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Abstract: In this paper, we estimate the central mean subspace in a dimension

reduction problem where the response is a symmetric positive-definite matrix.

We propose the intrinsic minimum average variance estimation and the intrinsic

outer product gradient method which fully exploit the geometric structure of the

Riemannian manifold where the response resides. We present algorithms for our

newly developed methods under the log-Euclidean metric and the log-Cholesky

metric. The two metrics endow the manifold with a commutative Lie group

structure that transforms our manifold model into a Euclidean one and helps us

derive the consistency and asymptotic normality of estimators. Our methods are

then naturally extended to the case allowing p = pn to diverge and the case of

general Riemannian manifolds. Several simulation studies and an application to

the New York taxi network data showcase the superiority of our proposals.
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metric, minimum average variance estimation, outer product gradient, symmetric

positive-definite matrix.

1. Introduction

For Y ∈ R and X ∈ Rp, sufficient dimension reduction (SDR) seeks a p× d

matrix B with d << p such that Y ⊥⊥ X | BTX. The space spanned by the

columns of B, denoted by S(B), is called an SDR subspace. If S(B) is a

subspace of all other SDR subspaces, it is called the central subspace (CS).

Popular methods estimating CS include sliced inverse regression (Li, 1991),

sliced average variance estimation (Cook and Weisberg, 1991), directional

regression (Li and Wang, 2007), semiparametric approaches (Ma and Zhu,

2012, 2013, 2019), among others. Although CS provides a complete picture

of the dependency of Y onX, one might be only interested in the conditional

mean function for which the dimension reduction assumes

Y ⊥⊥ E(Y | X) | BTX. (1.1)

Similar to CS, the central mean subspace (CMS) can be defined as the inter-

section of all S(B) with B satisfying (1.1). The minimum average variance

estimation (MAVE) and the outer product of gradient (OPG) method (Xia

et al., 2002; Xia, 2006, 2007) were pioneer tools to estimate CMS.

The above-mentioned dimension reduction methods deal with high-
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dimensional Euclidean vectors. However, with the rapid development of

data collection techniques, non-Euclidean data are encountered frequently

and it is necessary to consider dimension reduction for non-Euclidean data.

These complex data often reside in a Riemannian manifold or a general met-

ric space whose nonlinear nature disables Euclidean methods. Symmetric

positive-definite (SPD) matrices, emerging in numerous scientific applica-

tions, serve as a representative of such data. A concrete example is analysis

of functional connectivity between brain regions. Such connectivity is of-

ten characterized by the covariance (SPD matrices) of blood-oxygen-level

dependent signals from different regions (Huettel et al., 2008). Another

application is diffusion tensor magnetic resonance imaging (DTI) widely

applied in medical imaging for diagnosis. This technique models the shape

of diffusion of water molecules in a voxel by an ellipsoid in R3 and estimates

diffusion tensors to describe this ellipsoid. Diffusion tensors are 3× 3 SPD

matrices with three positive eigenvalues representing the lengths of three

principal diameters of the ellipsoid and corresponding eigenvectors imply-

ing the directions of three axes. SPD matrices can also be generated by

network data. Dubey and Müller (2020) divided the New York city into

several zones (nodes) and collected networks (adjacency matrices) describ-

ing taxi movements between zones. Finally these adjacency matrices are
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turned into SPD matrices for later research by matrix exponentiation.

All m × m SPD matrices form a Riemannian manifold denoted by

Sym+(m) under some Riemannian metric. Up to now there have been many

papers generalizing traditional statistical methods in Euclidean spaces to

manifolds or more general metric spaces such as local polynomial regression

for SPD matrices (Yuan et al., 2012; Zhu et al., 2009; Cornea et al., 2017),

Fréchet regression for random objects (Petersen and Müller, 2019), intrinsic

Riemannian functional principal component analysis and functional linear

regression (Lin and Yao, 2019), additive model for SPD matrices (Lin et al.,

2022), Fréchet SDR for random objects (Ying and Yu, 2022; Zhang et al.,

2024), intrinsic Wasserstein correlation analysis (Zhou et al., 2021), single

index Fréchet regression (Bhattacharjee and Müller, 2023), autoregressive

optimal transport model (Zhu and Müller, 2023) and so on. Among these

works, two recent papers are related to non-Euclidean dimension reduc-

tion. Ying and Yu (2022) and Zhang et al. (2024) modified several Eu-

clidean dimension reduction methods to accommodate Euclidean X and

metric space-valued Y . They incorporated non-Euclidean information in

Y by substituting the Euclidean norm ‖Yi − Yj‖ by the geodesic distance

d(Yi, Yj) or a universal kernel K(Yi, Yj). However, when the response lies

in a manifold, even though the two methods can be applied, they fail to
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fully exploit the intrinsic geometry of the manifold and some information

contained in the response may be inevitably lost.

In this paper, we focus on dimension reduction (1.1) with Y being SPD

matrices. We generalize the state-of-the-art sufficient mean dimension re-

duction methods MAVE and OPG for the estimation of CMS. The basic

idea of our proposal also stems from the local polynomial regression for

SPD matrices introduced by Yuan et al. (2012), which replaced the squared

distance by the geodesic distance on Sym+(m) and performed Taylor expan-

sion after parallel transport to estimate the intrinsic conditional expectation

of an SPD response, given a covariate vector X. Yuan et al. (2012) only

considered the case where X is a scalar and we here take a step forward

to handle the high-dimensional X. We call our method intrinsic MAVE

and intrinsic OPG since we do not assume an ambient space surrounding

Sym+(m) or an isometric embedding into a Euclidean space (Lin and Yao,

2019) during the construction of our models. Furthermore, we generalize

our proposals to the situation where the dimension p of the predictor X

diverges, i.e., p = pn →∞ as n→∞.

The rest of the paper is organized as follows. Some preliminaries on

manifolds are presented in Section 2. Then we introduce our intrinsic di-

mension reduction proposals for SPD matrices in Section 3, together with
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asymptotic analysis of our estimators. A cross validation procedure for

selecting the structural dimension d is also included in Section 3. Sec-

tion 4 contains two adaptations of our methods: one is the case allowing

p = pn → ∞ as n → ∞; the other is the formulation of the methods on a

general manifold. Simulation studies and an application to the New York

taxi network data are presented in Section 5. A discussion in Section 6

finishes this paper.

2. Preliminaries on Manifolds

We first introduce some basic notions for Riemannian manifolds and Lie

groups (Tu, 2011; Lang, 1999). Let M be a simply connected and smooth

manifold and p ∈ M. For a small scalar δ > 0, let c(t) be a continuously

differential map from (−δ, δ) to M passing through c(0) = p. A tangent

vector at p is the derivative of the curve c(t) at t = 0. All such tangent

vectors at p form a vector space named the tangent space at p, which is

denoted by TpM. The tangent space of p ∈ Sym+(m) is a vector space

Sym(m) consisting of all m ×m symmetric matrices. Each tangent space

TpM can be endowed with an inner product 〈·, ·〉p that varies smoothly with

p. The inner products {〈·, ·〉p : p ∈ M} are collectively denoted by 〈·, ·〉,

which is referred to as the Riemannian metric of M. With a Riemannian
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metric, we can define a distance d(·, ·) on M that turns M into a metric

space. The length of a continuously differentiable curve c(t) : [t0, t1]→M

is calculated as
∫ t1
t0
〈c′(t), c′(t)〉1/2c(t)dt, where c′(t) is the derivative of c(t).

And d(p, q) is the infimum of the length over all continuously differentiable

curves joining p and q.

A geodesic γ is a curve defined on [0,∞) such that for each t ∈ [0,∞),

γ([t, t+ ε]) is the shortest path connecting γ(t) and γ(t+ ε) for sufficiently

small ε > 0. The Riemannian exponential map Expp at p ∈M is a function

mapping TpM intoM and is defined by Expp(u) = γ(1) with γ(0) = p and

γ′(0) = u ∈ TpM. The inverse of Expp, if exists, denoted by Logp and

called the Riemannian logarithm map at p, can be defined as Logpq = u for

q ∈M such that Exppu = q.

A vector field U is a function defined on M such that U(p) ∈ TpM.

Given a curve γ(t) onM, t ∈ I for a real interval I, a vector field along γ is

a smooth map defined on I such that U(t) ∈ Tγ(t)M. We say U is parallel

along γ if Oγ′(t)U = 0 for all t ∈ I where O is the Levi-Civita connection

onM. In this paper we only focus on parallel vector fields along geodesics.

Let γ : [0, 1] → M be a geodesic connecting p and q, and U is a parallel

vector field along γ such that U(0) = u and U(1) = v. Then the parallel

transport of u along γ is denoted as φp(u) = v.

7

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0268



When (M,⊕) is a group and the group operation ⊕ and its inverse

are both smooth, (M,⊕) is called a Lie group. The tangent space at the

identity element e is called a Lie algebra denoted by g. It consists of left-

invariant vector fields U which satisfies U(p⊕q) = (DLp)(U(q)), where Lp :

q → p⊕q is the left translation at p and DLp is the differential of Lp. A Rie-

mannian metric 〈·, ·〉 is called left-invariant if 〈u, v〉q = 〈DLp(u), DLp(v)〉p⊕q

for all p, q ∈M and u, v ∈ TqM. Right invariance can be defined similarly.

A metric is bi-invariant if it is both left-invariant and right-invariant. The

Lie exponential map, denoted by exp is defined by exp(u) = γ(1) where

γ : R→M is the unique one-parameter subgroup such that γ′(0) = u ∈ g.

Its inverse, if exists, is denoted by log. Please make a distinction between

the Riemannian exponential map “Exp”, the Lie exponential map “exp” and

the common matrix exponential operation “exp” which appear frequently

in later sections. When 〈·, ·〉 is bi-invariant, exp coincides with Expe.

3. Methodology

3.1 Minimum Average Variance Estimation Revisited

Let Y and X be respectively R-valued and Rp-valued random variables.

Minimum average variance estimation (MAVE) considers a regression-type
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3.1 Minimum Average Variance Estimation Revisited

model for dimension reduction:

Y = g(BT
0X) + ε, (3.1)

where g is an unknown smooth function, B0 = (β1, ..., βd) is a p× d orthog-

onal matrix (BT
0B0 = Id) with d < p and E(ε | X) = 0 almost surely. The

aim is to estimate B0 since BT
0X captures all the information provided by

X on Y .

The direction B0 is the solution of

min
B
E{Y − E(Y | BTX)}2, subject to BTB = I. (3.2)

Since the conditional variance given BTX is

σ2
B(BTX) = E[{Y − E(Y | BTX)}2 | BTX], (3.3)

it follows that E{Y −E(Y | BTX)}2 = Eσ2
B(BTX) and minimizing (3.2) is

equivalent to minimizing Eσ2
B(BTX), which explains the name “minimum

average variance estimation”.

Suppose (Xi, Yi), i = 1, ..., n are samples from (X, Y ). Let gB(·) =

E(Y | BTX = ·). For a given X0, a local linear approximation is

E(Yi | BTXi) ≈ a+ bTBT(Xi −X0),

where a = gB(BTX0) and b = OgB(BTX0).
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3.2 Intrinsic MAVE and OPG for SPD Matrices

According to (3.3) and the idea of local linear smoothing, we can esti-

mate σ̂2
B(BTX0) by

n∑
i=1

{Yi − E(Yi | BTXi)}2wi0 ≈
n∑
i=1

[Yi − {a+ bTBT(Xi −X0)}]2wi0, (3.4)

where wi0 ≥ 0, (i = 1, ..., n) are some weights such that
∑n

i=1wi0 = 1.

Eventually minimizing Eσ2
B(BTX) can be approximated by

min
BTB=I

n∑
j=1

σ̂2
B(BTXj) = min

BTB=I,
aj ,bj

n∑
j=1

n∑
i=1

[Yi − {aj + bTj B
T(Xi −Xj)}]2wij,

One usually employs wij = Kh(Xi−Xj)/
∑n

i=1Kh(Xi−Xj) and for u ∈ Rp,

Kh(u) = K(u/h)/hp where K(v1, ..., vp) = K0(v
2
1 + ...+v2p) with K0(·) being

the univariate density function and h ∈ R being the bandwidth.

3.2 Intrinsic MAVE and OPG for SPD Matrices

When X ∈ Rp but Y ∈ Sym+(m) and (Xi, Yi), i = 1, ..., n are sampled from

(X, Y ), the first obstacle is the definition of E(Y | BTX). According to

Yuan et al. (2012), the intrinsic conditional expectation of Y at BTX = BTx

is defined as D(BTx) ∈ Sym+(m) such that

E
{

LogD(BTx)Y | BTx
}

= Om,

where Om is an m ×m matrix with all elements 0 and the expectation is

taken in a component-wise way. From now on we use D(BTx) instead of

E(Y | BTx).
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3.2 Intrinsic MAVE and OPG for SPD Matrices

Euclidean operations like addition and subtraction are invalid in Sym+(m),

so the squared distance in Euclidean MAVE may be substituted by the

geodesic distance d(·, ·) in Sym+(m) and (3.4) is modified to

n∑
i=1

d2{Yi, D(BTXi)}wi0. (3.5)

Next we want to similarly expand D(BTXi) at a given point BTX0.

Since D(BTXi) is in the curved space, directly expanding D(BTXi) at

BTX0 is infeasible. Instead, we first use the Riemannian logarithm map to

transform D(BTXi) into LogD(BTX0)D(BTXi) ∈ TD(BTX0)Sym+(m). Since

LogD(BTX0)D(BTXi) for different X0 are in different tangent spaces, these

tangent vectors are transported from TD(BTX0)Sym+(m) to the same tangent

space TImSym+(m) by using parallel transport given by:

φD(BTX0) : TD(BTX0)Sym+(m)→ TImSym+(m),

where Im is the identity matrix. Then f(BTXi) = φD(BTX0)LogD(BTX0)D(BTXi)

is a function from Rd to TImSym+(m) which is a vector space. We now

can expand f(BTXi) at BTX0 using Taylor series expansion. Considering

f(BTXi) is an m×m symmetric matrix and BTX0 is a d-dimensional vec-

tor, we differentiate each component of f(BTXi) with respect to BTX0 and
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3.2 Intrinsic MAVE and OPG for SPD Matrices

this leads to

LogD(BTX0)D(BTXi) =φ−1
D(BTX0)

{f(BTXi)}

≈φ−1
D(BTX0)

(
C0

[
Im ⊗

{
BT(Xi −X0)

}])
,

which gives

D(BTXi) ≈ ExpD(BTX0) ◦ φ
−1
D(BTX0)

(
C0

[
Im ⊗

{
BT(Xi −X0)

}])
, (3.6)

where only up to first order approximation is considered and φ−1
D(BTX0)

is the

inverse map of φD(BTX0). We write f{g(·)} as f ◦ g and ⊗ is the Kronecker

product. In the above expressions, D(BTX0) serves as the 0-order term in

Taylor expansion and C0 is the derivative matrix of f(BTXi) at BTX0 with

the structure

C0 =


cT11(X0) · · · cT1m(X0)

...
. . .

...

cTm1(X0) · · · cTmm(X0)


m×md

, (3.7)

where ckl(X0) = clk(X0) ∈ Rd, k, l = 1, ...,m. The subscript “0” in C0 in-

dicates its relation with X0. Inserting (3.6) into (3.5), we get σ̂2
B(BTX0).

Similar to Euclidean MAVE, minimizing
∑n

j=1 σ̂
2
B(BTXj) can be approxi-

mated by

min
BTB=I,

D(BTXj),Cj

n∑
j=1

n∑
i=1

d2
{
Yi,ExpD(BTXj)

◦ φ−1
D(BTXj)

(
Cj
[
Im ⊗ {BT(Xi −Xj)}

]) }
wij.

(3.8)
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3.3 Algorithms under the log-Euclidean Metric

We call the above formulation intrinsic MAVE (iMAVE) since we derive

it without any information of the ambient space. As a by-product of MAVE,

the outer product of gradients estimation (OPG) has a similar form to

MAVE. Immediately we have intrinsic OPG (iOPG) formulated as:

min
D(BTXj),Cj

n∑
i=1

d2
(
Yi,ExpD(BTXj)

◦ φ−1
D(BTXj)

[Cj{Im ⊗ (Xi −Xj)}]
)
wij, j = 1, ..., p,

(3.9)

where D(BTXj) ∈ Sym+(m) and Cj is m×mp in (3.9).

3.3 Algorithms under the log-Euclidean Metric

Our intrinsic models (3.8) and (3.9) can produce estimated B̂ once the

Riemannian metric in Sym+(m) is specified. The choice of the Riemannian

metric does have an impact on the complexity of optimization of (3.8) and

(3.9). For example, in local linear regression for SPD matrices, Yuan et al.

(2012) had to employ an annealing evolutionary stochastic approximation

Monte Carlo algorithm to estimate coefficients when Sym+(m) is endowed

with the affine-invariant metric since the object function under this metric

is neither convex nor possesses closed-form solutions. We here circumvent

this dilemma by adopting the log-Euclidean metric and the log-Cholesky

metric. As shown below, these two metrics not only help us derive our

models in a simpler manner, but also pave the way for theoretical analysis.
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3.3 Algorithms under the log-Euclidean Metric

The log-Euclidean metric is proposed by Arsigny et al. (2007). The ma-

trix logarithm operation log: Sym+(m)→ Sym(m) and its inverse exp are

both deffeomorphisms. Because Sym(m) has an additive group structure, to

obtain a group structure in Sym+(m), one can simply transport the additive

structure of Sym(m) to Sym+(m). More precisely, for S1, S2 ∈ Sym+(m),

define an operation ⊕ by

S1 ⊕ S2 = exp{log(S1) + log(S2)}. (3.10)

Then (Sym+(m),⊕) is a commutative Lie group whose identity element

is the identity matrix. Additionally, the Lie group exponential map exp

and Lie logarithm map log are given by the matrix exponential “exp” and

logarithm “log”. The geodesic distance between S1, S2 ∈ Sym+(m) under

the log-Euclidean metric is d(S1, S2) = ‖logS1− logS2‖F where ‖ · ‖F is the

Frobenius norm. Thus by (3.5), we have

d
{
Yi, D(BTXi)

}
= ‖log{D(BTXi)} − logYi‖F .

Since log{D(BTXi)} and logYi coincide with log{D(BTXi)} and logYi

which always reside in TImSym+(m), no parallel transportation is needed.

Directly expand log{D(BTXi)} by Taylor series expansion and we get iMAVE

under the log-Euclidean metric:

min
B:BTB=I

aj ,bj

n∑
j=1

n∑
i=1

wij‖aj + bj
[
Im ⊗ {BT(Xi −Xj)}

]
− logYi‖2F , (3.11)
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3.3 Algorithms under the log-Euclidean Metric

and similarly iOPG under the log-Euclidean metric:

min
aj ,bj

n∑
i=1

wij‖aj + bj {Im ⊗ (Xi −Xj)} − logYi‖2F , j = 1, ..., p. (3.12)

where wij = Kh(B
T(Xi − Xj))/

∑n
i=1Kh(B

T(Xi − Xj)), aj is an m × m

symmetric matrix and bj in (3.11) and (3.12) has the same structure as

D(BTXj) in (3.8) and (3.9). Algorithms for (3.11) and (3.12) resemble

classic MAVE and OPG in Xia (2007) and detailed procedures can be found

in the supplementary material.

In practice, the structural dimension d in Bp×d is usually unknown and

we now propose a cross validation procedure to determine it. Suppose l is

the working dimension and d is the true dimension. Define

âl0,j =
n∑

i=1,i6=j

K
(i,j)
hl

vecs(logYi)
/ n∑

i=1,i6=j

K
(i,j)
hl

,

CV(l) =
1

n

n∑
j=1

||vecs(logYi)− âl0,j||2F (l = 1, ..., p).

where K
(i,j)
hl

= Khl(B̂
T
l (Xi − Xj)) and || · ||F is the Frobenius norm. We

then estimate d as d̂ = arg min1≤l≤p CV(l).

Theorem 1. Suppose assumptions (A1)-(A3) stated in section 3.4 hold.

Then limn→∞ P (d̂ = d) = 1.

Theorem 1 shows that the probability of choosing the right dimension

tends to 1 as the sample size increases. Overall, the estimation of CMS is
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3.4 Asymptotic Analysis

two-step: 1) for each 1 ≤ l ≤ p, run iMAVE or iOPG to get estimated B̂l

and consequently CV(l); 2) the l with the smallest CV value is the chosen

dimension and the corresponding B̂l provides an eventual estimation of

CMS.

The log-Cholesky metric is introduced by Lin (2019) and it shares sim-

ilar merits to the log-Euclidean metric. When Sym+(m) is endowed with

the log-Cholesky metric, the geodesic distance between S1, S2 ∈ Sym+(m)

is d(S1, S2) = ‖chol(L1) − chol(L2)‖F . Here L1, L2 are Cholesky factors

of S1, S2 (L1L
T
1 = S1 such that the diagonal elements of L1 are positive)

and chol(L) = bLc + logD(L) where bLc is the strict lower triangle part

of L and D(L) the diagonal part of L. For any S ∈ Sym+(m) and its

Cholesky factor L, chol(L) belongs to TImSym+(m) and no parallel trans-

port is needed. Consequently substituting log(·) in the log-Euclidean case

for chol(·) and keeping other things unchanged, we get iMAVE, iOPG under

the log-Cholesky metric. Details are omitted.

3.4 Asymptotic Analysis

In this section we assume the structural dimension d in B0 is given and

consider theoretical properties of B̂ from iMAVE and iOPG with the log-

Euclidean metric. The case of the log-Cholesky metric is much the same.
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3.4 Asymptotic Analysis

We assume the model on (Sym+(m),⊕) by

Y = g(BT
0X)⊕ ε, (3.13)

which is a modification of the Euclidean MAVE (3.1). Recall that with

⊕ defined in (3.10), (Sym+(m),⊕) is a commutative Lie group and the

log-Euclidean metric is bi-invariant that turns Sym+(m) into a Hadamard

manifold.

Proposition 1. Under the log-Euclidean metric, (3.13) is equivalent to

logY = log{g(BT
0X)}+ logε. (3.14)

Proposition 1 turns the model (3.13) defined on a Riemannian manifold

into a Euclidean model defined in the vector space TImSym+(m). Actually

(3.14) coincides with the multivariate MAVE introduced in Zhang (2021).

Denote h(BT
0X) = log{g(BT

0X)}. Since h(BT
0X) is an m×m symmetric

matrix, denote its (k, l)-th component as hkl, 1 ≤ l ≤ k ≤ m. Let µB(u) =

E(X | BTX = u), wB(u) = E(XXT | BTX = u). We need the following

assumptions for (3.14) to prove our theoretical results.

(A1) [Design of X and Y ] The density function f(x) of X has bounded

second order derivatives; E|X|k < ∞ for some k > 8; E|ykl|3 < ∞ for

every component ykl in logY, 1 ≤ l ≤ k ≤ m; the functions µB(u), ωB(u)
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3.4 Asymptotic Analysis

have bounded derivatives w.r.t. u and B for B in a small neighborhood of

B0 : |B −B0| ≤ δ for some δ > 0.

(A2) [Link function] The link function hkl(u) = E(ykl | BTX = u) has

bounded fourth order derivatives w.r.t. u and B for B in a small neighbor-

hood of B0.

(A3) [Kernel function] K0(u) is a univariate symmetric density function

with bounded second order derivatives and a compact support.

(A4) [Efficient dimension] The matrixMSPD = E
{∑m

k=1

∑k
l=1 h

(1)
kl (BT

0X)h
(1)
kl (BT

0X)T
}

has full rank d, where h
(1)
kl ∈ Rd is the derivative vector of hkl.

(A5) [Bandwidth] The bandwidth h0 = c1n
−rh . For t ≥ 1, ht = max{n−rh/2ht−1, c2n−r

′
h}

where 0 < rh ≤ 1/(p0 + 6), 0 < r′h ≤ 1/(d + 3), p0 = max{p, 3} and c1, c2

are constants.

The moment requirement on X in (A1) is not strong and we impose

a lightly higher order moment condition than second moment for ykl to

apply Lemma 6.6 in Xia (2006) in our proof. The quadratic kernel and

the Epanechnikov kernel are included in (A3). Intuitively assumption (A4)

indicates that the dimension d cannot be further reduced. Assumption

(A5) is made to ensure the convergence of algorithms of iMAVE and iOPG.

Denote “vec” as the vectorization operator.
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3.4 Asymptotic Analysis

Theorem 2. Under assumptions (A1)-(A6), B̂iMAVE from (3.11) satisfies

‖B̂iMAVEB̂
T
iMAVE −B0B

T
0 ‖F = O(h3 + hδdh + δ2dh/h+ n−1/2)

in probability as n→∞, where δdh = (nhd/logn)−1/2. If h3+hδdh+δ2dh/h =

o(n−1/2), then

√
n
{

vec(B̂iMAVEB̂
T
iMAVEB0)− vec(B0)

}
d→ N(0,W+

SPDΣSPDW
+
SPD).

Theorem 3. Under assumptions (A1)-(A6), B̂iOPG from (3.12) satisfies

‖B̂iOPGB̂
T
iOPG −B0B

T
0 ‖F = O(h3 + hδdh + n−1/2)

in probability as n → ∞, where δdh = (nhd/logn)−1/2. If h3 + hδdh =

o(n−1/2), then

√
n
{

vec(B̂iOPGB̂
T
iOPGB0)− vec(B0)

}
d→ N(0,W SPD

0 ).

The asymptotic covariance matrices of iMAVE and iOPG in Theorem

2 and 3 are detailed in the supplementary material. The above results

of consistency and asymptotic normality are consistent with those in Xia

et al. (2002), Xia (2007) and Zhang (2021) and the proof follows a similar

pattern to them as well. Our iMAVE shares the merit of classic MAVE

that it can achieve a faster consistency rate even without undersmoothing

the nonparametric link function estimator.
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4. Adaptations

4.1 When p = pn →∞ as n→∞

In this section we aim to include the diverging-dimensional case allowing

p = pn →∞ as sample size n→∞ in our intrinsic MAVE (3.11) and OPG

(3.12). Following Cai et al. (2022), the main idea is to utilize the distance

correlation (Székely et al., 2007) to define a window of for the local linear

regression so that it is able to estimate gradients efficiently.

To make a distinction from the fixed-p-dimensional dimension reduc-

tion, we use the superscript [j] in the following notations to indicate the

jth component of a p-dimensional vector. Now denote the predictor X =

(X [1], ..., X [p])T with diverging dimension p = pn → ∞ as n → ∞. Recall

that B0 = (β1, ..., βd) is a p× d orthogonal matrix (BT
0B0 = Id with d < p).

For each k ∈ {1, ..., d}, write βk = (β
[1]
k , ..., β

[p]
k )T. Denote the row vectors

in B0 by β[j] = (β
[j]
1 , ..., β

[j]
d ), j = 1, ..., p. Since B0 is orthogonal,

d =
d∑

k=1

‖βk‖2 =
d∑

k=1

p∑
j=1

(β
[j]
k )2 =

p∑
j=1

‖β[j]‖2,

where ‖ · ‖ is the Euclidean norm.

The most significant difference between diverging-dimensional OPG and

MAVE and ordinary ones is the choice of bandwidths in the multivariate

kernel function K(·). Suppose (Xi, Yi), i = 1, ..., n are random observations.
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4.1 When p = pn →∞ as n→∞

Let K(u) be a kernel function on Rp and

Kh(u, α) = K(
u[1]

hα1
, ...,

u[p]

hαp
)/h|α|,

where bandwidth h = hn → 0, α = (α1, ..., αp) and |α| =
∑p

j=1 αj. The

diverging-dimensional intrinsic MAVE under the log-Euclidean metric is

min
B:BTB=I

aj ,bj

n∑
j=1

n∑
i=1

‖logYi − aj − bj
[
Im ⊗ {BT(Xi −Xj)}

]
‖2FKh(Xi −Xj;α)

(4.1)

and the diverging-dimensional intrinsic OPG under the same metric is

min
aj ,bj

n∑
i=1

‖logYi−aj−bj{Im⊗(Xi−Xj)}‖2FKh(Xi−Xj;α), j = 1, ..., p. (4.2)

The indices α1, ..., αp for (4.1) and (4.2) are chosen as follows. Define

αj = dCor(Rj, X
[j]), j = 1, ..., p,

where Rj is the residual of linear regression of logY on X [j] and dCor(·, ·) is

the distance correlation coefficient introduced by Székely et al. (2007). As

argued in Cai et al. (2022), in the conventional kernel smoothing, αj = 1 is

used uniformly for all j ∈ {1, ..., p}. However, if X [j] contributes more lin-

early to the response, αj should be smaller resulting in a bigger bandwidth

for X [j]. On the contrary, if X [j] contributes more nonlinearly, αj should

be bigger resulting in a smaller bandwidth for the calculation of partial
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4.1 When p = pn →∞ as n→∞

derivative along X [j]. It can be seen that αj measures the nonlinear depen-

dence between logY and X [j] and it is 0 if their dependence is either purely

linear or is 0. Typically α = (α1, ..., αp) in (4.1) and (4.2) is replaced by

its estimation α̂ = (α̂1, ..., α̂p) from samples. Since diverging-dimensional

intrinsic OPG and MAVE under the log-Cholesky metric is almost the same

as the log-Euclidean metric, we only present diverging-dimensional meth-

ods under the log-Euclidean metric (4.1), (4.2) and call them DMAVE and

DOPG for short. The implementation details of DOPG and DMAVE re-

semble iOPG and iMAVE except that DOPG is one-step, i.e., B will not

be refined by iteration. We in the following present the consistency results

of B̂ for DMAVE and DOPG.

(B1) Covariate X has a compact support in Rp and the response ykl, 1 ≤

l ≤ k ≤ m is almost surely bounded. Suppose |α| = α1 + ...+ αp = o(logn)

as n→∞.

(B2) The kernel function K(·) is bounded with a compact support in Rp

and it is Lipschitz continuous, i.e., |K(u) − K(v)| ≤ C‖u − v‖ for some

positive constant C.

(B3) As n → ∞, dimension p = pn → ∞ and p2n/n → 0. The bandwidth

hn → 0 such that pnlogn(nh
|α|
n ) and ωn =

∑
αj 6=0 h

αj
n ‖β[j]‖ → 0.

(B4) The matrix S(X) (detailed in the proof in the supplementary material)
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4.1 When p = pn →∞ as n→∞

is almost surely invertible, and the smallest eigenvalue of E{S(X) | X} is

bounded away from 0 almost surely.

(B5) Assume
∑

αj 6=0 p
2
nlogn/(nh

|α|+2αj
n ) → 0 and

∑
αj 6=0 pnω

2
n/h

αj
n → 0 as

n→∞.

Assumptions (B1), (B3) and (B5) are technically necessary for the con-

sistency and they are justified in Cai et al. (2022). Assumption (B1) is made

to ensure there exists hn → 0 and nh
|α|
n →∞. Assumption (B3) is made for

the requirement of kernel regression: h → 0 and a neighbor with diameter

h contains diverging number of observations. The Lipschitz condition in

(B2) is also satisfied by the Epanechnikov kernel and the quadratic kernel.

Assumption (B4) is commonly used in kernel regression.

Theorem 4. Under Assumptions (B1)-(B5) and (A2), (A4), we have

B̂DMAVEB̂
T
DMAVE −B0B

T
0 = OP (pnσn);

B̂DOPGB̂
T
DOPG −B0B

T
0 = OP (pnσn),

where σn = {
∑

αj 6=0(c
[j]
n )2+

∑
αj=0 pn/n}1/2 with c

[j]
n = (pnlogn/nh

|α|+2αj
n )1/2+

ω2
n/h

αj
n . Hence, if

∑
αj 6=0 p

3
nlogn/nh

|α|+2αj
n → 0 and

∑
αj 6=0 p

2
n(ω2

n/h
αj
n )2 → 0

hold,

|B̂DMAVEB̂
T
DMAVE −B0B

T
0 | → 0;

|B̂DOPGB̂
T
DOPG −B0B

T
0 | → 0,
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4.2 General Riemannian Manifolds

as n → ∞, where |A| represents the largest absolute value of entries in

matrix A.

We only consider consistency of B̂DMAVE and B̂DOPG in Theorem 4 and

the conclusions coincide with Theorem 1 and 2 in Cai et al. (2022). Based

on restrictions in the theorem and assumptions (B3) and (B5), pn is allowed

to diverge at a speed of o(n2/(|α|+4)).

4.2 General Riemannian Manifolds

Recall that Proposition 1 transforms (3.13) into the Euclidean model (3.14).

However if the chosen metric is not bi-invariant or if the manifold of interest

is a general manifold other than Sym+(m), one usually cannot derive a

Euclidean model by this way. Let X ∈ Rp and Y ∈ M where (M, 〈·, ·〉)

is a general s-dimensional Riemannian manifold. In this case, as Lin et al.

(2022) did, we make the assumption that the model takes the form:

LogµY = h(BT
0X) + ζ (4.3)

where µ = arg miny∈ME{d2(Y, y)} is the Fréchet mean of Y . Model (4.3)

is defined in TµM and we still aim at estimating B0. It is obvious that

(4.3) coincides with the multivariate MAVE developed by Zhang (2021).

In model (4.3), the only concern is the existence of the Fréchet mean.

For general Riemannian manifolds whose sectional curvature is positive, the
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4.2 General Riemannian Manifolds

Fréchet mean may not exist and therefore additional conditions are needed

for (4.3).

(C1) The minimizer of the Fréchet function Ed2(·, Y ) exists and is unique.

This is automatically satisfied when M is Sym+(m) equipped with

either the log-Euclidean metric or the log-Cholesky metric.

For a subset A of M, Aε denotes the set ∪p∈AB(p; ε) where B(p; ε) is

the ball with center p and radius ε in M. We use Im−ε(Expµ) to denote

the set M \ {M \ Im(Expµ)}ε. In order to define Logµ̂Yi at least with a

dominant probability for a large sample, we assume

(C2) There is some constant ε0 > 0 such that pr{Y ∈ Im−ε0(Expµ)}=1.

The condition (C2) is only needed whenM is not a Hadamard manifold.

If (C1) and (C2) are satisfied, (4.3) is well defined.

Next we establish the consistency and asymptotic normality of the

iMAVE and iOPG estimators under the general manifold case in model

(4.3). We consider a manifold M that satisfies one of the following condi-

tions:

(M1) M is a finite-dimensional Hadamard manifold having sectional cur-

vature bounded from below by c0 < 0.

(M2) M is a complete compact Riemannian manifold.

An example satisfying (M1) is Sym+(m) endowed with the log-Euclidean
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4.2 General Riemannian Manifolds

metric, the log-Cholesky metric or the affine-invariant metric while the unit

sphere serves as an example satisfying (M2).

We have to treat φLogµ̂Yi − LogµYi during our proof where φ is short

for φµ̂,µ. The method in Lin and Yao (2019) is applied here to write

φLogµ̂Yi − LogµYi as {−Hi(µ) + ∆i(µ̂)}Logµµ̂ and the asymptotic normal-

ity of Logµµ̂ helps us control the discrepancy between Logµ̂Yi and LogµYi.

Above ∆i(µ̂) = oP (1) and Hi(y) = −(OZi)(y) acting on vector fields U, V

by 〈HiU, V 〉(y) = 〈−OUZi, V 〉(y) = Hessy{d2(y, Yi)/2}(U, V ). Here Zi is a

vector field with Zi(y) = LogyYi and “Hess” denotes the Hessian matrix

(Kendall and Le, 2021). To make above reasoning valid, following condi-

tions are needed.

(C3) M satisfies at least one of the conditions (M1) and (M2).

(C4) For all y ∈M, E{d2(y, Y )} <∞.

(C5) For some constant c1 > 0, F (y) − F (µ) ≥ c1d
2(y, µ) when d(y, µ) is

sufficiently small.

(C6) λmin{E(Ht)} > 0 where λmin(·) is the smallest eigenvalue of an oper-

ator or a matrix.

Conditions (C3)-(C6) are standard assumptions also made by Lin et al.

(2022), Kendall and Le (2021) and Lin and Yao (2019). (C4) is analogous to

the moment condition in the Euclidean case. (C5) is satisfied for Hadamard
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manifolds with c2 = 1 according to the lemma S.7 of Lin and Müller (2021).

(C6) is made to ensure Hi is invertible.

The skeleton of the theoretical proof in the general manifold case is sim-

ilar to classic MAVE methods. Thus not only (C1)-(C6), but also standard

assumptions made in Section 3.4 are needed here. Terms in model (4.3) are

all s-dimensional vectors. Denote the k-th component of h as hk, k = 1, ..., s.

Substitute yk, hk for ykl, hkl in conditions (A1)-(A5). Replace the ma-

trix MSPD in condition (A4) with M0 = E{h(1)(BT
0X)Th(1)(BT

0X)} where

h(1) = Oh(BT
0X) ∈ Rs×d. Denote the modified conditions as (A1’)-(A5’).

We can derive results similar to Theorem 2 and 3 under assumptions (A1’)-

(A5’) and (C1)-(C6), which are moved to the supplementary material to

avoid duplication.

5. Simulations and Real Data Applications

5.1 Simulation Study I

In simulation I and II, the structural dimension d is assumed as known.

We test the performance of our proposed iMAVE with log-Euclidean metric

(eu-iMAVE), iOPG with log-Euclidean metric (eu-iOPG), iMAVE with log-

Cholesky metric (ch-iMAVE), iOPG with log-Cholesky metric (ch-iOPG),

weighted inverse regression ensemble method (WIRE, Ying and Yu (2022)),
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5.1 Simulation Study I

Fréchet MAVE and Fréchet OPG (fMAVE and fOPG, Zhang et al. (2024))

for SPD matrix-valued responses.

In simulation I, we generate Y similar to Lin et al. (2022). Let the

predictors X1, X2, ..., Xp be independently and identically sampled from

the uniform distribution on [0, 1]. Fix µ to be the identity matrix. Set

Y = µ⊕w(X1, ..., Xp)⊕ζ, where ⊕ is defined in (3.10) and w(X1, ..., Xp) =

expφµ,ef(X1, ..., Xp) with the following two settings for f :

I-1: f(X1, ..., Xp) = f12(X1, X2), where f12(X1, X2) is an m×m matrix

with (j, l)-entry being exp{−1/|j − l|} sin[2π{X1 +X2 − 1/(j + l)}];

I-2: f(X1, ..., Xp) =
∑2

k=1 fk(Xk) where fk(Xk) is an m × m matrix

with (j, l)-entry being exp{−1/|j − l|} sin[2π{Xk − 1/(j + l)}].

We set m = 3. The random noise ζ is generated according to logζ =∑6
i=1 Zjvj, where Z1, ..., Z6 are independently sampled form N(0, 0.12) and

v1, ..., v6 are a basis of the tangent space TeSym+(m). Note that µ is identi-

cal with e so φµ,e is just the identity map. We adopt the log-Euclidean

metric so that exp = exp and log = log. In model I-1, d = 1 and

B0 = (1, 1, 0, ..., 0)T/
√

2. In model I-2, d = 2 and B0 = (β1, β2)
T, where

β1 = (1, 0, ..., 0)T/
√

2 and β2 = (0, 1, 0, ..., 0)T/
√

2. We take (p, n) =

(20, 200), (20, 500), (40, 200), (40, 500) and each combination is replicated

for 50 times. The means and standard deviations of the estimation errors
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5.1 Simulation Study I

Model (p, n) WIRE eu-iOPG eu-iMAVE ch-iOPG ch-iMAVE fOPG fMAVE

I-1 (20,200) 1.3944 0.9606 0.9518 0.9367 0.9022 1.1798 1.1798

±0.0246 ±0.6283 ±0.6334 ±0.6113 ±0.6079 ±0.0135 ±0.0134

(20,500) 1.3231 0.0345 0.0307 0.0348 0.0318 1.1175 1.1228

±0.1109 ±0.0044 ±0.0037 ±0.0041 ±0.0040 ±0.0911 ±0.0835

(40,200) 1.3902 1.3739 1.3418 1.3973 1.3927 1.1790 1.1790

±0.0262 ±0.0446 ±0.1154 ±0.0235 ±0.0181 ±0.0102 ±0.0101

(40,500) 1.3850 1.3911 1.3948 0.9505 0.9445 1.1794 1.1794

±0.0037 ±0.0284 ±0.0218 ±0.6339 ±0.6406 ±0.0021 ±0.0021

I-2 (20,200) 1.4108 0.1842 0.0914 0.5568 0.5433 1.3179 1.3497

±0.0452 ±0.1578 ±0.0045 ±0.6140 ±0.6305 ±0.0437 ±0.0244

(20,500) 1.3977 0.0536 0.0487 0.0586 0.0534 1.1876 1.3402

±0.0184 ±0.0015 ±0.0029 ±0.0018 ±0.0035 ±0.0313 ±0.0104

(40,200) 1.5266 1.8300 1.7490 1.8891 1.8768 1.3839 1.3692

±0.0330 ±0.1052 ±0.1886 ±0.1187 ±0.1395 ±0.0187 ±0.0271

(40,500) 2.1420 1.9718 1.9051 2.0575 2.0429 1.7067 1.8143

±.0194 ±0.1133 ±0.1494 ±0.0016 ±0.0200 ±0.0917 ±0.1465

Table 1: Mean (± standard deviation) of estimation errors for different

methods in model I-1 and I-2.
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5.2 Simulation Study II

‖B̂B̂T − B0B
T
0 ‖F are listed in Table 1 from which we can summarize that

in all scenarios except p = 40 in model II-2, our methods either with the

log-Euclidean metric or the log-Cholesky metric achieve the minimum er-

rors. And it can be expected that results of p = 40 can be improved by a

larger sample size n.

5.2 Simulation Study II

We in this section consider that p = pn diverges and test the perfor-

mance of our newly developed diverging-dimensional methods. Let βT
1 =

(1, 1, 0, ..., 0)/
√

2, βT
2 = (0, ...0, 1, 1)/

√
2. The predictors X1, X2, ..., Xp are

independent random variables each from the uniform distribution on [0, 1].

We generate n i.i.d samples (X1i, X2i, ..., Xpi), i = 1, ..., n. Let M(X) be

matrices specified by the following models:

II-1: M(X) =

 1 ρ(X)

ρ(X) 1

 , ρ(X) = {exp(βT
1X)−1}/{exp(βT

1X)+1};

II-2: M(X) =



1 ρ1(X) ρ1(X) ρ2(X) ρ2(X)

ρ1(X) 1 ρ2(X) ρ2(X) ρ2(X)

ρ1(X) ρ2(X) 1 ρ2(X) ρ1(X)

ρ2(X) ρ2(X) ρ2(X) 1 ρ1(X)

ρ2(X) ρ2(X) ρ1(X) ρ1(X) 1


,

ρ1(X) = 0.2{exp(βT
1X)− 1}/{exp(βT

1X) + 1} and ρ2(X) = 0.2 sin(βT
2X).
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5.2 Simulation Study II

We generate Y = exp{log(M(X)) + σZ} where Z has independent

N(0, 1) diagonal elements and independent N(0, 1/2) off-diagonal elements.

In model II-1, m = 2, B0 = β1 and d = 1. In model II-2, m = 5, B0 =

(β1, β2) and d = 2. Model II-1,II-2 are also considered in Zhang et al.

(2024).

We choose the sample size n as 100 and 200, and for each n, we set

p ∈ {10/n, n/5, n/2, 4n/5, 1.5n}. In every combination of (n, p), we run

model II-1 and II-2 for 50 times and examine the mean estimation errors.

For the clarity of display, we only plot errors of WIRE, eu-iOPG, DOPG,

ch-iOPG and fOPG in Figure 1. It can be seen that first, in most scenarios

our intrinsic OPG and diverging-dimensional OPG outperform WIRE and

fOPG; second, our methods can produce accurate estimates when p ≤ 4n/5

and more samples may be needed for better estimates when p is as large as

1.5n which is consistent with simulation results of Cai et al. (2022).

For lack of space, simulation studies about the determination of the

structural dimension d and about the general manifold case can be found

in the supplementary material.
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5.2 Simulation Study II

Figure 1: Estimation errors of different methods with dimension p = n/10,

n/5, n/2, 4n/5 and 1.5n.
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5.3 New York Taxi Network Data

5.3 New York Taxi Network Data

In this section, we apply our methods to the New York Taxi network data.

The New York City Taxi and Limousine Commission provides records on

pick-up and drop-off dates and times, pick-up and drop-off locations, trip

distances, itemized fares, payment types and other information for yellow

taxis (Tucker et al., 2021). The data are available at https://www1.nyc.gov

/site/tlc/about/tlc-trip-record-data.page

Eventually we collect 1416 3×3 SPD matrices as the realizations of the

response describing the intensity of taxi movements between three zones in

Manhattan. Additionally we collect 14 predictive variables. Details of data

processing and collection can be found in the supplementary material.

We randomly divide the dataset into a training set (991 samples) and a

test set (425 samples). On the training set, respectively setting d = 1, ..., 7,

we apply a cross-validation procedure to calculate CV(d). The result is:

0.0430, 0.0283, 0.0257, 0.0626, 0.0834, 0.0687, 0.0612, which suggests that

d̂ = 3 is a reasonable choice. So we apply iMAVE with d = 3 again to the

training set and get B̂ = (β̂1, β̂2, β̂3) which is plotted in Figure 2.

Coefficients with larger absolute values in Figure 2 indicate more sig-

nificance of corresponding predictors. The estimated results show that fare

amount and type of payment are important covariates, which is consistent
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5.3 New York Taxi Network Data

Figure 2: Coefficients of three estimated CMS directions.

with the results of Tucker et al. (2021). Ave.Fare and Ave.Distance are

closely related and both of them are significant in the first three directions.

Cash and Credit are significant in the first direction, showing that most pas-

sengers tend to pay the fare by cash or credit. Another obvious observation

is that all the 5 weather variables seem negligible since their coefficients are

almost 0 in all of the first three directions. This is reasonable because the

weather condition during January and February 2019 was rather stationary,

which accounts for the insignificance of weather variables.

To show our dimension reduction methods have further statistical appli-

cations, we conduct the regression on our data using the manifold additive
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model (MAM) introduced by Lin et al. (2022). The MAM is formulated as

Y = µ ⊕ w1(X1) ⊕ ... ⊕ wq(Xq) ⊕ ξ, where Y is an SPD matrix, µ is the

Fréchet mean of Y , each wk is function mapping Xk into the SPD space, ξ is

random noise which has a Fréchet mean corresponding to the group identity

element, X1, ..., Xq are scalar variables and ⊕ is the group operation.

We apply MAM to the dimension-reduced training set to get estimated

µ̂ and functions ŵ1, ŵ2 and ŵ3. Then we apply the trained MAM to the

test set to estimate the response Y . The prediction RMSE on the test set is

0.3220, which shows MAM generates good estimation after processing data

with our intrinsic dimension reduction methods and indicates our methods

are ready for more applications.

6. Discussion

Further improvements can be expected from our proposed methods. For

example, a penalty term can be utilized in combination with our method to

get the penalized iMAVE for simultaneous dimension reduction and vari-

able screening. Specifically, a group-LASSO penalty can be considered to

improve our method as group-wise iMAVE for sparse ultra-high dimensional

dimension reduction with SPD-valued responses.
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Supplementary Materials

Contain: 1) algorithms for iOPG and iMAVE; 2) expressions of asymptotic

covariance matrices in Theorem 2 and 3; 3) convergence results of iOPG

and iMAVE on a general manifold; 4) a simulation study testing the CV

procedure of choosing the structural dimension d and a simulation study

under the general manifold case; 5) details of data collection and processing

in the New York taxi network application; 6) all proofs of theoretical results

that appear in this paper.
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Székely, G. J., M. L. Rizzo, and N. K. Bakirov (2007). Measuring and testing dependence by

correlation of distances. The Annals of Statistics 35(6), 2769–2794.

Tu, L. W. (2011). An Introduction to Manifolds. Springer New York.

Tucker, D. C., Y. Wu, and H.-G. Müller (2021). Variable selection for global Fréchet regression.
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