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Abstract: Models with shared parameters arise quite naturally in the biological

sciences and we use optimal design theory to construct c-optimal approximate

designs for estimating one or more functions of the model parameters in two

regression models with shared parameters. We assume sample sizes for the two

groups are fixed and establish equivalence theorems to confirm the optimality of

the design. As applications, we consider the parallel dose response model, the

EMAX model and the Exponential model, each with shared parameters. The

methodology is general and can be applied to other models or design problems.

For example, we show the theoretical framework can be directly extended to

the case when we are interested to find a c-optimal design to estimate the mean

difference between the expected responses at an extrapolated dose for a nonlinear

model, or when the total sample size for the whole study is fixed, and we wish to

determine the optimal proportions of observations to allocate to the two groups,

or we have multivariate responses.
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1. Introduction

Group comparison is a basic and important problem across disciplines. A

statistical model is usually used to model the outcome from the two or

more groups and assess group differences. Statistical models with shared

parameters are increasingly common and they arise quite naturally in var-

ious research areas. For instance, Chakraborty et al. (2016) employed dy-

namic regimens trials for precision medicine in a depression clinical trial

using models with shared parameters. Models with shared parameters are

also increasingly used in pharmaceutical studies, where experts believe that

some parameters in the drug profiles have the same values when the drugs

are in the same class.

There is some research work on constructing D-optimal designs analyt-

ically for a two-group experiments with shared parameters, see for example,

Feller et al. (2017). D-optimal designs minimize the generalized variance

of all the estimated parameters in the mean function and so they are best

for estimating all the parameters in the mean response. For nonlinear mod-

els, the generalized variance depends on the unknown parameters which we
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want to estimate! To circumvent this issue, we assume some best guesses

of the unknown parameters (nominal values) of the model parameters are

available. When the unknown parameters are replaced by the nominal val-

ues, the generalized variance can be directly minimized. Such designs are

locally D-optimal designs because they depend on the nominal values.

Sometimes, the goal of the study is to estimate a given function of

the model parameters. In this case, c-optimal designs are more appropriate

because they minimize the asymptotic variance of the estimated function of

interest. Locally c-optimal designs for models with shared parameters have

not been discussed before and their analytic construction is also generally

more difficult to find than locally D-optimal designs. Such design problems

arise frequently in practice. For example, in dose-response studies, there is

often interest in estimating the ED50, which is the dose for which one-half

of its maximum response is attained. When the drug response from a drug

is modeled along with a comparable drug, we may want to estimate one or

more functions of parameters in the two models with shared parameters.

The method developed here can be directly generalized for finding Bayesian

c-optimal designs if a prior density for the shared parameters is available or

a multiple-objective optimal design when the objective functions are convex

functions of the information matrix (Cook and Wong, 1994).
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Section 2 is background material and reviews the general construction

and confirmation of c-optimal designs via an equivalence theorem and how

they are extended to make inference on models with shared parameters.

Section 3 demonstrates applications using common models in the biological

sciences, including how to optimally allocate resources to each of the two

groups. Section 4 provides results when there are several functions to esti-

mate for models with shared parameters. Section 5 considers multi-response

models and Section 6 concludes with a summary.

2. Background

This section provides the statistical setup, including notation, terminology,

model specification and the concept of two types of optimal designs. We

also review optimal design theory before we specialize to finding a design

that can optimally estimate a given function of the shared parameters in

the two regression models.

2.1 Models and optimal designs

Let yijk be the kth continuous outcome from the ith group at experimental

condition xij ∈ X and X is a user-selected compact design space. Let the
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2.1 Models and optimal designs

mean response from the ith group at the jth condition be f(xij, θi) and let

yijk = f(xij, θi) + εijk, i = 1, 2; j = 1, . . . , li; k = 1, . . . , nij. (2.1)

Here, f(xij, θi) is known apart from the unknown parameters θi and the

εijk’s are independent and normally distributed random variables each with

mean 0 and variance σ2. This means that for the ith group, observations are

taken at li different experimental conditions xi1, . . . , xili and nij observations

are taken at each xij. The xij’s are the support point of the design for the

ith group and we denote them by Supp(ξi). The two vectors of parameters

θ1 and θ2 are p-dimensional and describe the different dependence between

the mean response and the explanatory variable or variables in the two

groups. Let ni =
∑li

j=1 nij be the pre-determined number of observations

in the ith group, i = 1, 2, and let n = n1 + n2 be the total sample size.

Given an optimality criterion, our task is to find an exact optimal design

with optimal values for li, xij, nij, j = 1, . . . , li, i = 1, 2.

Under the common assumptions of regularity, the maximum likelihood

estimates, say θ̂1, θ̂2 in both samples are asymptotically normally distributed

with covariance matrix

cov(θ̂i) =
σ2
i

ni

M−1(ξi, θi), i = 1, 2,
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2.2 General strategies for finding c-optimal designs

where

M(ξi, θi) =

∫
X
g(x, θi)g

T (x, θi)dξi(x) and g(x, θi) =
∂

∂θi
f(x, θi).

We assume we have a large sample size with limni→∞
nij

ni
= wij and fo-

cus on finding optimal approximate designs. These designs are probability

measures on the dose interval and we denote a generic approximate design

by ξi = {xi1, . . . , xili ;wi1, . . . , wili}, i = 1, 2, where wij is the proportion of

observations to be taken at xij subject to
∑li

j=1wij = 1. Given an optimal-

ity criterion and a fixed sample size n1 for group 1 and n2 for group 2, we

optimize the variables li, xij, wij and implement the optimal approximate

design by taking roughly niwij observations at xij, j = 1, . . . , li, i = 1, 2.

We do not directly optimize the number of replicates nij at each design

point to find an optimal exact design because for large samples, the differ-

ences between the two types of optimal designs do not have much practical

consequences. We revisit this issue in the summary.

2.2 General strategies for finding c-optimal designs

The bulk of optimal design work in the literature focuses on finding D-

optimal designs. D-optimal designs minimize the generalized variance of

the estimates of all the model parameters in the mean function and so they

are frequently used for estimating all the model parameters. However, the
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2.2 General strategies for finding c-optimal designs

end goal in a real study is rarely on estimating parameters. Frequently, the

goal is in prediction or estimating a function of the model parameters.

A c-optimal design is used for estimating a function of the model pa-

rameters as accurately as possible. The function of interest can be nonlinear

even if the model is linear. For example, if y is a continuous outcome and

its mean is E(y) = θ0+θ1x+θ2x
2, interest may be in estimating the turning

point x0 of the mean response and not just simply estimating the three pa-

rameters. In this case, x0 = −θ1/(2θ2) is a nonlinear function of the model

parameters θ0, θ1 and θ2 in a linear model. Thus our goal is to find an

optimal allocation scheme that minimizes the (asymptotic) variance of the

estimated x0. The design criterion is a function of the model parameters

and so a c-optimal design is appropriate.

This paper constructs optimal designs to estimate a function of the

differences between the parameters θ1 and θ2. Let this function be h(θ1, θ2)

and let its estimator be h(θ̂1, θ̂2). Its asymptotic variance is

var(h(θ̂1, θ̂2)) ≈
(

1

n1

cT1 (θ1, θ2)M
−1(ξ1, θ1)c1(θ1, θ2)

+
1

n2

cT2 (θ1, θ2)M
−1(ξ2, θ2)c2(θ1, θ2)

)
σ2,

where ci(θ1, θ2) =
∂
∂θi
h(θ1, θ2) is the gradient of the function h with respect

to θi, i = 1, 2.
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2.2 General strategies for finding c-optimal designs

An appropriate choice of an optimality criterion for a precise estimation

of the function h(θ1, θ2) is given by

ψc(ξ1, ξ2) =
2∑

i=1

1

ni

cTi (θ1, θ2)M
−1(ξi, θi)ci(θ1, θ2). (2.2)

As usual, for n1, n2 fixed, a pair of designs ξ∗ = (ξ∗1 , ξ
∗
2) is called c-optimal

if it minimize the function ψc(ξ1, ξ2) over the space of all approximate pairs

of designs (ξ1, ξ2) on X 2.

One observes that if the design ξi is locally c-optimal for the single

model f(x, θi), i = 1, 2, with respect to ci(θ1, θ2), then the pair ξ = (ξ1, ξ2) is

locally c-optimal design for model (2.1). The following equivalence theorem

provides necessary and sufficient conditions for a design to be optimal under

(2.2). The proof follows by standard arguments of optimal design theory

and is therefore omitted.

Theorem 1. For the model (2.1), let

ϕc(x1, x2, ξ1, ξ2) =
2∑

i=1

1

ni

(cTi (θ1, θ2)M
−1(ξi, θi)g(xi, θi))

2. (2.3)

A design ξ∗ = (ξ∗1 , ξ
∗
2) is c-optimal if and only if the inequality

ϕc(x1, x2, ξ
∗) ≤ ψc(ξ

∗) (2.4)

holds for all x1, x2 ∈ X . Moreover, equality is achieved in (2.4) for any

(x∗1, x
∗
2) ∈ supp(ξ∗1)× supp(ξ∗2).
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2.3 c-optimal design for models with shared parameters

2.3 c-optimal design for models with shared parameters

Suppose there are common parameters in the two models in (2.1) and they

are denoted by θc ∈ Rq in the models

yijk = f(xij, θc, θdi) + εijk, i = 1, 2; j = 1, . . . , li; k = 1, . . . , nij. (2.5)

They are assumed to have the same value in the two groups and the rest of

the parameters θdi ∈ Rp−q have different values in the two groups. Assume

that the designs for the two models are ξ1 and ξ2 and θ = (θTc , θ
T
d1, θ

T
d2)

T

is the vector of unknown parameters. Under the assumption limn→∞
ni

n
=

λi ∈ (0, 1), i = 1, 2, the maximum likelihood estimate θ̂ = (θ̂Tc , θ̂
T
d1, θ̂

T
d2)

T

is asymptotically normally distributed with covariance matrix cov(θ̂) =

σ2

n
M−1(ξ, θ), where

M(ξ, θ) =
2∑

i=1

λiM
(i)(ξi, θ) (2.6)

is the information matrix of ξ and the matrices M (i)(ξi, θ) are defined by

M (i)(ξi, θ) =

∫
X
gi(x, θ)g

T
i (x, θ)dξi(x) (2.7)

with

gT1 (x, θ) = (
∂

∂θc
fT (x, θc, θd1),

∂

∂θd1
fT (x, θc, θd1), 0

T
p−q) (2.8)

gT2 (x, θ) = (
∂

∂θc
fT (x, θc, θd2), 0

T
p−q,

∂

∂θd2
fT (x, θc, θd2)). (2.9)
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2.3 c-optimal design for models with shared parameters

Consequently, the asymptotic variance of the estimated function h(θ̂) is

var(h(θ̂)) ≈ σ2

n
cT (θ)M−1(ξ, θ)c(θ)

where c(θ) = ∂
∂θ
h(θ) denotes the gradient of the function h with respect to

θ. It follows that the sought design is a c-optimal design ξ∗ that minimizes

ψc(ξ) = cT (θ)M−1(ξ, θ)c(θ). (2.10)

The following theorem gives a characterization of a c-optimal design for

models with shared parameters.

Theorem 2. For the model (2.5), let

ϕc(x1, x2, ξ) =
2∑

i=1

λi(g
T
i (xi, θ)M−1(ξ, θ)c(θ))2 (2.11)

A design ξ∗ = (ξ∗1 , ξ
∗
2) is c-optimal if and only if the inequality

ϕc(x1, x2, ξ
∗) ≤ ψc(ξ

∗) (2.12)

holds for all x1, x2 ∈ X . In addition, the above inequality (2.12) becomes

an equality for any (x∗1, x
∗
2) ∈ supp(ξ∗1)× supp(ξ∗2).

The function on the left hand side of the above inequality (or similarly,

the one in (2.4) is frequently called the sensitivity function of the design ξ∗

and if the design interval is one or two-dimensions, a visual inspection of the

graph of the sensitivity function can confirm optimality of the design. To
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2.3 c-optimal design for models with shared parameters

compare the worth of a design ξ with the c-optimal design ξ∗, we calculate

its c-efficiency given by

Effc(ξ) =
ψc(ξ

∗)

ψc(ξ)
. (2.13)

If the above ratio is 1/2, this means that the design ξ needs to be replicated

twice to do as well as the c-optimal design ξ∗. In general, designs with high

c-efficiencies are preferred.

The above ratio requires that the optimal design be known. Otherwise,

if the objective is still a convex function over the space of approximate de-

signs, one can derive a lower bound for Effc(ξ) via an equivalence theorem.

This efficiency lower bound provides the minimum efficiency of a design

without knowledge of the optimum design. In particular, a direct appli-

cation of Theorem 2 and [Pilz [9], p.137, Lemma 11.5] shows that for any

approximate design ξ, we have

2cTM−1(ξ, θ)c− sup
x1,x2∈X

2∑
i=1

λi(g
T
i (xi, θ)M−1(ξ, θ)c)2 ≤ cTM−1(ξ∗, θ)c,

which leads to the following corollary.

Corollary 1.

Effc(ξ) ≥ 2−
supx1,x2∈X ϕc(x1, x2, ξ)

ψc(ξ)
. (2.14)

Such an efficiency lower bound is helpful in practice. For example, if an

algorithm stops prematurely or is trapped at a local optimum, the efficiency
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of the design found at that point can be evaluated using such an efficiency

lower bound. If the value of the bound is sufficiently high, the design may

be deemed adequate for practical purposes and there may not be the need

to find the optimal design.

3. Applications

In this section, we apply our results to find optimal designs for models

with shared parameters in four scenarios. The first concerns parallel line

assay models where we want to estimate the location-shift parameter µ in

parallel models commonly used in a bioassay. An early work is Puri and

Gupta (1986) with many follow-up work. Some recent ones are Fleetwood et

al. (2015) and Faya et al. (2020), just to name a few. The second assumes

two patient groups reacts to a drug intake via an EMAX model with 3

parameters, and one of them is shared and assumed to have the same value

when no treatment is involved. The third concerns an exponential model

where the interest is to find an optimal design to estimate the difference in

the AUCs from two treated groups in a shared parameter model. For this

application, analytical solution is not available and we use Particle Swarm

Optimization, which is a general purpose optimization algorithm, to find

a numerical solution. Throughout, we assumed the proportion of subjects

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0284



assigned to the various groups is pre-determined. The fourth application

shows that for a total fixed sample size, our method can also finds the

optimal proportion of subjects to assign to the two groups and a c-optimal

design for a model with shared parameters at the same time.

In all cases, our optimal designs are model-based, which is increasingly

embraced among dose-finding oncology trialists (Love et al., 2017). Ap-

plications of model-based optimal designs can also be found in toxicology

studies (Dette et al., 2011).

Application 1 (Parallel model)

The parallel model defined on a scaled compact interval X = [−1, 1] has a

mean response given by

f(x, θc, θdi) = θdi + θcx, i = 1, 2. (3.1)

This model is commonly used in bioassay experiments to analyze responses

from different doses of the standard and test preparations; see Huang et al.

(2006), for example. The parallelism assumption is stringent and users usu-

ally test the validity of the assumption. One such recent test was proposed

by Novick and Yang (2019), which is also applicable to test parallelism for

more complicated models. The location-shift parameter depends on the
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model parameters θ = (θd1, θd2, θc)
⊤ and is given by

µ(θ) =
θd1 − θd2

θc
.

This parameter is widely used to measure the location-shift between the

standard and test preparations in parallel line assays. Let ξ1 and ξ2 be the

two designs for the two models and let ξ = (ξ1, ξ2). If c = (1,−1,−µ(θ))T ,

the variance of µ(θ̂) from design ξ is approximately

var(µ(θ̂)) ≈ σ2

nθ2c
cTM−1(ξ)c.

As an example, we suppose the parameters obtained from initial in-

formation are θd1 = 3, θd2 = 0.5 and θc = 1, implying that µ = 2.5. We

also assume that λ1 = 1/4 and λ2 = 3/4. Let ξ∗1 be the one point de-

sign which put mass on −1 and ξ∗2 be the design which put mass 1/6 on

−1 and 5/6 on 1. We now verify that the pair ξ∗ is c-optimal for model

(3.1). For the design ξ∗, it is straightforward to show that ψc(ξ
∗) = 7 and

ϕc(x1, x2, ξ
∗) = (x1−1)2+3x22. Obviously, the function ϕc(x1, x2, ξ

∗) attains

its maximum value of 7 at (−1,−1) and (−1, 1). It follows from Theorem

2 that the pair is c-optimal.

To compare the c-optimal design with the design ξE = (ξE1, ξE2), where

both ξE1 and ξE2 are equally supported at −1 and 1, we calculate the

criterion value of ξE which is ψc(ξE) = 124/7. Consequently, its c-efficiency
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is Effc(ξE) = 49/124.

Application 2 (EMAX model)

The Michaelis-Menten model has two parameters and takes the form

f(x, θ) =
θd0x

x+ θd1
, (3.2)

with θT = (θd0 , θd1). It is widely used to study enzyme-substrate dose-

relationship in kinetic biological systems but it is also consistently used

in various ways across disciplines, see for example, in biology (Butler and

Wolkowicz, 1985) and in agriculture (Yu and Gu, 2007), to name a few.

Optimal experimental designs to estimate any one or two of the parameters

have been investigated, including the case when there is unequal interest in

estimating each of the parameters (Lopez-Fidalgo and Wong, 2002).

The EMAX model generalizes the Michaelis-Menten model by having

an extra parameter to model outcomes more flexibly. Dette et al. (2005)

found optimal designs that addressed various lack of fit issues for the model

f(x, θc, θdi) = θc +
θdi1x

x+ θdi2
, x ∈ [0, b], i = 1, 2. (3.3)

Here b is pre-specified, x is the dose, θc is the placebo effect at dose x = 0,

θdi1 the asymptotic maximum treatment benefit over placebo for the ith

group and θdi2 the dose that gives half of the asymptotic maximum effect
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for the ith group. The common parameter θc means that the placebo effect

is the same between two groups.

The EDp, 0 < p < 1, is the smallest dose that achieves 100p% of the

maximum effect in the given dose range. For model (3.3), the EDp of the

ith group in terms of the underlying model parameter is

EDip =
bpθdi2

θdi2 + b(1− p)
.

Our interest is to find a design that best estimates the difference of

EDp’s between the two groups. If ξi is the design used for the ith group,

the implemented design for model (3.3) is ξ = (ξ1, ξ2), and the approximate

variance of ÊD1p − ÊD2p is

var(ÊD1p − ÊD2p) ≈
σ2

n
cTM−1(ξ)c.

Here c = ∂
∂θ
(ED1p − ED2p) = (0, 0, γ1, 0,−γ2) and

γi =
b2(1− p)p

(θdi2 + b(1− p))2
, i = 1, 2.

Using the argument in Dette et al. (2010), it is sufficient to restrict the

search on designs of the form ξ = (ξ1, ξ2) with ξ1 = (x1, b;w1, 1 − w1) and

ξ2 = (0, x2, b; 1 − w2 − w3, w2, w3). Hence, the only values to determine in

this case are the interior support points x1, x2 and the weights w1, w2, w3.

As an example of a locally c-optimal design, suppose that b = 150, λ1 =
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1/5, λ2 = 4/5 θd11 = 1/2, θd12 = 20, θd21 = 1/4 and θd22 = 25, where we

recall that λ1 and λ2 are the user-selected relative size of the two groups

when the total sample size is fixed. Table 1 presents c-optimal designs

for selected values of p from Theorem 2. For example, when p = 0.5, the

locally c-optimal design for estimating the difference of the ED50’s in the

two groups is ξ∗ = (ξ∗1 , ξ
∗
2), where ξ

∗
1 = (7.1638, 150; 0.7699, 0.2301) and

ξ∗2 = (0, 18.7500, 150; 0.0910, 0.6060, 0.3030).

It is instructive to compare consequences of using a model with shared

parameters or not. When there is no shared parameter, there is an extra

parameter to estimate for the placebo effect in each group. For the ith

group, the EMAX model is

f(x, θ) = θdi0 +
θdi1x

x+ θdi2
, x ∈ [0, b], i = 1, 2,

and a direct application of Theorem 5.2 in Dette et al. (2010) for the

EMAX model shows the locally ED50-optimal design for the i = 1 group is

ξS1 = (0, 15.7895, 150; 0.25, 0.5, 0.25), and that for the i = 2 group is ξS2 =

(0, 18.7500, 150; 0.25, 0.5, 0.25). The implemented design is ξNS = (ξS1, ξS2)

and for various values of p, its efficiency relative to the locally c-optimal

design when the shared model is adopted is shown in the last column of

Table 1. For example, if p = 0.6, the loss in efficiency of the design ξNS

relative to the c-optimal design for the model with the shared parameter ξ∗
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Table 1: The interior support points and weights of the c-optimal design for

model (3.3) with shared parameter defined on [0, 150], and the efficiency

of the optimal design ξNS for the model without the shared parameter.

p x1 w1 x2 w2 w3 Effc(ξNS)

0.1 6.9496 0.7738 18.7500 0.6039 0.3019 0.8268

0.2 6.9866 0.7731 18.7500 0.6042 0.3021 0.8254

0.3 7.0321 0.7723 18.7500 0.6047 0.3023 0.8241

0.4 7.0895 0.7712 18.7500 0.6052 0.3026 0.8223

0.5 7.1638 0.7699 18.7500 0.6060 0.3030 0.8200

0.6 7.2637 0.7681 18.7500 0.6071 0.3035 0.8168

0.7 7.4053 0.7656 18.7500 0.6088 0.3044 0.8121

0.8 7.6208 0.7618 18.7500 0.6117 0.3058 0.8047

0.9 7.9870 0.7556 18.7500 0.6177 0.3088 0.7911

is about 19%.
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Other c-optimal designs for model (3.3) for similar problems can be

found similarly. For instance, if there is interest for predicting the mean

difference in responses from the two groups at a given dose x0 > b, i.e. we

first set c(θ) equal to the derivative of h(θ) = θd11x0

x0+θd12
− θd21x0

x0+θd22
and find a

design that minimizes its asymptotic variance. The vector of interest to use

in the c-optimality criterion is the derivative of h(θ with respect to θ, i.e.

c =
∂

∂θ
h(θ) =

(
x0

x0 + θd12
,− θd11x0

(x0 + θd12)2
,− x0

x0 + θd22
,

θd21x0
(x0 + θd22)2

)T

.

For example, a direct calculation shows that if x0 = 160, the locally c-

optimal design for the model with shared parameter is ξ∗ = (ξ∗1 , ξ
∗
2), where

ξ∗1 = (11.0301, 150; 0.0295, 0.9705), ξ∗2 = (15.7831, 150; 0.0346, 0.9654).We

note that 0 is not a support point of ξ∗2 either and most of its mass is at

the right end of the design space at b = 150.

Application 3 (Exponential model)

Consider the Exponential model with mean function given by

f(x, θ) = θ0 + θ1 exp(x/θ2), (3.4)

where θ0 is the placebo effect, θ1 is the slope of the curve, θ2 determines the

rate of effect increase and x is the dose level. Pinheiro et al. (2006) used this

model in dose finding clinical studies and Dette et al. (2010) found optimal

designs for the model. In a two-group trial, we assume the placebo effect is
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the same for each group and the models for the two groups become

f(x, θc, θdi) = θc + θdi1 exp(x/θdi2), x ∈ [0, b], i = 1, 2, (3.5)

Our interest is to find a design that best estimates the difference of AUC

between the two groups. Tthe area under the curve for the ith group is

AUCi and is given by

AUCi = θcb+ θdi1θdi2(exp(b/θdi2)− 1), i = 1, 2.

For the design ξ = (ξ1, ξ2), the approximate variance of ˆAUC1 − ˆAUC2 is

var( ˆAUC1 − ˆAUC2) ≈
σ2

n
cTM−1(ξ)c,

where c = ∂
∂θ
(AUC1 − AUC2) = (0, ν11, ν12, ν21, ν22) with

νi1 = θdi2(exp(b/θdi2)− 1), νi2 = θdi1(exp(b/θdi2)(1− 1/θdi2)− 1), i = 1, 2.

To find a locally optimal design, we use thee nominal values for the setup:

b = 150, λ1 = 1/5, λ2 = 4/5 and θd11 = 1/2, θd12 = 20, θd21 = 1/4, θd22 = 25.

A direct computation similar to Applications 1 and 2 using Theorem 2

produces the sought optimal design but this will not be possible for more

complicated models. For the latter, numerical methods are required. We

recommend Particle Swarm solver available in Matlab, which implements

the particle swarm optimizer (PSO) to search for a c-optimal design. PSO

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0284



is a general-purpose optimization tool inspired by animals or nature and

hence is called a nature-inspired metaheuristic algorithm. There are usually

fast, assumptions free and easy to use. It is also now increasingly used to

find all types of efficient designs in the optimal design literature; Chen,

et al. (2022) gives a short overview of its use to find different types of

optimal designs in various scenarios. In this example, a direct application

of PSO with its default settings produces a design ξ∗ = (ξ∗1 , ξ
∗
2), where

ξ∗1 = (130.0826; 1) and ξ∗2 = (0, 125.4117, 150; 0.16130.83610.0026), which

can be verified to be c-optimal using an equivalence theorem.

Application 4 (Determining optimal proportion of observations

for two groups)

We have assumed that the sample sizes n1 and n2 in the two groups are

fixed in advance. Sometimes, there is flexibility and one may find an optimal

design that optimizes the triplet ξ = (ξ1, ξ2, λ), where λ = n1/(n1 + n2).

Accordingly, we find a design to minimize

ψc(ξ) = cT (θ)M−1(ξ, λ, θ)c(θ), (3.6)

where

M(ξ, λ, θ) = λM (1)(ξ1, θ) + (1− λ)M (2)(ξ2, θ). (3.7)

Similar to Theorem 2, we have the following equivalence theorem.
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Theorem 3. For the model (2.5), let

ϕc(x1, x2, t, ξ, λ) =
2∑

i=1

I{t = i}(gTi (xi, θ)M−1(ξ, λ, θ)c(θ))2. (3.8)

A design ξ∗ = (ξ∗1 , ξ
∗
2 , λ

∗) is c-optimal if and only if the inequality

ϕc(x1, x2, t, ξ
∗, λ∗) ≤ ψc(ξ

∗) (3.9)

holds for all x1, x2 ∈ X and t ∈ {1, 2}. Moreover, equality is achieved in

(3.9) for any (x∗1, x
∗
2, t) ∈ supp(ξ∗1)× supp(ξ∗2)× {1, 2}.

Proof. Let λ ∈ [0, 1], let ξ = (ξ1, ξ2) ∈ Ξ × Ξ and let δx be the Dirac

measure at the point x ∈ X . After noting that the set M
(2)
λ = {M(ξ, λ, θ) :

(ξ1, ξ2) ∈ Ξ×Ξ, λ ∈ [0, 1]} is the convex hull of the set D
(2)
λ = {

∑2
i=1 I{t =

i}M(i)(δxi
, θ) : x1, x2 ∈ X , t = 1, 2}, the rest of the proof parallels to the

proof of Theorem 2 and for space consideration, it is omitted.

We revisit Application 1 and find a locally c-optimal design for esti-

mating the location-shift parameter µ. We consider the case when |µ| > 2

or not, separately. In the former case, let ξ∗1 = (−1, 1;w∗
1, 1 − w∗

1) and let

ξ∗2 = (−1, 1;w∗
2, 1− w∗

2) with

w∗
1 =

µλ∗ + 1

2µλ∗
and w∗

2 =
µ(1− λ∗)− 1

2µ(1− λ∗)
.

If λ∗ satisfies the condition that 1/µ < λ∗ < 1 − 1/µ, a straightforward
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calculation shows the information matrix of the design ξ∗ = (ξ∗1 , ξ
∗
2 , λ

∗) is

M(ξ∗, λ∗) =


λ∗ 0 −1/µ

0 1− λ∗ 1/µ

−1/µ 1/µ 1

 .

It follows that

ϕc(x1, x2, t, ξ
∗, λ∗) = (I{t = 1}x21 + I{t = 2}x22)µ2

and ψc(ξ
∗) = µ2. Obviously, the function ϕc(x1, x2, t, ξ

∗, λ∗) attains its max-

imum µ2 at (±1,±1, 1) and (±1,±1, 2) and the design ξ∗ satisfies Theorem

3, so it is c-optimal. For example, the design ξ∗ with w∗
1 = 9/10, w∗

2 = 1/10

and λ∗ = 1/2 is a c-optimal design for µ = 2.5. The corresponding value

of the criterion is ψc(ξ
∗) = 6.25 < 7, which is the value of the c-optimal

design given in Application 1.

When |µ| ≤ 2, it can be similarly shown that the design with w∗
1 =

µ/2, w∗
2 = 0 and λ∗ = 1/2 is c-optimal because ϕc(x1, x2, t, ξ

∗, λ∗) = ψc(ξ
∗) =

4. Further, one can verify directly that the c-efficiency of ξE = (ξE1, ξE2, 1/2)

is Effc(ξE) =
µ2

µ2+4
if |µ| > 2 and Effc(ξE) =

4
µ2+4

if |µ| ≤ 2.

4. Multiple-objective c-optimal designs and L-optimal designs

The previous sections focus on constructing optimal designs for estimating

a single function of the model parameters. Sometimes, there are several
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interesting functions to estimate, and some are more interesting than others.

For instance, in addition to estimating ED50, other percentiles may also be

of interest. The goal then is to find a design that provides higher efficiencies

for the more important objectives. Accordingly, we first rank each objective

by its importance and want a design that delivers a user-specified efficiency

of ei under the i
th objective. Assuming objective 1 is the most important,

we have e1 ≥ e2 ≥ . . . ≥ em. This formulation is intuitive but finding such

a constrained optimal design can be problematic.

An alternative is to find a design that best estimates a convex combi-

nation of the m convex functions of interest. Since the resulting criterion is

still convex, we can treat the optimization problem as a single-objective c-

optimal design problem. After expressing each of the convex functionals as

a vector ci(θ), i = 1, . . . ,m, we find an approximate design that minimizes

ψC(ξ) =
m∑
i=1

αic
T
i (θ)M−1(ξ, λ, θ)ci(θ) (4.1)

among all approximate designs on X . Here each αi ∈ [0, 1] is a pre-

selected weight in the compound criterion and they are normalized so that∑m
i=1 αi = 1. The interpretation is that a larger weight implies that there is

greater interest in estimating the particular function of model parameters.

The following theorem is a direct generalization of the previous the-

orem and can be used to verify whether a design is a compound optimal
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design.The proof is similar to the proof of Theorem 2 and is omitted.

Theorem 4. For the model (2.5), let

ϕC(x1, x2, ξ) =
m∑
i=1

αi

2∑
j=1

λj(g
T
j (xj, θ)M−1(ξ, θ)ci(θ))

2 (4.2)

A design ξ∗ = (ξ∗1 , ξ
∗
2) is compound c-optimal if and only if the inequality

ϕC(x1, x2, ξ
∗) ≤ ψC(ξ

∗) (4.3)

holds for all x1, x2 ∈ X . Moreover, equality is achieved in (4.3) for any

(x∗1, x
∗
2) ∈ supp(ξ∗1)× supp(ξ∗2).

Cook and Wong (1994) proposed a graphical method for finding a dual-

objective optimal design with m = 2. First the two single-objective optimal

designs are determined and the two types of efficiencies of each compound

optimal design are computed. These efficiencies are then plotted against

values of λ ∈ [0, 1]. To find the sought constrained optimal design indi-

rectly from the easier-to-find compound optimal designs, one then draw a

horizontal line at the sought efficiency level for the primary objective and

note the corresponding λ where the horizontal line meets the efficiency plot

for the primary objective. The compound optimal design corresponding to

that λ is the sought constrained optimal design. The method applies to any

two convex functionals but when m is large, the plots are high-dimensional
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Figure 1: Plot of the sensitivity function ϕC(x1, x2, ξ
∗) of the design x∗i for

Application 2 (Continued) confirms its compound c-optimality.

and it becomes hard to appreciate visually the features in the plot and infer

whether the conditions of the equivalence theorem are met.

Application 2 (Continued).

Suppose we want to find an optimal design to ascertain differences of

E25, E50 and E75 with equal interest. This means that the weights in (4.1)

are αi = 1/3, i = 1, 2, 3. A direct calculation shows that the compound

c-optimal design is ξ∗ = (ξ∗1 , ξ
∗
2), with ξ

∗
1 = (7.4418, 150; 0.7649, 0.2351) and

ξ∗2 = (0, 18.7500, 150; 0.0872, 0.6085, 0.3043). Figure 1 plots the sensitivity

function of this design and confirms the c-optimality ξ∗.

Some studies aim to estimate several functions of the model parameters
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Table 2: The interior support points and weights of the compound

c-optimal design for model (3.3).

α1 α2 α3 x1 w1 x2 w2 w3

0.1 0.8 0.1 7.2954 0.7675 18.7500 0.6067 0.3034

0.2 0.6 0.2 7.3756 0.7661 18.7500 0.6075 0.3038

0.25 0.5 0.25 7.4045 0.7656 18.7500 0.6079 0.3040

1/3 1/3 1/3 7.4418 0.7649 18.7500 0.6085 0.3043

0.4 0.2 0.4 7.4646 0.7645 18.7500 0.6090 0.3045

simultaneously. In this case, L-optimal designs are more appropriate. They

generalize c-optimal designs and an approximate design ξ∗ is defined to be

L-optimal if it minimizes

ψL(ξ) = tr(LM−1(ξ, θ)). (4.4)

Here L is a user-selected constant matrix and it can be shown that

the criterion is a convex function of the information matrix. The following

equivalence theorem characterizes a L-optimal design.
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Theorem 5. For the model (2.5), let

ϕL(x1, x2, ξ) =
2∑

i=1

λi(g
T
i (xi, θ)M−1(ξ, θ)LM−1(ξ, θ)gi(xi, θ)) (4.5)

A design ξ∗ = (ξ∗1 , ξ
∗
2) is L-optimal if and only if the inequality

ϕL(x1, x2, ξ
∗) ≤ ψL(ξ

∗) (4.6)

holds for all x1, x2 ∈ X . In addition, the above inequality (4.6) becomes an

equality for any (x∗1, x
∗
2) ∈ supp(ξ∗1)× supp(ξ∗2).

Proof. Let NND(k) be the set of all k × k non-negative definite matrices,

let Ξ be the set of approximate designs on X and let ξ = (ξ1, ξ2) ∈ Ξ× Ξ.

Then

M(ξ, θ) =
2∑

i=1

λiM
(i)(ξi, θ).

The set M(2) = {M(ξ, θ) : (ξ1, ξ2) ∈ Ξ × Ξ} is a convex subset of the set

NND(2p − q). Let δx be the Dirac measure at the point x ∈ X . It follows

that M(2) is the convex hull of the set D(2) = {M(δx1 , δx2 , θ) : x1, x2 ∈ X},

and the function ψL(ξ) defined in (4.4) is convex on the set Ξ1 × Ξ2. Since

ψL(ξ) depends on ξ only through M(ξ, θ), it can be viewed as a function

on M(2) and denoted by ψL(M).

Because of the convexity of ψL the design ξ∗ = (ξ∗(1), ξ
∗
(2)) is c-optimal if
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and only if its Fréchet derivative satisfies

∂ψL(M∗, E∗
0) = lim

α→0+

ψL(M∗ + αE0)− ψL(M∗)

α
≥ 0,

for all directions E∗
0 = E − M∗. Since M(2) =conv(D(2)), it is sufficient

to verify the above inequality for all E ∈ D(2). Let α ∈ (0, 1) and let

ξα = (ξα1, ξα2) = (1− α)(ξ1, ξ2) + α(δx1 , δx2). Noting that Mα := M(ξα) =

(1− α)M+ αM(δx1 , δx2), we have

dψL(Mα)

dα
=

d

dα
tr(LM−1

α )

= tr

(
d

dα
LM−1

α

)
= tr

(
L(−M−1

α (M(δx1 , δx2)−M)M−1
α )

)
.

It follows that the directional derivative of ψL(Mα) at M in the direction

of E0 = M(δx1 , δx2)−M is

∂ψL(M, E0) = lim
α→+

ψL(M+ αE0)− ψL(M)

α

=
d

dα
ψL(Mα)

∣∣∣∣
α=0+

= tr
(
L(−M−1(M(δx1 , δx2)−M)M−1)

)
= tr(LM−1)− tr

(
LM−1M(δx1 , δx2)M−1

)
= tr(LM−1)−

2∑
i=1

λi(g
T
i (xi, θ)M−1LM−1gi(xi, θ)).
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Consequently, the design ξ∗ = (ξ∗1 , ξ
∗
2) is L-optimal if and only if

2∑
i=1

λi(g
T
i (xi, θ)M−1LM−1gi(xi, θ)) ≤ tr(LM−1) (4.7)

for all x1, x2 ∈ X and the proof Theorem 5 is complete. □

Application 2 (continued)

Suppose we want to find a L-optimal design to ascertain differences of the

two responses at x01 = 155 and x02 = 160. We let A be a matrix with rows

Ai =

(
0,

x0i
x0i+ θd12

,− θd11x0i
(x0i + θd12)2

,− x0i
x0i + θd22

,
θd21x0i

(x0i + θd22)2

)
,

where x01 = 155, x02 = 160, and let L = AAT . A direct calculation shows

the L-optimal design for model (3.3) is given by ξ∗ = (ξ∗1 , ξ
∗
2), where ξ

∗
1 =

(11.1625, 150; 0.0237, 0.9763) and ξ∗2 = (15.9591, 150; 0.0278, 0.9722).

5. Extension to multi-response models

Multi-response models are common in real applications. For example, the

Berman model is frequently used to analyze data for calibrating apparatus

in microwave engineering (Berman, 1983). There are also applications of

the model for modeling concentric circles and ellipses in biometrics and

medical diagnostics. The shapes of the eyeballs are increasingly used in

biometrics to securely identify individuals and this involves fitting data to

images of concentric circles. In medical imaging, a person infected with
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Malaria is identified by the concentric elliptical shapes of the parasite cells

in the body; see Al-Sharadqah and Nguyen (2022) for details.

Let Yi = (yi1(x), . . . , yis(x))
T be our s-dimensional response vector, let

F (x) = (f1(x), . . . , fs(x))
T be a s× p matrix of regression functions, let θi,

be a vector of p unknown parameters of the model for the ith group and let

ϵ be a s-dimensional vector of random errors, each with mean zero and non-

singular covariance matrix Σ = (σij)s×s. Our multi-response linear models

for the two groups are

Yijk = F (xij)θi + ϵijk, i = 1, 2; j = 1, . . . , li; k = 1, . . . , nij, (5.1)

The two groups may represent two machines providing readings of the

shapes of eyeballs or cell shapes. Suppose further that θc is the vector of

shared parameters for the two groups and the linear multi-response model

(5.1) becomes

Yijk = F1(xij)θc + F2(xij)θdi + ϵijk. (5.2)

Assume that ni points are observed around the ith concentric circle

with radius ri centered at the common center (θ1, θ2). Denote the two

coordinates of measured data point on the ith circle by yi1 and yi2, i = 1, 2.
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The Berman model is usually expressed as
yi1(t) = θ1 + θi3 cos t− θi4 sin t+ ϵi1,

yi2(t) = θ2 + θi3 sin t+ θi4 cos t+ ϵi2.

t ∈ [0, 2π], (5.3)

Letting I2 be the identity matrix of dimension 2, we have from (5.2),

F1(t) = I2, F2(t) := A(t) =

cos t − sin t

sin t cos t

 ,

θc = (θ1, θ2)
T , θdi = (θi3, θi4)

T and ri =
√
θ2i3 + θ2i4, for i = 1, 2. The

covariance matrix of ϵi = (ϵi1, ϵi2)
T is assumed to be Σ = σ2I2. Under

model (5.2) the information matrix of a design pair ξ = (ξ1, ξ2) is

M(ξ) =
2∑

i=1

λiM
(i)(ξi), (5.4)

where the matrices M (i)(ξi), i = 1, 2 are defined by

M (i)(ξi) =

∫
X
GT

i (x)Σ
−1Gi(x)dξi(x) (5.5)

with G1(x) = (F1(x), F2(x), 0s×(p−q)) and G2(x) = (F1(x), 0s×(p−q), F2(x)).

Similar to the single response case, we have the following theorem that

provides a characterization of a c-optimal design:

Theorem 6. For the model (2.5), let

ϕc(x1, x2, ξ) =
2∑

i=1

λic
T (θ)M−1(ξ)GT

i (xi)Σ
−1Gi(xi)M−1(ξ)c(θ). (5.6)
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A design ξ∗ = (ξ∗1 , ξ
∗
2) is c-optimal if and only if the inequality

ϕc(x1, x2, ξ
∗) ≤ ψc(ξ

∗) (5.7)

holds for all x1, x2 ∈ X , with equality at any (x∗1, x
∗
2) ∈ supp(ξ∗1)× supp(ξ∗2).

Application 5 Let ηEi
be the equidistant sampling design with sample

size mi on [0, 2π] and let its mi support points be at tj = (j − 1)2π/mi for

j ∈ {1, . . . ,mi}, i = 1, 2. The design problem is to find a c-optimal design

for estimating the difference of the radii r1 − r2 under model (5.3), which

is
√
θ213 + θ214 −

√
θ223 + θ224. Here c = ∂

∂θ
(r1 − r2) and a direct calculation

shows c = (0, 0, θ13/r1, θ14/r1, θ23/r2, θ24/r2)
T .

The information matrix of a design pair ξ = (ξ1, ξ2) for model (5.3) is

M (1)(ξ1) =


Σ−1 Σ−1A(ξ1) 0

A⊤(ξ1)Σ
−1 σ2

det(Σ)
I2 0

0 0 0

 and M (2)(ξ2) =


Σ−1 0 Σ−1A(ξ2)

0 0 0

A⊤(ξ2)Σ
−1 0 σ2

det(Σ)
I2

 ,

where

A(ξi) =

∫
X
A(t)dξi =

c(ξi) −s(ξi)

s(ξi) c(ξi)

 , c(ξi) =

∫
X
cos(t)dξi, and s(ξi) =

∫
X
sin(t)dξi.

Since c(ηEi
) =

∫
X cos(t)dηEi

= 0, s(ηEi
) =

∫
X sin(t)dηEi

= 0, we have
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A(ηEi
) = 02×2. Thus, if ηE = λ1ηE1 + λ2ηE2 , then

M(ηE) = λ1M
(1)(ηE1) + λ2M

(2)(ηE2) =


Σ−1 0 0

0 σ2

det(Σ)
I2 0

0 0 σ2

det(Σ)
I2

 .

This implies that

ϕc(t1, t2, ηE) =
2∑

i=1

σ2

λir2i
(θi3, θi4)A

T (t)A(t)(θi3, θi4)
T (5.8)

=
2∑

i=1

σ2

λir2i
((θi3 cos t− θi4 sin t)

2 + (θi3 sin t+ θi4 cos t)
2)

=
2∑

i=1

σ2

λi

and

ψc(ηE) = cT (θ)M−1(ηE)c(θ) =
2∑

i=1

σ2

λi
. (5.9)

By Theorem 6, ηE is c-optimal for estimating r1 − r2 under model (5.3).

6. Summary

This paper constructs c and L-optimal designs for estimating one or more

functions of the parameters in regression models with shared parameters.

Some work on finding locally D-optimal designs to estimate all parameters

in the model are available for such a setting, but not for estimating one or

more functions of the parameters in the models with shared parameters.
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The optimal designs also allow different levels of interests among the objec-

tives, including how to choose the optimal proportions of patients to assign

to the two groups given a fixed sample size. The methodology also extends

to finding locally c-optimal designs for multi-response models with shared

parameters.

Our focus was in finding locally optimal designs. It is possible to extend

the method to find Bayesian optimal designs or minimax types of optimal

designs, where both strategies do not require a single set of nominal values.

For more complicated models or criteria, the optimal designs will have to be

found numerically, such as using a nature-inspired metaheuristic algorithm

like PSO used in Application 3 to find a c-optimal design. Masoudi et al.

(2019), Chen et al. (2020) and Liu et al. (2021) showed how PSO can be

used to find different types of optimal designs for more complicated models

and optimality criteria.

In practice, we implement exact designs, which requires the sample size

n to be known in advance. This implies that if the optimal proportion of

observations at the design point xi of an approximate design is wi, we would

have to round n ∗wi to a positive integer [n ∗wi] such that
∑n

i [n ∗wi] = n.

This is typically done using some intuitive rounding-off procedures or rules

in Pukelsheim and Rieder (1992). However, our take is that optimal exact
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designs are useful only when we have a small sample and it becomes prob-

lematic to round an approximate design to an exact design with replicates

that sum to n.

Other reasons for not working with exact designs even for large sample

problems, are : (a) using theory to find an optimal exact design is nearly

theoretically impossible for almost all non-linear models with multiple pa-

rameters; (b) the solution depends sensitively on each assumption of the

model and a slight mis-specification will quickly invalidate the proof; (c)

there is no general algorithm for finding an optimal exact design and no

unified method for confirming an exact design is an optimal exact design,

and (d) they depend on n, the statistical model, the design criterion and

one would need to provide an endless list of tables of different types of opti-

mal exact designs for practitioners. More importantly, Kiefer (1983) argued

that when the sample size is large, the difference in efficiencies between the

true and unknown optimal exact design and the one obtained by rounding

the optimal approximate design into an optimal exact design directly is no

larger than O(1/n2) for any intuitive rounding methods.

Optimal designs are meant to serve as a rough guide for the practitioners

to select an efficient design. They are not meant to be implemented strictly

since they may not meet requirements of the user. For instance, the optimal
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exact designs may have too few design points than the user wants in the

experiment, or the user wants to always include a 0 dose that is not a

support point of the optimal design.

There are recent work on constructing optimal exact designs, and as

expected, they are more difficult and laborious to find than optimal ap-

proximate designs. Some recent work include Chen, et al. (2023), who

found optimal exact designs for longitudinal models, and both Duarte et

al. (2020) and Vaquez, et al. (2023), who used mixed integer programming

to find different types of optimal exact designs for different scenarios. Since

these tools require specialized software and good solvers, practitioners may

prefer to use optimal approximate designs, which likely should suffice in

practice especially for large sample problems.
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