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1. INTRODUCTION

1. Introduction

A general question arising from many biomedical studies is to determine whether some co-

variates are relevant to a study outcome. For example, in a genetics study, it is often of interest

to identify a group of genes that contribute to the variations of a known disease marker or

symptom (Subramanian et al., 2005; Efron and Tibshirani, 2007; Newton et al., 2007, for

example). Addressing such an interest, however, may be complicated by the presence of

dynamic (or varying) covariate effects. The key issue relates to the way how the relevance

or importance of a covariate is defined. For instance, in the context of variable screening,

the importance of a covariate was ranked by marginal correlation (Fan and Lv, 2008), maxi-

mum marginal likelihood estimate of a generalized linear model (Fan et al., 2010) or a gen-

eralized marginal utility function (Fan et al., 2009), and generalized correlation (Hall and

Miller, 2009). These approaches involve an assumed linear or generalized linear relationship

between the outcome and covariates or transformation thereof, which implicitly asserts a

location-shift (or constant) effect for each covariate. Such a restriction was relaxed in model-

free screening procedures through adopting nonparametric regression modeling (Fan et al.,

2011; He et al., 2013, for example). However, there was a subtle limitation that the adopted

nonparametric modeling only examines the local influence of a covariate on the mean or a

pre-specified quantile of the outcome. A relevant covariate can be missed if its impact on

the outcome is not manifested on the mean or the targeted quantile level. Such phenomena

are illustrated by our simulation studies and real data example; for example, see Table 1 and
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1. INTRODUCTION

Table 3.

Addressing these caveats, a viable option is to measure a covariate’s outcome-relevance

pertaining to the concept of interval quantile independence (Zhu et al., 2018). Specifically,

let Y denote a continuous outcome and denote the vector of the observed covariates as X =

(X(1), . . . , X(p))T . Define H0,j : QY (τ | X(j)) = QY (τ), a.s. for τ ∈ ∆ ⊆ (0, 1). Here

and hereafter, for a general random vector V , define the τ -th conditional quantile function of

Y given V as QY (τ | V ) = inf{y : pr(Y ≤ y|V ) ≥ τ}, and define the τ -th unconditional

quantile function of Y as QY (τ) = inf{y : pr(Y ≤ y) ≥ τ}. When X(j) is continuous, H0,j

refers to the interval quantile independence between Y and X(j) on quantile level intervals

∆ and [0, 1] respectively for Y and X(j), as termed by Zhu et al. (2018). The consideration

of H0,j confers a flexible view for defining relevant variables. In the multivariate setting, a

covariate X(j) is considered as relevant or active if QY (τ |X) functionally depends on X(j)

for some τ ∈ ∆ ⊆ (0, 1), where ∆ is a pre-specified set of quantile levels. Under this view,

the set of relevant variables is defined asM∆ = {1 ≤ r ≤ p : there exists τ ∈ ∆ such that

QY (τ |X) depends on X(r)}.

The formulations of H0,j and M∆ take a global perspective to assess covariate effects

throughout the range of the outcome distribution indexed by the quantile level interval ∆.

Covariates in M∆ are permitted to have dynamic and non-additive effects across different

ranges of the outcome. Several authors (Székely et al., 2007; Zhu et al., 2011; Mai and Zou,

2015; Pan et al., 2019; Zhou and Zhu, 2018; Liu et al., 2022, for example) considered a
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1. INTRODUCTION

similar general framework for defining covariate relevance, which utilizes the functional de-

pendence of the whole conditional cumulative distribution of the outcome upon the covariate

or its distribution. Compared to this alternative, employing the conditional quantile function

allows one to naturally pinpoint one part of the outcome distribution (for covariate effect as-

sessment) with a proper choice of ∆ to align with particular scientific interests, for example,

in average or abnormal outcomes. The flexibility in specifying ∆ may also help mitigate po-

tential identifiability concern. For example, when data are limited, say due to censoring to Y ,

simply setting ∆ = (0, 1) may necessitate extrapolation with additional model assumptions.

To address H0,j andM∆, one available approach is to utilizing the novel interval quan-

tile index proposed by Zhu et al. (2018), which is designed to measure the departure from

the interval quantile independence between a pair of continuous variables. Zhu et al. (2018)’s

nonparametric index estimator and the associated asymptotic theory naturally render a testing

procedure for H0,j when X(j) is continuous. Zhu et al. (2018) also developed a model-free

variable screening procedure that ranks the estimated interval quantile index for the relation-

ship between the outcome Y and each continuous covariate X(j). While enjoying desirable

theoretical properties (e.g., sure screening property) and appealing empirical performance,

Zhu et al. (2018)’s procedures would encounter difficulties when some covariates are dis-

crete. In addition, as the interval quantile index is oriented to study the relationship between

two variables, it is not straightforward to adapt Zhu et al. (2018)’s procedures to simultane-

ously evaluate multiple covariates in terms of their relevance to the outcome. This task is
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1. INTRODUCTION

often needed in practice in order to sensibly account for inherent data hierarchy structure due

to biological, spatial, or temporal factors.

In this work, we propose a new model-free strategy for tackling a generalized version of

H0,j that concerns the outcome relevance of one or multiple covariates, which can be either

continuous or discrete. Specifically, for an index set for J covariates, G = {r1, . . . , rJ} ⊆

{1, . . . , p}, define XG = (X(r1), . . . , X(rJ ))T. A null hypothesis of our interest takes the

form

H0,G : QY (τ |XG) = QY (τ), a.s., for τ ∈ ∆ ⊆ (0, 1).

To addressH0,G, we uncover a useful connection betweenH0,G and a “working” linear quan-

tile regression model, which suggests a nonparametric measure to quantify the departure from

H0,G. We construct an omnibus test statistic for H0,G from adapting the spirit of the classic

Cramér-Von-Mises (C-V) type test statistics under the “working” linear quantile regression

model. We establish the asymptotic behaviors of the proposed test statistic without assuming

the working model holds.

We further utilize the proposed test statistic as the utility function to develop a new

model-free variable screening procedure for ultra-high dimensional data. Given the flexi-

bility of our test statistic in handling multiple covariates simultaneously, the new screening

procedure can be performed with covariates pre-grouped by scientific needs or in a ran-

dom manner for the benefit of saving computational time. We establish the desirable sure

screening property for the new screening procedure. As a useful by-product, we can read-
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2. THE PROPOSED GLOBAL TESTING FRAMEWORK

ily transform the new screening procedure to perform conditional variable screening given

some known relevant covariates under mild additional assumptions. We also prove the corre-

sponding conditional sure screening property. As suggested by our numerical studies, in the

presence of dynamic effects, the proposed global testing and screening procedures clearly

outperform existing approaches that assume constant effects or locally focus on the covariate

effects on the mean or a pre-specified quantile of the outcome.

2. The Proposed Global Testing Framework

2.1 Formulation of the proposed test statistic

Without loss of generality, let G = {1, . . . , J} and express the quantile level interval ∆ as

[τL, τU ] with 0 < τL < τU < 1. Define Z = (1,XT
G)T. As introduced in Section 1, the null

hypothesis of interest is

H0,G : QY (τ |XG) = QY (τ), a.s., for τ ∈ [τL, τU ]. (2.1)

The observed data consist of n independently identically distributed (i.i.d.) replicates of

(Y,Z), denoted as {(Yi,Zi), i = 1, . . . , n}. We assume that the conditional distribution of

Y givenXG is continuous and strictly monotone and E(ZZT) is positive definite.

To address H0,G, we uncover a useful connection between H0,G and a “working” linear

quantile regression model:

QY (τ | Z) = ZTθ0(τ), τ ∈ [τL, τU ], (2.2)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0285



2. THE PROPOSED GLOBAL TESTING FRAMEWORK

where θ0(τ) = {α0(τ), β
(1)
0 (τ), . . . , β

(J)
0 (τ)}T is a vector of regression coefficients. A key

fact is that H0,G holds if and only if model (2.2) holds with β(j)
0 (τ) = 0 for τ ∈ [τL, τU ] for

j = 1, . . . , J ; see Lemma S1 and its proof in the Supplementary Materials.

To utilize this connection, we consider an estimator of θ0(τ) defined as the minimizer of

the quantile loss function arg minb∈Rp+1

∑n
i=1 ρτ (Yi−ZT

i b),where ρτ (u)
.
= u{τ−I(u ≤ 0)}

is the so-called “check” function (Koenker and Bassett, 1978). Solving this minimization

problem is equivalent to solving the corresponding score estimating equation

Sn(b, τ)
.
= n−1/2

n∑
i=1

Zi[I(Yi ≤ ZT
i b)− τ ] = 0, (2.3)

with respect to b. Denote the solution by θ̂(τ) = (α̂0(τ), β̂(1)(τ), . . . , β̂(J)(τ))T. Without

assuming the working model (2.2), we can show that θ̂(τ) may uniformly converge to θ̃(τ) =

(α̃0(τ), β̃(1), . . . , β̃(J)(τ))T over τ ∈ [τL, τU ], where θ̃(τ) is the solution to the equation,

µ(b, τ)
.
= E[Z{I(Y ≤ ZTb) − τ}] = 0, with respect to b ∈ RJ+1; see Theorem S1 in

the Supplementary Materials. By Lemma S2 in the Supplementary Materials, the solution to

µ(b, τ) = 0 uniquely exists and H0,G implies (β̃(1)(τ), . . . , β̃(J)(τ))T = 0.

Remark 1: Note that θ̃(τ) = θ0(τ) when the “working” model (2.2) is the true model. When

model (2.2) does not hold, the consideration of θ0(τ) is no longer meaningful but θ̃(τ) is still

well defined as the solution to the deterministic equation µ(b, τ) = 0.

Motivated by these results, we propose to test data departure from H0,G by using the

deviation of (β̃(1)(τ), . . . , β̃(J)(τ))T from 0 ∈ RJ for τ ∈ [τL, τU ]. Employing the connection

between θ̃(·) and the working model (2.2) permits leveraging existing inferential tools and
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2. THE PROPOSED GLOBAL TESTING FRAMEWORK

software for quantile regression to facilitate the task of testing H0,G based on θ̃(·). It also

provides an intuitive way to interpret θ̃(·), which would capture covariate effects on the τ -th

quantile of the outcome when the working model holds.

Specifically, we propose to construct the test statistic for H0,G as

T̂UC = max
j∈G={1,...,J}

T̂
(j)
inte,

where T̂ (j)
inte =

∫ τU
τL

∣∣∣n1/2β̂(j)(τ)/σ̂
(j)
n (τ)

∣∣∣2 dτ and σ̂(j)2
n (τ) is the variance estimate for n1/2{β̂(j)(τ)−

β̃(j)(τ)} elaborated later. The construction of T̂UC reflects the idea of first utilizing the

squared β̃(j)(τ) to capture the local influence of X(j) at the single τ , integrating the lo-

cal effect over τ ∈ [τL, τU ] to assess the global effect of X(j), and then taking the maxi-

mum global effect across all covariates. Such a test statistic shares a similar spirit of the

Cramér-Von-Mises (C-V) test statistic and is expected to be sensitive to any departure of

(β̃(1)(τ), . . . , β̃(J)(τ))T from the constant zero function.

In Theorem 1, we establish the limit null distribution of T̂UC . The proof is provided in

Section S1.4 of the Supplementary Materials.

Theorem 1 Suppose the regularity conditions S3-S4 in the Supplementary Materials hold.

Under the null hypothesis H0,G, we have

T̂UC →d max
j∈{1,...,J}

[∫ τU

τL

{X (j)(τ)}2dτ

]
,

where X (j)(τ) is a mean zero Gaussian process defined in Section S1.4 of Supplementary

Materials, j = 1, . . . , J .
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2. THE PROPOSED GLOBAL TESTING FRAMEWORK

2.2 The proposed global testing procedure

Given the connection between θ̃(τ) and the working model (2.2), we can readily obtain

β̂(j)(τ) by using the rq() function in the R package quantreg. As detailed in Theorem S2

in the Supplementary Materials, under certain regularity conditions, n1/2{θ̂(τ)− θ̃(τ)} con-

verges weakly to a mean zero Gaussian process for τ ∈ [τL, τU ] with covariance Φ(τ ′, τ) =

E{ξi(τ ′)ξi(τ)T}, where the influence function ξi(τ) is defined in Theorem S2. The asymp-

totic result allows us to obtain the variance estimate σ̂(j)
n (τ) from adapting Peng and Fine

(2009)’s sample-based inference procedure outlined below with additional algorithmic de-

tails provided in Section S3 of the Supplementary Materials.

(1.a) Compute Σ̂(τ, τ) = n−1
∑n

i=1ZiZ
T
i [I{Yi ≤ ZT

i θ̂(τ)} − τ ]2.

(1.b) Conduct eigenvalue eigenvector decomposition for Σ̂(τ, τ) using eigen() function

in R to find the matrixEn(τ) = {en,0(τ), . . . , en,J(τ)} such that {En(τ)}2 = Σ̂(τ, τ).

(1.c) Solve the perturbed estimating equation Sn(c, τ) = en,j(τ) for j = 1, . . . , J and

denote the solution as S−1
n {en,j(τ), τ}.

(1.d) Calculate Dn(τ) =
(
S−1
n (en,0(τ), τ)− θ̂(τ), . . . ,S−1

n (en,J(τ), τ)− θ̂(τ)
)

. Com-

pute an estimate for the asymptotic variance of n1/2{θ̂(τ)−θ̃(τ)} asVn(τ) ≡ nD⊗2
n (τ).

Obtain σ̂(j)2
n (τ) as the j + 1th diagonal component of Vn(τ).

The result in Theorem 1 indicates that the asymptotic null distribution of the proposed

test statistic is non-standard. We develop a perturbation resampling procedure to obtain the
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2. THE PROPOSED GLOBAL TESTING FRAMEWORK

p value from testing H0,G based on the proposed test statistic. The resampling procedure is

described as follow.

(2.a) Generate B independent sets of {ιbi}ni=1, where {ιbi}ni=1 are independent random vari-

ables from a standard normal distribution for b = 1, . . . , B.

(2.b) Calculate ξ̂i(τ) = {Â(θ̂(τ))}−1Zi{I(Yi ≤ ZT
i θ̃(τ)) − τ}, where {Â(θ̂(τ))}−1 is

obtained from {Â(θ̂(τ))}−1 = n1/2Dn(τ)En(τ)−1.

(2.c) For b = 1, . . . , B, calculate

T̂UC,b = max
j∈{1,...,J}


∫ τU

τL

∣∣∣∣∣n−1/2

n∑
i=1

ξ̂
(j)
i (τ)ιbi/σ̂

(j)
n (τ)

∣∣∣∣∣
2

dτ

 ,

where ξ̂(j)
i (τ) is the j + 1th component of ξ̂i(τ).

(2.d) The p value is calculated by pUC =
∑B

b=1 I(T̂UC,b > T̂UC)/B.

Similar resampling procedures were used in other settings, such as Lin et al. (1993),

Li and Peng (2014), and Cui and Peng (2022). The key idea is to approximate the limit null

distribution through perturbing the influence function ξi(τ). The above resampling procedure

is easy to implement without involving smoothing. Justification for this procedure is provided

in Section S1.6 of the Supplementary Materials.

In Theorem S3 in the Supplementary Materials, we further show that the proposed test

statistic T̂UC is consistent (i.e., power approaching 1 as n → ∞) against the alternative
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3. VARIABLE SCREENING IN ULTRA-HIGH DIMENSIONAL SETTING

hypothesis,

Ha,G : For some j1 ∈ {1, . . . , J}, there exists τ ∈ [τL, τU ] such that |β̃(j1)(τ)| > 0.

This result suggests promising power of the proposed procedure for detecting departures

from H0,G.

Remark 2: Given a bijective map from RJ to RJ , Ψ(·), it is easy to show that H0,G is

equivalent toQY (τ |Ψ(XG)) = QY (τ), a.s. Consequently, carrying out the proposed testing

procedure based on the transformed covariates in Ψ(XG) would still confer valid inference

for H0,G.

3. Variable Screening in Ultra-high Dimensional Setting

3.1 The proposed unconditional screening framework

Consider the ultra-high dimensional setting, where p = O(exp(nc)) for a positive c < 1.

Suppose the observed covariates are grouped as (XT
G1
, . . . ,XT

GL
)T, where G1, . . . , GL are

non-overlapping index sets and ∪Ll=1Gl = {1, . . . , p}. While both p and L may depend on

the sample size n, we omit n from their notation for presentation simplicity. Assume that the

sizes of Gl’s (l = 1, . . . , L) are finite and uniformly bounded. This implies that p and L are

of the same asymptotic order.

In practice, the grouping of covariates may be motivated by scientific needs, for example,

grouping genes according to biological pathways. The special case with p = L corresponds
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3. VARIABLE SCREENING IN ULTRA-HIGH DIMENSIONAL SETTING

to the regular scenario where no grouping is imposed to covariates. Thus, a unified defini-

tion of the set of relevant covariates, with or without grouping, is M[τL,τU ] = {Gl : 1 ≤

l ≤ L and there exists τ ∈ [τL, τU ] such that Qτ (Y |X) depends on XGl
}. Assume that the

cardinality ofM[τL,τU ] is smaller than the sample size n. Let b·c and d·e denote the floor and

ceiling operators respectively.

We propose the following variable screening procedure:

(3.a) NormalizeX and Y .

(3.b) For each index set Gl, compute T̂UC for H0,Gl
and denote it by w1,l, l = 1, . . . , L.

(3.c) Sort {XG1 , . . . ,XGL
} according to w1,l in a decreasing order.

(3.d) Keep XGl
’s with w1,l greater than a pre-defined threshold νn or keep a pre-specified

number (e.g., bn/log nc) of covariates on the top of the list obtained from (3.c).

By the above procedure with some pre-determined threshold value νn, the set of remaining

variables is defined as M̂[τL,τU ] = {Gl : 1 ≤ l ≤ L, w1,l ≥ νn}.

When there is no particular scientific reasons to group covariates, we have the variable

screening problem with L = p. In this case, we may consider an alternative two-step screen-

ing procedure that first filters covariates by randomly formed groups and then conducts a

second-step single covariate screening. Our numerical investigation shows that such a two-

step procedure may preserve similar screening performance while saving computational time.

Specifically, the two-step screening procedure includes the following steps:
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3. VARIABLE SCREENING IN ULTRA-HIGH DIMENSIONAL SETTING

(4.a) NormalizeX and Y .

(4.b) Perform the first-step group-level screening:

(i) Shuffle the index set of the covariates {1, . . . , p} to {r1, . . . , rp}.

(ii) With a pre-determined group size SG, compute L = dp/SGe. Divide the first

(L−1)·SG covariates into L−1 groups of equal size SG. The Lth group includes

the last p − SG · (L − 1) elements. Denote the resulting grouped covariates as

{XG1 , . . . ,XGL
).

(iii) Apply steps (3.b)–(3.d) to the grouped covariates {XG1 , . . . ,XGL
} with a pre-

sepecified threshold νn,1 or a pre-specified number (e.g. [n/log n]) of groups to

keep.

(4.c) Express the set of remaining variables from (4.b) in terms of individual covariates,

{X(r̃1), . . . , X(r̃M )}, and then perform the second-step individual-level screening:

(i) Obtain T̂UC for H0,{r̃m}, denoted by w2,m, for m = 1, . . . ,M .

(ii) Sort {X(r̃1), . . . , X(r̃M )} according to w2,m in a decreasing order.

(iii) Keep the covariates withw2,m greater than a pre-specified threshold νn,2 or keep a

pre-specified number (e.g. [n/log n]) of covariates on the top of the list obtained

from (4.c) (ii).
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3. VARIABLE SCREENING IN ULTRA-HIGH DIMENSIONAL SETTING

With this two-step screening procedure, the set of remaining variables is defined as M̂G
[τL,τU ] =

{rm : 1 ≤ m ≤M, w2,m ≥ νn,2}.

We establish the sure screening property for the proposed unconditional screening pro-

cedures. Let T̂ (Gl)
UC denote the proposed test statistic T̂UC for H0,Gl

and define

T
(Gl)
UC = max

j∈Gl

∫ τU

τL

∣∣∣n1/2β̃(j)(τ)/σ(j)(τ)
∣∣∣2 dτ,

where {σ(j)(τ)}2 is the j + 1th diagonal element of Φ(τ, τ) defined in Theorem S2 of the

Supplementary Materials. In Theorem 2, we establish the exponential probability bounds for

|n−1T̂
(Gl)
UC −n−1T

(Gl)
UC |. This result serves as the key step to prove Corollary 1 and Corollary 2,

which state the sure screening property of the proposed one-step screening procedure outlined

in (3.a)–(3.d) and that of the proposed two-step screening procedure outlined in (4.a)–(4.c),

respectively.

Theorem 2 Suppose that the regularity conditions S1-S4 in the Supplementary Material

hold. For any c > 0 and 1/4 < ζ ≤ 1/2, there exists positive constant υ and η such

that

pr( max
1≤l≤L

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥ cnζ−1/2) ≤ pυ exp{−ηn4ζ−1 − log(nζ−1/2)}

for sufficiently large n.

Corollary 1 (Sure screening property of the one-step screening procedures) Suppose that

the regularity conditions S1-S5 in the Supplementary Material hold. If we take the threshold
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3. VARIABLE SCREENING IN ULTRA-HIGH DIMENSIONAL SETTING

value νn = δ∗nζ−1/2 with δ∗ ≤ α0/2, then there exists positive constants, a1 and b1, such that

pr(M[τL,τU ] ⊆ M̂[τL,τU ]) ≥ 1− S[τL,τU ] · a1 exp{−b1n
4ζ−1 − log(nζ−1/2)}

for sufficiently large n, where SτL,τU = |M[τL,τU ]| is the cardinality ofM[τL,τU ]. In particular,

pr(M[τL,τU ] ⊆ M̂[τL,τU ])→ 1 as n→∞.

Corollary 2 (Sure screening property of the two-step screening procedure) Suppose that

the regularity conditions S1-S4 and S6 in the Supplementary Material hold. If we take

the threshold value νn,1 = δ∗nζ−1/2 and νn,2 = δ∗∗nζ−1/2 with 0 < δ∗ ≤ α0/2 and

0 < δ∗∗ ≤ α0/2, respectively, then there exists positive constant a2 and b2, such that

pr(M[τL,τU ] ⊆ M̂G
[τL,τU ]) ≥ 1− S[τL,τU ] · a2 exp{−b2n

4ζ−1 − log(nζ−1/2)}

for sufficiently large n, where S[τL,τU ] = |M[τL,τU ]| is the cardinality ofM[τL,τU ]. In particu-

lar, pr(M[τL,τU ] ⊆ M̂G
[τL,τU ])→ 1 as n→∞.

The proofs of Theorem 2, Corollary 1 and Corollary 2 are provided in Sections S2.2 and

S2.3 of the Supplementary Materials.

3.2 A generalization to conditional screening

In practice, a set of covariates may be known to relate to the outcome by existing knowledge.

In many studies, assessing the relative importance of other covariates in the presence of

the known relevant covariates is of interest. This confers a conditional screening problem
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3. VARIABLE SCREENING IN ULTRA-HIGH DIMENSIONAL SETTING

(Barut et al., 2016). By the proposed testing strategy, we can readily generalize the screening

procedures presented in Section 3.1 to conduct conditional variable screening.

Denote XC as the set of relevant covariates known from prior knowledge, and the rest

covariates as X−C . Suppose X−C is grouped as {XGc,1 , . . . ,XGc,Lc
}. When Lc equals the

length ofX−C , no grouping is imposed toX−C . Adapting the global perspective taken in the

proposed unconditional screening framework, we consider XGc,l
as conditionally irrelevant

to the outcome if QY (τ | XC,X−C) does not depend on XGc,l
for τ ∈ [τL, τU ]. Under this

view, screening out conditionally irrelevant covariates is naturally linked to the problem of

testing Hc,Gc,l
: QY (τ |XC,XGc,l

) = QY (τ |XC) for τ ∈ [τL, τU ]. We assume thatXC has

a known type of relationship with the outcome. For simplicity, we assume that QY (τ | XC)

is linearly related to XC for τ ∈ [τL, τU ]. Similar to the finding in the unconditional setting,

Hc,Gc,l
holds if and only if the working linear quantile regression model

QY (τ |XC,XGc,l
) = αc(τ) +XC

Tβc,1 +XT
Gc,l
βc,2, τ ∈ [τL, τU ], (3.1)

holds with βc,2 = 0. This fact naturally motivates the following conditional variable screen-

ing procedure:

(5.a) NormalizeX and Y .

(5.b) For each index set Gc,l, compute a conditional test statistic T̂C for Hc,Gc,l
, which is

obtained in the same manner as that for T̂UC except that the working linear quan-

tile regression model includes XC in addition to XGc,l
. Denote the resulting T̂C by
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wc,l, l = 1, . . . , Lc.

(5.c) Sort {XGc,1 , . . . ,XGc,Lc
} according to wc,l in a decreasing order.

(5.d) KeepXc,Gl
’s with wc,l greater than a pre-defined threshold νc,n or keep a pre-specified

number (e.g., bn/log nc) of covariates on the top of the list obtained from (5.c).

By the above procedure with some pre-determined threshold value νc,n, the set of remaining

variables is defined as M̂C
[τL,τU ] = {Gc,l : 1 ≤ l ≤ Lc, wc,l ≥ νc,n}.

We establish the sure screening property for the proposed conditional screening proce-

dure. Denote the conditional test statistic T̂C for Hc,Gc,l
by T̂ (Gc,l)

C . Let T (Gc,l)
C be T̂ (Gc,l)

C with

the coefficient estimate and variance estimate replaced by their population analogues. Define

the set of conditionally relevant covariates asM(C)
τL,τU = {Gc,l : 1 ≤ l ≤ Lc, there exists τ ∈

[τL, τU ] such that QY (τ | X) depends on XGc,l
}. The results of the exponential tail prob-

ability bound for |n−1T̂
(Gc,l)
C − n−1T

(Gc,l)
C | and the sure screening property are respectively

summarized in Theorem S4 and Corollary S1 in Section S2.1 of the Supplementary Materi-

als. Their proofs are provided in Sections S2.2 and S2.3 of the Supplementary Materials.

4. Numerical Studies

4.1 Simulation studies for evaluating the proposed testing procedure

We first evaluate the proposed testing procedure for H0,G in univariate settings where XG

contains one covariate X . The specific set-ups for generating (X, Y )T are presented in Table
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S7 in the Supplementary Materials. In set-ups U1-U4, the working model (2.2) holds for

τ ∈ [0.2, 0.8], which is the τ -interval of interest. Set-up U5 gives a scenario where the

working linear quantile regression model does not hold. It is easy to see that U1 is a null

case, where X has no effect on Y . In U2, a standard linear model holds and X has a constant

effect on Y over τ ∈ [0.2, 0.8]. U3 and U4 are two set-ups with dynamic effects varying

across different τ ’s. The coefficient functions involved in set-ups U3 and U4 are presented

in Figure S2 in the Supplementary Materials. In set-up U5, X takes a non-linear functional

form to influence Y and thus the working model is not satisfied. We compare the following

testing procedures:

GIT: the proposed test based on T̂UC with [τL, τU ] = [0.2, 0.8];

AQI: the test proposed in Zhu et al. (2018), with the quantile interval set as [0.2, 0.8] for

Y and [0, 1] for X;

QS: rank score test (Gutenbrunner et al., 1993)

QW : Wald test (Koenker and Bassett, 1982)

LW : Wald test based on linear regression.

In each setting, the significance level is set as 0.05. We consider sample sizes, 200 and 400.

Table S8 of the Supplementary Materials presents the empirical rejection rates in cases

U1–U5 based on 1000 simulations. In the null case U1, all methods yield empirical sizes

close to the nominal level of 0.05. In set-ups U3–U5, where dynamic covariate effects are

present, we observe that the proposed method and Zhu et al. (2018)’s method, which are
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designed to capture global effects throughout τ ∈ [0.2, 0.8], yield much higher power than

tests which target the local effect on a single τ or the mean when dynamic effects are present,

for example set-ups U3 and U4. These demonstrate substantial power gains resulted from

integrating information across quantiles in the presence of dynamic covariate effects. In ad-

dition, we observe that the proposed method and Zhu et al. (2018)’s method have comparable

performance in the univariate settings.

We also evaluate the proposed testing procedure in multivariate settings, where XG in-

cludes two covariates X1 and X2. To illustrate the utility of our method for handling both

continuous and discrete variables, we generate X1 as a continuous variable and X2 as a dis-

crete variable. We consider five settings M1–M5 with configuration details shown in Table

S7 in the Supplementary Materials. M1 is the null case, where both X1 and X2 have no ef-

fects on Y . M2 corresponds to the case where only X1 influences Y and its effect is constant.

In M3, both X1 and X2 have constant covariate effects on Y . In M4, X1 and X2 have partial

effects on Y . The true coefficient functions, qm1(τ) and qm2(τ), are shown in Figure S2 in

the Supplementary Materials. M5 is a set-up where X1 and X2 influence Y in a non-standard

way and the working model (2.2) does not hold. In all multivariate settings, Zhu et al. (2018)

is no longer applicable. We compare the proposed GIT to QS and QW with τ = 0.4, 0.5,

or 0.6 and the analysis of variance test for overall significance based on linear regression

(ANOVA).

Table 1 reports the empirical rejection rates of these tests based on 1000 simulations.
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All methods have empirical sizes close to the nominal level 0.05 in the null case M1. The

empirical power of all tests grows as the sample size increases. When there are varying

covariate effects, such as in set-ups M4–M5, the proposed method can yield much higher

power than tests, QS , QW , and ANOVA, which target local covariate effects on a single

τ or the mean. All these results suggest that good utility of the proposed tests to detect

the existence of either constant or dynamic covariate effects, no matter the covariates are

continuous or discrete.

We conduct additional simulation studies to investigate the performance of the proposed

tests with different choices of [τL, τU ], different sets of candidate adjusting constants U , and

different cardinality of G. The results are summarized and discussed in Section S4.1 of the

Supplementary Materials.

4.2 Simulation studies for evaluating the proposed screening procedures

We conduct simulation studies to evaluate the performance of the proposed one-step screen-

ing procedure in (3.a)–(3.d), denoted by GIT, and the proposed two-step procedure in (4.a)–

(4.c) with SG = 2, denoted by GOT. For comparisons, we consider existing approaches,

including Fan and Lv (2008)’s method, denoted by SIS, He et al. (2013)’s method at τ =

0.25, 0.5 or 0.75, denoted by QaSIS(τ ), as well as Zhu et al. (2018)’s method with quantile

interval sets, [0.2, 0.8] for Y and [0, 1] for X , denoted by AQI. When implementing He et al.

(2013)’s method, we set the number of basis as 3. To assess the performance of these screen-
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Table 1: Empirical rejection rates with 1000 replicates forXG = (X1, X2)T.

Set-up n
τ ∈ [0.2, 0.8] τ=0.4 τ=0.5 τ=0.6

ANOVA
GIT QS QW QS QW QS QW

M1
200 0.058 0.050 0.055 0.053 0.048 0.050 0.047 0.044

400 0.045 0.042 0.041 0.041 0.038 0.042 0.047 0.040

M2
200 0.933 0.805 0.791 0.827 0.799 0.823 0.801 0.952

400 1.000 0.987 0.982 0.988 0.986 0.989 0.985 0.998

M3
200 0.900 0.809 0.797 0.831 0.812 0.811 0.802 0.959

400 0.999 0.991 0.987 0.992 0.991 0.988 0.980 0.999

M4
200 0.409 0.169 0.131 0.052 0.036 0.116 0.111 0.051

400 0.821 0.228 0.210 0.040 0.028 0.231 0.203 0.045

M5
200 0.415 0.452 0.325 0.384 0.345 0.268 0.264 0.025

400 0.710 0.758 0.716 0.690 0.698 0.543 0.572 0.039
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ing methods, we use the median minimum model size of the selected models required for

sure screening, and the robust standard deviation, defined as the interquartile range of mini-

mum model size, and the probability of selecting each X(j), and the probability of selecting

all covariates in A when top [n/ log(n)] covariates are maintained.

The simulation set-ups are described as follows:

S1 (n = 200, p = 2000): Y = 0.2(X(1) + 0.8X(2) + 0.6X(3) + 0.4X(4) + 0.2X(5)) + ε,

where ε follow the standard normal distribution.

S2 (n = 200, p = 2000): Y = 0.2(X(1) + 0.8X(2) + 0.6X(3) + 0.4X(4) + 0.2X(5)) +

exp(Z) · ε, where Z and ε follow the standard normal distribution.

S3 (n = 400, p = 5000): Y = X(1)I(X(1) > 0) + X(2)I(X(1) ≤ 0) + exp(X(19) +

X(20)) + exp(X(3)) · ε, where ε follows the standard normal distribution.

S4 (n = 400, p = 5000): QY (τ |X) = 3X(1)I(X(1) > 0) + 3X(3)I(X(1) ≤ 0) + lS(τ) ·

X(4) + uS(τ) · X(5) + (s(X(2)) + 1)2 · Qε(τ), where s(a) = (a − E(a))/sd(a) with

sd(a) denoting the standard deviation of a, lS(τ) and uS(τ) are plotted in Figure S2 of

the Supplementary Materials, and ε follows standard Cauchy distribution.

In the above set-ups, the covariates X = {X(1), . . . , X(p)}T are generated from multi-

variate normal distribution with mean zero and covariance matrix Σ = (0.9|k−k
′|)p×p. The er-

ror terms Z and ε are independent ofX . It is easy to see that the relevant covariate set isA =

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0285



4. NUMERICAL STUDIES

{X(1), X(2), X(3), X(4), X(5)} for set-ups S1, S2 and S4. In set-up S3, the relevant/active co-

variates are more separated from each other with A = {X(1), X(2), X(3), X(19), X(20)}. We

further consider an additional set-up S4*, which is the same as S4 except that we transform

half of the covariates to discrete covariates. Specifically, in S4*, we first use the same way to

generate (X(1), X(2), . . . , X(p))T , and then dichotomize (X(2), X(4), . . . , X(2bp/2c))T at 0 to

generate binary covariates defined as I(X(j) < 0) (j = 2, 4, . . . , 2bp/2c). In this case, Zhu

et al. (2018)’s method can not be applied. To implement He et al. (2013)’s method, we use

the linear option due to singular issues. We transform each normally distributed covariate by

Φ(·) before applying the proposed testing procedure.

In Table 2, we summarize the screening results based on 500 simulations. In set-up S1,

where the error term follows the normal distribution and the relevant covariates are highly

correlated with each other, we observe that all the methods perform quite well. In set-up S2,

which differs from S1 only by the error distribution, we notice that there is substantial deterio-

ration with the performance of SIS. The number of covariates needed for sure screening along

with its variability inflates substantially from MMMS(RSD)= 5(0) to 50(264), and the prob-

ability of retaining all relevant covariates drops significantly from 1.00 to 0.47. In the other

three set-ups, S3, S4 and S4*, we have similar observations regarding the under-performance

of Fan and Lv (2008). Such observations are not surprising and are likely caused by the fact

that the normal error assumption is no longer valid in these settings. Also, we notice that He

et al. (2013) has varying performance for different τ ’s. For example, in set-up S2, He et al.
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(2013)’s method with τ = 0.5 may select the relevant covariates over 80% of times; while

by He et al. (2013)’s method with τ = 0.25 or 0.75 the probability of keeping all relevant

variables reduces to be below 20%. Compared to He et al. (2013)’s method, which focuses

on local effects, the screening procedures that examine global effects, such as Zhu et al.

(2018)’s method and the proposed methods, GIT and GOT, demonstrate better performance,

as reflected by larger selection probabilities, pr(A), and smaller model sizes measured by

MMMS and RSD. A reasonable interpretation is that the global testing procedures leverage

information across different τ ’s, thereby producing higher detection power.

In set-ups S1, S2, and S4, where relevant covariates are strongly correlated, the proposed

methods, GIT and GOT, and Zhu et al. (2018)’s method, AQI, have similar performance.

In set-up S3, the relevant covariates are separated into two clusters with one cluster includ-

ing X(1), X(2), and X(3) and the other including X(19) and X(20). In addition, X(19) and

X(20) have stronger covariate effects than X(1), X(2), and X(3). In this case, though the

proposed methods and Zhu et al. (2018)’s method all have high probabilities of selecting rel-

evant covariates, Zhu et al. (2018)’s method yields relatively larger model size as compared

to the proposed methods. This is caused by the tendency of Zhu et al. (2018)’s method to

select “neighboring” covariates around X(19) and X(20), such as X(18) or X(21). Since these

covariates are highly corrected with X(19) and X(20) (which have strong effects on the out-

come), Zhu et al. (2018)’s method may catch the trails of these neighboring covariates by

producing interval quantile independence indices comparable to or even higher than those
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for X(1), X(2), and X(3). Despite this discrepancy, we think that the proposed methods

and Zhu et al. (2018)’s method have quite comparable performance in variable screening

when all covariates are continuous, while the proposed methods offer flexibility to naturally

accommodate discrete covariates.

We also conduct additional simulation studies to compare the proposed screening method

with the screening methods of Székely et al. (2007) and Zhou and Zhu (2018) to evaluate the

potential benefits from utilizing covariate grouping information in the proposed screening

methods. Details are provided in Section S4.3 of the Supplementary Materials.

Table 2: The simulation results for unconditional procedures.

Set-up Method
MMS pr(X(j))

pr(A)
MMMS RSD X(1) X(2) X(3) X(4) X(5)

S1 GIT 5 1 1.000 1.000 1.000 1.000 1.000 1.000

SIS 5 0 1.000 1.000 1.000 1.000 0.998 0.998

QaSIS(0.25) 8 10 0.976 0.990 0.988 0.982 0.910 0.884

QaSIS(0.5) 6 3 0.990 0.998 0.998 0.992 0.972 0.958

QaSIS(0.75) 8 9 0.994 0.992 0.988 0.968 0.912 0.896

AQI 5 0 1.000 1.000 1.000 1.000 1.000 1.000

GOT(SG = 2) 5 1 0.998 0.996 1.000 0.998 0.992 0.990

S2 GIT 5 1 1.000 1.000 1.000 0.998 1.000 0.998
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Table 2 – continued from previous page

Set-up Method
MMS pr(X(j))

pr(A)
MMMS RSD X(1) X(2) X(3) X(4) X(5)

SIS 50 264 0.694 0.694 0.688 0.628 0.554 0.466

QaSIS(0.25) 97 130 0.482 0.544 0.518 0.392 0.268 0.142

QaSIS(0.5) 20 20 0.978 0.988 0.972 0.956 0.854 0.822

QaSIS(0.75) 98 128 0.448 0.536 0.490 0.410 0.286 0.178

AQI 5 1 1.000 1.000 1.000 0.998 0.998 0.996

GOT(SG = 2) 5 1 0.998 0.996 1.000 0.998 0.996 0.992

S3 GIT 13 7 1.000 1.000 1.000 1.000 1.000 1.000

SIS 214 798 0.358 0.402 0.446 1.000 1.000 0.300

QaSIS(0.25) 25 10 0.992 1.000 0.982 1.000 1.000 0.976

QaSIS(0.5) 27 9 0.996 1.000 0.998 1.000 1.000 0.994

QaSIS(0.75) 90 77 0.406 0.562 0.640 1.000 1.000 0.340

AQI 20 6 1.000 1.000 1.000 1.000 1.000 1.000

GOT(SG = 2) 13 7 1.000 1.000 1.000 1.000 1.000 1.000

S4 GIT 5 0 1.000 1.000 1.000 1.000 1.000 1.000

SIS 2194 3860 0.260 0.266 0.256 0.214 0.196 0.140

QaSIS(0.25) 33 37 0.912 0.950 0.992 0.954 0.888 0.794

QaSIS(0.5) 6 2 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2 – continued from previous page

Set-up Method
MMS pr(X(j))

pr(A)
MMMS RSD X(1) X(2) X(3) X(4) X(5)

QaSIS(0.75) 10 9 1.000 1.000 1.000 1.000 1.000 1.000

AQI 5 0 1.000 1.000 1.000 1.000 1.000 1.000

GOT(SG = 2) 5 0 1.000 1.000 1.000 1.000 1.000 1.000

S4* GIT 5 1 1.000 1.000 1.000 1.000 1.000 1.000

SIS 2180 4139 0.332 0.264 0.376 0.306 0.346 0.186

QaSIS(0.25) 5 0 1.000 1.000 1.000 1.000 1.000 1.000

QaSIS(0.5) 5 0 1.000 1.000 1.000 1.000 1.000 1.000

QaSIS(0.75) 8 4 1.000 0.912 1.000 1.000 1.000 0.912

AQI – – – – – – – –

GOT(SG = 2) 5 1 1.000 1.000 1.000 1.000 1.000 1.000

In addition, we conduct simulation studies to investigate the performance of the proposed

conditional screening procedure outlined in (5.a)–(5.d). The details are included in Section

S4.3 of the Supplementary Materials. The results strongly support the advantage of taking a

global view for assessing covariate effects, particularly in the presence of dynamic covariate

effects.
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5. An Application to a Gene Microarray Dataset

We apply the proposed methods to a microarray dataset (Scheetz et al., 2006), which con-

tains the gene expression levels of 31,098 probe sets on 120 12-week old male offsprings of

rats. With this dataset, one interest is to identify the set of genes related to gene TRIM32,

which is a known predictor for genetically heterogeneous diseases including Muscular Dys-

trophy, Limb-Girdle, Autosomal Recessive 8 and Bardet-Biedl Syndrome 11. The probe id

corresponding to gene TRIM32 is “1389163 at”.

We first illustrate the utility of the proposed global testing procedure through evaluating

the marginal relevance of six example genes to the expression level of TRIM32. To test the

effect of each of these genes, we apply the proposed global test, Wald tests for linear quantile

regression with τ = 0.25, 0.5 and 0.75, Wald tests for linear regression with outliers and

after the removal of outliers based on Cook’s Distance, and Wald test based on the robust

linear regression (Hampel et al., 1986). Table 3 presents the p values obtained from these

different tests. For the genes with probe id “1367462 at” and “1372996 at”, their effects

are captured by linear regression after removing outliers, robust linear regression, quantile

regression based tests with most choices of τ , as well as the proposed test. The test based on

standard linear regression does not detect the effect of either of these two genes, likely due

to the “diluting” influence from the outliers. We have opposite findings regarding the effects

of the genes with probe id “1367479 at” and “1367525 at”. As hinted by the scatter plots in

Figure S4 in the Supplementary Materials, these discrepant results are likely caused by the
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presence of a few outliers, which are not appropriately handled by standard linear regression

and thus leads to spurious effect estimates. These demonstrate the robustness of the proposed

testing procedure against outliers.

Table 3: Summary for the p values of six example genes.

Probe id GIT QW (0.25) QW (0.5) QW (0.75) LW LW (rm) RLW

1367462 at 0.0004 0.0530 0.0018 0.0007 0.4673 0.0005 0.0005

1372996 at 0.0024 0.0012 0.0257 0.0111 0.9714 0.0049 0.0078

1367479 at 0.7616 0.2396 0.5638 0.6088 0.0176 0.1663 0.4939

1367525 at 0.9640 0.5331 0.9326 0.8139 0.0082 0.9819 0.7016

1379467 at 0.0040 0.1097 0.3106 0.0293 0.4370 0.5645 0.5439

1381314 at 0.0184 0.0951 0.0352 0.7773 0.1069 0.4604 0.1371

As suggested by exploratory marginal linear quantile regression analyses (see the third

column of Figure S4 in the Supplementary Materials), constant location-shift effects may not

be adequate for the genes with probe id, “1379467 at” and “1381314 at”, but are presumed

by linear regression based tests. In this case, the local quantile regression based tests sepa-

rately examine the effects of these genes at different quantile levels; thus it is not surprising

that the resulting p values suggest significant effects at some τ ’s but not at the other τ ’s. All

linear regression based tests fail to capture the effects of these two genes. This may reflect

effect attenuation resulted from assuming a varying effect as constant. The proposed test, by

taking a global perspective for assessing effects, sensibly support the relevance of these two
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genes to the outcome.

We apply the proposed screening procedures to help identify outcome-relevant genes

out of 31,097 genes. In our analyses, we first perform the proposed unconditional screen-

ing procedures to filter out most irrelevant genes. Specifically, we keep the genes ranked

top [2n/ log n] = 50. With the remaining genes, we perform Zheng et al. (2015)’s globally

adaptive quantile regression method with τ ∈ [0.2, 0.8] for further variable selection. We

also analyze the same data by alternative combinations of screening and variable selection

approaches, including Fan and Lv (2008) coupled with adaptive Lasso for linear regression

(Zou, 2006), He et al. (2013) coupled with locally concerned quantile regression with adap-

tive Lasso penalty (Belloni and Chernozhukov, 2011) for τ = 0.25, 0.5, or 0.75, and Zhu

et al. (2018) coupled with Zheng et al. (2015)’s globally adaptive quantile regression method

with τ ∈ [0.2, 0.8]. When applying each approach, we determine the tuning parameter in the

variable selection step by cross validation.

The heatmap presented in Figure 1 informs the sets of genes selected by different ap-

proaches and also displays the Pearson’s correlation in expression level between the genes

selected by the proposed one-step approach and the genes selected by the other approaches.

With the same variable selection procedure, using the proposed global tests for variable

screening leads to more parsimonious selection of genes as compared to adopting Zhu et al.

(2018) which also takes a global view for variable screening. We observe that the gene with

probe id “1393510 at” selected from using the proposed methods is also selected from using
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Fan and Lv (2008), He et al. (2013) and Zhu et al. (2018). All genes selected based on the pro-

posed one-step approach have moderate or high correlations with at least one gene selected

by the other approaches. This observation may help endorse the sensible gene selection by

the proposed approach based on the results from several benchmark approaches.

For each approach, we further assess the quantile prediction performance. To compare

across different approaches, we adjust the tuning parameter in the variable selection step so

that all approaches select the same number of genes. For a given number of selected genes,

denoted by g, following the approach developed by Li and Peng (2017), we measure the

quantile prediction error as

P̂E
(g)

= n−1

n∑
i=1

∫ τU

τL

ρτ [Yi −XT
S,iθ̂S(τ)]dτ,

where ρτ (u) = u{τ − I(u < 0)},XS represents the express levels of the selected genes, and

θ̂S(τ) represents the estimated regression quantiles derived from the final model fitting at the

variable selection step. Under a linear regression model or a local quantile regression model,

the θ̂S(τ) is extrapolated as a constant function over τ equal to the regression coefficient

estimate.

In Table 4, we report P̂E
(g)

with g = 1, . . . , 10 resulted from all the approaches consid-

ered. We see that the estimated prediction errors associated with the proposed methods are

always comparable or smaller than those associated with the other methods. For example,

with g = 5, the estimated prediction errors associated with the proposed methods are both

around 0.11 and are smaller than the other approaches.
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We also apply conditional screening procedures with the conditioning covariates repre-

senting the two important genes suggested in Scheetz et al. (2006), Abca4 and Opn1sw with

probe ID “1384603 at” and “1388025 at”, respectively. We pair the proposed method and

Barut et al. (2016)’s method respectively with globally adaptive quantile regression method

(Zheng et al., 2015) and linear regression with adaptive LASSO for variable selection. The

heatmap presented in Figure S3 in the Supplementary Materials indicates that the proposed

method, CGIT, yields much more sparse gene selection results as compared to Barut et al.

(2016)’s method, CSIS, and the expression level of genes selected by the proposed method

are well correlated with those of the genes selected by Barut et al. (2016)’s method. The

results in Table 4 show that the estimated prediction error is 0.19 based on linear regres-

sion with only Abca4 and Opn1sw as covariates. The prediction errors decrease when the

conditionally relevant covariate set includes additional covariates identified from conditional

variable screening and variable selection. The prediction errors associated with the proposed

method are smaller than those associated with Barut et al. (2016)’s method in most cases. The

prediction error reduction from using the proposed method instead of Barut et al. (2016)’s

method, is more apparent when there are fewer selected genes. This may indirectly imply

that the proposed method, as compared to Barut et al. (2016)’s method, may give higher pri-

ority to genes with more predictive power and thus leads to larger gains in prediction when

the “model size” is smaller.
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Figure 1: Heat map for the correlation between the proposed unconditional screening proce-

dure and the other methods.

6. Remarks

In this work, we develop a new testing and screening framework that can help determine

outcome-relevant covariates in classic univariate and multivariate settings and ultra-high di-

mensional settings. The proposed methods sensibly adopt a global perspective that examines

covariate effects over a continuum of outcome quantiles. Such a global perspective shares a

similar spirit with the concept of globally concerned quantile regression proposed by Zheng

et al. (2015). Nevertheless, Zheng et al. (2015)’s work is hinged upon the assumption of
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Table 4: The estimated prediction error P̂E
(g)

(∆) for different model size.

Method Size:1 Size:2 Size:3 Size:4 Size:5 Size:6 Size:7 Size:8 Size:9 Size:10

A. Unconditional screening

GIT 0.178 0.171 0.118 0.117 0.116 0.115 0.114 0.113 0.109 0.108

GOT 0.177 0.172 0.169 0.127 0.113 0.112 0.111 0.111 0.111 0.111

AQI 0.171 0.157 0.142 0.141 0.140 0.134 0.133 0.124 0.118 0.108

SIS 0.185 0.172 0.159 0.144 0.137 0.123 0.113 0.109 0.109 0.108

QaSIS (τ = 0.25) 0.195 0.179 0.179 0.167 0.166 0.162 0.156 0.155 0.144 0.143

QaSIS (τ = 0.5) 0.150 0.148 0.138 0.129 0.122 0.120 0.119 0.119 0.117 0.116

QaSIS (τ = 0.75) 0.180 0.173 0.158 0.154 0.155 0.135 0.131 0.130 0.125 0.124

B. Conditional screening (Abca4, Opn1sw)

CGIT – – 0.161 0.163 0.163 0.156 0.113 0.104 0.103 0.103

CSIS – – 0.178 0.169 0.142 0.130 0.120 0.117 0.112 0.105

a global linear quantile regression model, while our testing procedures tackle a non-model-

based null hypothesis and the corresponding screening procedure is model-free. Our numer-

ical studies strongly support the advantages of the proposed methods over existing locally

concerned methods, particularly in data settings with dynamic covariate effects.

It is worth mentioning that Wang et al. (2018) also investigated the null hypothesis H0,G

in a scenario where [τL, τU ] reduces a singleton set or becomes a discrete set consisting of
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multiple specified quantile levels. In this special case, Wang et al. (2018)’s method and ours

are different n several aspects. First, Wang et al. (2018) assumed a multivariate linear quantile

regression model as the true model, while in our framework, the multivariate quantile regres-

sion model (2.2) is only treated as a working model. Secondly, in terms of the test statistic

construction, Wang et al. (2018) employed a maximum-type statistic defined based on the

working univariate quantile regression models separately assumed for each covariate, while

our strategy is to utilize a novel quantity, θ̃(τ), which is closely connected to H0,G and can

be conveniently estimated by adopting a working multivariate quantile regression. Thirdly,

both approaches involve variance estimation for regression quantiles but different procedures

are used. Specifically, Wang et al. (2018) utilized a kernel-based estimator. In contrast, we

adopt a sample-based variance estimation procedure circumventing the need for smoothing.

Similar to Wang et al. (2018), we consider a fixed number J of covariates in establishing

the asymptotic properties of the test statistic for H0,G. However, accommodating diverging

J’s remains a challenge that warrants further investigation to enhance the applicability of our

methodology.

Under the proposed testing framework, we capture the covariate relevance through the

quantity, θ̃(τ), the definition of which does not rely on any model specification. It is reason-

able to expect that the finite-sample power of the proposed tests is low when θ̃(τ)’s magnitude

is small across τ ∈ ∆. In practice, this type of scenarios may be diagnosed through empirical

examination of the covariate-response relationship, and the limitations of the proposed tests
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