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Combining this with the result pi = 1/{n[1 + λT
βΞi(β0)]}, we can arrive at

λT
βΞi(β0) = 0. Therefore, according to (3.11), we have n−1

∑n
i=1 Ξi(β0) =

0, leading to E[Ξi(β0)] = 0 in expectation, given that Ξi(β0) are inde-

pendent random variables. Consequently, L(β0) will be maximized by β̂

obtained from (3.7). We then have the following theorem.

Theorem 3. (Wilks’ Theorem) Suppose the same conditions as Theorem 2

are satisfied. As n → ∞, the limiting distribution of L(β0) is L(β0)
d→ χ2

p,

where χ2
p is the chi-square distribution with p degrees of freedom.

Theorem 3 indicates that the proposed empirical log-likelihood ratio has

a chi-square distribution, which is free of any tuning parameter. Therefore,

the confidence intervals for β0 with asymptotically coverage probability 1−

αc can be defined as In,αc = {β : L(β) ≤ Cαc} with Cαc satisfying P (χ2
p ≤

Cαc) = 1 − αc. The confidence intervals do not depend on an explicit es-

timate of E{[K(2)
h (ε) | X]XXT}−1ΣE{[K(2)

h (ε) | X]XXT}−1, which is a big

advantage compared to confidence intervals built on Wald-type statistics.

4. Mode-Based Variable Selection under Random Truncation

In practice, it is frequently uncertain what the true model is, and the covari-

ates may contain a large amount of extraneous information. To address this

challenge, in this section, we propose a shrinkage procedure for (3.7), which
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4.1 Mode-Based Penalized Estimation

allows us to conduct estimation and variable selection simultaneously.

4.1 Mode-Based Penalized Estimation

Benefiting from the favorable properties of the SCAD penalty, we integrate

mode-based estimation with the SCAD penalty for randomly truncated

data, which is defined on R+ with respect to its first derivative

p
(1)
λ (t) = λ

{
I(t ≤ λ) +

(aλ− t)+
(a− 1)λ

I(t > λ)

}
, t > 0, (4.1)

where a > 2 and λ > 0 are tuning parameters to control the amount of

shrinkage, I(·) is the indicator function, and (t)+ denotes the positive value

of t. The larger the value of λ, the greater the amount of shrinkage. Ac-

cording to Fan and Li (2001), the SCAD penalty satisfies the conditions for

unbiasedness, sparsity, and continuity, but is not differentiable at zero.

After incorporating the SCAD penalty into (3.7), the resulting penal-

ized kernel mode-based objective function is established as follows

Qp
n(β) =

αn

nh

n∑
i=1

1

Gn (Ui)
K

(
Ui −WT

i β

h

)
−

p∑
j=1

pλ (|βj|) . (4.2)

By maximizing the above objective function with an appropriate penalty

parameter λ, we can obtain a sparse mode-based estimator of β, denoted
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4.1 Mode-Based Penalized Estimation

as β̂
p
, thereby facilitating variable selection. It is worth noting that the

tuning parameter λ need not be uniform across all coefficients. We can

easily set λj = λ[Var(βj)]
1/2 for j = 1, · · · , p to allow for different penalties

on individual parameters. For simplicity, we concentrate on the illustration

with a common λ. Additionally, alternative penalty functions can also be

utilized here and lead to similar consistency results as outlined below.

We establish the oracle property of the SCAD penalized mode-based

regression. Without loss of generality, we partition the true parameter vec-

tor as β = (βT
1 ,β

T
2 )

T , where β1 ∈ Rs comprises all nonzero components

and β2 ∈ Rp−s contains all zero parameters. Similarly, the covariates are

partitioned into two sets, withX1 representing the covariates corresponding

to the first s elements of X. We can then present the following theorem.

Theorem 4. With the conditions C1-C7 satisfied, if λ → 0 and
√
nλ → ∞

as n → ∞, we have

(i) Selection Consistency: with probability tending to one, β̂
p

2 = 0(p−s)×1.

(ii) Asymptotic Normality:
√
n(β̂

p

1−β1,0)
d→ N (0,∆−1Σ1∆

−1), where ∆ =

E{[K(2)
h (ε) | X1]X1X

T
1 } and Σ1 is a s × s positive definite matrix with the

element σjk associated with covariates X1.

The penalty function becomes singular at the origin due to the condi-

tion λ → 0, which in turn offers the penalized estimator sparsity property.
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4.2 Computational Algorithm

The condition
√
nλ → ∞ implies that if the tuning parameter converges to

zero at a speed slower than n−1/2, the corresponding penalized estimator

can be n1/2-consistent. Therefore, the suggested method has the ability to

consistently produce spare solutions for mode-based regression coefficients.

4.2 Computational Algorithm

To implement the aforementioned variable selection procedure, we need to

obtain the appropriate tuning parameters a and λ in the process of com-

putation, which can control the degree of robustness and efficiency of the

proposed estimator. To reduce intensive computation and guarantee consis-

tent variable selection, we follow Fan and Li (2001) to choose a = 3.7 from

the Bayesian point of view and utilize the following extended BIC to select λ

BIC(λ) = log

[
αn

nh

n∑
i=1

1

Gn (Ui)
K

(
Ui −WT

i β̂
p

h

)]
− log(n)

n
dfλ, (4.3)

where dfλ is the degrees of freedom, i.e., the number of nonzero elements of

β̂
p
for any candidate penalty parameter λ. The suggested BIC takes into

account both the number of unknown parameters and the complexity of

the model space, where the first term in (4.3) is an “artificial” likelihood,

sharing essential properties of a parametric log-likelihood, and the second
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4.2 Computational Algorithm

term measures the model complexity. Thereby, the tuning parameter λ can

be chosen as argmaxλ BIC(λ), which is supported by the following theorem.

Theorem 5. Under the conditions C1-C7, the tuning parameter λ̂ selected

by BIC(λ) can choose the true model with probability approaching one.

Despite the excellent statistical properties of the SCAD penalized mode-

based estimator, the maximization of the SCAD penalized objective func-

tion is not easy because it is irregular at the origin and does not have a

second derivative at some points. To circumvent this difficulty, we take the

local quadratic approximation for the SCAD penalty suggested by Fan and

Li (2001). Suppose that we can get an estimate β
(m)
j in the mth step that is

close to the true parameter βj. If β
(m)
j is near 0, then set β̂j = 0. Otherwise,

the SCAD penalty can be locally approximated by a quadratic function as

pλ(|βj|) ≈ pλ(|β(m)
j |) + 1

2
{p(1)λ (|β(m)

j |)/|β(m)
j |}(β2

j − β
(m)2
j ) for βj ≈ β

(m)
j ,

where p
(1)
λ (·) represents the first derivative of pλ(·). Following the same

procedures outlined in Algorithm 1, we can propose a modified MEM al-

gorithm for SCAD penalized mode-based regression by replacing pλ (|βj|)

with the above equation and ignoring irrelevant constants; see Algorithm 2.

Starting from an initial estimate, we iterate the E-Step and M-Step until
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4.2 Computational Algorithm

a convergence criterion is met. The convergence property of the proposed

penalized MEM Algorithm 2 is investigated in the supplementary file.

Algorithm 2: MEM Algorithm for Variable Selection

Data: Sample observations {(Ui, Vi,Wi)}ni=1, bandwidth h, and
tuning parameter λ.

Result: Final penalized kernel mode-based estimate β̂
p
.

while two consecutive solutions are not close enough, i.e.,

∥β̂
p(m)

− β̂
p(m−1)

∥ > 10−4 do

if current estimate β̂
p(m)

with iterative indicator m ≥ 1 then

E-Step: Calculate weight π(i | β̂
p(m)

) with

(Gn (Ui))
−1K

(
Ui−WT

i β̂
p(m)

h

)
∑n

i=1(Gn (Ui))−1K

(
Ui−WT

i β̂
p(m)

h

) ∝
1

Gn (Ui)
K

(
Ui −WT

i β̂
p(m)

h

)
,

which is nonnegative and sums to one.
M-Step: Update the estimate with log-maximization

argmax
n∑

i=1

π(i | β̂
p(m)

) log

[
1

Gn (Ui)
K

(
Ui −WT

i β

h

)]

− n

2

p∑
j=1

{
p
(1)
λ (|β̂p(m)

j |)
|β̂p(m)

j |

}
β2
j = (WTΦW + nΣλ(β̂

p(m)
))−1WTΦU,

where Φ is an n× n diagonal

matrix with diagonal elements π(·), and Σλ(β̂
(m)

) =

diag{p(1)λ (|β̂p(m)
1 |)/|β̂p(m)

1 |, · · · , p(1)λ (|β̂p(m)
p |)/|β̂p(m)

p |}
for nonvanished β̂

(m)
.

end

end
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5. Numerical Examples

We present numerical examples to illustrate the finite sample performance

of the suggested estimation and variable selection procedures in this section.

Note that Rn in (3.2) affects the product-limit estimates of F and G, and

may approach zero within the range of the data due to the nature of ran-

dom truncation, resulting in unreasonable estimates of Fn(y) and Gn(t). In

accordance with the approach in Woodroofe (1985), we solve this problem

by substituting max{Rn(y), 1/n+1/n2} for Rn in the subsequent analysis.

5.1 Monte Carlo Experiments

We assume that N is fixed and n, the observed sample size, is random un-

der different data generating process (DGP). Certainly, one can also assume

that n is fixed and N is random. The total number of generated random

samples is {200, 400, 600, 1000} and the number of replications is 400. The

estimators from oracle estimation, the proposed estimation, and the naive

estimation using observations which are assumed not truncated are com-

pared. To illustrate the robustness and efficiency of the proposed estimator,

we also report the results from Huber (with tuning parameter 1.345), me-

dian, and least squares (LS) estimations under random truncation.
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5.1 Monte Carlo Experiments

DGP 1 We consider the following linear regression model

Yi = β1 + β2Xi + εi, i = 1, · · · , N, (5.1)

where β1 = 0, β2 = 1, and Xi is generated from a uniform distribution

U [0, 2]. The truncating variable Ti is independently generated from a nor-

mal distribution with mean 0 and variance 1, resulting in approximately

22% median truncated data. To illustrate robustness and efficiency, the

error term εi is assumed to follow four different distributions: (i) normal

distribution N (0, 1); (ii) Student’s t distribution with 3 degrees of freedom,

t(3), representing the heavy-tailed distribution; (iii) Laplace distribution,

Lp(0, 1); and (iv) mixture of normal distributions, 0.9N (0, 1)+0.1N (0, 102),

where the 10% data from N (0, 102) are most likely to be outliers.

The estimation results are reported in Table 1, where the average es-

timate, standard error (SE), and mean squared error (MSE) are presented

based on 400 simulations. As observed, the performance of the oracle esti-

mator is the best, and the proposed mode-based estimator consistently pro-

duces smaller SE and MSE than the naive estimator. Even when compared

to Huber and median estimations, the developed kernel mode-based estima-

tion can have better performance in respect of SE and MSE. Furthermore,
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5.1 Monte Carlo Experiments

LS estimator performs slightly better than kernel mode-based estimator

with normally distributed errors. This is expected since the Gaussian ker-

nel approximation exp(−t2/h) tends to resemble t2/h for a large bandwidth

h. Nevertheless, the suggested mode-based estimator is superior to LS es-

timator for all other error distributions, reflecting the robustness property

of mode-based estimation. All of these results hold true for both smaller

(N = 200) and larger (N = 1000) sample sizes. With increasing sam-

ple sizes, the MSEs for all estimators become smaller. Notably, for naive

estimator, the bias does not decrease as the sample size N increases. To

validate the accuracy of SE, we compare it to the sample standard deviation

(SD) of the estimators for both oracle and proposed mode-based regression

coefficients. Figure S5 in the supplementary file illustrates that the ratio

is close to one, indicating that the proposed estimation method performs

reasonably well. We also plot empirical density functions and boxplots of

the resulting kernel mode-based estimators in the supplementary file to il-

lustrate the asymptotic normality property. As shown in Figure S6, when

the sample sizes grow, the SE exhibits a diminishing pattern in magnitude

and the distribution tends to approach normality for all error distributions.

Table 1: Monte Carlo Results-DGP 1 (Estimation)
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5.1 Monte Carlo Experiments

N=200 N=400 N=600 N=1000

Method β2 SE(β2) MSE(β2) β2 SE(β2) MSE(β2) β2 SE(β2) MSE(β2) β2 SE(β2) MSE(β2)

N (0, 1)

Oracle 0.9989 0.0601 0.0036 0.9989 0.0436 0.0019 0.9994 0.0355 0.0013 1.0042 0.0262 0.0007

Proposed 1.0044 0.0773 0.0060 0.9977 0.0526 0.0028 1.0001 0.0424 0.0018 1.0030 0.0330 0.0011

Naive 1.1816 0.0585 0.0364 1.1838 0.0427 0.0356 1.1832 0.0359 0.0349 1.1845 0.0264 0.0347

Huber 1.0027 0.1336 0.0178 0.9979 0.0926 0.0086 0.9996 0.0749 0.0056 1.0041 0.0574 0.0033

Median 1.0016 0.1645 0.0270 0.9974 0.1093 0.0119 0.9976 0.0898 0.0080 1.0082 0.0728 0.0054

LS 0.9976 0.0632 0.0040 0.9985 0.0442 0.0020 0.9995 0.0364 0.0013 1.0040 0.0271 0.0007

t(3)

Oracle 1.0056 0.0790 0.0063 0.9922 0.0543 0.0030 1.0006 0.0437 0.0019 1.0032 0.0333 0.0011

Proposed 1.0101 0.0868 0.0076 0.9954 0.0590 0.0035 0.9998 0.0481 0.0023 1.0024 0.0359 0.0013

Naive 1.2469 0.0683 0.0656 1.2437 0.0482 0.0617 1.2411 0.0378 0.0596 1.2443 0.0320 0.0607

Huber 1.0013 0.1057 0.0111 0.9916 0.0723 0.0053 0.9987 0.0626 0.0039 1.0041 0.0464 0.0022

Median 0.9879 0.1586 0.0252 0.9894 0.1059 0.0113 1.0062 0.0901 0.0081 1.0043 0.0701 0.0049

LS 0.9932 0.1774 0.0314 0.9914 0.1186 0.0141 1.0022 0.1004 0.0101 0.9987 0.0754 0.0057

Lp(0, 1)

Oracle 1.0021 0.0737 0.0054 1.0075 0.0527 0.0028 1.0030 0.0414 0.0017 1.0009 0.0322 0.0010

Proposed 1.0005 0.0747 0.0056 1.0063 0.0509 0.0026 1.0024 0.0423 0.0018 0.9999 0.0324 0.0010

Naive 1.2290 0.0650 0.0567 1.2285 0.0476 0.0545 1.2249 0.0377 0.0520 1.2259 0.0295 0.0519

Huber 1.0004 0.0864 0.0075 1.0042 0.0644 0.0042 1.0038 0.0463 0.0022 1.0019 0.0403 0.0016

Median 0.9909 0.1398 0.0196 1.0023 0.0913 0.0083 1.0030 0.0718 0.0052 1.0006 0.0581 0.0034

LS 0.9943 0.1573 0.0247 1.0039 0.1101 0.0121 1.0036 0.0850 0.0072 1.0023 0.0647 0.0042

0.9N (0, 1) + 0.1N (0, 102)

Oracle 0.9937 0.0809 0.0066 0.9981 0.0564 0.0032 1.0008 0.0466 0.0022 0.9985 0.0377 0.0014

Proposed 0.9929 0.0890 0.0080 0.9991 0.0594 0.0035 1.0015 0.0508 0.0026 0.9995 0.0410 0.0017

Naive 1.3223 0.0776 0.1099 1.3208 0.0547 0.1059 1.3184 0.0454 0.1034 1.3197 0.0357 0.1035

Huber 0.9906 0.1270 0.0162 0.9997 0.0814 0.0066 1.0016 0.0718 0.0051 1.0005 0.0562 0.0032

Median 0.9918 0.1758 0.0309 1.0049 0.1114 0.0124 1.0010 0.0950 0.0090 0.9931 0.0733 0.0054

LS 0.9946 0.2054 0.0421 1.0156 0.1361 0.0187 1.0010 0.1152 0.0132 0.9913 0.0902 0.0082

To evaluate the performance of mode-based empirical likelihood (EL)

estimation, we report the simulated coverage probabilities (CP) of confi-

dence intervals for β2 and the average lengths (AL) of confidence intervals

at the nominal level 95% in Table 2. We also include results from the normal

approximation method for comparison. Comparing to the normal approx-

imation procedure, it is evident that the suggested EL estimation consis-
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tently results in shorter AL and produces empirical CP closer to the nominal

level 95% regardless of the error distribution, albeit with some slight under-

coverage. Conversely, the CP from other estimations with nonnormal errors

generally fall below the nominal level. Furthermore, the AL from all esti-

mations decrease as the sample size N increases. When outliers or heavy-

tailed distributions are present, the proposed mode-based EL estimation

outperforms other methods by producing smaller AL, except for the oracle

estimation, which translates into greater power and more precise estimates.

Table 2: Monte Carlo Results-DGP 1 (Empirical Likelihood)
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N (0, 1) t(3) Lp(0, 1) Mixture N

Method N CP AL CP AL CP AL CP AL

Oracle-EL

200 0.9350 0.4807 0.9425 0.5920 0.9400 0.6368 0.9350 0.6809

400 0.9400 0.3688 0.9450 0.5135 0.9450 0.5582 0.9425 0.6174

600 0.9425 0.2835 0.9475 0.4230 0.9450 0.4864 0.9450 0.5232

1000 0.9475 0.2287 0.9550 0.3606 0.9475 0.4254 0.9450 0.4617

Proposed-EL

200 0.9225 0.4938 0.9400 0.6228 0.9375 0.6746 0.9300 0.7163

400 0.9375 0.3826 0.9425 0.5409 0.9400 0.5859 0.9350 0.6410

600 0.9400 0.3266 0.9425 0.4584 0.9425 0.5149 0.9375 0.5546

1000 0.9450 0.2798 0.9475 0.3724 0.9450 0.4287 0.9400 0.4725

Huber-EL

200 0.9175 0.5107 0.9375 0.6894 0.9300 0.7430 0.9225 0.7826

400 0.9300 0.4228 0.9400 0.5910 0.9350 0.6638 0.9250 0.7136

600 0.9375 0.3616 0.9425 0.4888 0.9375 0.5802 0.9350 0.6243

1000 0.9400 0.3190 0.9450 0.3946 0.9425 0.4765 0.9400 0.5374

Median-EL

200 0.9100 0.5624 0.9325 0.7289 0.9225 0.7818 0.9200 0.8259

400 0.9200 0.4943 0.9350 0.6571 0.9300 0.7156 0.9225 0.7560

600 0.9325 0.3817 0.9400 0.5225 0.9350 0.6337 0.9250 0.6821

1000 0.9375 0.3286 0.9425 0.4342 0.9425 0.5459 0.9375 0.5953

LS-EL

200 0.9400 0.4638 0.9250 0.7958 0.8925 1.3242 0.8525 1.3067

400 0.9450 0.3230 0.9275 0.7117 0.9100 1.1550 0.9075 1.1961

600 0.9475 0.2679 0.9325 0.6321 0.9175 0.8365 0.9125 0.8920

1000 0.9525 0.2138 0.9350 0.5236 0.9225 0.7069 0.9175 0.7781

Normal
Approximation

200 0.9012 0.5039 0.9277 0.6580 0.9209 0.8603 0.9142 1.0361

400 0.9170 0.4160 0.9286 0.5819 0.9236 0.7686 0.9189 0.9240

600 0.9277 0.3582 0.9310 0.5130 0.9301 0.6915 0.9210 0.8520

1000 0.9321 0.3130 0.9350 0.4679 0.9327 0.6150 0.9278 0.7930

DGP 2 To illustrate the variable selection procedure, we consider

Yi =
8∑

j=1

Xj,iβj + εi, i = 1, · · · , N, (5.2)

where β = (0.5, 1, 1.5, 2, 0, 0, 0, 0) and Xi is generated from a multivariate

normal distribution of dimension 8 with mean 0 and pairwise covariance
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0.5|j−k| for j, k = 1, · · · , 8. The error distributions considered here are iden-

tical to those in DGP 1. To assess finite sample performance, we compute

the generalized mean squared error (GMSE) of the parameter, which is de-

fined as GMSE(β̂) = E[(XT β̂−XTβ0)
2] = E[(β̂−β0)

TΣX(β̂−β0)] and ΣX

is the covariance matrix of X. As the covariates X are centralized, we have

ΣX = E(XXT ) and GMSE(β̂) = (β̂ − β)TE(XXT )(β̂ − β). In addition,

several indicators related to variable selection are also reported in the fol-

lowing table, where C stands for the average number of nonzero coefficients

correctly estimated to be nonzero, IC indicates the average number of zero

coefficients incorrectly estimated to be nonzero, U-Fit represents the pro-

portion of simulations excluding any nonzero coefficient, C-Fit denotes the

percentage of simulations selecting exact subset model, and O-Fit shows the

proportion of simulations including all nonzero coefficients and some zero

ones in 400 replications. Throughout the simulations, an estimate whose

absolute value is less than 10−4 is set to be zero.

The simulation results are reported in Table 3, from which we can

observe that the variable selection procedure based on the oracle method

performs the best, while the naive method produces the worst results. The

suggested kernel mode-based method can select all four true covariates in

all scenarios and performs better than LS-based variable selection proce-
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dure for all nonnormal error distributions. It also outperforms both Huber

and median-based variable selection procedures in all cases as they tend to

select irrelevant variables more frequently, resulting in lower oracle propor-

tions. When the error follows a standard normal distribution, the developed

procedure is relatively effective compared with LS-based method in both

model complexity and model error. Additionally, the overfitting values in

Table 3 are always greater than zero for all selection procedures, suggest-

ing that the SCAD penalty may have a tendency to overfit more than to

underfit. This phenomenon might be alleviated by adjusting the tuning

parameters more efficiently, which is deserved to be researched further in

the future. In respect to GMSE, mode-based method has smaller magni-

tudes compared to other estimation methods when the error distribution

is nonnormal. As the sample size N increases, the resulting GMSE grows

smaller and C-Fit becomes larger, while the corresponding IC and O-Fit get

smaller. Overall, the results demonstrate that the model selection outcome

drew on the established method is satisfactory and that the selected model

closely resembles the true model in terms of nonzero coefficients.

Table 3: Monte Carlo Results-DGP 2 (Variable Selection)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0288



5.1 Monte Carlo Experiments

N Method GMSE C IC U-Fit C-Fit O-Fit N GMSE C IC U-Fit C-Fit O-Fit

N (0, 1)

200

Oracle 0.2463 3.5961 0.1911 0.0000 0.7800 0.2200

400

0.1369 3.6579 0.1529 0.0000 0.8000 0.2000

Proposed 0.2886 3.5534 0.2034 0.0000 0.7700 0.2300 0.1757 3.6435 0.1836 0.0000 0.7800 0.2200

Naive 0.6423 3.3883 0.2478 0.0100 0.7700 0.2200 0.4053 3.4121 0.2365 0.0200 0.7600 0.2200

Huber 0.3372 3.4722 0.2335 0.0000 0.7300 0.2700 0.2023 3.5746 0.2022 0.0000 0.7500 0.2500

Median 0.4123 3.4564 0.2831 0.0000 0.7100 0.2900 0.2484 3.5236 0.2554 0.0000 0.7400 0.2600

LS 0.2119 3.6958 0.1764 0.0000 0.8100 0.1900 0.1105 3.7143 0.1415 0.0000 0.8200 0.1800

600

Oracle 0.1035 3.7985 0.1182 0.0000 0.8200 0.1800

1000

0.0772 3.8023 0.1075 0.0000 0.8500 0.1500

Proposed 0.1246 3.7213 0.1337 0.0000 0.8000 0.2000 0.0815 3.7892 0.1142 0.0000 0.8200 0.1800

Naive 0.2961 3.5744 0.1793 0.0000 0.7700 0.2300 0.2404 3.6275 0.1448 0.0000 0.7900 0.2100

Huber 0.1567 3.6403 0.1542 0.0000 0.7700 0.2300 0.1183 3.7201 0.1258 0.0000 0.8000 0.2000

Median 0.1766 3.5960 0.1837 0.0000 0.7600 0.2400 0.1357 3.6936 0.1354 0.0000 0.7800 0.2200

LS 0.0923 3.8281 0.1132 0.0000 0.8500 0.1500 0.0543 3.9417 0.1011 0.0000 0.8700 0.1300

t(3)

200

Oracle 0.3163 3.5291 0.2646 0.0000 0.7500 0.2500

400

0.1698 3.6118 0.2103 0.0000 0.7800 0.2200

Proposed 0.3335 3.4760 0.2837 0.0000 0.7400 0.2600 0.1822 3.5845 0.2368 0.0000 0.7700 0.2300

Naive 0.7470 3.3126 0.3675 0.0600 0.7100 0.2300 0.4274 3.4076 0.3152 0.0600 0.7200 0.2200

Huber 0.4194 3.4266 0.3157 0.0000 0.7100 0.2900 0.2275 3.5194 0.2865 0.0000 0.7400 0.2600

Median 0.4673 3.4179 0.3225 0.0000 0.7000 0.3000 0.2613 3.5016 0.2941 0.0000 0.7300 0.2700

LS 0.5821 3.3463 0.3437 0.0000 0.6800 0.3200 0.2896 3.4776 0.3035 0.0000 0.7200 0.2800

600

Oracle 0.1339 3.7219 0.1437 0.0000 0.8000 0.2000

1000

0.0925 3.7998 0.1162 0.0000 0.8300 0.1700

Proposed 0.1512 3.6143 0.1563 0.0000 0.7900 0.2100 0.1078 3.7467 0.1282 0.0000 0.8100 0.1900

Naive 0.3226 3.5472 0.2077 0.0000 0.7500 0.2500 0.2679 3.6132 0.1687 0.0000 0.7700 0.2300

Huber 0.1761 3.5962 0.1762 0.0000 0.7700 0.2300 0.1329 3.7039 0.1333 0.0000 0.8000 0.2000

Median 0.1955 3.5895 0.1923 0.0000 0.7600 0.2400 0.1525 3.6823 0.1407 0.0000 0.7900 0.2100

LS 0.2147 3.5784 0.2018 0.0000 0.7600 0.2400 0.1849 3.6563 0.1539 0.0000 0.7800 0.2200

Lp(0, 1)

200

Oracle 0.2964 3.5752 0.2173 0.0000 0.7700 0.2300

400

0.1506 3.6344 0.1708 0.0000 0.7900 0.2100

Proposed 0.3143 3.5327 0.2334 0.0000 0.7600 0.2400 0.1796 3.6154 0.2015 0.0000 0.7800 0.2200

Naive 0.7135 3.3472 0.3105 0.0600 0.7200 0.2200 0.4154 3.4100 0.2868 0.0200 0.7400 0.2400

Huber 0.3978 3.4576 0.2658 0.0000 0.7400 0.2600 0.2129 3.5483 0.2446 0.0000 0.7500 0.2500

Median 0.4454 3.4363 0.2745 0.0000 0.7300 0.2700 0.2502 3.5152 0.2619 0.0000 0.7400 0.2600

LS 0.5194 3.3828 0.2931 0.0000 0.7400 0.2600 0.2723 3.5057 0.2751 0.0000 0.7500 0.2500

600

Oracle 0.1279 3.7635 0.1229 0.0000 0.8100 0.1900

1000

0.0853 3.8011 0.1123 0.0000 0.8400 0.1600

Proposed 0.1316 3.6917 0.1426 0.0000 0.8000 0.2000 0.0924 3.7652 0.1205 0.0000 0.8200 0.1800

Naive 0.3164 3.5620 0.1983 0.0000 0.7600 0.2400 0.2544 3.6181 0.1575 0.0000 0.7800 0.2200

Huber 0.1662 3.6379 0.1639 0.0000 0.7800 0.2200 0.1239 3.7148 0.1294 0.0000 0.8000 0.2000

Median 0.1864 3.5906 0.1887 0.0000 0.7700 0.2300 0.1462 3.6895 0.1387 0.0000 0.8000 0.2000

LS 0.2026 3.5876 0.1905 0.0000 0.7600 0.2400 0.1639 3.6754 0.1471 0.0000 0.7900 0.2100

0.9N (0, 1) + 0.1N (0, 102)

200

Oracle 0.3786 3.5170 0.2823 0.0000 0.7300 0.2700

400

0.2208 3.6092 0.2313 0.0000 0.7700 0.2300

Proposed 0.3964 3.4586 0.2904 0.0000 0.7100 0.2900 0.2461 3.5568 0.2580 0.0000 0.7600 0.2400

Naive 0.8113 3.2718 0.3825 0.0200 0.6800 0.3400 0.5429 3.3602 0.3341 0.0600 0.7100 0.2300

Huber 0.4524 3.4153 0.3280 0.0000 0.7100 0.2900 0.2611 3.4825 0.3087 0.0000 0.7300 0.2700

Median 0.4993 3.4069 0.3336 0.0000 0.7000 0.3000 0.2862 3.4603 0.3175 0.0000 0.7200 0.2800

LS 0.6125 3.3256 0.3552 0.0000 0.7000 0.3000 0.3122 3.4162 0.3224 0.0000 0.7200 0.2800

600

Oracle 0.1854 3.7055 0.1615 0.0000 0.7900 0.2100

1000

0.1273 3.7524 0.1323 0.0000 0.8200 0.1800

Proposed 0.1966 3.6791 0.1783 0.0000 0.7800 0.2200 0.1421 3.7117 0.1483 0.0000 0.8000 0.2000

Naive 0.3630 3.4428 0.2288 0.0000 0.7400 0.2600 0.2985 3.5520 0.1931 0.0000 0.7500 0.2500

Huber 0.2104 3.5305 0.1829 0.0000 0.7700 0.2300 0.1773 3.6445 0.1561 0.0000 0.7800 0.2200

Median 0.2338 3.5109 0.1947 0.0000 0.7600 0.2400 0.1964 3.6052 0.1628 0.0000 0.7700 0.2300

LS 0.2687 3.4911 0.2031 0.0000 0.7700 0.2300 0.2242 3.5865 0.1781 0.0000 0.7700 0.2300
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5.2 Empirical Analysis: Housing Market

5.2 Empirical Analysis: Housing Market

We evaluate the proposed method by using the clean air housing market

dataset from census tracts of Boston from 1970 census in this subsection.

The dataset, available at http://lib.stat.cmu.edu/datasets/boston_

corrected.txt, is mainly used for investigating the effect of clean air on

house price, containing 16 variables among 506 observations. For simplicity,

we exclude all categorical variables from the dataset to conduct estimation

using the suggested mode-based method and identify the model structure

using the developed mode-based variable selection procedure. After that,

we have the dependent variable CMEDV (corrected median value of owner-

occupied homes) and the covariates LON (point longitudes in decimal de-

grees), LAT (point latitudes in decimal degrees), CRIM (crime rate by

town), ZN (proportion of residential land zoned for large lots by town), IN-

DUS (proportion non-retail business acres per town), NOX (nitrogen oxide

concentration), RM (average number of rooms per dwelling), AGE (propor-

tion of owner occupied homes built prior to 1940), DIS (weighted distances

to five employment centers in Boston), TAX (property tax rate), PTRA-

TIO (pupil-teacher ratio by town), B (black population proportion), and

LSTAT (proportion of lower socioeconomic status population). Each vari-

able is standardized prior to analysis. We assume a parametric regression
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5.2 Empirical Analysis: Housing Market

model between the response CMEDV and the 13 covariates, along with an

intercept. Since the distribution of the dependent variable is not normal (see

Figure S7 in the supplementary file), it is beneficial to conduct the suggested

mode-based estimation to achieve robustness and efficiency. Additionally,

Figure S8 in the supplementary file indicates high correlation among some

variables, suggesting redundant information. Thereupon, it is necessary to

conduct variable selection to determine the independent effect of each im-

portant variable. Due to the absence of truncation in the data, to illustrate

the proposed method, we suppose that the dataset is truncated by an expo-

nential distribution with mean 13, resulting in approximately 90% trunca-

tion rate. For comparison, we report results from the suggested mode-based

estimation, naive method, and Huber, median, and mean (LS) estimations.

The estimation results are presented in Table 4, where the numbers

above the brackets represent estimates and those in the brackets indicate

empirical likelihood confidence intervals. Analyzing the table reveals that

ignoring the truncation issue leads to kernel mode-based estimates differing

in signs and magnitudes compared to the suggested and other existing es-

timates. In comparison to mean estimation, the proposed mode-based esti-

mation can capture some distinguish features of the data. For instance, the

resulting mode-based estimate for AGE is negative, while mean estimation
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5.2 Empirical Analysis: Housing Market

yields a positive estimate. Practically, one would anticipate AGE to neg-

atively impact housing prices. Therefore, mode-based estimation provides

more reasonable estimates that align with real-world intuition. Moreover,

the empirical likelihood confidence intervals exhibit asymmetry around the

estimates. Mode-based estimation provides the shortest confidence inter-

vals while LS estimation offers the largest ones, which is expectable given

that the dependent variable does not adhere to a normal distribution. Addi-

tionally, mode-based procedure can complement existing selection methods

by identifying unique covariates that reveal the “most likely” (mode) ef-

fect. For example, the covariate CRIM is not selected by Huber, median,

or mean estimation, while it is chosen by mode-based estimation, consistent

with existing literature suggesting that crime rate influences housing values.

Table 4: Empirical Analysis Results
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Estimation Variable Selection

Covariates Proposed Naive Huber Median LS Proposed Naive Huber Median LS

LON
-7.9569 -6.7217 -7.8459 -7.0354 -7.1680

✓ ✓ ✓ ✓ ✓
[-7.9746,-7.7685] [-6.7558, -6.5286] [-7.8082, -7.5956] [-7.0869, -6.7669] [-7.2513, -6.8378]

LAT
1.7016 3.6225 2.5055 1.9315 1.9641

✓ ✓ ✓ ✓ ×
[1.6549, 1.7341] [3.5726, 3.6559] [2.4660, 2.5480] [1.8733, 1.9644] [1.9153, 2.0191]

CRIM
-0.1362 0.1458 -0.0959 -0.0930 -0.0657

✓ ✓ × × ×
[-0.1962, -0.1320] [0.1155, 0.1937] [-0.1334, -0.0651] [-0.1208, -0.0480] [-0.1089, -0.0278]

ZN
0.0195 0.0111 0.0184 0.0278 0.0379

× × × ✓ ✓
[0.0131, 0.0408] [0.0046, 0.0371] [0.0153, 0.0446] [0.0170, 0.0516] [0.0207, 0.0589]

INDUS
-0.0175 -0.0501 -0.0630 -0.0715 -0.0574

× × × × ×
[-0.0197, -0.0117] [-0.0524, -0.0472] [-0.0698, -0.0568] [-0.0770, -0.0592] [-0.0639, -0.0408]

NOX
-2.1120 2.4160 -1.5836 -9.1068 -11.9698

✓ ✓ ✓ ✓ ✓
[-2.1739, -2.1107] [2.3666, 2.4401] [-1.6182, -1.5490] [-9.1428, -9.0703] [-12.0128, -11.9191]

RM
5.1308 6.9705 6.3533 4.9160 4.0584

✓ ✓ ✓ ✓ ✓
[5.0871, 5.1696] [6.9130, 7.0064] [6.3154, 6.4046] [4.8780, 4.9753] [4.0112, 4.1140]

AGE
-0.0387 -0.0606 -0.0410 0.0027 0.0031

× × × × ×
[-0.0425, -0.0272] [-0.0727, -0.0493] [-0.0522, -0.0330] [0.0008, 0.0223] [0.0009, 0.0296]

DIS
-0.6032 -0.6469 -0.8137 -0.8843 -1.3886

✓ ✓ ✓ ✓ ✓
[-0.6447, -0.5809] [-0.6815, -0.6094] [-0.8445, -0.7710] [-0.8449, -0.7648] [-1.4354, -1.3427]

TAX
-0.0038 -0.0043 -0.0063 -0.0002 -0.0002

× × × × ×
[-0.0047, -0.0026] [-0.0054, -0.0017] [-0.0075, -0.0046] [-0.0036, -0.0001] [-0.0039, -0.0001]

PTRATIO
-0.5096 -0.4354 -0.5550 -0.6906 -0.7573

✓ ✓ ✓ ✓ ✓
[-0.5562, -0.4728] [-0.4817, -0.3890] [-0.5927, -0.5031] [-0.7321, -0.6398] [-0.8305, -0.7279]

B
0.0132 0.0227 0.0120 0.0119 0.0088

× × × × ✓
[0.0082, 0.0133] [0.0186, 0.0270] [0.0089, 0.0155] [0.0083, 0.0155] [0.0046, 0.0124]

LSTAT
-0.2232 -0.0089 -0.2130 -0.3922 -0.5390

✓ ✓ ✓ ✓ ✓
[-0.2320, -0.1495] [-0.0193, -0.0022] [-0.2687, -0.1750] [-0.4320, -0.3264] [-0.5957, -0.4829]

6. Concluding Remarks

In this paper, we investigate parametric mode-based regression within a ran-

domly truncated framework. We propose an estimator built on the kernel

objective function, demonstrating its consistency and asymptotic normality.

We also develop a mode-based empirical likelihood estimation procedure to

construct confidence intervals. The established nonparametric version of

Wilks’ theorem ensures that the constructed empirical likelihood confidence

interval has asymptotically correct coverage probability. We suggest a pe-
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nalized kernel mode-based objective function for simultaneous estimation

and variable selection with randomly truncated data, where the oracle prop-

erty is demonstrated. The numerical results underscore the effectiveness of

the proposed estimation and variable selection procedures.

The research presented in this paper can be extended in several direc-

tions. For example, due to dataset restrictions, we analyze the real data

with an artificial truncation. However, in practice, it is more common to en-

counter datasets that are both left-truncated and right-censored; see Zhou

and Yip (1999) and Su and Wang (2012). It would be intriguing to investi-

gate the integration of both left-truncated and right-censored data within

the kernel mode-based estimation framework. We discuss the detailed es-

timation techniques for handling right-censoring alongside left-truncation

in the supplementary file. In addition, addressing doubly truncated data,

where both the left and right endpoints of the study window are truncated,

presents another promising avenue for future research. These extensions

offer exciting opportunities for further exploration and innovation in the

field of survival analysis and mode estimation.

Supplementary Material

The supplementary file contains additional numerical and technical results.
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