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Abstract: As network becomes increasingly prevalent, significant attention has
been devoted to addressing privacy issues in publishing network data. One of
the critical challenges for data publishers is to preserve the topological structures
of the original network while protecting sensitive information. In this paper, we
investigate the utility of community detection in multi-layer networks under a
personalized edge-flipping mechanism. This mechanism enables data publishers
to protect edge information based on each node’s privacy preferences. Within
this framework, the community structure under the multi-layer degree-corrected
stochastic block model remains invariant after appropriate debiasing, making
consistent community detection in privatized multi-layer networks achievable.
Theoretically, we establish the consistency of community detection in the priva-

tized multi-layer network, demonstrating the fundamental privacy-utility tradeoff
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in differentially private community detection in multi-layer networks under the
proposed mechanism. Moreover, the proposed method is further supported by

extensive numerical experience on synthetic and real-life multi-layer networks.

Key words and phrases: Community detection, degree heterogeneity, personalized

privacy, stochastic block model, tensor decomposition.

1. Introduction

Network data has arisen as one of the most popular data formats in the past
decades, providing an efficient way to represent complex systems involving
various entities and their interactions. Among its wide spectrum of applica-
tions, the most notable examples reside in social networks (Du et al., 2007}
Leskovec et al., [2010; |Abawajy et al., [2016), which have been frequently col-
lected by social network sites including Facebook, Twitter, LinkedIn, and
Sina Weibo, and then published to third party consumers for academic re-
search (Granovetter, 2005; |Li and Das, 2013)), advertisement (Klerks, 2004}
Gregurec et al., 2011), crime analysis (Carrington, 2014} Ji et al., 2014]),
and other possible purposes. However, social network data usually conveys
sensitive information related to users’ privacy, and releasing them to public
will inevitably lead to privacy breach, which may be abused for spam or

fraudulent behaviors (Thomas and Nicol, [2010)). Therefore, it is imperative
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to obfuscate network data to avoid privacy breach without compromising
the intrinsic topological structures of the network data.

To protect privacy of data, differential privacy has emerged as a stan-
dard framework for measuring the capacity of a randomized algorithm in
terms of privacy protection. Its applications to network data are mainly
concentrated on two scenarios, node differential privacy (Kasiviswanathan
et al., 2013; Day et al.,|2016; \UIlman and Sealfon|, 2019) and edge differential
privacy (Karwa and Slavkovid, [2016; Hehir et al. [2022; [Yan, 2021} [2025).
The former aims to protect the privacy of all edges of some nodes while
the latter mainly focuses on limiting the disclosure of edges in networks. A
critical challenge in privacy-preserving network data analysis lies in under-
standing the effect of privacy guarantee on the subsequent data analyses,
such as community detection (Hehir et al., 2022), degree inference (Yan,
2021)), and link prediction (Xu et al., [2018; Epasto et al., |[2022).

In this paper, we investigate a scenario where a multi-layer network is
shared with third parties for community detection while preserving edge
privacy. Although numerous methods have been proposed for community
detection in multi-layer networks (Lei et al.| [2020; Chen et al.| [2022; Xu
et al., [2023; |Ma and Nandy, [2023)), the privacy implications in this context

remain largely unexplored in the literature. Moreover, existing network
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data analyses predominantly consider providing uniform privacy protection
for edges within single-layer networks, disregarding the heterogeneous pri-
vacy preferences of users in practical scenarios. These approaches not only
diminish the service quality for users willing to give up their privacy to some
great extend but also offer inadequate protection for those who are more
concerned about their privacy. To address this challenge, we introduce a
personalized edge-flipping mechanism designed to accommodate the diverse
privacy preferences of individual users. It empowers users to specify the
level of connectivity behavior they are comfortable sharing within a social
network. Thus, our approach enables the release of networks with varying
degrees of privacy protection on edges. Notably, we find that the commu-
nity structure of the privatized network remains consistent through appro-
priate debiasing procedure under the degree-corrected multi-layer stochastic
block model (DC-MSBM), preserving the utility of the original network for
community detection. Correspondingly, we develop a community detection
method tailored for privatized multi-layer networks and establish its the-
oretical guarantees for community detection consistency. Our theoretical
findings are reinforced through experimentation on synthetic networks and
the FriendFeed network.

The rest of the paper is structured as follows. Section [2] introduces
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the notations of tensors and the background of DC-MSBM. Section [3] in-
troduces the application of differential privacy in network data. In Section
[, we propose the personalized edge-flipping mechanism and show that the
community structure of DC-MSBM stays invariant under this mechanism,
for which we develop an algorithm for community detection on privatized
networks. Section [5| establishes the consistency of community detection of
the proposed method. Section [ conducts various simulations to validate
the theoretical results and apply the proposed method to a FriendFeed net-
work. Section [7| concludes the paper, and all technical proofs and necessary

lemmas are deferred to the Appendix.

2. Preliminaries

2.1 Background of Multi-layer Networks

We first introduce some notations and the DC-MSBM (Paul and Chen),
2022). Throughout the paper, we denote [n] = {1,...,n} for any positive
integer n, and denote tensors by bold Euler script letters. For a tensor A €
RAXExIs denote A;, .. € RI2XB A € RV and A, € RI™¥2 as the
i1-th horizontal, io-th lateral, and i3-th frontal slide of A, respectively. In
addition, denote A. ;, ., € R A; ... € R2 and A;, ;, . € R as the (iy, i3)-

th mode-1, (i1, 3)-th mode-2 and (i1, i3)-th mode-3 fibers of \A, respectively.
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For j € [3], let M;(A) be the mode-j major matricization of A (Kolda
and Bader, 2009). Specifically, M (.A) is a matrix in RT>*Iliz 7 guch that
3 -1
Aipizis = [MG(A)], o withm =1+ (i = 1) HI

=1 =1

I#] i#]
For any matrices M) € R/l M@ ¢ R72%E2 AMG) ¢ R3*55 the mode-
1 product between A and MW is a J; x I, x I3 tensor, defined as [A xq
MO,y = S0 A MY, for i€ [, ds € (D), and s € [L].
The mode-2 product A x5 M® e R*2%Is and mode-3 product A x5
M®) ¢ RIix2xJs are defined similarly. The Tucker rank, also known as
multi-linear rank, of A is defined as (ry, re,r3), where r; = rank{ M (.A)},

ro = rank{Ms(A)} and r3 = rank{Mj3(A)}. Further, if A has Tucker

rank (ry,rg,r3), it admits the following Tucker decomposition,
A=Cx U x,V x5 W,

where C € R *™*" ig a core tensor and U € RI*™ VvV ¢ R2Xm and
W € R3*"s have orthonormal columns.

Let G = (V, ) denote a multi-layer network with V = [n] being the set
of n nodes and & = {EW}L | being the edge sets for all L layers, where
(i,7) € EW if there exists an edge between nodes 7 and j in the [-th network.
Generally, G can be equivalently represented by an order-3 adjacency tensor
A € {0, 1} L with A, = A, = 1if (i, j) € EY and 0 otherwise.

6
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Moreover, we assume the edges are independent Bernoulli random vari-
ables with P(A;;; = Ay = 1) = P, jy, for any i < j € [n] and | € [L],
where P € R™"™*L is the underlying probability tensor. The degree-

corrected multi-layer stochastic block model assumes that
’Pz”jJ = diijCi,C]',h for l,] € [n],l € [L],

where ¢; and d; denote the community membership assignment and degree
heterogeneity parameter of node ¢ across all network layers, and B, .. ; is
the linking probability between community ¢; and ¢; in the [-th layer. Note
that we assume the community memberships of the nodes are homogeneous
across all network layers. This allows us to define a community membership
matrix. Specifically, let Z € {0,1}"*K be the community membership
matrix of A communities such that Z; ., =1 and Z;;, = 0 for k # ¢;. The

probability tensor of the DC-MSBM can thus be written as
'P=73><1DZ XQ.DZ, (21)

where D = diag{ds, ...,d,} is a diagonal matrix.

Furthermore, for two sequences f,, and g,, we denote f, = O(g,) if
limy, s oo SUP [ ful/gn < +00, fr = 0(gn) if iy 00 [ ful /g0 = 0, fr = Q(gn)
if limy, 400 SUP | fo|/Gn > 0, fro > g if limy, sy oo | fu] /90 = +00, and f,, < g,

if f, = O(gn) and f, = Q(gn). Let ||-|| denote the ly-norm of a vector or the

7
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spectral norm of a matrix, || - ||« denote the [-norm of the vectorization
of the input matrix or tensor, and || - ||z denote the Frobenius norm of a
matrix or tensor, and the ly;-norm of a matrix M € R" ¢ is defined as

|M|lo1 =i, || M .||, where M is the i-th row of M.

2.2 Differential Privacy

Differential privacy (DP; Dwork et al. 2006) has emerged as a standard
statistical framework for protecting personal data during data sharing pro-

cesses. The formal definition of e-DP is given as follows.

Definition 1 (¢-DP). A randomized mechanism M satisfies e-differential
privacy if for any two neighboring datasets D and D’ differing in only one

record, it holds that

P{M(D) =5} _ .
R PMD) =5) =

where S denotes the output space of M.

Another variant of differential privacy is known as local differential
privacy (LDP), wherein each individual data point undergoes perturbation
with noise prior to data collection procedure. The formal definition of non-

interactive e-LDP is provided as follows.

Definition 2 (e-LDP). For any € > 0, the randomized mechanism M

8
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satisfies e-local differential privacy for an individual data point X € D if

P{M(X) =2Z|X =z} _
sSup sup = > e,
s v P{M(X) = 3[X = '}

where X denotes the output space of M.

It’s worth noting that privacy protection under e-LDP can be analyzed
within the framework of classic e-DP in specific scenarios. Particularly,
if M satisfies e-local differential privacy and is independently applied to
datasets of independent samples, for any neighboring datasets D and D’

differing only in the i-th record, we have

. P{M(D) = zé} . PIM(X) =3Xi=a} _

<
bt P{M(D) =D} ek PAIM(X) = 71X, =o'}

for i € [n]. Thus, e-LDP achieves the classic e-DP if we consider the output
space S = X". In addition, when D is a multi-layer network, Definition
2 has already given a nature definition of e-LDP on multi-layer network.
In the next section, we will provide a simplified definition thanks to the

independence among the network edges.

3. Edge Differential Privacy in Network Data

In the realm of network data, two primary variants of differential privacy

emerge: node differential privacy (Kasiviswanathan et al., [2013; Day et al.|
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2016)) and edge differential privacy (Karwa and Slavkovié, 2016;|Wang et al.|
2022; [Yan, 2025). The former considers the protection of all information
associated with a node in network data, while the latter on the edges. This
paper delves into the privacy protection of edges in multi-layer networks.

The formal definition of e-edge differential privacy is given as follows.

Definition 3. (e-edge DP) A randomized mechanism M is e-edge differ-

entially private if

sup sup PIM(A) = S|A} _ o
ses saan—1 PIM(A)) = S|A’}y =

where 6(A, A") counts the number of difference entries between A and A’

and S denotes the output space of M(-).

The definition of e-edge DP bears a resemblance to classic e-DP, as
it requires the output distribution of the randomized mechanism M to
remain robust against alterations to any single edge in the network. It
is thus difficult for attackers to infer any single edge based on the released
network information S. In the literature, e-edge DP finds widespread usages
in releasing various network information privately, such as node degrees
(Karwa and Slavkovic, |2016; Fan et al., 2020), shortest path length (Chen
et al., |2014)), and community structure (Mohamed et al., 2022). Under the

framework of DC-MSBM, we consider a specific variant of e-LDP for edges

10
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in multilayer network data.

Definition 4. (Weak e-edge DP) Let A denote the adjacency tensor of a
multi-layer network with n nodes. We say a randomized mechanism M

satisfies weak e-edge differential privacy if

SUp sup P{M(A, ;1) —x|~'4wl—x}
Fex z,x'eX P{M A1]l _x‘A’L]l:x} N

for any 4, j € [n] and | € [L], where X denotes the range of edges.

Definition [4| is a weak one because the left hand side of is the
supremum of a single probability ratio instead of the product of all prob-
ability ratios corresponding to all edges. The latter is usually larger and
leads to stronger definition. However, if M satisfies weak e-edge DP and is
independently applied to A entrywisely.

Given the independence of A, ;,’s, we have P{M(A) |A} = IL<jepm el

P{M(A,;i)|A;}, leading to

P{M(A) = AJA}
sup sup _
A sAA)=1 P{M(A) = A|A’}
=supsup sup p{M A’L]l _x|A’L]l —iL’}
ijl Fex Ta €X P{./\/l A =TA =2 } <

(3.2)

It is evident from ([3.2) that privacy protection through weak e-edge DP
is equivalent to achieving e-edge DP, provided the independence of edges.

Furthermore, a similar correlation can be established between e-edge LDP

11
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and the (k, €)-edge DP framework, as explored in prior works such as |Hay
et al.| (2009) and |Yan| (2025]).

In this paper, we mainly consider multi-layer networks with binary
edges. To achieve weak e-edge DP, one popular choice of M is the edge-
flipping mechanism of A with a uniform flipping probability (Nayak and
Adeshiyan, [2009; Wang et al., 2016; Hehir et al., 2022)). Specifically, denote
the flipped multi-layer network as My (.A) with a flipping probability 1 — 6,
for some 6 > 1/2, then the (i, j,)-th entry of M(.A) is given by

Al with probability 6,
Mo(Aiji1) =

1—- A, ;, with probability 1 —#.

It then follows that P(M@(A)iyj,l = 1) — H'Pi,j,l 2 (1 — @)(1 — Pi,j,l)-

Lemma 1. The edge-flipping mechanism My satisfies weak e-edge differ-

1
14+e—€"

ential privacy when 0 =

Lemma (1| characterizes the capacity of the edge-flipping mechanism in
protecting privacy under the framework of weak e-edge DP. It should be
noted that privacy of A is completely protected when § = 1/2 or € = 0,
in the sense that there exists no algorithm capable of inferring A, ;; based
on My (A, ;) more effectively than random guessing. Yet, a key disad-

vantage of the uniform flipping mechanism is its inability to accommodate

12
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different privacy preferences among edges.

We further emphasize that the data we release is the privacy-preserving
network after random flipping, presented as a unified tensor, despite its com-
position of O(n%L) edges. In contrast to mechanisms that solely disclose
summary statistics of the network, our approach enables the release of a
complete tensor with the same expected expectation as the original network
after a debiasing step. However, it is important to note that some struc-
tures of the original network cannot be recovered directly due to privacy
protection. Instead, estimations, such as the precise count of triangles in
the original network, are still obtainable. In essence, the publication of the

privacy-preserving network allows for releasing more data about networks.

4. Proposed Method

4.1 Personalized Edge-flipping

In this section, we propose a personalized edge-flipping mechanism whose
flipping probabilities are governed by node-wise privacy preferences. Specif-
ically, let © = (6, j)nxn With 6; ; denoting the flipping probability of the po-

tential edge between nodes ¢ and j across all network layers, and Mg(A) =

13
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[MGM (A”z)} with

nxnxL

A, i, with probability 6; ;,
1— ,Am.,l, with probability 1 — 0, ,

for i < jand [l € [L]. Also, we set My, (A ;i) = My, (A1) to preserve

the semi-symmetry in Mg (.A) with respect to the first two modes, for i > j.

Definition 5. (Heterogenous e-edge LDP) Let M denote a randomized
mechanism. We say M satisfies heterogenous e-edge LDP if for any 1 <
i <j<nandl € [L] with € = (;)};=;, we have

P NV =7lA ., =
sup sup L M(Aws) = Tl Ay ZU/} <
zex saex P{M(Aiji) = [ Aiji = a'y =

where ¢; ; is a privacy parameter depending on nodes ¢ and j.
7]

Clearly, the proposed heterogenous e-edge LDP allows for the variation
of the privacy parameter ¢; ; from edge to edge. Particularly, heterogenous
e-edge LDP is equivalent to weak e-edge DP when € = max;;¢; ;. The
developed concept bears resemblance to heterogeneous differential privacy
(Alaggan et al., 2015)) in nature, wherein individual points in a dataset are
provided different privacy guarantees. The motivation behind heterogenous
e-edge LDP is to cater to the diverse preferences among users in the net-
work. While some users may prioritize better service over privacy, others

may prioritize keeping their social interactions as private as possible.

14
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To allow for node-specified privacy preferences, we parametrize © as
1 T T
O=5(ff +1.1,), (4.2)

where f = (f1,..., fu)" € [0,1)" is a vector consisting of the privacy pref-
erences of all nodes and 1,, is the vector with n ones. When f; = 0, it
signifies that 6, ; = 1/2 for any j € [n], indicating that the edges associated
with node ¢ are protected at the utmost secrecy level. Conversely, when f;
and f; are close to 1, it indicates that both nodes ¢ and j largely give up
their privacy, resulting in A4, ;; will be truly exposed to the service provider
with high probability, for [ € [L]. Essentially, the privacy level of an edge
between two nodes is solely determined by their respective privacy prefer-
ences. Note that f; < 1 ensures every edge could be flipped with a positive

probability, ensuring the goal of differential privacy in network releasing.

Lemma 2. The personalized edge-flipping mechanism Meg(A) with © be-

ing parametrized as in (4.2)) satisfies heterogenous €-edge LDP with €; ; =

log %, for i, j € [n]. Moreover, for any i # j, i # i, and j # 1,

2 2 2
L=4/(1-———)1- 1-—= ).
f \/< - ) - )

Lemma [2] shows that, under the personalized edge-flipping mechanism,

the privacy guarantee of any single edge is completely determined by the

pair of nodes forming that particular edge. Furthermore, it is important to

15
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note that the privacy protection provided to edges via Mg is contingent
upon the parameterization specified in (4.2). In other words, the level of

privacy protection on edges will vary with the parameterization of ©.

4.2 Decomposition after Debiasing

A critical challenge in releasing network data is to preserve network struc-
ture of interest while protecting privacy of edges. It is interesting to remark
that the community structure is still encoded in the flipped network under
personalized edge-flipping mechanism, which allows for consistent commu-

nity detection on the flipped network after some appropriate debiasing.

Lemma 3. Assume that A is generated from the DC-MSBM in and

that the personalized flipping probability matrix satisfies the factorization

property in . Let A, = Mo, (Aiji) + 3(fif; —1). We have
E(Avi,j,l) = fifjdiijci,Cj,hi?j S [n]7l € [L]7 (43>

Lemma [3] shows the expectation of the flipped network Mg(.A) pre-
serves the same community structure in A after debiasing, suggesting con-
sistent community detection shall be conducted on A

We remark that various network data analysis tasks remain feasible
after an additional debiasing step, including estimating the counts of spe-

cific sub-graphs such as k-stars or triangles, as well as inferring the degree

16
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sequence. This is achievable because we can obtain a tensor sharing ex-
actly the same expectation as A by further dividing .Z,L-J,l by fif;, for any
i,j € [n|, and [ € [L]. For community detection, this step is not nec-
essary, as f;d; can be considered a new degree heterogeneous parameter
for node i, which will be normalized in the tensor-based variation of the
SCORE method (Jin, 2015} Ke et al., 2019)). Estimating and inferring cer-
tain network statistics on the differentially private network after debiasing
is commonly employed. For example, randomized algorithms in Hay et al.
(2009); |[Karwa and Slavkovi¢| (2016); [Yan| (2021, 2025)) release a perturbed
degree sequence, two perturbed bi-degree sequences, or degree partitions if
the order of nodes is not crucial in downstream analysis, by adding discrete
Laplacian noise. Subsequently, the parameters in the S-model, with or
without covariates, can be estimated using the denoised degree sequences.

By Lemma , the expectation of A can be decomposed as

E(A) =B x, FDZ x, FDZ,
where F = diag(f). For ease of notation, we denote P = ]E(.,Z), and then

P=Bx:T xT)x; FDZT ' x, FDZT ", (4.4)

where T' = diag(\/71, ..,/ x) and v = > i Z; x(f;d;)? is the effective

size of the k-th community depending on the nodes’ degree heterogeneity

17
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coefficients and heterogenous privacy preference parameters. Suppose the
Tucker rank of B x1 ' xoI'is (K, K, Ly), and thus B x; I' x5 I" admits the

following Tucker decomposition
BxiI'xoaI'=Cx,0 x3,0 x5V, (4.5)

for C € REXExLo O ¢ REXK and V' € RF*Lo whose columns are orthonor-
mal. Note that FDZT ™! also has orthonormal columns. Plugging (4.5)

into |) yields the Tucker decomposition of P as
P =Cx, FDZT 'O x, FDZT 'O x5 V.

Denote U = FDZT 'O as the mode-1 and mode-2 factor matrix in the

Tucker decomposition of P. Clearly, UTU = Ig.

Lemma 4. For any node pair (i,j) € [n| x [n], we have U;./|\U;.| =

U;./|U;.|l if ¢; = c; and U,/ U\ = U, /U = V2 otherwise.

Lemma 4| shows the spectral embeddings of nodes within the same com-
munities are the same after normalization, motivating Algorithm (1| to es-
timate the community structure based on the Tucker decomposition of A
In Algorithm [I} we first conduct a debiasing operation on the flipped net-
work Mg(LA) to obtain A, such that the expectation of A admits the

same DC-MSBM as in A. Next, a low rank Tucker approximation of A

18
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is implemented to estimate the spectral embedding matrix U. Finally, a
(1 + 7)-optimal K-medians algorithm is applied to the normalization ver-
sion of ﬁ, which clusters the nodes into K desired communities. Herein, we
follow the similar treatment in Lei and Rinaldo (2015)) to apply the approx-
imating K-medians algorithm for the normalized nodes’ embedding, which

appears to be more robust against outliers than the K-means algorithms.

Algorithm 1: Community detection in flipped network

Input : Flipped adjacency tensor Mg(.A), privacy parameter f,
number of communities K, tolerance 7
Output: Privacy-preserving community memberships Z
1 Let .Z:M@(A)—I—%(fOf—lnoln)olL;
2 Implement Tucker decomposition on A with Tucker rank
(K,K,Ly=min{K(K +1)/2,L}) as A~ C x, U x5, U x3 V.
3 Normalized the embedding matrix 5} = [A/'Z/Hﬁ}”, for i € [n].
4 Apply an (1 + 7)-optimal K-medians algorithm to E' to obtain a

o~

solution (Z, W) that satisfies,

IZW —Ullps <(1+7)  min_ [|ZW = Ulla,,

ZcA,WcREXK

where A C {0,1}"*% is the set of membership matrices.

19
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5. Theory

In this section, we establish the asymptotic consistency of community de-

tection on the privatized multi-layer network under the proposed person-

alized edge-flipping mechanism. Particularly, let ¢ = (¢y,...,¢,) and ¢* =
(¢, ¢h, ..., c) denote the estimated community membership vector obtained

from Algorithm 1 and the true community membership vector, respec-
tively. We assess the community detection performance with minimum
scaled Hamming distance between ¢ and ¢* under permutation (Jin), 2015}

Jing et al., [2021}; Zhen and Wang|, 2023). Formally, it is defined as

Err(e, ¢*) = min —Z[{C =7(c)}, (5.1)

WESK n

where Sk is the symmetric group of degree K and I(-) is the indicator func-
tion. Clearly, the Hamming error in (5.1) measures the minimum fraction
of nodes with inconsistent community assignments between ¢ and c*.

To establish the consistency of community detection, the following tech-

nical assumptions are made.

Assumption 1. Let n, be the cardinality of the k-th true community for
k € [K], and denote nma = maxgeg] gk and Ny = mingex] g, then

Nmax = O (nmin> .

20
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Assumption 2. Let yyax = maXyeg] Vi and Ymin = Minge(x) V5. Assume

that there exists an absolute constant C; such that

762‘
Te*

(3

Ymax = O(’Ymin); and fz2dz2 S Cl ) for i € [TL]

Assumption 3. Suppose that B;,;; = O(s,) for i,j € [n] and [ € [L],
where s, is a network sparsity coefficient that may vanish with n and L.

Moreover, we require s,, satisfies

where Pn = 1- minie[n] fz + 43717 and E = %Z?:l(fzdz)Q

Assumption 4. Assume that the core tensor B in the DC-MSBM model
satisfies that

O min {Mg (B)} = Q(\/ZSn),

where o (+) denotes the smallest non-zero singular value of a matrix.

Assumption[I]ensures all the K true communities in A are non-degenerate
as n diverges (Lei et al., 2020 [Zhen and Wang, 2023)). Assumption [2 im-
poses a homogeneity condition on the squared product of the nodes’ privacy
preference parameters and the degree heterogeneity coefficients. Assump-
tion 3| places a sparsity coefficient on the core probability tensor B to control

the overall network sparsity, which is a common assumption for network

21
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modeling (Ghoshdastidar and Dukkipati, 2017; |(Guo et al. 2023; |Zhen and

Wang, [2023)). If the f;’s are quite close to 1, we have ¢, = O(s,), and

Sp, >4 (Z+1d2>2 k;% = O(li’fL”). Clearly, this reduces to the optimal spar-
sity assumption for consistent community detection in multi-layer network
data (Jing et al., 2021). However, if cs, < 1 — min,cp, f; for some con-
stant ¢, leading to ¢, > s,, the proposed network sparsity assumption is
stronger than the optimal one in general. Assumption 4] assumes the small-
est non-zero singular value of Mj(s, 'B) should scale at least at the order
of /L. This is a mild assumption and can be satisfied if the entries of s 1B

are indepedently and identically generated from sub-Gaussian distributions

(Rudelson and Vershynin| 2009).

Theorem 1. Under Assumptions[1l, the Hamming error of € satisfies

K
. nl
Err(c,c¢’) =0, ka : cp—og_z

k=1 nLs;y

where vy = n; 2>y e/ (fidi)?. Moreover, in the simplest case that all

the €; j’s are the same, denoted as €, leading to f? =1 — 14%&7 fori € [n],

A logn
Err(é, c*) = O, (1 / —nL5262>7

when € is sufficiently small, provided that the degree heterogeneous param-

we have

eters are asymptotically of the same order.
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Theorem 1 provides a probabilistic upper bound for the community de-
tection error under the personalized edge-flipping mechanism. When f;d;
close to 1, for i € [n], Theorem 1 implies that ¢, < s, and Err(¢, ¢*) = o(1)
as long as s, > % and K = O(1), which matches with the optimal spar-
sity requirement for consistent community detection on multi-layer net-
works (Jing et al., 2021). However, when min,cp, f; deviates from 1, ¢,
will become substantially larger than s,, leading to deterioration of the
convergence rate of the Hamming error. In addition, Corollary [1| discusses
the optimal network privacy guarantee of the proposed method in various

scenarios.

Corollary 1. Suppose all the conditions of Theorem 1 are met, K = O(1),

d; = Q(1), fori € [n], and &% = o(1).

2
nLs?

(1) If fi < f; and f; > (logn)1/4 fori,j € [n], we have Err(¢,c*) = o,(1).

nLs2

(2) Let S denote the set of nodes such that f; < «, for any i € S and

), we have

2
;< 1 otherwise, and assume |S|/n < B,. If (f nls,

i — ogn

a2
Err(c, c¢*) = o,(1).

The first scenario of Corollary [1| considers the case that all the person-
alized preference parameters are asymptotically of the same order. In this
case, the proposed method can asymptotically reveal the network commu-

nity structure as long as the personalized privacy preference parameters f;
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vanishes at an order slower than (%) Y 4, which further implies the differ-

ential privacy budget parameter ¢; ; should vanish at an order slower than

057 1y Lemma , for 1 <i < j <n. The second scenario of Corollary

2
nLs?

considers the case where a small fraction f3,, of the nodes are highly con-
cerned about their privacy whose privacy preference parameters are allowed

to vanish at a fast order «,,. In order to ensure the consistency of commu-

Br _ 0( nLs2
oZ(1—Bn) logn

nity detection, the condition ) is imposed to control the
trade-off between «,, and (,. Furthermore, the asymptotic order of the
differential privacy budget parameters are categorized into three cases by

Lemma ; that is, €;; < o2 if both nodes i and j are in S, ¢ ; < «, if only

one node 7 or j is in S, and ¢; ; < 1 if neither node ¢ nor j is in S.

6. Numerical experiment

We now turn to examine the numerical performance of the proposed person-
alized edge-flipping mechanism in synthetic networks and real applications.
6.1 Synthetic networks

The synthetic multi-layer networks A € {0,1}"*"*L are generated as fol-
lows. First, the probability tensor B € [0, 1]X*5*L is generated as By, 4,1 =

5n[0.51 (k1 = ko) + by gyt ] With by, g, ~ Unif(0,0.5), for ki, ks € [K]. Sec-
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ond, ¢ = (cy, ..., ¢,) are randomly drawn from [K] with equal probabilities,
and thus obtain the resultant community assignment matrix Z. Third, cal-
culate P = B x1 DZ x4 DZ with d; ~ unif(0.5, 1) for ¢ € [n]|. Finally, each
entry of A is generated independently according to \A; ;; ~ Bernoulli(P; ;,),
for1<i<j<mnandlel[L].

Example 1. In this example, we illustrate the interplay between the
accuracy of community detection and the distribution of personalized pri-
vacy parameters. To mimic the users’ privacy preferences, we fix s, = 1
and generate f with f; ~ Unif(0,b) and b € {0.5+0.05%4:4=0,1,...,9}.
As for the size of multi-layer networks, we consider cases that (n,L) €
{400,800} x {4,8,16,32}. The averaged Hamming errors over 100 replica-

tions of all cases are reported in Figure

0.7 0.7

0.6 0.6
£ 05 g os
| = g
i3} ial
%‘3 0.4 %n 0.4
g g
g 03 g 03
T T

0.2 0.2

0.1 0.1

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
b h
(a) n=400 (b) n=800

Figure 1: Averaged Hamming errors over 100 replications in Example 1.
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In Figure [T}, as b increases from 0.5 to 0.95, the Hamming errors for all
values of (n, L) decrease simultaneously, indicating that small personalized
privacy parameters will deteriorate the community structure in multi-layer
networks. In addition, when the distribution of personalized privacy param-
eters is fixed, the Hamming errors improve as the network size enlarges.

Example 2. In this example, we fix s,, = 1, generate f; ~ Unif(0.95,1)
for ¢ € [n], and consider two scenarios with increasing number of nodes or
layers. Specifically, for the former scenario, we set the number of layers L
and the number of communities K as 8 and 4, respectively, and consider
cases n € {100, 150,200, 250, ..., 500}. For the latter one, we set (n, K) =
(200,4) and consider L € {4,8,16,32,64,128}. The averaged Hamming

errors over 100 replications of both scenarios are displayed in Figure
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Privatized Network Privatized Network
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Figure 2: Averaged Hamming errors over 100 replications in Example 2.

Figure 2| shows that the convergence behaviors of the accuracy of com-
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munity detection over privatized networks shares similar patterns as the
original networks, which is consistent with the theory developed in Section
4 that community detection over privatized network maintains the similar
order of convergence when personalized privacy parameters are close to 1.

Example 3. In this example, we analyze the convergence behaviors of
the Hamming error when the personalized privacy parameters are polarized
in that some people give up their privacy completely, whereas some users
keep their connectivity behaviors as private as possible. To achieve this,
we let n* denote the number of users pursuing privacy with a € [0, 1] and
then we randomly sample |2 * n®] nodes and set their corresponding f;’s
as \/(nL)~'log(n) while keeping all the other f; to be 1. Moreover, we set
sp =1, (K,L) = (4,4), and vary (n,a) € {500, 1000, 1500, 2000, 2500} x
{0.1,0.3,0.5,0.7}. The averaged Hamming errors over 100 replications of
all cases are reported in the left penal of Figure [3]

It is evident from the left penal of Figure [3| that the Hamming errors
still converge when some users chose to keep their connectivity privately,
and the convergence rate becomes slower when the size of these users gets
larger. It suggests that, under the personalized privacy mechanism, the
privacy budget can be allocated according to users’ privacy preferences,

and hence some users are allowed to pursue better protections of privacy in
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tett

,..ﬂ_‘_

L I
LY L
b

Hamming Error

500 1000 1500 2000 2500 . 02 04 06 08 1.0
Number of nodes Network sparsity level S,

Figure 3: Averaged Hamming errors over 100 replications in Example 3 (left)

and Example 4 (right).

social networks.

Example 4. In this example, we study the influence of network spar-
sity. The data generating scheme is exactly the same as in Example 1
except that we fix n = 100 and vary (s,, L) € {0.0625,0.125,0.25,0.5,1} X
{4,8,16,32}. The averaged Hamming errors over 100 replications of all
cases are reported in the right penal of Figure

It is clear from the right penal of Figure |3 that the averaged Hamming
errors decrease as the network sparsity level s, increases sine larger s,, yields

stronger signal of the networks.
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6.2 FriendFeed Multilayer Network

We apply the proposed personalized edge-flipping mechanism to a Friend-
Feed multi-layer social network, and compare its empirical performance
on the privatized network under various personalized privacy preferences.
The FriendFeed network consists of a total of 574,600 interactions among
21,006 Italian users during two months’ period, which is publicly available at
http://multilayer.it.uu.se/datasets.html. Furthermore, the users’
interactions are treated as undirected edges, and categorized into three as-
pects, including liking, commenting, and following, which correspond to
three network layers. Since the original network layers are relatively sparse
and fragile, we collect the nodes in the intersection of the giant connected
components of all three network layers, and extracted the corresponding
sub-graphs to create a multi-layer sub-network. This pre-processing step
leads to a 3-layer network with 2,012 common nodes.

In social network, like the FriendFeed data, some users are not willing
to reveal their friendship privacy. For example, someone might not willing
to reveal her or his privacy with a famous person or a group leader in a
certain community. In this case, user ¢ can choose a smaller f; to better
protect her or his local connectivity pattern. Further, this can even prevent

attackers from inferring user ¢’s linking pattern via transitivity. Herein,
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transitivity refers to the fact that a friend’s friend is likely to be a friend.
As such, people normally could infer the connectivity behavior between i
and j, giving their common friends "’s. It is thus necessary to protect the
individual’s local neighborhood transitivity privacy personally. Under our

randomized network flipping mechanism, the users ¢’s preference is

for any j # i, i # i and 7 # j.

As 6, ; > 1/2 by definition, 6, ; —1/2 is the excess probability that A, ;
maintains unflipped, for [ € [L]. Therefore, the larger f; is, the larger the
excess maintaining probability ratio between edge pairs (A, Ai ;i) and
edge Ay j;, and the transitivity pattern is more likely to maintain. If users
in the FriendFeed network can choose their own preferences f;’s, their local
neighborhood connectivity patterns could be protected.

Before proceeding, we first estimate the number of communities K
following a similar treatment as in Ke et al| (2019). First, let k be a
user-specific upper bound of K, and we perform a Tucker decomposition
approximation with Tucker rank (k, k, L) on the multi-layer network adja-
cency tensor A to obtain mode-1 and mode-2 factor matrix U and mode-3
factor matrix V. Next, we investigate the elbow point of the leading sin-

gular values of M;(A x3 V), and estimate K as the number of leading
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singular values right before the elbow point. In the FriendFeed network,
we set k = 15, and the first 20 leading singular values of M;(A x3 V') are
displayed at Figure 4| It is clear that the elbow point appears at the 3rd

leading singular value, and hence we set K = 2. As there is no ground truth

300
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2001

150

100

50 K

0.0 2.5 5.0 7.5 10.012.515.017.5

Figure 4: The first 20 leading singular values of M;(A x3 V) in the

FriendFeed multi-layer network.

of the community structure in the FriendFeed netowrk, we simply treat the
detected communities by the proposed method with f = 1512 as the truth.
We further select 30 nodes with the largest degrees in each detected com-
munity to visualize the 3-layer sub-network with 60 common nodes in the
left panel of Figure ] Clearly, the following layer is much denser than the
other two layers, which suggests that a user may follow many other users,
but only likes or comments on much fewer users she or he follows.

We then evaluate the Hamming error of the proposed method under

31



Y. ZHEN, S. XU, AND J. WANG

Figure 5: The original 3-layer FriendFeed sub-network with 60 popular nodes
(left), and a randomly selected flipped sub-network with 8 = 10% (right). Both
panels consist of the following layer (top), commenting layer (middle), and

liking layer (bottom).

different distributions of f. To generate the personalized privacy preference
vector f, we randomly selected |3 x 2,012] coordinates of f and set these
privacy preference parameters as 0.02 while setting other f;’s as 0.98, where
|x| denotes the largest integer that is small than or equal to x and f3
varies in {2%, 4%, ..., 20%}. Intuitively, as § increases, the expectation of f;
decreases for i € [2,012], leading to better privacy protection for the whole
network. The corresponding sub-network of a randomly selected flipped
network with 8 = 10% is displayed in the right penal of Figure [f] It is
clear that the flipped network becomes relatively denser and substantially

deviates form the original network for privacy protection. The averaged
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Hamming errors of the proposed method over 100 replications on the flipped

FriendFeed network with various values of § are reported in Table 1.

Table 1: Hamming errors of the proposed method on the FriendFeed network

under different edge-flipping strengths.

81 2% 1% 6% 8% 10% 12% 14% 16% 18%  20%

Err | 0.0723 0.0862 0.0969 0.1052 0.1235 0.1251 0.1365 0.1443 0.1501 0.1665

It is evident from Table 1 that the proposed method is able to deliver
satisfactory community detection for the flipped multi-layer network the
personalized edge flipping mechanism. Its Hamming errors increase with
as expected, as the flipped networks with higher edge-flipping probabilities
deviate more from the original one, leading to better privacy protection at

the cost of a relatively compromised detection of communities.

7. Conclusions

This paper proposes a personalized edge-flipping mechanism to protect
nodes’ connectivity behaviors in multi-layer network data. On the posi-
tive side, the edge flipping probabilities are allocated according to nodes’

privacy preferences and demands so that protecting the connectivity be-
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haviors could be vary from one user to the other. However, on the negative
side, there might be a risk in leaking the users’ privacy preferences. Theo-
retically, we show that the community structure of the flipped multi-layer
network remains invariant under the degree-corrected multi-layer stochastic
block model, which makes consistent community detection on the flipped
network possible. A simple community detection method is proposed with
some appropriate debiasing of the flipped network. Its asymptotic consis-
tency is also established in terms of community detection, which allows a
small fraction of nodes to keep their connectivity behaviors as private as
possible. The established theoretical results are also supported by numer-
ical experiments on various synthetic networks and a real-life FriendFeed

multi-layer network.

Supplementary Material

The online Supplementary Material contains all necessary lemmas and tech-

nical proofs of the paper.
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