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Abstract: To make the conventional synthetic control method more flexible to es-

timate the average treatment effect (ATE), this article proposes a quasi synthetic

control method for nonlinear models under the index model framework with possible

high-dimensional covariates, together with a suggestion of using the minimum aver-

age variance estimation (MAVE) method to estimate parameters and the LASSO-

type procedure to choose high-dimensional covariates. We derive the asymptotic

distribution of the proposed ATE estimators for both finite and diverging dimen-

sions of covariates. A properly designed Bootstrap method is proposed to obtain

confidence intervals and its theoretical justification is provided. When the dimen-

sion of covariates is greater than the sample size, we suggest using the robust version

of sure independence screening procedure based on the distance correlation to first

reduce the dimensionality and then apply the MAVE approach to estimate param-

eters. Finally, Monte Carlo simulation studies are conducted to examine the finite

sample performance of our proposed estimators and Bootstrap procedure. In ad-

*Corresponding author: Ming Lin (linming50@xmu.edu.cn).
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dition, an empirical application to reanalyzing data from the National Supported

Work Demonstration demonstrates the practical usefulness of our proposed method.

Key words and phrases: Average treatment effect; Bootstrap inference; Index model;

Semiparametric estimation; Synthetic control method.

1. Introduction

When evaluating the impact of policy interventions, one of the main

challenges lies in estimating unknown counterfactual outcomes. With observ-

able covariates, a natural idea is to construct an outcome regression model.

In practice, the classic linear regression model is usually inadequate or even

incorrect. To fully capture the relationship between the covariates and the

outcomes, researchers suggest using the nonparametric model which can avoid

the risk of model misspecification. However, the nonparametric model is chal-

lenged by the so-called curse of dimensionality. Therefore, as a combination

of the parametric and nonparametric models, the semiparametric model has

been conceived to overcome the aforementioned limitations.

There is a vast literature concerning applying semiparametric techniques

to estimate the treatment effect and the existing research can be divided

into two categories: estimating the counterfactual outcomes directly and in-

directly. For the former, various semiparametric approaches have been used

to estimate the conditional mean function or the conditional quantile func-

tion. For example, Heckman, Ichimura and Todd (1998) proposed a kernel-
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matching-based estimator for the average treatment effect (ATE) and pre-

sented a rigorous distributional theory, while Chiburis (2010) discussed the

semiparametric bounds on the average treatment effect of a binary treatment

on a binary outcome. Under the framework of the latent factor model to vary

cross-section, Hsiao, Ching and Wan (2012) initiated an approach, termed as

the panel data approach (PDA), which assumes that the conditional mean of

the outcomes of the treated units is a linear function of the outcomes of the

control units. Furthermore, Li and Bell (2017) relaxed this linear conditional

mean function assumption to allow for the conditional mean function to have

any unknown functional form and they used a linear project argument to show

that the PDA remains valid, although it may be less efficient than estimating

the conditional mean function nonparametrically when the sample size is suf-

ficiently large. As for the latter one, under the ignorability assumption, many

scholars have proposed to first estimate the propensity score and then esti-

mate the treatment effect by either re-weighting or matching technique. For

details, see, for example, the papers by Abadie and Imbens (2006), Galvao

and Wang (2015)and the references therein.

One of the most important semiparametric models is the single index

model. On the one hand, the single index model projects the multi-dimensional

covariates into a one-dimensional single index variable by a linear transfor-

mation. On the other hand, it assumes an unknown nonlinear link function

for the single index variable, which is greatly flexible. In policy evaluation,
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the single index model is usually used to estimate the propensity score. Song

(2014) considered semiparametric models with single-index nuisance param-

eters. The single index component is allowed to be estimable only at the

cube-root rate, and the corresponding single-index matching estimator can be

identified under a weaker conditional median independence assumption. Sun,

Yan and Li (2021) also considered a single index model for the propensity

score, and developed the asymptotic theory for the two-step semiparametric

ATE estimator. Park et al. (2021) further considered a constrained single

index model for the interaction between a multi-valued treatment variable

and covariates. The propensity score is sensitive to the model specification.

As shown by Frölich (2004) and Kang and Schafer (2007), the misspecifica-

tion of the propensity score can lead to misleading treatment effect estimates.

Hence, using the single index model to flexibly characterize this relationship

is advantageous.

In this article, our focus is on the statistical inference for the average treat-

ment effect under the framework of the single index model. Our estimation

procedure consists of two steps. First, parameters in the single index model

are estimated by the minimum average variance estimation (MAVE) method

proposed by Xia et al. (2002). In the second step, a nonparametric kernel

smooth technique can be applied to estimate the weights for estimating the

counterfactual outcomes. To address sparsity and variable selection, we pro-

pose to use the smoothly clipped absolute deviation (SCAD), a LASSO-type
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method, proposed by Fan and Li (2001), to deal with a diverging number of

covariates. When the number of covariates is greater than the sample size,

we suggest using a robust sure independence screening procedure based on

the distance correlation to reduce the dimensionality first, proposed by Zhong

et al. (2016), and then using the MAVE approach to estimate parameters.

Therefore, we make several contributions to the literature. First, our method

is the first attempt to conduct a formal statistical inference for estimating

the ATE for single index models. We derive the asymptotic inference the-

ory for the corresponding ATE estimators for the high-dimensional covariate

cases. Second, we propose a properly designed (hybrid) Bootstrap method

by combining the wild Bootstrap and the classical nonparametric Bootstrap

and show that the carefully designed Bootstrap method provides valid infer-

ences theoretically and empirically. Third, we propose combining our method

with the penalized and feature screening methods to address the ultra-high

dimensional covariate cases. Finally, the proposed ATE estimator is fast to

compute, and we demonstrate through simulations and an empirical example

that the proposed method, which is robust to nonlinear model situations, can

greatly enhance the applicability of estimating the ATE. Therefore, our work

complements the existing inference work in the literature on treatment effects.

The rest of the paper is organized as follows. Section 2 first presents

the model setup for our method, and the estimation procedure is described

in detail. Additionally, this section provides the asymptotic theory for the

5

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0271



proposed estimator and presents a carefully designed Bootstrap method with

a theoretical justification for valid inferences. Section 3 deals with choosing

covariates and addressing sparsity. The LASSO-type method and the fea-

ture screening procedure are developed in this section. A simulation study is

conducted in Section 4 to illustrate the finite sample performance. Section 5

reports the empirical analysis using our quasi-synthetic control method to ana-

lyze data from the National Supported Work (NSW) Demonstration. Finally,

Section 6 concludes the paper. All detailed technical proofs are provided in

the Supplementary Material.

2. Quasi Synthetic Control Method

2.1 Setup

Assume we observe n units and some of the units are exposed to the treat-

ment or intervention of our interest. The treatment status of unit i is indicated

by a binary variable Di, where Di = 1 if unit i is treated and Di = 0 other-

wise. To define treatment effects, we adopt the potential outcomes framework

in Rubin (1974). Formally speaking, for each unit i, let Y1i and Y0i be the po-

tential outcomes under treatment and without treatment, respectively. Then,

the observed outcome Yi can be written as Yi = DiY1i+(1−Di)Y0i; that is to

say, we can only observe Y1i for the treated unit and Y0i for the control unit.

For each unit i, we can also observe a d × 1 vector of covariates, denoted by

Xi. Assume there are n1 units being treated and the remaining n0 = n − n1
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2.2 Estimation Procedure

units are not exposed to the treatment. For simplicity, we reorder these units

so that the control units come first in the data set. Then, the observed data

set can be written as (Yi, Xi)
n
i=1 with i = 1, . . . , n0 being the control units

and i = n0 + 1, . . . , n being the treated units. Notice that while the syn-

thetic control method is mostly used to deal with a panel data model, as

pointed by Abadie and L¡¯Hour (2021), as a matching estimator essentially,

the synthetic control method can also be used to analyze cross sectional data.

We are interested in estimating the average treated effect for the treated

units, which is defined as

∆ = E(Y1i − Y0i) (2.1)

for i = n0 + 1, . . . , n. The difficulty of estimating ∆ lies in the fact that

(Y0i)
n
i=n0+1 are not observable.

2.2 Estimation Procedure

We consider the prediction function based on the conditional expectation of

Y0i given Xi, denoted by m(x) = E(Y0i|Xi = x), in an index form as m(x) =

m(β⊤
0 x) = m(z), where m(·) is an unknown function and z = β⊤

0 x ∈ R,

which covers the linear model as a special case. Denote β0 = (β0,1, · · · , β0,d)
T .

For the identification purpose, it is commonly assumed, in what follows, that

β0,1 > 0 and ||β0||2 =
∑d

k=1 β
2
0,k = 1.

When β0 is given, the estimation of m(z) is one-dimensional and the so-
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2.2 Estimation Procedure

called curse of dimensionality in a nonparametric smoothing can be avoided.Define

Zi = β⊤
0 Xi. The kernel type (Nadaraya-Watson) estimate of m(z), based on

the data (Yj, Xj)
n0
j=1 from the control group, is given by

m̃(z) =

n0∑
j=1

cj,h(z)Yj, (2.2)

where cj,h(z) = Kh(z − Zj)/
∑n0

l=1 Kh(z − Zl), Kh(u) = K(u/h)/h, K(u) is a

kernel function, and h is the bandwidth. Now, an infeasible prediction of Y0i

is denoted by Ỹ0i, where

Ỹ0i = m̃(Zi) =

n0∑
j=1

cj,h(Zi)Yj (2.3)

for i = n0 + 1, . . . , n. Note that (2.3) is infeasible since it is based on the

unknown parameter β0. Accordingly, an infeasible estimate of ∆ is

∆̃ =
1

n1

n∑
i=n0+1

[
Y1i −

n0∑
j=1

cj,h(Zi)Yj

]
=

1

n1

n∑
i=n0+1

Yi −
1

n0

n0∑
j=1

aj,hYj, (2.4)

where aj,h = 1
n1

∑n
i=n0+1 Kh(Zi − Zj)

[
1
n0

∑n0

l=1 Kh(Zi − Zl)
]−1

.

Clearly, under this setting, we first need to find β0 such that β⊤
0 Xi can be

the best to predict Y0i for i = 1, . . . , n0. To do so, we suggest using the index

model and its estimation approach is described in Section 2.4.

Interestingly, our method shares some similarities and differences with

the synthetic control method (SCM) proposed by Abadie and Gardeazabal

(2003). Although the SCM is originally designed to deal with the panel data
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2.3 Asymptotic Theory

setting, Abadie and L¡¯Hour (2021) presented a penalized version of the SCM

for disaggregated data. Apparently, cj,h(Zi) in (2.3) also serves as an inidivid-

ual weight. However, different from Abadie and L¡¯Hour (2021), our weights

{cj,h(Zi)} take care of both the best prediction to resemble the characteristics

of the potential outcome without the intervention and nonlinearity of predic-

tion function since our model is in a semiparametric nature. Therefore, our

method is termed as the quasi synthetic control method (QSCM).

From the above discussions, the QSCM for estimating ∆ consists of the

following two steps. First, use (2.9) given in Section 2.4 to obtain β̂, and then,

set Ẑi = β̂⊤Xi for i = 1, . . . , n. Second, compute the feasible estimate of ∆

based on (2.4), which is

∆̂ =
1

n1

n∑
i=n0+1

[
Y1i −

n0∑
j=1

ĉj,h(Ẑi)Yj

]
=

1

n1

n∑
i=n0+1

Yi −
1

n0

n0∑
j=1

âj,hYj, (2.5)

where ĉj,h(z) = Kh(z − Ẑj)/
∑n0

l=1 Kh(z − Ẑl) and âj,h = 1
n1

∑n
i=n0+1 Kh(Ẑi −

Ẑj)
[

1
n0

∑n0

l=1 Kh(Ẑi − Ẑl)
]−1

.

2.3 Asymptotic Theory

To describe the asymptotic properties of ∆̂, some notations are intro-

duced. Define C1 to be the support of Zj for j = 1, . . . , n0 and C2 to be

the support of Zi for i = n0 + 1, . . . , n. Let fc(z) be the density of Zj for

j = 1, . . . , n0 and ft(z) be the density of Zi for i = n0 + 1, . . . , n. Denote

mc(x) = E
[
Y0j |Xj = x

]
for j = 1, . . . , n0 and mt(x) = E

[
Y0j |Xj = x

]
for
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2.3 Asymptotic Theory

i = n0 + 1, . . . , n. Now we make the following assumptions.

A1. Assume that mc(x) = mt(x) = m(z), where z = β⊤
0 x and β0 ∈ B :=

{β ∈ Rd : β1 > 0, ||β||2 =
∑d

k=1 β
2
k = 1}. Furthermore, assume that the

second order derivative of m(z) is continuous.

A2. {Y0j, Y1j, Xj}n0
j=1 for the control group and {Y0i, Y1i, Xi}ni=n0+1 for the

treated group are independent and identically distributed, respectively. As-

sume that E(|Ydi|s) < ∞ for d = 0, 1 and some s > 2. We also assume that

C2 ⊆ C1 and fc(z) ≥ M1 > 0 for z ∈ C2.

A3. Assume that the second order of derivative of r(z) is bounded, where

r(z) = ft(z)/fc(z), the ratio function to characterize the distributional changes

of the single index between the treated and control units.

A4. The kernel function K(·) is symmetric, bounded and positive. Further

assume that the first derivative of K(·) is continuous.

A5. Assume that n0 h
2 → ∞, n0 h

4 → 0, and n1/n0 → η as n0 → ∞, where

0 < η < ∞.

A6. Assume that for any estimate of β0, β̂ admits the following expression

√
n0

(
β̂ − β0

)
=

1
√
n0

n0∑
j=1

ϕ(Xj, Yj) + op(1)
d−→ N(0,Σβ0) (2.6)

for some function ϕ(·) with variance Σβ0 =Var(ϕ(Xj, Yj)) for j = 1, . . . , n0.

Assumptions listed above are standard. Assumption A1 assumes that the

conditional expectations of the outcomes for the treated and control units are

the same in the absence of treatment, following a single-index model. The ra-
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2.3 Asymptotic Theory

tio function r(z) in Assumption A3 is interpreted as acceptance probability in

rejection sampling instead of importance re-weighting, or covariate shift, in the

machine learning literature; see, for example, Wu, Ren and Mu (2016) and

the references therein. Assumption A5 is under-smoothed in a nonparamet-

ric kernel smoothing estimation, which makes the asymptotic bias negligible

and leads the practical choice of h in application to be not difficult. The

assumption in A6 is common in the index model literature; see, for example,

Cai, Juhl and Yang (2015) and the references therein. Indeed, under some

regularity conditions, √n0(β̂ − β0) can be expressed as in (2.6); see Section

2.4 for details.

Let εj = Y0j − E(Y0j |Xj) for j = 1, . . . , n0. Define σ2
1 = Var[Y1i −

m(Zi)] for i = n0 + 1, . . . , n, σ2
2 = Var[r(Zj)εj] for j = 1, . . . , n0, and σ2

3 =

δ⊤a Σβ0δa with δa = E
[
m′(Zi)X

⊤
i

]
for i = n0+1, . . . , n, where m′(z) is the first

order derivative of m(z), and Σβ0 is given in Assumption A6. Also, define

Σ23 =Cov(ϕ(Xj, Yj), r(Zj)εj). The asymptotic normality of ∆̂ is stated in the

following theorem with its proof provided in the Supplementary Material.

Theorem 1: Under Assumptions A1 - A6, one has

√
n1

(
∆̂−∆

)
d→ N(0, σ2

∆),

where σ2
∆ = σ2

1 + η
[
σ2
2 + σ2

3 + 2 δ⊤a Σ23

]
.

It follows from Theorem 1 that the asymptotic variance consists of four

terms. In particular, the first term in σ2
∆ stands for the variance of Y1i−m(Zi),

the second term characterizes the variation for estimating m(Zi) given β0, the
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2.4 MAVE Method for Estimating β0

third term σ2
3 is the variation carried over from the estimation of β0, and the

last term depicts the correlation between the first step and the second step.

This is typical for a two-stage procedure as addressed in Cai, Das, Xiong and

Wu (2006).

2.4 MAVE Method for Estimating β0

We now discuss how to estimate β0. To do so, assume that Y0i follows a

single index model

Y0i = m(β⊤
0 Xi) + εi = m(Zi) + εi, (2.7)

where E(εi|Xi) = 0, m(·) is an unknown link function, and β0 = (β0,1, . . . , β0,d)
⊤

is the d× 1 index vector. The estimation of the index vector β0 has attracted

extensive attentions. For example, Ichimura (1993) proposed the semipara-

metric least squares estimation of the single index model based on the leave-

one-out technique. Since the single index model shares a close connection

with the central mean subspace in the sufficient dimension reduction, Xia et

al. (2002) proposed the (conditional) minimum average variance estimation

method for the dimension reduction problem, and later, Xia (2006) showed

that this method can be applied to the single index model. We employ the

MAVE method to estimate β0, described as follows.

Notice that for the single index model (2.7),

β0 = argmin
β∈B

E
[
Y0i − E(Y0i|β⊤Xi)

]2
. (2.8)

In our setting, the index is estimated by the observed data for the control
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2.5 A Bootstrap Inference

units, {Yj, Xj}n0
j=1. Motivated by the local linear smoothing technique, the

sample analogue of (2.8) is given by

β̂MAVE = argmin
β∈B
aj ,bj

n0∑
j=1

n0∑
l=1

[
Yl − aj − bjβ

⊤(Xl −Xj)
]2
wlj, (2.9)

where wlj = Kh1(β
⊤(Xl −Xj)), Kh1(v) = K(v/h1)/h1, K(·) is a kernel func-

tion and h1 is the bandwidth. Xia (2006) proposed an easy-to-implement

algorithm to estimate β0, which is presented in the Supplementary Material.

Xia (2006) derived the asymptotic normality for β̂MAVE and shows that

the asymptotic covariance matrix of β̂MAVE can achieve the information lower

bound in the semiparametric sense. From Xia (2006), one can see that under

some regularity conditions, β̂MAVE satisfies Assumption A6 with ϕ(Xj, Yj) =

W+
mm′(β⊤

0 Xj)vβ0(Xj)εj, where m′(z) is the first derivative of m(z), vβ0(Xj) =

E(Xj|β⊤
0 Xj)−Xj, Wm = E{m′(β⊤

0 Xj)
2vβ0(Xj)v

⊤
β0
(Xj)}, and W+

m denotes the

Moore-Penrose inverse of Wm. Therefore, Assumption A6 is reasonable.

2.5 A Bootstrap Inference

Clearly, Theorem 1 provides the asymptotic distribution for ∆̂, so that

an inference can be made if σ2
∆ can be estimated consistently. But, one can

see from Theorem 1 that the form of σ2
∆ is complicated so that it is not easy

to get a consistent estimate. To facilitate an easy inference, we propose the

following hybrid Bootstrap procedure by combining the (conditional) wild

Bootstrap similar to that in Zhang, Huang and Liu (2020) for single index
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2.5 A Bootstrap Inference

models and the nonparametric Bootstrap, to estimate σ2
∆.

Step 1. Given {Yj, Xj}n0
j=1 and {Yi, Xi}ni=n0+1, estimate the treatment effect

by (2.5) as ∆̂.

Step 2. Generate the nonparametric Bootstrap sample {(X∗
i , Y

∗
i )}ni=n0+1 by

drawing with replacement from the original treated group {(Xi, Yi)}ni=n0+1.

Step 3. Generate the wild Bootstrap sample {(Xj, Y
∗
j )}

n0
j=1 of the con-

trol group, where Y ∗
j = m̂(β̂⊤Xj) + ε∗j with m̂(β̂⊤Xj) =

∑n0

l=1 Kh(β̂
⊤Xj −

β̂⊤Xl)Yl/
∑n0

l=1 Kh(β̂
⊤Xj − β̂⊤Xl), ε∗j = [Yj − m̂(β̂⊤Xj)]ξj, and {ξj}n0

j=1 be-

ing i.i.d. random disturbances with mean zero and unit variance. Using

{(Xj, Y
∗
j )}

n0
j=1 to re-estimate the index parameter as β̂∗.

Step 4. Set Ẑ∗
j = X⊤

j β̂
∗ for j = 1, . . . , n0 and Ẑ∗

i = (X∗
i )

⊤β̂∗ for i =

n0 + 1, . . . , n. Then, obtain the quasi synthetic control estimator ∆̂∗ as

∆̂∗ =
1

n1

n∑
i=n0+1

Y ∗
i − 1

n0

n0∑
j=1

â∗j,hY
∗
j ,

where â∗j,h = 1
n1

∑n
i=n0+1 Kh(Ẑ

∗
i − Ẑ∗

j )
[

1
n0

∑n0

l=1 Kh(Ẑ
∗
i − Ẑ∗

l )
]−1

, which is the

Bootstrap version of âj,h in (2.5).

Step 5. Repeat steps 2 to 4 a large number of times, say, B times to obtain

{∆̂∗(b)}Bb=1. Then σ2
∆ can be estimated as σ̂2

∆ = n1

∑B
b=1(∆̂

∗(b) − ∆̂)2/(B − 1).

A (1-α)100% Bootstrap confidence interval for ∆ can be constructed as

(∆̂− zα/2σ̂∆/
√
n1, ∆̂ + zα/2σ̂∆/

√
n1) based on the asymptotic normality of ∆̂

in Theorem 1, where zα/2 is the (1− α/2)th quantile of the standard normal
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distribution. The theoretical validity of this procedure can be confirmed by

the following theorem with its proof in the Supplementary Material.

Theorem 2: Under the conditions imposed in Theorem 1, conditional on the

original sample {Xj, Yj}n0
j=1 and {Xi, Yi}ni=n0+1 and in probability, one has

√
n1

(
∆̂∗ − ∆̂

)
d→ N(0, σ2

∆),

where σ2
∆ is defined in Theorem 1.

Our method shares a deep connection with the matching methods. Abadie

and Imbens (2011) demonstrated that the standard Bootstrap method fails to

conduct inference for matching estimators. To overcome this problem, Otsu

and Rai (2017) proposed asymptotically valid inference methods for matching

estimators based on the weighted Bootstrap. However, their method only

deals with the case of a fixed number of matches. Our method matches each

treated unit with all control units, which means that the number of matches

increases with the size of the control group and is definitely not fixed.

3. Quasi Synthetic Control Method With Many Covariates

Based on the above discussion, we assume a single index model, as in (2.7),

for Y0i. When the number of predictor variables is large, it is necessary to

discriminate relevant variables from irrelevant variables, since the inclusion of

irrelevant variables may harm estimation accuracy and model interpretability.

This negative effect may be amplified in our quasi synthetic control method

since the method is intrinsically a two-step procedure.
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3.1 QSCM With a Diverging Number of Covariates

Variable selection methods for single index models have been widely dis-

cussed in the literature, for example, Kong and Xia (2007), Wang and Yin

(2008), Zeng, He and Zhu (2012), Wang, Xu and Zhu (2013), and the

references therein. However, existing literature mainly focuses on the case of

finite-dimensional covariates, while in many cases, the dimension of covariates

might grow with the sample size. In the following sections, we propose penal-

ized QSCM estimation procedures with a diverging number of covariates and

with ultra-high dimensional covariates.

3.1 QSCM With a Diverging Number of Covariates

Assume that the dimension of the covariates diverges with the sample

size of the control group and denote it as dn0 . Without loss of generality, we

assume that the first s components of β0 are non-zeros, i.e., β0 is partitioned

to β0,A = (β0,1, . . . , β0,s)
⊤ and β0,AC = (0, . . . , 0)⊤ with dn0 − s components,

where A = {1, · · · , s} and AC = {s+ 1, · · · , dn0}.

To select the relevant covariates, we can add a penalty term to the least-

squares-form loss function as
n0∑
j=1

[Yj − m̂(β⊤Xj)]
2 + n0

d∑
k=1

pλn0
(|βk|), (3.1)

where β = (β1, · · · , βdn0
)T , m̂(·) is an estimate of the link function m(·),

pλn0
(·) denotes a penalty function and λn0 is the penalty parameter. For a

given β, we can estimate m̂(β⊤Xj) using the local linear smoothing method.

Specifically, we let
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3.1 QSCM With a Diverging Number of Covariates

(âj, b̂j) = argmin
aj , bj

{
n0∑
l=1

[Yl − aj − bj(β
⊤Xl − β⊤Xj)]

2Kh1(β
⊤Xl − β⊤Xj)

}
,

where Kh1(v) = K(v/h1)/h1, K(·) is a kernel function and h1 is the band-

width. Then we have m̂(β⊤Xj) = âj.

For the penalty function, different choices of pλn0
(·) lead to different vari-

able selection methods. One choice is to set pλn0
(|βk|) = λn0 |βk|, which corre-

sponds to the least absolute shrinkage and selection operator (LASSO) pro-

posed by Tibshirani (1996). However, the LASSO estimator is biased. Al-

ternatively, Fan and Li (2001) proposed the SCAD penalty, which is defined

by
(
pSCAD
λn0

(|θ|)
)′

= λn0{I(|θ| ≤ λn0) +
(aλn0−|θ|)+
(a−1)λn0

I(|θ| > λ)} for some a > 2.

We choose the SCAD penalty and modify the objective function in (3.1) as

β̂SCAD = argmin
β∈B


n0∑
j=1

[
Yj − m̂(β⊤Xj)

]2
+ n0

dn0∑
k=1

pSCAD
λn0

(|βk|)

 . (3.2)

The algorithm to solve the optimization problem in (3.2) is summarized

as follows:

Step 1. Given data {Yj, Xj}n0
j=1, calculate the initial estimator β̂(0) using the

MAVE method.

Step 2. For t ≥ 1, given β̂(t−1), calculate
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3.1 QSCM With a Diverging Number of Covariates

(
â
(t−1)
j , b̂

(t−1)
j

)
= argmin

aj , bj

{
n0∑
l=1

[
Yl − aj − bj(β̂

(t−1))⊤(Xl −Xj)
]2
Kh1

(
(β̂(t−1))⊤(Xl −Xj)

)}
.

Step 3. Given â
(t−1)
j and b̂

(t−1)
j , we can update the estimate of β0 by letting

β̂(t) = argmin
β


n0∑
j=1

[
Yj − â

(t−1)
j − b̂

(t−1)
j (β − β̂(t−1))⊤Xj

]2
+ n0

dn0∑
k=1

pSCAD
λn0

(|βk|)

 .

Step 4. Let β̂(t) = sgn(β̂(t)
1 )β̂(t)/∥β̂(t)∥ and t = t + 1, where β̂

(t)
1 denotes

the first component of β̂(t). Repeat Steps 2 and 3 until convergence reaches.

Finally, let β̂SCAD = β̂(t).

Based on the above discussion, we can first use (3.2) to select relevant

covariates and obtain β̂SCAD, then, set Ẑi = β̂⊤
SCADXi for the control and

treated groups, respectively. Finally, we can estimate the treatment effect

using (2.5), denoted by ∆̂SCAD. To derive the asymptotic property of ∆̂SCAD,

we make the following assumptions.

B1. For j = 1, . . . , n0, Y0j = m(β⊤
0 Xj) + εj, where E(εj|Xj) = 0 and

E(ε4j |Xj) < M for some M > 0.

B2. Denote β0,−1 = (β0,2, . . . , β0,dn0
)⊤ and define a dn0 × (dn0 − 1) matrix

as Jβ0 =
(−β⊤

0,−1/
√

1−||β0,−1||2
Idn0−1

)
, where Idn0−1 is the order dn0 − 1 identity ma-

trix. Assume that the smallest eigenvalue of J⊤
β0
ΣJβ0 is larger than a positive

constant c, where Σ = E
{
[m′(Zj)]

2[E(Xj|Zj)−Xj][E(Xj|Zj)−Xj]
⊤}.

18

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0271



3.1 QSCM With a Diverging Number of Covariates

B3. For j = 1, . . . , n0, the marginal density of β⊤Xj is positive and uniformly

continuous in a neighborhood of β0.

B4. dn0/n0 h
3
1 → 0 and n0 h

4
1 → 0 as n0 goes to infinity.

One can see that the above assumptions are indeed regularity assump-

tions, also listed in Peng and Huang (2011), which discuss the penalized least

squares estimator for single index models with finite number of covariates. De-

note WSCAD = E
{
m′(β⊤

0 Xj)
2J⊤

β0,A
[E(Xj,A|β⊤

0,AXj,A)−Xj,A][E(Xj,A|β⊤
0,AXj,A)−

Xj,A]
⊤Jβ0,A

}
, where Xj,A = (Xj,1, · · · , Xj,s)

⊤, and Jβ0 denotes the s× (s− 1)

matrix
(−β⊤

0,A,−1/
√

1−||β0,A,−1||2
Is−1

)
with β0,A,−1 = (β0,2, . . . , β0,s)

⊤. Then, we have

the following asymptotic result with its detailed proof given in the Supple-

mentary Material.

Theorem 3: Under Assumptions A4 and B1 - B4, if the tuning parameter λn0

satisfies λn0 → 0 and
√
n0/dn0 λn0 → ∞, then, with probability approaching

1, we have:

(a) Sparsity: β̂SCAD,AC = 0.

(b) Asymptotic representation:

β̂SCAD,A − β0,A =
1

n0

n0∑
j=1

Jβ0,AW
−1
SCADJ

⊤
β0,A

m′(β⊤
0 Xj){Xj,A − E[Xj,A|β⊤

0,AXj,A]}εj + op(n
−1/2
0 )

:=
1

n0

n0∑
j=1

ϕA(Xj, Yj) + op(n
−1/2
0 ).

Evidently, from Part (b) of Theorem 3, it follows that √
n0(β̂SCAD,A −

β0,A)
d→ N(0,Σβ0,A), where Σβ0,A = Var(ϕA(Xj, Yj)) for j = 1, . . . , n0.
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It also indicates that β̂SCAD satisfies Assumption A6. Hence, according to

Theorem 1, we have the following corollary.

Corollary 1: Under the conditions imposed in Theorems 1 and 3, one has

√
n1

(
∆̂SCAD −∆

)
d→ N

(
0, σ2

∆,SCAD
)
,

where σ2
∆,SCAD = σ2

1 + η
(
σ2
2 + σ2

3,A + 2δa,AΣ23,A
)
, σ2

1 and σ2
2 are defined in

Theorem 1, σ2
3,A = δa,AΣβ0,Aδ

⊤
a,A with δa,A = E

[
m′(Zi)X

⊤
i,A

]
for i = n0 +

1, · · · , n, and Σ23,A = Cov(r(Zj)εj, ϕA(Xj, Yj)) for j = 1, . . . , n0.

To make inference of ∆̂SCAD in practice, we suggest using a Bootstrap

method similar to the one introduced in Section 2.5. Specifically, we apply the

wild Bootstrap method to the control group and the nonparametric Bootstrap

method to the treated group to obtain a Bootstrap sample. Then, we can

estimate ∆̂SCAD based on the Bootstrap sample. By repeating the above

steps many times, we can obtain an estimate of σ2
∆,SCAD. The theoretical

validation of such a Bootstrap procedure should be one of our future research

topics.

3.2 QSCM With Ultra-high Dimensional Covariates

In some real applications, the dimension of the covariates may be much

larger than the sample size, which is termed as ultra-high dimensional covari-

ates in the literature. As pointed out by Fan, Samworth and Wu (2009),

for such cases, traditional regularization methods may not perform well. To
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3.2 QSCM With Ultra-high Dimensional Covariates

deal with ultra-high dimensional covariate cases, several feature screening

procedures have been proposed. For linear models with Gaussian predictors

and responses, Fan and Lv (2008) proposed the sure independence screening

(SIS) method to reduce dimensionality from ultra-high to below the sample

size. Later, Fan, Feng, and Song (2011) developed a nonparametric indepen-

dence screening method for sparse ultra-high dimensional additive models.

For more general model settings, Li, Zhong and Zhu (2012) proposed a sure

independence screening procedure based on the distance correlation (DC-SIS).

Furthermore, Zhong et al. (2016) developed a robust DC-SIS procedure (DC-

RoSIS) that can be applied to the single index models.

When the dimension of covariates is ultra-high, we propose to first ap-

ply the DC-RoSIS procedure to reduce the dimensionality of the covariates,

then, use (3.2) to estimate β. We denote the ultimate estimator for β0

as β̂DC-RoSIS-SCAD and the corresponding estimator for ∆ as ∆̂DC-RoSIS-SCAD.

Now, we let FY,0(y) be the CDF of Yj for the control group, and define

F̂Y,0(y) = 1
n0

∑n0

j=1 I(Yj ≤ y). Denote Xj =
(
Xj,1, · · · , Xj,dn0

)T . The im-

plementation of the corresponding DC-RoSIS procedure is summarized as

follows.

Step 1. For k = 1, · · · , dn0 , we calculate the sample distance covariances

d̂cov
2
{F̂Y,0(Yj), F̂Y,0(Yj)}, d̂cov

2
{Xj,k, Xj,k} and d̂cov

2
{Xj,k, F̂Y,0(Yj)} for the

control group. Here the sample distance covariance of two random variables

Uj and Vj is defined as d̂cov
2
{Uj, Vj} = Ŝ1 + Ŝ2 − 2Ŝ3, where
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Ŝ1 =
1

n2
0

n0∑
j=1

n0∑
l=1

|Uj−Ul||Vj−Vl|, Ŝ2 =
1

n2
0

n0∑
j=1

n0∑
l=1

|Uj−Ul|·
1

n2
0

n0∑
j=1

n0∑
l=1

|Vj−Vl|,

and

Ŝ3 =
1

n3
0

n0∑
j=1

n0∑
l=1

n0∑
q=1

|Uj − Uq||Vl − Vq|.

Step 2. For k = 1, · · · , dn0 , calculate the sample distance correlation

ω̂k := d̂corr{Xj,k, F̂Y,0(Yj)} =
d̂cov{Xj,k, F̂Y,0(Yj)}√

d̂cov{Xj,k, Xj,k}d̂cov{F̂Y,0(Yj), F̂Y,0(Yj)}
.

Step 3. We keep covariates Xj,k with k ∈ Â := {k : ω̂k ≥ cn−κ
0 , k =

1, . . . , dn0}, where c > 0 and 0 ≤ κ < 1/2 are pre-specified constants.

Using the DC-RoSIS, the number of covariates is reduced from dn0 to |Â|.

Zhong et al. (2016) demonstrated that under regularity conditions, the DC-

RoSIS has the sure screening property; that is, Pr(A ⊆ Â) → 1 as n0 → ∞.

For the ultra-high dimensional case, the asymptotic property for the proposed

ATE estimator, similar to that in Corollary 1, should be investigated, which

is very challenging and warranted as a future research topic.

4. Monte Carlo Simulation Studies

In the following simulation studies, we investigate the finite sample per-

formance of our proposed estimators, methods for selecting covariates, and

Bootstrap procedure.
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4.1 Evaluating QSCM and the Bootstrap Procudure

We first evaluate the performance of our proposed estimator ∆̂ in (2.5).

Let Y (0) = m
(
β⊤
0 X

)
+ ε and Y (1) = Y (0) + 2, where X = (X1, · · · , Xd)

T

with Xk’s being i.i.d. following the N(0, 1) distribution and the U(−
√
2,
√
2)

distribution for the control units and the treated units, respectively. The

independent noise ε ∼ N(0, 1). Hence, the true ATE is ∆ = 2. To illustrate

the universality of our method, we use both linear and nonlinear models for

the potential outcomes. Specifically, we consider three cases: linear model

as m(u) = u and nonlinear models as m(u) = 4 ∗
√

|u+ 1| + u and m(u) =

2 ∗ u + 10 ∗ exp(−u2/5), respectively. Such nonlinear models are used in

Zeng, He and Zhu (2012). We set the dimension of covariates as d = 5 and

d = 10. The true index vector is β0 = (1, 0.7, −0.5, 0.25, 0.8)⊤ for d = 5,

and β0 = (1, 0.7, −0.5, 0.5, −0.75, 0.8, −0.4, 1, −0.2, 0.2)⊤ for d = 10. The

sample sizes are (n0, n1) = (200, 100), (400, 200), and (800, 400).

In the simulation studies, the Gaussian kernel K(v) = 1√
2π

exp(−v2/2) is

used. We tried several different choices of the bandwidths and obtained similar

results. For simplicity, we only present the results for bandwidths h = 1∗n−1/3
0 .

The bandwidth h1 used in the MAVE for estimating β0 is chosen to minimize

the mean integrated squared error as suggested in Xia et al. (2002). For each

setting, we repeat the experiment 500 times independently. Both the root

mean square error (RMSE) defined as RMSE =

[∑500
k=1

(
∆̂k −∆

)2

/500

]1/2
,

and the mean of the 500 absolute deviation errors (MADE) are reported in
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4.1 Evaluating QSCM and the Bootstrap Procudure

Table 1, compared with the results of the SCM in Abadie and L¡¯Hour (2021).

Table 1: Performance of SCM and QSCM

m(u) = u

(n0, n1) (200,100) (400,200) (800,400)

method RMSE MADE RMSE MADE RMSE MADE

d = 5
SCM 0.1599 0.1287 0.1202 0.0969 0.0950 0.0740
QSCM 0.1297 0.1023 0.0886 0.0710 0.0618 0.0497

d = 10
SCM 0.1592 0.1237 0.1186 0.0957 0.0771 0.0619
QSCM 0.1282 0.1015 0.0891 0.0713 0.0620 0.0498

m(u) = 4 ∗
√
|u+ 1|+ u

(n0, n1) (200,100) (400,200) (800,400)

method RMSE MADE RMSE MADE RMSE MADE

d = 5
SCM 0.7781 0.7393 0.8075 0.7865 0.8729 0.8593
QSCM 0.1280 0.0999 0.0870 0.0694 0.0618 0.0491

d = 10
SCM 0.7192 0.6721 0.7864 0.7657 0.8701 0.8594
QSCM 0.1333 0.1046 0.0886 0.0709 0.0624 0.0503

m(u) = 2 ∗ u+ 10 ∗ exp(−u2/5)

(n0, n1) (200,100) (400,200) (800,400)

method RMSE MADE RMSE MADE RMSE MADE

d = 5
SCM 1.7319 1.7037 1.8124 1.7967 1.9057 1.8963
QSCM 0.1279 0.1012 0.0861 0.0678 0.0624 0.0495

d = 10
SCM 1.3674 1.3124 1.5454 1.5189 1.6481 1.6355
QSCM 0.1319 0.1058 0.0897 0.0713 0.0632 0.0506

Based on the results in Table 1, one can see clearly that when the po-

tential outcome model is linear, both methods perform well and our method

is comparable to the SCM. However, when the potential outcome model is

nonlinear, it is obvious that the SCM is invalid and our method performs

much better. Furthermore, the finite sample performance of the QSCM is

well-behaved in the sense that both the RMSE and MADE values are gen-
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Table 2: Coverage rates of the proposed Bootstrap procedure

m(u) = u

(n0, n1) (200,100) (400,200) (800,400)

NCP d=5 d=10 d=5 d=10 d=5 d=10

0.9 0.893 0.884 0.899 0.900 0.892 0.882
0.95 0.944 0.934 0.955 0.956 0.942 0.934
0.99 0.981 0.982 0.994 0.993 0.982 0.986

m(u) = 4 ∗
√
|u+ 1|+ u

(n0, n1) (200,100) (400,200) (800,400)

NCP d=5 d=10 d=5 d=10 d=5 d=10

0.9 0.903 0.896 0.891 0.918 0.897 0.886
0.95 0.949 0.942 0.939 0.962 0.944 0.943
0.99 0.990 0.987 0.985 0.991 0.982 0.989

m(u) = 2 ∗ u+ 10 ∗ exp(−u2/5)

(n0, n1) (200,100) (400,200) (800,400)

NCP d=5 d=10 d=5 d=10 d=5 d=10

0.9 0.889 0.866 0.876 0.873 0.891 0.881
0.95 0.942 0.923 0.927 0.920 0.941 0.936
0.99 0.983 0.981 0.987 0.978 0.98 0.985

erally small. The RMSE and MADE values decrease as the sample size n1

increases, and the convergence rate is in line with our expectation in the sense

that, as in Theorem 1, the proposed estimator is √
n1-consistent.

Next, we consider the performance of the Bootstrap procedure proposed

in Section 2.5. The number of Bootstrap replications is set as B = 500. For

each setting, we repeat the experiment 1000 times independently and compare

the sample coverage rates to the nominal coverage probabilities (NCP). The

results are reported in Table 2, from which, we can see that, the proposed

Bootstrap procedure has reasonably good estimated coverage probabilities.
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4.2 Evaluating QSCM With Variable Selection

Now, we conduct simulations to evaluate the effectiveness combining

our QSCM estimator with the variable selection methods proposed in Sec-

tion 3. We use the same models as in Section 4.1 except that the num-

ber of covariates is set as dn0 = ⌊60 ∗ n
1/6
0 ⌋ with the true index vector

β0 = (1, 0.7, −0.5, 0.25, 0.8, 0, . . . , 0)⊤.

Following Bai, Rao and Wu (1999), we use BIC to choose the penalty

parameter λ. We compare the RMSEs and MADEs of the estimators ∆̂ and

∆̂SCAD (pen-QSCM) based on 500 replications. We also evaluate the perfor-

mance of the variable selection procedure by the mean of the true positive rates

(TPR) and false positive rates (FPR), which are TPR = #{1 ≤ j ≤ 5 : β̂SCAD,j ̸= 0}/5

and FPR = #{6 ≤ j ≤ dn0 : β̂SCAD,j ̸= 0} /(dn0 − 5) in our setting, respec-

tively.

The results are presented in Table 3. We can see that ∆̂SCAD performs

better than ∆̂ under all circumstances, indicating that the penalized method

can effectively improve the performance of the QSCM. It is also observed that

the results of variable selection are good. The true positive rates approach 1

and the false positive rates approach 0 as the sample sizes increase.

Finally, we consider an example with ultra-high dimensional covariates.

We use the same same models as in Section 4.1, but the dimension of covariates

is set as dn0 = 5 ∗ n0 with the true index vector β0 = (1, 0.7, −0.5, 0.25, 0.8,

0, . . . , 0)⊤. In this case, we use the estimator ∆̂DC-RoSIS-SCAD proposed in Sec-
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Table 3: Performance of QSCM for dn0 = ⌊60 ∗ n1/6
0 ⌋ with variable selection

m(u) = u

QSCM pen-QSCM Variable Selection

(n0, n1) RMSE MADE RMSE MADE TPR FPR

(200, 100) 0.2461 0.1943 0.1303 0.1026 0.9176 0.0260
(400, 200) 0.1198 0.0955 0.0865 0.0687 0.9724 0.0030
(800, 400) 0.0704 0.0561 0.0606 0.0483 0.9996 0.0018

m(u) = 4 ∗
√
|u+ 1|+ u

QSCM pen-QSCM Variable Selection

(n0, n1) RMSE MADE RMSE MADE TPR FPR

(200, 100) 0.5958 0.4863 0.1691 0.1191 0.9996 0.0196
(400, 200) 0.1822 0.1424 0.0915 0.0725 1.0000 0.0005
(800, 400) 0.0753 0.0614 0.0633 0.0510 1.0000 0.0001

m(u) = 2 ∗ u+ 10 ∗ exp(−u2/5)

QSCM pen-QSCM Variable Selection

(n0, n1) RMSE MADE RMSE MADE TPR FPR

(200, 100) 1.7379 1.5918 0.7153 0.4071 0.9792 0.1833
(400, 200) 0.3672 0.2910 0.0912 0.0738 1.0000 0.0003
(800, 400) 0.0731 0.0582 0.0634 0.0506 1.0000 0.0003

tion 3.2. In the DC-RoSIS procedure, we choose c = 1 and κ = 1/3. Table 4

reports the RMSEs and MADEs of ∆̂DC-RoSIS-SCAD (DC-RoSIS-SCAD) based

on 500 replications, along with the mean values of the TPR and FPR. We

observe that the RMSE and MADE values are generally small and approxi-

mately decrease at a rate of 1/√n1, as desired.

From the above simulation, we can see clearly that if the true outcome

model is within the class of linear model, both QSCM and SCM perform

comparable. However, if the true model is from the class of nonlinear index

model, the QSCM performs very well but the SCM fails. Finally, if the true
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Table 4: Performance of QSCM for dn0 = 5∗n0 with feature screening and variable
selection

m(u) = u

DC-RoSIS-SCAD Variable Selection

(n0, n1) RMSE MADE TPR FPR

(200, 100) 0.1312 0.1033 0.8464 0.0056
(400, 200) 0.0890 0.0710 0.8968 0.0014
(800, 400) 0.0609 0.0489 0.9476 0.0005

m(u) = 4 ∗
√
|u+ 1|+ u

DC-RoSIS-SCAD Variable Selection

(n0, n1) RMSE MADE TPR FPR

(200, 100) 0.1443 0.1149 0.8724 0.0006
(400, 200) 0.0997 0.0784 0.9116 0.0000
(800, 400) 0.0645 0.0512 0.9560 0.0000

m(u) = 2 ∗ u+ 10 ∗ exp(−u2/5)

DC-RoSIS-SCAD Variable Selection

(n0, n1) RMSE MADE TPR FPR

(200, 100) 0.2066 0.1529 0.7988 0.0031
(400, 200) 0.1110 0.0870 0.8488 0.0003
(800, 400) 0.0728 0.0559 0.8896 0.0000

model is not from the class of an index model, in other words, the true model

is mis-specified for both the QSCM and SCM, we conduct a simulation study

to see how both methods perform. As a result, the simulation results conclude

that the QSCM can still perform much better than that for the SCM, although

both are inconsistent. The detailed model setting and simulation results are

omitted here due to the space limitation and available upon a request.
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5. Revisit of the NSW Data

In this section, we study an empirical application by using our quasi syn-

thetic control method to analyze the data from the National Supported Work

Demonstration. The NSW program was a labor market program for under-

privileged workers operated during the mid-1970s in the United States. By

providing these workers with subsidized job for 9 to 18 months, the NSW

program aimed to strengthen their job skills and enhance their employment

opportunities. The NSW program randomly assigned the qualified applicants

to the treated and control groups, making the program a randomized con-

trolled trial, which is universally recognized as the golden standard to learn

the treatment effect. This appealing feature of the NSW program motivates

numerous researches.

LaLonde (1986) first analyzed the male sub-sample of the NSW program.

In the Lalonde sample, the outcome of interest is the annual earnings in 1978.

Additionally, the Lalonde sample also collects several individual characteris-

tics: age, education, black, hispanic, married, no degree, and annual earnings

in 1975. Dehejia and Wahba (1999) reorganized the Lalonde sample and

collected the annual earnings in 1974. Excluding the individuals with the an-

nual earnings in 1974 missed, the Dehejia-Wahba sample consists of n1 = 185

treated units and n0 = 260 control units, and the ATE estimate based on

the Dehejia-Wahba sample is $1794, termed as the experimental benchmark
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value. Notice that the NSW program can be regarded as a randomized con-

trolled trial. Consequently, the mean difference of the outcomes of the treated

and control groups can serve as true value of the average treatment effect. For

details on how to compute this benchmark value, one can refer to the papers

by Dehejia and Wahba (1999) and Abadie and L¡¯Hour (2021).

Note that the Dehejia-Wahba sample has been widely used in many empir-

ical studies. For example, Dehejia and Wahba (2002) applied the propensity

score matching method to this dataset by using the Dehejia-Wahba sample.

However, as pointed out by Smith and Todd (2005), estimates of the impact

of NSW based on propensity score matching are highly sensitive to the set of

variables included in the propensity score model, while Abadie and Imbens

(2011) evaluated the performance of various matching estimators by analyz-

ing the NSW data. For more literature on analyzing this dataset, the reader

is referred to the paper by Abadie and L¡¯Hour (2021) and the references

therein.

The Dehejia-Wahha sample is based on experimental data and provides

us with an unbiased estimate of the ATE. To evaluate different estimators

for treatment effects, it is recommended to use a non-experimental control

group and estimate the treatment effect based on the experimental treated

and non-experimental control groups. LaLonde (1986) constructed six non-

experimental control groups from the Panel Study of Income Dynamics (PSID)

and the Current Population Survey, as well as further subsets subtracted from
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these two basic control groups. Referring to the existing literature, we use the

experimental treated group from the Dehejia-Wahha sample (n1 = 185) and

the control group from the PSID (n0 = 2490) to illustrate our quasi synthetic

control method. The outcome variable is the annual earnings in 1978 and 10

covariates are considered. We present the summary statistics of the data used

in our analysis in the Supplementary Material.

First, we would like to see if there exists a nonlinear relationship between

the outcome and the index. To do so in a visual way, using data from PSID

group, we plot the outcome Y0 (y-axis) versus the estimated single index Z

(x-axis) in Figure 1, together with a nonparametric estimate (lowess in R,

locally-weighted polynomial regression technique) of the unknown function

m(·) in the dashed line (with its pointwise 95% confidence interval presented

by the shaded area), and a least-squares fitting of m(·) in the solid line. From

Figure 1, it is clear that there does exist a nonlinear relationship between Y0i

and Zi and this supports strongly that our nonlinear model is appropriate for

this real data.

Now, to compute the QSCM estimator ∆̂, as in Monte Carlo simulations,

we use the Gaussian kernel and the bandwidth h = 0.23, which is chosen

through cross-validation to minimize the mean squared error (MSE) of esti-

mating Y0j for the control units. We compare our quasi synthetic control esti-

mator with a series of existing estimators: the conventional synthetic control

estimator (SCM), the penalized synthetic control estimator which minimizes
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Figure 1: Scatterplot of Y0 versus Z in PSID group, together with the esti-
mate of the unknown function m(·) in the dashed line with its pointwise 95%
confidence interval presented by the shaded area and a least-squares fitting of
m(·) in the solid line.

the bias (pen-SCM) as in Abadie and L¡¯Hour (2021), and the one-match

nearest neighbor matching estimator (1-Matching). Table 5 reports the em-

pirical results. These four estimators yield treatment effects ranging from

Table 5: Estimated ATTs for the NSW data.

Method Benchmark QSCM SCM pen-SCM 1-Matching

Treatment effect 1794.34 1801.22 2118.61 1881.40 2236.87

Note: The QSCM estimate is computed based on the bandwidth h = 0.23, which is
chosen through cross-validation to minimize the MSE of estimating Y0j for the control
units. The result for pen-SCM come from Abadie and L¡¯Hour (2021), and the result for
1-Matching is computed via the R package Matching by Sekhon and Saarinen (2023).

$1801.22 to $2138.8. Given the experimental benchmark ∆ = $1794.34, our

QSCM estimator is the best in the sense that it has the smallest bias from the

benchmark value. This result indicates that our method effectively captures

the unknown features of the NSW data with a possible nonlinear relationship
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between Y0i and Zi. We also compute the standard error of the QSCM es-

timator using the hybrid Bootstrap method proposed in Section 2.5 and the

standard error of ∆̂QSCM is $883.50, which is much smaller than $1725.38,

the corresponding standard error for the 1-Matching estimate as in Abadie

and Imbens (2006). Since the statistical inference for the SCM and the pen-

QSCM has not been discussed yet, we do not compute the standard error of

the SCM estimate and the pen-SCM estimate.

Finally, it is also interesting to note that in this empirical example, the

conventional SCM needs to optimize a 2490× 1 vector of weights for each of

the total 185 treated units, which is computationally expensive in practice.

Our computations were carried out on an IBM X3550M4 dual processors

server equipped with Twenty-four Core Intel Xeon E5-2620 v2 @ 2.10GHz

CPU, 64 GB RAM running Windows Server 2019. Using parallel computing

in R language, it took 1.69 hours to compute the conventional SCM estimate.

In contrast, the computation time for our QSCM estimate is 13.6 seconds

without parallel computation. To assess this phenomenon, indeed, as pointed

out by Abadie and L¡¯Hour (2021), the best synthetic control may not be

unique with many control units. Therefore, searching for the best synthetic

control involves heavy computing, and our method can significantly reduce

the computation time.
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6. Conclusion

The SC method is a popular and powerful approach to estimating ATE, as

addressed by Athey and Imbens (2017). However, as pointed out in the litera-

ture, the SC methods have some shortcomings. To overcome these difficulties,

this paper proposes a QSC method, which can accommodate nonlinearity and

feature fast computing. In particular, this article provides the inference the-

ory for the QSC method, and we derive the asymptotic distribution of the

QSC ATE estimators with and without a penalty term. Also, due to the

complex structure of the asymptotic variances of the proposed estimators, we

resolve this difficulty by proposing a carefully designed and easy-to-implement

Bootstrap method and establish the validity of the subsampling method for

inference. Our work complements the conventional SC method and its vari-

ants. In addition, our simulations show that the QSC method performs well

in practice. Finally, we apply the QSC method to estimate ATE for the NSW

data. The empirical application demonstrates that when the conventional

SC method fits the data poorly, the QSC method can fit the data well and

provide reasonable ATE estimation results.

Finally, in addition to the aforementioned future research topics, it is

worth to note that under the current framework, one might extend easily

the proposed methodology to estimate the quantile (distributional) treatment

effects as investigated in Cai et al. (2022), which is warranted as a future

34

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0271



research topic.

Supplementary Material

The online Supplementary Material contains proofs of Theorems 1-3, the

algorithm for the MAVE method, and summary statistics of the empirical

data.
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