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Abstract: As network becomes increasingly prevalent, significant attention has

been devoted to addressing privacy issues in publishing network data. One of

the critical challenges for data publishers is to preserve the topological structures

of the original network while protecting sensitive information. In this paper, we

investigate the utility of community detection in multi-layer networks under a

personalized edge-flipping mechanism. This mechanism enables data publishers

to protect edge information based on each node’s privacy preferences. Within

this framework, the community structure under the multi-layer degree-corrected

stochastic block model remains invariant after appropriate debiasing, making

consistent community detection in privatized multi-layer networks achievable.

Theoretically, we establish the consistency of community detection in the priva-

tized multi-layer network, demonstrating the fundamental privacy-utility tradeoff
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in differentially private community detection in multi-layer networks under the

proposed mechanism. Moreover, the proposed method is further supported by

extensive numerical experience on synthetic and real-life multi-layer networks.

Key words and phrases: Community detection, degree heterogeneity, personalized

privacy, stochastic block model, tensor decomposition.

1. Introduction

Network data has arisen as one of the most popular data formats in the past

decades, providing an efficient way to represent complex systems involving

various entities and their interactions. Among its wide spectrum of applica-

tions, the most notable examples reside in social networks (Du et al., 2007;

Leskovec et al., 2010; Abawajy et al., 2016), which have been frequently col-

lected by social network sites including Facebook, Twitter, LinkedIn, and

Sina Weibo, and then published to third party consumers for academic re-

search (Granovetter, 2005; Li and Das, 2013), advertisement (Klerks, 2004;

Gregurec et al., 2011), crime analysis (Carrington, 2014; Ji et al., 2014),

and other possible purposes. However, social network data usually conveys

sensitive information related to users’ privacy, and releasing them to public

will inevitably lead to privacy breach, which may be abused for spam or

fraudulent behaviors (Thomas and Nicol, 2010). Therefore, it is imperative
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to obfuscate network data to avoid privacy breach without compromising

the intrinsic topological structures of the network data.

To protect privacy of data, differential privacy has emerged as a stan-

dard framework for measuring the capacity of a randomized algorithm in

terms of privacy protection. Its applications to network data are mainly

concentrated on two scenarios, node differential privacy (Kasiviswanathan

et al., 2013; Day et al., 2016; Ullman and Sealfon, 2019) and edge differential

privacy (Karwa and Slavković, 2016; Hehir et al., 2022; Yan, 2021, 2025).

The former aims to protect the privacy of all edges of some nodes while

the latter mainly focuses on limiting the disclosure of edges in networks. A

critical challenge in privacy-preserving network data analysis lies in under-

standing the effect of privacy guarantee on the subsequent data analyses,

such as community detection (Hehir et al., 2022), degree inference (Yan,

2021), and link prediction (Xu et al., 2018; Epasto et al., 2022).

In this paper, we investigate a scenario where a multi-layer network is

shared with third parties for community detection while preserving edge

privacy. Although numerous methods have been proposed for community

detection in multi-layer networks (Lei et al., 2020; Chen et al., 2022; Xu

et al., 2023; Ma and Nandy, 2023), the privacy implications in this context

remain largely unexplored in the literature. Moreover, existing network
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data analyses predominantly consider providing uniform privacy protection

for edges within single-layer networks, disregarding the heterogeneous pri-

vacy preferences of users in practical scenarios. These approaches not only

diminish the service quality for users willing to give up their privacy to some

great extend but also offer inadequate protection for those who are more

concerned about their privacy. To address this challenge, we introduce a

personalized edge-flipping mechanism designed to accommodate the diverse

privacy preferences of individual users. It empowers users to specify the

level of connectivity behavior they are comfortable sharing within a social

network. Thus, our approach enables the release of networks with varying

degrees of privacy protection on edges. Notably, we find that the commu-

nity structure of the privatized network remains consistent through appro-

priate debiasing procedure under the degree-corrected multi-layer stochastic

block model (DC-MSBM), preserving the utility of the original network for

community detection. Correspondingly, we develop a community detection

method tailored for privatized multi-layer networks and establish its the-

oretical guarantees for community detection consistency. Our theoretical

findings are reinforced through experimentation on synthetic networks and

the FriendFeed network.

The rest of the paper is structured as follows. Section 2 introduces
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the notations of tensors and the background of DC-MSBM. Section 3 in-

troduces the application of differential privacy in network data. In Section

4, we propose the personalized edge-flipping mechanism and show that the

community structure of DC-MSBM stays invariant under this mechanism,

for which we develop an algorithm for community detection on privatized

networks. Section 5 establishes the consistency of community detection of

the proposed method. Section 6 conducts various simulations to validate

the theoretical results and apply the proposed method to a FriendFeed net-

work. Section 7 concludes the paper, and all technical proofs and necessary

lemmas are deferred to the Appendix.

2. Preliminaries

2.1 Background of Multi-layer Networks

We first introduce some notations and the DC-MSBM (Paul and Chen,

2022). Throughout the paper, we denote [n] = {1, ..., n} for any positive

integer n, and denote tensors by bold Euler script letters. For a tensor A ∈

RI1×I2×I3 , denote Ai1,:,: ∈ RI2×I3 , A:,i2,: ∈ RI1×I3 and A:,:,i3 ∈ RI1×I2 as the

i1-th horizontal, i2-th lateral, and i3-th frontal slide of A, respectively. In

addition, denoteA:,i2,i3 ∈ RI1 ,Ai1,:,i3 ∈ RI2 , andAi1,i2,: ∈ RI3 as the (i2, i3)-

th mode-1, (i1, i3)-th mode-2 and (i1, i2)-th mode-3 fibers ofA, respectively.
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For j ∈ [3], let Mj(A) be the mode-j major matricization of A (Kolda

and Bader, 2009). Specifically, Mj(A) is a matrix in RIj×
∏

i̸=j Ii such that

Ai1,i2,i3 =
[
Mj(A)

]
ij ,m

, with m = 1 +
3∑

l=1
l ̸=j

(il − 1)
l−1∏
i=1
i̸=j

Ii.

For any matrices M (1) ∈ RJ1×I1 , M (2) ∈ RJ2×I2 , M (3) ∈ RJ3×I3 , the mode-

1 product between A and M (1) is a J1 × I2 × I3 tensor, defined as [A ×1

M (1)]j1,i2,i3 =
∑I1

i1=1Ai1,i2,i3M
(1)
j1,i1

, for j1 ∈ [J1], i2 ∈ [I2], and i3 ∈ [I3].

The mode-2 product A ×2 M
(2) ∈ RI1×J2×I3 and mode-3 product A ×3

M (3) ∈ RI1×I2×J3 are defined similarly. The Tucker rank, also known as

multi-linear rank, of A is defined as (r1, r2, r3), where r1 = rank{M1(A)},

r2 = rank{M2(A)} and r3 = rank{M3(A)}. Further, if A has Tucker

rank (r1, r2, r3), it admits the following Tucker decomposition,

A = C ×1 U ×2 V ×3 W ,

where C ∈ Rr1×r2×r3 is a core tensor and U ∈ RI1×r1 , V ∈ RI2×r2 and

W ∈ RI3×r3 have orthonormal columns.

Let G = (V , E) denote a multi-layer network with V = [n] being the set

of n nodes and E = {E(l)}Ll=1 being the edge sets for all L layers, where

(i, j) ∈ E(l) if there exists an edge between nodes i and j in the l-th network.

Generally, G can be equivalently represented by an order-3 adjacency tensor

A ∈ {0, 1}n×n×L with Ai,j,l = Aj,i,l = 1 if (i, j) ∈ E(l) and 0 otherwise.
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Moreover, we assume the edges are independent Bernoulli random vari-

ables with P (Ai,j,l = Aj,i,l = 1) = P i,j,l, for any i ≤ j ∈ [n] and l ∈ [L],

where P ∈ Rn×n×L is the underlying probability tensor. The degree-

corrected multi-layer stochastic block model assumes that

P i,j,l = didjBci,cj ,l, for i, j ∈ [n], l ∈ [L],

where ci and di denote the community membership assignment and degree

heterogeneity parameter of node i across all network layers, and Bci,cj ,l is

the linking probability between community ci and cj in the l-th layer. Note

that we assume the community memberships of the nodes are homogeneous

across all network layers. This allows us to define a community membership

matrix. Specifically, let Z ∈ {0, 1}n×K be the community membership

matrix of K communities such that Zi,ci = 1 and Zi,k = 0 for k ̸= ci. The

probability tensor of the DC-MSBM can thus be written as

P = B ×1 DZ ×2 DZ, (2.1)

where D = diag{d1, . . . , dn} is a diagonal matrix.

Furthermore, for two sequences fn and gn, we denote fn = O(gn) if

limn→+∞ sup |fn|/gn < +∞, fn = o(gn) if limn→+∞ |fn|/gn = 0, fn = Ω(gn)

if limn→+∞ sup |fn|/gn > 0, fn ≫ gn if limn→+∞ |fn|/gn = +∞, and fn ≍ gn

if fn = O(gn) and fn = Ω(gn). Let ∥·∥ denote the l2-norm of a vector or the
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spectral norm of a matrix, ∥ · ∥∞ denote the l∞-norm of the vectorization

of the input matrix or tensor, and ∥ · ∥F denote the Frobenius norm of a

matrix or tensor, and the l2,1-norm of a matrix M ∈ Rr×c is defined as

∥M∥2,1 =
∑r

i=1 ∥Mi,:∥, where Mi,: is the i-th row of M .

2.2 Differential Privacy

Differential privacy (DP; Dwork et al. 2006) has emerged as a standard

statistical framework for protecting personal data during data sharing pro-

cesses. The formal definition of ϵ-DP is given as follows.

Definition 1 (ϵ-DP). A randomized mechanism M satisfies ϵ-differential

privacy if for any two neighboring datasets D and D′ differing in only one

record, it holds that

sup
S∈S

P{M(D) = S}
P{M(D′) = S}

≤ eϵ,

where S denotes the output space of M.

Another variant of differential privacy is known as local differential

privacy (LDP), wherein each individual data point undergoes perturbation

with noise prior to data collection procedure. The formal definition of non-

interactive ϵ-LDP is provided as follows.

Definition 2 (ϵ-LDP). For any ϵ > 0, the randomized mechanism M
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satisfies ϵ-local differential privacy for an individual data point X ∈ D if

sup
x̃∈X̃

sup
x,x′

P
{
M(X) = x̃|X = x

}
P
{
M(X) = x̃|X = x′

} ≤ eϵ,

where X̃ denotes the output space of M.

It’s worth noting that privacy protection under ϵ-LDP can be analyzed

within the framework of classic ϵ-DP in specific scenarios. Particularly,

if M satisfies ϵ-local differential privacy and is independently applied to

datasets of independent samples, for any neighboring datasets D and D′

differing only in the i-th record, we have

sup
D̃∈Xn

P
{
M(D) = D̃

}
P
{
M(D′) = D̃

} = sup
x̃∈X

P
{
M(Xi) = x̃|Xi = x

}
P
{
M(Xi) = x̃|Xi = x′

} ≤ eϵ,

for i ∈ [n]. Thus, ϵ-LDP achieves the classic ϵ-DP if we consider the output

space S = X n. In addition, when D is a multi-layer network, Definition

2 has already given a nature definition of ϵ-LDP on multi-layer network.

In the next section, we will provide a simplified definition thanks to the

independence among the network edges.

3. Edge Differential Privacy in Network Data

In the realm of network data, two primary variants of differential privacy

emerge: node differential privacy (Kasiviswanathan et al., 2013; Day et al.,
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2016) and edge differential privacy (Karwa and Slavković, 2016; Wang et al.,

2022; Yan, 2025). The former considers the protection of all information

associated with a node in network data, while the latter on the edges. This

paper delves into the privacy protection of edges in multi-layer networks.

The formal definition of ϵ-edge differential privacy is given as follows.

Definition 3. (ϵ-edge DP) A randomized mechanism M is ϵ-edge differ-

entially private if

sup
S∈S

sup
δ(A,A′)=1

P{M(A) = S|A}
P{M(A′) = S|A′}

≤ eϵ,

where δ(A,A′) counts the number of difference entries between A and A′

and S denotes the output space of M(·).

The definition of ϵ-edge DP bears a resemblance to classic ϵ-DP, as

it requires the output distribution of the randomized mechanism M to

remain robust against alterations to any single edge in the network. It

is thus difficult for attackers to infer any single edge based on the released

network information S. In the literature, ϵ-edge DP finds widespread usages

in releasing various network information privately, such as node degrees

(Karwa and Slavković, 2016; Fan et al., 2020), shortest path length (Chen

et al., 2014), and community structure (Mohamed et al., 2022). Under the

framework of DC-MSBM, we consider a specific variant of ϵ-LDP for edges
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in multilayer network data.

Definition 4. (Weak ϵ-edge DP) Let A denote the adjacency tensor of a

multi-layer network with n nodes. We say a randomized mechanism M

satisfies weak ϵ-edge differential privacy if

sup
x̃∈X̃

sup
x,x′∈X

P
{
M(Ai,j,l) = x̃|Ai,j,l = x

}
P
{
M(Ai,j,l) = x̃|Ai,j,l = x′

} ≤ eϵ, (3.1)

for any i, j ∈ [n] and l ∈ [L], where X̃ denotes the range of edges.

Definition 4 is a weak one because the left hand side of (3.1) is the

supremum of a single probability ratio instead of the product of all prob-

ability ratios corresponding to all edges. The latter is usually larger and

leads to stronger definition. However, if M satisfies weak ϵ-edge DP and is

independently applied to A entrywisely.

Given the independence ofAi,j,l’s, we have P
{
M(A)|A

}
= Πi≤j∈[n],l∈[L]

P {M(Ai,j,l)|Ai,j,l}, leading to

sup
Ã

sup
δ(A,A′)=1

P
{
M(A) = Ã|A

}
P
{
M(A′) = Ã|A′}

=sup
i,j,l

sup
x̃∈X̃

sup
x,x′∈X

P
{
M(Ai,j,l) = x̃|Ai,j,l = x

}
P
{
M(Ai,j,l) = x̃|Ai,j,l = x′

} ≤ eϵ. (3.2)

It is evident from (3.2) that privacy protection through weak ϵ-edge DP

is equivalent to achieving ϵ-edge DP, provided the independence of edges.

Furthermore, a similar correlation can be established between ϵ-edge LDP
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and the (k, ϵ)-edge DP framework, as explored in prior works such as Hay

et al. (2009) and Yan (2025).

In this paper, we mainly consider multi-layer networks with binary

edges. To achieve weak ϵ-edge DP, one popular choice of M is the edge-

flipping mechanism of A with a uniform flipping probability (Nayak and

Adeshiyan, 2009; Wang et al., 2016; Hehir et al., 2022). Specifically, denote

the flipped multi-layer network as Mθ(A) with a flipping probability 1− θ,

for some θ ≥ 1/2, then the (i, j, l)-th entry of M(A) is given by

Mθ(Ai,j,l) =


Ai,j,l, with probability θ,

1−Ai,j,l, with probability 1− θ.

It then follows that P
(
Mθ(A)i,j,l = 1

)
= θP i,j,l + (1− θ)(1−P i,j,l).

Lemma 1. The edge-flipping mechanism Mθ satisfies weak ϵ-edge differ-

ential privacy when θ = 1
1+e−ϵ .

Lemma 1 characterizes the capacity of the edge-flipping mechanism in

protecting privacy under the framework of weak ϵ-edge DP. It should be

noted that privacy of A is completely protected when θ = 1/2 or ϵ = 0,

in the sense that there exists no algorithm capable of inferring Ai,j,l based

on M1/2(Ai,j,l) more effectively than random guessing. Yet, a key disad-

vantage of the uniform flipping mechanism is its inability to accommodate
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different privacy preferences among edges.

We further emphasize that the data we release is the privacy-preserving

network after random flipping, presented as a unified tensor, despite its com-

position of O(n2L) edges. In contrast to mechanisms that solely disclose

summary statistics of the network, our approach enables the release of a

complete tensor with the same expected expectation as the original network

after a debiasing step. However, it is important to note that some struc-

tures of the original network cannot be recovered directly due to privacy

protection. Instead, estimations, such as the precise count of triangles in

the original network, are still obtainable. In essence, the publication of the

privacy-preserving network allows for releasing more data about networks.

4. Proposed Method

4.1 Personalized Edge-flipping

In this section, we propose a personalized edge-flipping mechanism whose

flipping probabilities are governed by node-wise privacy preferences. Specif-

ically, let Θ = (θi,j)n×n with θi,j denoting the flipping probability of the po-

tential edge between nodes i and j across all network layers, and MΘ(A) =
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Mθi,j(Ai,j,l)

]
n×n×L

with

Mθi,j(Ai,j,l) =


Ai,j,l, with probability θi,j,

1−Ai,j,l, with probability 1− θi,j,

(4.1)

for i ≤ j and l ∈ [L]. Also, we set Mθi,j(Ai,j,l) = Mθj,i(Aj,i,l) to preserve

the semi-symmetry inMΘ(A) with respect to the first two modes, for i > j.

Definition 5. (Heterogenous ϵ-edge LDP) Let M denote a randomized

mechanism. We say M satisfies heterogenous ϵ-edge LDP if for any 1 ≤

i ≤ j ≤ n and l ∈ [L] with ϵ = (ϵi,j)
n
i,j=1, we have

sup
x̃∈X

sup
x,x′∈X

P{M(Ai,j,l) = x̃|Ai,j,l = x}
P{M(Ai,j,l) = x̃|Ai,j,l = x′}

≤ eϵi,j,

where ϵi,j is a privacy parameter depending on nodes i and j.

Clearly, the proposed heterogenous ϵ-edge LDP allows for the variation

of the privacy parameter ϵi,j from edge to edge. Particularly, heterogenous

ϵ-edge LDP is equivalent to weak ϵ-edge DP when ϵ = maxi,j ϵi,j. The

developed concept bears resemblance to heterogeneous differential privacy

(Alaggan et al., 2015) in nature, wherein individual points in a dataset are

provided different privacy guarantees. The motivation behind heterogenous

ϵ-edge LDP is to cater to the diverse preferences among users in the net-

work. While some users may prioritize better service over privacy, others

may prioritize keeping their social interactions as private as possible.
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To allow for node-specified privacy preferences, we parametrize Θ as

Θ =
1

2
(ff⊤ + 1n1

T
n ), (4.2)

where f = (f1, ..., fn)
⊤ ∈ [0, 1)n is a vector consisting of the privacy pref-

erences of all nodes and 1n is the vector with n ones. When fi = 0, it

signifies that θi,j = 1/2 for any j ∈ [n], indicating that the edges associated

with node i are protected at the utmost secrecy level. Conversely, when fi

and fj are close to 1, it indicates that both nodes i and j largely give up

their privacy, resulting in Ai,j,l will be truly exposed to the service provider

with high probability, for l ∈ [L]. Essentially, the privacy level of an edge

between two nodes is solely determined by their respective privacy prefer-

ences. Note that fi < 1 ensures every edge could be flipped with a positive

probability, ensuring the goal of differential privacy in network releasing.

Lemma 2. The personalized edge-flipping mechanism MΘ(A) with Θ be-

ing parametrized as in (4.2) satisfies heterogenous ϵ-edge LDP with ϵi,j =

log
1+fjfj
1−fifj

, for i, j ∈ [n]. Moreover, for any i′ ̸= j, i′ ̸= i, and j ̸= i,

fi =

√
(1− 2

1 + eϵi,i′
)(1− 2

1 + eϵi,j
)/(1− 2

1 + eϵi′,j
).

Lemma 2 shows that, under the personalized edge-flipping mechanism,

the privacy guarantee of any single edge is completely determined by the

pair of nodes forming that particular edge. Furthermore, it is important to
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note that the privacy protection provided to edges via MΘ is contingent

upon the parameterization specified in (4.2). In other words, the level of

privacy protection on edges will vary with the parameterization of Θ.

4.2 Decomposition after Debiasing

A critical challenge in releasing network data is to preserve network struc-

ture of interest while protecting privacy of edges. It is interesting to remark

that the community structure is still encoded in the flipped network under

personalized edge-flipping mechanism, which allows for consistent commu-

nity detection on the flipped network after some appropriate debiasing.

Lemma 3. Assume that A is generated from the DC-MSBM in (2.1) and

that the personalized flipping probability matrix satisfies the factorization

property in (4.2). Let Ãi,j,l = Mθi,j(Ai,j,l) +
1
2
(fifj − 1). We have

E(Ãi,j,l) = fifjdidjBci,cj ,l, i, j ∈ [n], l ∈ [L], (4.3)

Lemma 3 shows the expectation of the flipped network MΘ(A) pre-

serves the same community structure in A after debiasing, suggesting con-

sistent community detection shall be conducted on Ã.

We remark that various network data analysis tasks remain feasible

after an additional debiasing step, including estimating the counts of spe-

cific sub-graphs such as k-stars or triangles, as well as inferring the degree
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sequence. This is achievable because we can obtain a tensor sharing ex-

actly the same expectation as A by further dividing Ãi,j,l by fifj, for any

i, j ∈ [n], and l ∈ [L]. For community detection, this step is not nec-

essary, as fidi can be considered a new degree heterogeneous parameter

for node i, which will be normalized in the tensor-based variation of the

SCORE method (Jin, 2015; Ke et al., 2019). Estimating and inferring cer-

tain network statistics on the differentially private network after debiasing

is commonly employed. For example, randomized algorithms in Hay et al.

(2009); Karwa and Slavković (2016); Yan (2021, 2025) release a perturbed

degree sequence, two perturbed bi-degree sequences, or degree partitions if

the order of nodes is not crucial in downstream analysis, by adding discrete

Laplacian noise. Subsequently, the parameters in the β-model, with or

without covariates, can be estimated using the denoised degree sequences.

By Lemma 3, the expectation of Ã can be decomposed as

E
(
Ã
)
= B ×1 FDZ ×2 FDZ,

where F = diag(f). For ease of notation, we denote P̃ = E
(
Ã
)
, and then

P̃ = (B ×1 Γ×2 Γ)×1 FDZΓ−1 ×2 FDZΓ−1, (4.4)

where Γ = diag(
√
γ1, . . . ,

√
γK) and γk =

∑n
i=1 Zi,k(fidi)

2 is the effective

size of the k-th community depending on the nodes’ degree heterogeneity
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coefficients and heterogenous privacy preference parameters. Suppose the

Tucker rank of B×1 Γ×2 Γ is (K,K,L0), and thus B×1 Γ×2 Γ admits the

following Tucker decomposition

B ×1 Γ×2 Γ = C ×1 O ×2 O ×3 V , (4.5)

for C ∈ RK×K×L0 , O ∈ RK×K and V ∈ RL×L0 whose columns are orthonor-

mal. Note that FDZΓ−1 also has orthonormal columns. Plugging (4.5)

into (4.4) yields the Tucker decomposition of P̃ as

P̃ = C ×1 FDZΓ−1O ×2 FDZΓ−1O ×3 V .

Denote U = FDZΓ−1O as the mode-1 and mode-2 factor matrix in the

Tucker decomposition of P̃ . Clearly, UTU = IK .

Lemma 4. For any node pair (i, j) ∈ [n] × [n], we have Ui,:/∥Ui,:∥ =

Uj,:/∥Uj,:∥ if c∗i = c∗j and
∥∥Ui,:/∥Ui,:∥ −Uj,:/∥Uj,:∥

∥∥ =
√
2 otherwise.

Lemma 4 shows the spectral embeddings of nodes within the same com-

munities are the same after normalization, motivating Algorithm 1 to es-

timate the community structure based on the Tucker decomposition of Ã.

In Algorithm 1, we first conduct a debiasing operation on the flipped net-

work MΘ(A) to obtain Ã, such that the expectation of Ã admits the

same DC-MSBM as in A. Next, a low rank Tucker approximation of Ã
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is implemented to estimate the spectral embedding matrix Û . Finally, a

(1 + τ)-optimal K-medians algorithm is applied to the normalization ver-

sion of Û , which clusters the nodes into K desired communities. Herein, we

follow the similar treatment in Lei and Rinaldo (2015) to apply the approx-

imating K-medians algorithm for the normalized nodes’ embedding, which

appears to be more robust against outliers than the K-means algorithms.

Algorithm 1: Community detection in flipped network

Input : Flipped adjacency tensor MΘ(A), privacy parameter f ,

number of communities K, tolerance τ

Output: Privacy-preserving community memberships Ẑ

1 Let Ã = MΘ(A) + 1
2
(f ◦ f − 1n ◦ 1n) ◦ 1L;

2 Implement Tucker decomposition on Ã with Tucker rank

(K,K,L0 = min{K(K + 1)/2, L}) as Ã ≈ Ĉ ×1 Û ×2 Û ×3 V̂ .

3 Normalized the embedding matrix
̂̃
U i,: = Ûi,:/∥Ûi,:∥, for i ∈ [n].

4 Apply an (1 + τ)-optimal K-medians algorithm to
̂̃
U to obtain a

solution (Ẑ, Ŵ ) that satisfies,

∥ẐŴ − ̂̃
U∥2,1 ≤ (1 + τ) min

Z∈∆,W∈RK×K
∥ZW − ̂̃

U∥2,1,

where ∆ ⊂ {0, 1}n×K is the set of membership matrices.
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5. Theory

In this section, we establish the asymptotic consistency of community de-

tection on the privatized multi-layer network under the proposed person-

alized edge-flipping mechanism. Particularly, let ĉ = (ĉ1, . . . , ĉn) and c∗ =

(c∗1, c
∗
2, . . . , c

∗
n) denote the estimated community membership vector obtained

from Algorithm 1 and the true community membership vector, respec-

tively. We assess the community detection performance with minimum

scaled Hamming distance between ĉ and c∗ under permutation (Jin, 2015;

Jing et al., 2021; Zhen and Wang, 2023). Formally, it is defined as

Err(ĉ, c∗) = min
π∈SK

1

n

n∑
i=1

I{c∗i = π(ĉi)}, (5.1)

where SK is the symmetric group of degree K and I(·) is the indicator func-

tion. Clearly, the Hamming error in (5.1) measures the minimum fraction

of nodes with inconsistent community assignments between ĉ and c∗.

To establish the consistency of community detection, the following tech-

nical assumptions are made.

Assumption 1. Let nk be the cardinality of the k-th true community for

k ∈ [K], and denote nmax = maxk∈[K] nk and nmin = mink∈[K] nk, then

nmax = O(nmin).
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Assumption 2. Let γmax = maxk∈[K] γk and γmin = mink∈[K] γk. Assume

that there exists an absolute constant C1 such that

γmax = O(γmin), and f
2
i d

2
i ≤ C1

γc∗i
nc∗i

, for i ∈ [n].

Assumption 3. Suppose that Bi,j,l = O(sn) for i, j ∈ [n] and l ∈ [L],

where sn is a network sparsity coefficient that may vanish with n and L.

Moreover, we require sn satisfies

sn ≫ 1

ψ

√
φn log n

nL
,

where φn = 1−mini∈[n] fi + 4sn, and ψ = 1
n

∑n
i=1(fidi)

2.

Assumption 4. Assume that the core tensor B in the DC-MSBM model

satisfies that

σmin

{
M3

(
B)
}
= Ω(

√
Lsn),

where σmin(·) denotes the smallest non-zero singular value of a matrix.

Assumption 1 ensures all theK true communities inA are non-degenerate

as n diverges (Lei et al., 2020; Zhen and Wang, 2023). Assumption 2 im-

poses a homogeneity condition on the squared product of the nodes’ privacy

preference parameters and the degree heterogeneity coefficients. Assump-

tion 3 places a sparsity coefficient on the core probability tensor B to control

the overall network sparsity, which is a common assumption for network
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modeling (Ghoshdastidar and Dukkipati, 2017; Guo et al., 2023; Zhen and

Wang, 2023). If the fi’s are quite close to 1, we have φn = O(sn), and

sn ≫ 4
(

n∑n
i=1 d

2
i

)2
logn
nL

= O( logn
nL

). Clearly, this reduces to the optimal spar-

sity assumption for consistent community detection in multi-layer network

data (Jing et al., 2021). However, if csn ≪ 1 − minı∈[n] fi for some con-

stant c, leading to φn ≫ sn, the proposed network sparsity assumption is

stronger than the optimal one in general. Assumption 4 assumes the small-

est non-zero singular value of M3(s
−1
n B) should scale at least at the order

of
√
L. This is a mild assumption and can be satisfied if the entries of s−1

n B

are indepedently and identically generated from sub-Gaussian distributions

(Rudelson and Vershynin, 2009).

Theorem 1. Under Assumptions 1-4, the Hamming error of ĉ satisfies

Err(ĉ, c∗) = Op


√√√√ K∑

k=1

vk ·
φn log n

nLs2nψ
2

 ,

where vk = n−2
k

∑
c∗i=k γk/(fidi)

2. Moreover, in the simplest case that all

the ϵi,j’s are the same, denoted as ϵ, leading to f 2
i = 1 − 2

1+eϵ
, for i ∈ [n],

we have

Err(ĉ, c∗) = Op

(√
log n

nLs2nϵ
2

)
,

when ϵ is sufficiently small, provided that the degree heterogeneous param-

eters are asymptotically of the same order.
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Theorem 1 provides a probabilistic upper bound for the community de-

tection error under the personalized edge-flipping mechanism. When fidi

close to 1, for i ∈ [n], Theorem 1 implies that φn ≍ sn and Err(ĉ, c∗) = o(1)

as long as sn ≫ logn
nL

and K = O(1), which matches with the optimal spar-

sity requirement for consistent community detection on multi-layer net-

works (Jing et al., 2021). However, when mini∈[n] fi deviates from 1, φn

will become substantially larger than sn, leading to deterioration of the

convergence rate of the Hamming error. In addition, Corollary 1 discusses

the optimal network privacy guarantee of the proposed method in various

scenarios.

Corollary 1. Suppose all the conditions of Theorem 1 are met, K = O(1),

di = Ω(1), for i ∈ [n], and logn
nLs2n

= o(1).

(1) If fi ≍ fj and fi ≫
(
logn
nLs2n

)1/4
for i, j ∈ [n], we have Err(ĉ, c∗) = op(1).

(2) Let S denote the set of nodes such that fi ≍ αn for any i ∈ S and

fi ≍ 1 otherwise, and assume |S|/n ≍ βn. If βn

α2
n(1−βn)

= o(nLs
2
n

logn
), we have

Err(ĉ, c∗) = op(1).

The first scenario of Corollary 1 considers the case that all the person-

alized preference parameters are asymptotically of the same order. In this

case, the proposed method can asymptotically reveal the network commu-

nity structure as long as the personalized privacy preference parameters fi
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vanishes at an order slower than
(
logn
nLs2n

)1/4
, which further implies the differ-

ential privacy budget parameter ϵi,j should vanish at an order slower than√
logn
nLs2n

by Lemma 2, for 1 ≤ i ≤ j ≤ n. The second scenario of Corollary

1 considers the case where a small fraction βn of the nodes are highly con-

cerned about their privacy whose privacy preference parameters are allowed

to vanish at a fast order αn. In order to ensure the consistency of commu-

nity detection, the condition βn

α2
n(1−βn)

= o(nLs
2
n

logn
) is imposed to control the

trade-off between αn and βn. Furthermore, the asymptotic order of the

differential privacy budget parameters are categorized into three cases by

Lemma 2; that is, ϵi,j ≍ α2
n if both nodes i and j are in S, ϵi,j ≍ αn if only

one node i or j is in S, and ϵi,j ≍ 1 if neither node i nor j is in S.

6. Numerical experiment

We now turn to examine the numerical performance of the proposed person-

alized edge-flipping mechanism in synthetic networks and real applications.

6.1 Synthetic networks

The synthetic multi-layer networks A ∈ {0, 1}n×n×L are generated as fol-

lows. First, the probability tensor B ∈ [0, 1]K×K×L is generated as Bk1,k2,l =

sn
[
0.5I(k1 = k2) + bk1,k2,l

]
with bk1,k2,l ∼ Unif(0, 0.5), for k1, k2 ∈ [K]. Sec-
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ond, c = (c1, . . . , cn) are randomly drawn from [K] with equal probabilities,

and thus obtain the resultant community assignment matrix Z. Third, cal-

culate P = B×1DZ×2DZ with di ∼ unif(0.5, 1) for i ∈ [n]. Finally, each

entry ofA is generated independently according toAi,j,l ∼ Bernoulli(P i,j,l),

for 1 ≤ i ≤ j ≤ n and l ∈ [L].

Example 1. In this example, we illustrate the interplay between the

accuracy of community detection and the distribution of personalized pri-

vacy parameters. To mimic the users’ privacy preferences, we fix sn = 1

and generate f with fi ∼ Unif(0, b) and b ∈ {0.5 + 0.05 ∗ i : i = 0, 1, ..., 9}.

As for the size of multi-layer networks, we consider cases that (n, L) ∈

{400, 800} × {4, 8, 16, 32}. The averaged Hamming errors over 100 replica-

tions of all cases are reported in Figure 1.

(a) n=400 (b) n=800

Figure 1: Averaged Hamming errors over 100 replications in Example 1.
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In Figure 1, as b increases from 0.5 to 0.95, the Hamming errors for all

values of (n, L) decrease simultaneously, indicating that small personalized

privacy parameters will deteriorate the community structure in multi-layer

networks. In addition, when the distribution of personalized privacy param-

eters is fixed, the Hamming errors improve as the network size enlarges.

Example 2. In this example, we fix sn = 1, generate fi ∼ Unif(0.95, 1)

for i ∈ [n], and consider two scenarios with increasing number of nodes or

layers. Specifically, for the former scenario, we set the number of layers L

and the number of communities K as 8 and 4, respectively, and consider

cases n ∈ {100, 150, 200, 250, ..., 500}. For the latter one, we set (n,K) =

(200, 4) and consider L ∈ {4, 8, 16, 32, 64, 128}. The averaged Hamming

errors over 100 replications of both scenarios are displayed in Figure 2.

Figure 2: Averaged Hamming errors over 100 replications in Example 2.

Figure 2 shows that the convergence behaviors of the accuracy of com-
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munity detection over privatized networks shares similar patterns as the

original networks, which is consistent with the theory developed in Section

4 that community detection over privatized network maintains the similar

order of convergence when personalized privacy parameters are close to 1.

Example 3. In this example, we analyze the convergence behaviors of

the Hamming error when the personalized privacy parameters are polarized

in that some people give up their privacy completely, whereas some users

keep their connectivity behaviors as private as possible. To achieve this,

we let nα denote the number of users pursuing privacy with a ∈ [0, 1] and

then we randomly sample ⌊2 ∗ na⌋ nodes and set their corresponding fi’s

as
√

(nL)−1 log(n) while keeping all the other fi to be 1. Moreover, we set

sn = 1, (K,L) = (4, 4), and vary (n, a) ∈ {500, 1000, 1500, 2000, 2500} ×

{0.1, 0.3, 0.5, 0.7}. The averaged Hamming errors over 100 replications of

all cases are reported in the left penal of Figure 3.

It is evident from the left penal of Figure 3 that the Hamming errors

still converge when some users chose to keep their connectivity privately,

and the convergence rate becomes slower when the size of these users gets

larger. It suggests that, under the personalized privacy mechanism, the

privacy budget can be allocated according to users’ privacy preferences,

and hence some users are allowed to pursue better protections of privacy in
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Figure 3: Averaged Hamming errors over 100 replications in Example 3 (left)

and Example 4 (right).

social networks.

Example 4. In this example, we study the influence of network spar-

sity. The data generating scheme is exactly the same as in Example 1

except that we fix n = 100 and vary (sn, L) ∈ {0.0625, 0.125, 0.25, 0.5, 1} ×

{4, 8, 16, 32}. The averaged Hamming errors over 100 replications of all

cases are reported in the right penal of Figure 3.

It is clear from the right penal of Figure 3 that the averaged Hamming

errors decrease as the network sparsity level sn increases sine larger sn yields

stronger signal of the networks.
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6.2 FriendFeed Multilayer Network

We apply the proposed personalized edge-flipping mechanism to a Friend-

Feed multi-layer social network, and compare its empirical performance

on the privatized network under various personalized privacy preferences.

The FriendFeed network consists of a total of 574,600 interactions among

21,006 Italian users during two months’ period, which is publicly available at

http://multilayer.it.uu.se/datasets.html. Furthermore, the users’

interactions are treated as undirected edges, and categorized into three as-

pects, including liking, commenting, and following, which correspond to

three network layers. Since the original network layers are relatively sparse

and fragile, we collect the nodes in the intersection of the giant connected

components of all three network layers, and extracted the corresponding

sub-graphs to create a multi-layer sub-network. This pre-processing step

leads to a 3-layer network with 2,012 common nodes.

In social network, like the FriendFeed data, some users are not willing

to reveal their friendship privacy. For example, someone might not willing

to reveal her or his privacy with a famous person or a group leader in a

certain community. In this case, user i can choose a smaller fi to better

protect her or his local connectivity pattern. Further, this can even prevent

attackers from inferring user i’s linking pattern via transitivity. Herein,
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transitivity refers to the fact that a friend’s friend is likely to be a friend.

As such, people normally could infer the connectivity behavior between i

and j, giving their common friends i′’s. It is thus necessary to protect the

individual’s local neighborhood transitivity privacy personally. Under our

randomized network flipping mechanism, the users i’s preference is

fi =

√
(θi′,i − 1

2
)(θi,j − 1

2
)

(θi′,j − 1
2
)

,

for any j ̸= i, i′ ̸= i and i′ ̸= j.

As θi′,i > 1/2 by definition, θi′,i−1/2 is the excess probability that Ai,i′,l

maintains unflipped, for l ∈ [L]. Therefore, the larger fi is, the larger the

excess maintaining probability ratio between edge pairs (Ai′,i,l,Ai,j,l) and

edge Ai′,j,l, and the transitivity pattern is more likely to maintain. If users

in the FriendFeed network can choose their own preferences fi’s, their local

neighborhood connectivity patterns could be protected.

Before proceeding, we first estimate the number of communities K

following a similar treatment as in Ke et al. (2019). First, let κ be a

user-specific upper bound of K, and we perform a Tucker decomposition

approximation with Tucker rank (κ, κ, L) on the multi-layer network adja-

cency tensor A to obtain mode-1 and mode-2 factor matrix Ū and mode-3

factor matrix V̄ . Next, we investigate the elbow point of the leading sin-

gular values of M1(A ×3 V̄ ), and estimate K as the number of leading
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singular values right before the elbow point. In the FriendFeed network,

we set κ = 15, and the first 20 leading singular values of M1(A×3 V̄ ) are

displayed at Figure 4. It is clear that the elbow point appears at the 3rd

leading singular value, and hence we set K = 2. As there is no ground truth

0.0 2.5 5.0 7.5 10.012.515.017.5

50

100

150

200

250

300

Figure 4: The first 20 leading singular values of M1(A×3 V̄ ) in the

FriendFeed multi-layer network.

of the community structure in the FriendFeed netowrk, we simply treat the

detected communities by the proposed method with f = 12,012 as the truth.

We further select 30 nodes with the largest degrees in each detected com-

munity to visualize the 3-layer sub-network with 60 common nodes in the

left panel of Figure 5. Clearly, the following layer is much denser than the

other two layers, which suggests that a user may follow many other users,

but only likes or comments on much fewer users she or he follows.

We then evaluate the Hamming error of the proposed method under
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Figure 5: The original 3-layer FriendFeed sub-network with 60 popular nodes

(left), and a randomly selected flipped sub-network with β = 10% (right). Both

panels consist of the following layer (top), commenting layer (middle), and

liking layer (bottom).

different distributions of f . To generate the personalized privacy preference

vector f , we randomly selected ⌊β × 2, 012⌋ coordinates of f and set these

privacy preference parameters as 0.02 while setting other fi’s as 0.98, where

⌊x⌋ denotes the largest integer that is small than or equal to x and β

varies in {2%, 4%, ..., 20%}. Intuitively, as β increases, the expectation of fi

decreases for i ∈ [2, 012], leading to better privacy protection for the whole

network. The corresponding sub-network of a randomly selected flipped

network with β = 10% is displayed in the right penal of Figure 5. It is

clear that the flipped network becomes relatively denser and substantially

deviates form the original network for privacy protection. The averaged
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Hamming errors of the proposed method over 100 replications on the flipped

FriendFeed network with various values of β are reported in Table 1.

Table 1: Hamming errors of the proposed method on the FriendFeed network

under different edge-flipping strengths.

β 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Err 0.0723 0.0862 0.0969 0.1052 0.1235 0.1251 0.1365 0.1443 0.1501 0.1665

It is evident from Table 1 that the proposed method is able to deliver

satisfactory community detection for the flipped multi-layer network the

personalized edge flipping mechanism. Its Hamming errors increase with β

as expected, as the flipped networks with higher edge-flipping probabilities

deviate more from the original one, leading to better privacy protection at

the cost of a relatively compromised detection of communities.

7. Conclusions

This paper proposes a personalized edge-flipping mechanism to protect

nodes’ connectivity behaviors in multi-layer network data. On the posi-

tive side, the edge flipping probabilities are allocated according to nodes’

privacy preferences and demands so that protecting the connectivity be-
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haviors could be vary from one user to the other. However, on the negative

side, there might be a risk in leaking the users’ privacy preferences. Theo-

retically, we show that the community structure of the flipped multi-layer

network remains invariant under the degree-corrected multi-layer stochastic

block model, which makes consistent community detection on the flipped

network possible. A simple community detection method is proposed with

some appropriate debiasing of the flipped network. Its asymptotic consis-

tency is also established in terms of community detection, which allows a

small fraction of nodes to keep their connectivity behaviors as private as

possible. The established theoretical results are also supported by numer-

ical experiments on various synthetic networks and a real-life FriendFeed

multi-layer network.

Supplementary Material

The online Supplementary Material contains all necessary lemmas and tech-

nical proofs of the paper.
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