
Statistica Sinica Preprint No: SS-2023-0246 
Title Simultaneous Inference for the Distribution of Functional 

Principal Component Scores 
Manuscript ID SS-2023-0246 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202023.0246 

Complete List of Authors Leheng Cai and 
Qirui Hu 

Corresponding Authors Qirui Hu 
E-mails hqr20@mails.tsinghua.edu.cn 



Statistica Sinica

SIMULTANEOUS INFERENCE FOR THE DISTRIBUTION

OF FUNCTIONAL PRINCIPAL COMPONENT SCORES

Leheng Cai1, Qirui Hu1

Tsinghua University

Abstract: This paper introduces a novel methodology for simultaneous inference of the cumu-

lative distribution function (CDF) of functional principal component (FPC) scores. We es-

tablish a general framework for estimating the CDF, including both nonsmooth and smooth

estimators, and demonstrate their asymptotic equivalence. For dense functional data, we

employ nonparametric pre-smoothing, ensuring oracle properties that make our estimators

equivalent to those from fully observed trajectories. We recommend B-spline smoothing for

its computational efficiency. Additionally, we derive theoretical properties to construct simul-

taneous confidence bands (SCBs) and develop new testing procedures for the distribution of

FPC scores. These procedures, including Kolmogorov-Smirnov and Cramér-von Mises tests,

can handle a diverging number of components and are particularly effective for testing the

normality of functional data, a common assumption in literature and practice. Our method-

ology is supported by extensive numerical simulations and applied to well-known functional

datasets and Electroencephalogram (EEG) data.

Key words and phrases: Cumulative distribution function, Functional principal component

scores, Goodness of fit tests, Nonparametric smoothing, Simultaneous inference.
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1. Introduction

Functional data analysis, a key area in statistics applied in finance, environment,

and neuroscience; see (Bosq, 2000; Hsing and Eubank, 2015), deals with variables

as random functions over a domain. Despite the infinite dimensionality of these

functions offering rich information, it poses challenges in pattern identification and

signal extraction. Functional principal component analysis (FPCA), as detailed in

(Yao et al., 2005b; Berkes et al., 2009), and Zhang et al. (2011), is crucial in dimension

reduction and is widely used in functional data analysis, including functional linear

models and change point analysis.

While there is extensive research on the eigenvalues and eigenfunctions of func-

tional data; see (Dauxois et al., 1982; Hall and Hosseini-Nasab, 2009; Kokoszka and

Reimherr, 2013; Cai and Hu, 2024b,a), statistical inference of functional principal

component (FPC) scores remains underexplored. It is noted that FPC scores contain

deeper information of functional data beyond mean, covariance, or eigenfunctions,

as illustrated in Figure 1 with 100 trajectories from different distributions of FPC

scores. This example highlights the inadequacy of basic descriptive statistics in fully

capturing information in functional data, thus underscoring the need for developing

estimation and inference methods for distributions of FPC scores.

In this paper, we consider discretely recorded data contaminated by measurement

errors, which is motivated by the data applied in Section 6 and is also more relevant
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(a) Left: normal, right: rescaled t(3)
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Figure 1: Random trajectories from different distributions of FPC scores with the
same mean, covariance, and eigenfunctions.

to functional data from applied fields, such as Electroencephalogram (EEG) data

and Electrocardiogram (ECG) data.

Yij = ηi

(
j

N

)
+ σ

(
j

N

)
εij, i = 1, . . . , n, j = 1, . . . , N. (1.1)

Model (1.1) has been widely studied in the literature; see for instance (Cao et al.,

2012; Li and Yang, 2023) and Zhong and Yang (2023). As emphasized in Hu and

Li (2024), the observed grids {j/N}Nj=1 in model (1.1) can be relaxed to vary over

subjects {xij}n,Ni

i,j=1, as long as max1≤i≤n,1≤j≤Ni−1 |xij − xi,j+1| = O(N−1). Also,
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the observation of grids can be random with positive density over [0, 1]. In these

irregular scenarios, the main theoretical results can be proved similarly. The

i.i.d. processes ηi(x), 1 ≤ i ≤ n, live in the space L2[0, 1] almost surely, satisfy-

ing E
∫ 1

0
η2(x)dx < ∞, with mean function m(x) = Eηi(x) and covariance function

G(x, x′) = Cov(ηi(x), ηi(x
′)). The measurement errors εij, 1 ≤ i ≤ n, 1 ≤ j ≤ N , are

i.i.d. random variables with zero mean and unit variance and σ2(x) is the variance

function. According to Mercer’s lemma, the covariance function can be decomposed

as G(x, x′) =
∑∞

k=1 λkψk(x)ψk(x
′), where {λk}∞k=1 are a series of decreasing positive

eigenvalues and {ψk(x)}∞k=1 are the corresponding eigenfunctions, also called func-

tional principal components (FPCs), which form an orthogonal basis of L2[0, 1] such

that
∑∞

k=1 λk < ∞ and
∫
G(x, x′)ψk(x

′)dx′ = λkψk(x). Then for any 1 ≤ i ≤ n,

the zero-mean process χi(x) = ηi(x) − m(x), x ∈ [0, 1], allows general Karhunen-

Loève representation χi(x) =
∑∞

k=1 ξikϕk(x), in which the rescaled eigenfunctions

{ϕk(x)}∞k=1 satisfy that ϕk(x) =
√
λkψk(x) and

∫
χi(x)ϕk(x)dx = λkξik for k ≥ 1.

The random coefficients ξik are uncorrelated over k, with mean 0 and variance 1,

referred to as FPC scores.

Although the FPC scores are well-defined mathematical objects, they are un-

observable to the data-handling statistician. It may also be difficult to accurately

specify the distribution of FPC scores without any prior knowledge in the initial

stage of FPCA. Meanwhile, as far as we know, there do not exist any results on the
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distribution estimation of FPC scores. Therefore, developing estimation and statis-

tical inference procedures for the CDF of FPC scores is of great interest. To achieve

this, we first introduce a procedure for estimating FPC scores. We then propose a

general approach for estimating the CDF of FPC scores, including a nonsmooth and

a smooth estimator, and show that they are asymptotically equivalent. Afterwards,

we novelly construct the simultaneous confidence bands (SCBs) for the CDF of FPC

scores, which are powerful tools for quantifying the variability of complex functions

and making global inference, as seen in the SCBs for probability density functions

in Bickel and Rosenblatt (1973), for regression functions in Wang and Yang (2009),

and for mean functions of functional data in Cao et al. (2012).

To proceed, it is also meaningful to test the “distribution of functional data.

Through the Karhunen-Loève representation, it is noted that the randomness of the

demeaned random process χi(x) is completely determined by the distribution of FPC

scores. Therefore, we can break down the testing procedure for infinite-dimensional

objects into testing the distribution of scalar random variables, i.e. testing whether

the distribution of FPC scores Fk(·) is some pre-specified distribution F ∗
k (·). This

testing problem can be formulated as the following high-dimensional hypothesis test,

as κn → ∞ and n→ ∞,

H0 : Fk(x) = F ∗
k (x), 1 ≤ k ≤ κn, v.s. H1 : Fk0(x) ̸= F ∗

k0
(x), ∃1 ≤ k0 ≤ κn. (1.2)
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In addition, the normality assumption is widely used in functional data analysis,

which is the basic requirement of further theoretical results, see (Yao et al., 2005a;

Constantinou et al., 2017) and Hörmann et al. (2018), leading to the importance of

test for the normality of functional data as a special case:

H0 : Fk(x) = Φ(x), 1 ≤ k ≤ κn, v.s. H1 : Fk0(x) ̸= Φ(x), ∃1 ≤ k0 ≤ κn, (1.3)

where Φ(x) is the CDF of standard normal random variables. The above hypothesis

test problem (1.3) raised in Górecki et al. (2018) and Hörmann et al. (2022). Previous

works on this topic often face greater technical difficulties and assume that functional

data can be sufficiently well approximated by a projection onto a finite-dimensional

subspace spanned by a few eigenfunctions. As a result, they consider only the first

fixed p FPC scores; see (Yao et al., 2005a; Berkes et al., 2009; Górecki et al., 2018)

and Hörmann et al. (2022), or require the number of positive eigenvalues in the

Karhunen-Loève expansion to be finite, limiting the scope of applicability; see Chen

and Song (2015). However, in contrast to multivariate data, one major obstacle

in the analysis of functional data is the infinite dimensionality of the data, which

also explains the intractability of the asymptotic distribution of L2-type statistics

in functional data analysis. To reflect this, Fremdt et al. (2014) and Ghale-Joogh

and Hosseini-Nasab (2018) propose procedures by considering the projections on
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subspaces spanned by an increasing number of FPCs. They point out that this

approach allows to derive procedures which are fairly insensitive to the selection of

the number of FPC scores used for inference. See also Liang et al. (2023) and Wang

et al. (2022) more recently. Along this line, the number of FPC scores we focus

on also diverges to infinity as the sample size increases in this paper, preserving

the infinite-dimensional nature of functional data, and bringing many challenges

in our methodological and theoretical developments. We propose a Kolmogorov-

Smirnov type and a Cramér-von Mises type test statistic, which can handle principal

components with a diverging number. Asymptotic properties are derived to show

that the proposed procedures asymptotically control the type-I error at the nominal

level, and power analysis is also investigated. Notably, our proposed method is not

only able to address the problem of testing normality of functional data, but it is also

applicable to testing whether the distribution of FPC scores is equal to any other

given distributions in hypothesis (1.2). To the best of our knowledge, this is the first

time that testing procedures for the distribution of FPC scores have been proposed.

The paper is structured as follows: Section 2 details the estimation method

for FPC scores and their CDF. Section 3 presents the main theoretical results for

constructing SCBs and the test procedure for FPC score distribution. Section 4

covers the implementation of these methods. A numerical simulation study assessing

the performance of these procedures is in Section 5, along with real data analysis of
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functional datasets and EEG data in Section 6. The final section offers conclusions

and discussions. Supplementary material contains all proofs and additional tables

and figures.

2. Methodology

2.1 Estimating the CDF of FPC scores

In this section, we present a method to recover FPC scores {ξik}n,∞i=1,k=1 and esti-

mate their CDFs. For fully observed trajectories {ηi(x)}ni=1, moment-based esti-

mators provide mean and covariance functions, m̃(x) = n−1
∑n

i=1 ηi(x), G̃(x, x
′) =

n−1
∑n

i=1 (ηi(x)− m̃(x)) (ηi(x
′)− m̃(x′)) for x, x′ ∈ [0, 1]. By solving the Fredholm

equation
∫ 1

0
G̃(x, x′)ψ̃k(x

′)dx′ = λ̃kψ̃k(x) for k ∈ Z+, we access the estimated eigen-

systems
{
λ̃k, ψ̃k

}
k∈Z+

. The FPC scores ξik’s are approximated using the plug-in

estimator ξ̃ik = λ̃
−1/2
k

∫
R (ηi(x)− m̃(x)) ψ̃k(x)dx, and the empirical CDF is obtained

as a nonsmooth estimator,

F̃ †
nk(x) =

1

n

n∑
i=1

I
(
ξ̃ik ≤ x

)
, x ∈ R. (2.1)

To address the discontinuous nature of F̃ †
nk, we introduce the kernel-based esti-
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2.1 Estimating the CDF of FPC scores

mator F̃nk(x), defined as:

F̃nk(x) =
1

n

n∑
i=1

∫ x

−∞
Kh(u− ξ̃ik)du, , x ∈ R, (2.2)

where Kh(·) = h−1K(·/h), with K(·) being a kernel function, and h = hn > 0

is the so-called bandwidth. However, these estimators are infeasible, since only

contaminated data {Yij}n,Ni=1,j=1 are available. A practical solution is replacing ηi(x)

with a nonparametric smoother η̂i(x), yielding feasible estimators for the mean and

covariance function, i.e., for x, x′ ∈ [0, 1],

m̂(x) =
1

n

n∑
i=1

η̂i(x), Ĝ(x, x′) =
1

n

n∑
i=1

(η̂i(x)− m̂(x)) (η̂i(x
′)− m̂(x′)) . (2.3)

We will provide further details on the construction of η̂i(x) in Subsection 2.2. This

leads to feasible estimators of eigensystems by solving

∫
Ĝ(x, x′)ψ̂k(x

′)dx′ = λ̂kψ̂k(x), x ∈ R, k ∈ Z+, (2.4)

and recovering the FPC scores ξik’s by ξ̂ik = N−1
∑N

j=1 λ̂
−1/2
k (Yij − m̂ (j/N)) ψ̂k (j/N) .

Hence, we replace the infeasible estimators ξ̃ik’s by the feasible ones ξ̂ik’s to estimate

the CDF of FPC scores in the estimators (2.1) and (2.2), and obtain the empirical
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2.2 Recovering trajectories

distribution function of
{
ξ̂ik

}n

i=1
and kernel-based version, respectively,

F̂ †
nk(x) =

1

n

n∑
i=1

I
(
ξ̂ik ≤ x

)
, F̂nk(x) =

1

n

n∑
i=1

∫ x

−∞
Kh(u− ξ̂ik)du, x ∈ R. (2.5)

which are both accessible to data-handling statisticians. If η̂i(x) closely approximates

ηi(x), then F̂ †
nk and F̂nk should asymptotically behave like F̃ †

nk and F̃nk, achieving

oracle efficiency, as discussed in Section 3.

2.2 Recovering trajectories

We now introduce a convenient estimator for recovering trajectories. B-spline smooth-

ing is recommended due to its computational efficiency explained below.

To describe it precisely, denote by {tl}Ns
l=1 a sequence of equally-spaced points. We

call tl = l/(Ns + 1) for l ∈ {1, 2, · · · , Ns} interior knots with 0 < t1 < · · · < tNs < 1

, which divide the interval [0, 1] into Ns + 1 equal subintervals Il = [tl, tl+1) for

l = 0, 1, · · · , Ns − 1 and INs = [tNs , 1]. For any positive integer p, let t1−p = · · · =

t−1 = 0 and tNs+p = · · · = tNs+1 = 1 be auxiliary knots. Let S(p−2) = S(p−2)[0, 1]

denote the polynomial spline space of order p on Il for l ∈ {0, · · · , Ns}, which

consists of all (p − 2) times continuously differentiable functions on [0, 1] that are

polynomials of degree (p−1) on subintervals Il for l ∈ {0, · · · , Ns}. Then, we denote

by {Bl,p(·), 1 ≤ l ≤ Ns + p} the pth-order B-spline basis functions of S(p−2). Hence,
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2.2 Recovering trajectories

S(p−2) = {
∑Ns+p

l=1 al,pBl,p(·) : al,p ∈ R}; see De Boor (1978) for more details.

The individual unknown trajectory ηi(x) could be estimated via B-spline as

η̂i(·) := argmingi∈S(p−2)

∑N
j=1 (Yij − gi(j/N))2 for 1 ≤ i ≤ n. To further simplify

the forms of
{
λ̂k, ψ̂k

}
k∈Z+

and reduce the computational burden of solving (2.4) via

discretization and high-dimensional matrix spectral decomposition, one can write:

η̂i(x) :=
∑Ns+p

l=1 β̂i,l,pBl,p(x), 1 ≤ i ≤ n, where

{β̂i,1,p, · · · , β̂i,Ns+p,p}⊤ = argmin
{βi,1,p,··· ,βi,Ns+p,p}⊤∈RNs+p

N∑
j=1

{
Yij −

Ns+p∑
l=1

βi,l,pBl,p(j/N)

}
.

Therefore, one has the following B-spline representation of covariance estimation

Ĝ(x, x′) =
∑Ns+p

l=1

∑Ns+p
l′=1 β̂l,l′Bl,p(x)Bl′,p(x

′), where

β̂l,l′ =
1

n

n∑
i=1

{
(β̂i,l,p −

1

n

n∑
j=1

β̂j,l,p)(β̂i,l′,p −
1

n

n∑
j=1

β̂j,l′,p)

}
, 1 ≤ l, l′ ≤ Ns + p,

are the coefficients. Similarly, one considers spline approximation of ψ̂(x) in (2.4), i.e.,

ψ̂k(x) =
∑Ns+p

l=1 γ̂l,kBl,p(x), in which γ̂l,k’s are coefficients determined byN−1β̂B⊤Bγ̂k =

λ̂kγ̂k subject to N−1γ̂⊤k B
⊤Bγ̂k = 1 with γ̂k = (γ̂1,k, · · · , γ̂Ns+p,k)

⊤, β̂ = {β̂l,l′}Ns+p
l,l′=1

and B = {Bl,p(j/N)}Ns+p,N
l,j=1 . The Cholesky decomposition N−1B⊤B = LBL

⊤
B allows

us to rewrite the solution of (2.4) as the eigenvalues and unit eigenvectors of L⊤
Bβ̂LB.

Specifically, for each k ∈ Z+, we have that L
⊤
Bβ̂LBL

⊤
Bγ̂k = λ̂kL

⊤
Bγ̂k. This means that
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λ̂k and L⊤
Bγ̂k are the eigenvalues and unit eigenvectors of L⊤

Bβ̂LB, respectively. To

obtain γ̂k, we multiply (L⊤
B)

−1 to the unit eigenvectors of L⊤
Bβ̂LB. Then, we calculate

ψ̂k(x) and ϕ̂k(x) = λ̂
1/2
k ψ̂k(x). It is worth noting that this estimation procedure only

involves solving for the eigenvalues of (Ns+p)×(Ns+p) dimensional matrices, rather

than N × N dimensional matrices. This significantly speeds up the computational

process, as the order of Ns is usually much smaller than N .

3. Asymptotic properties

Throughout the paper, for sequences an and bn, denote an ≍ bn if there exist positive

constants c and C such that cbn ≤ an ≤ Cbn. For real numbers a and b, the notation

a ∧ b denotes min{a, b}. The notation
P−→ denotes convergence in probability. For a

non-negative integer q and a real number µ ∈ (0, 1], we define H(q,µ)(Ω) as the space

of (q, µ)-Hölder continuous functions on domain Ω, that is,

H(q,µ)(Ω) =

{
h : Ω → R

∣∣∣∣∣∥h∥q,µ = sup
x,y∈Ω,x̸=y

∣∣h(q)(x)− h(q)(y)
∣∣

|x− y|µ
<∞

}

To investigate the asymptotic properties of F̂nk(x) and F̂ †
nk, some assumptions

are imposed first.

(A1) For any small positive number ϱ, the nonparametric estimator η̂i(x) satisfies

that, as n → ∞, ∥m̂− m̃∥∞ = Op

(
n−1/2

)
and

∥∥∥Ĝ− G̃
∥∥∥
∞

= Op

(
n−1/2−ϱ

)
,
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where m̂ and Ĝ are defined in (2.3).

(A2) The non-zero eigenvalues λj are distinct and have a polynomial decay rate, i.e.

λj ≍ j−τ for 1 ≤ j ≤ κn, τ > 1, and κn satisfies that κn = O(log n).

(A3) The CDF of k-th FPC score Fk(·) ∈ H(1,1)(R) such that supk ∥Fk∥1,1 < ∞,

supk ∥fk∥∞ < ∞. In addition, gk(x) = xfk(x) ∈ H(0,ν1)(R) with ν1 ∈ (0, 1],

satisfying supk ∥gk∥0,ν1 <∞, supk ∥gk∥∞ <∞.

(A4) n = O
(
N θ
)
for some constant θ ∈ (0, 1], and n = n(N) → ∞ as N → ∞.

(A5)
∑∞

k=1 ∥ϕk∥∞ <∞ and
∑∞

k=1 ∥ϕk∥0,ϖ <∞ for some constant ϖ ∈ (θ/2, 1].

(A6) The FPC scores {ξik}i≥1,k≥1, which are independent over k ≥ 1 and i.i.d. over

i ≥ 1, satisfy supk E |ξ1k|r1 <∞ with r1 > max{2θ/(2ϖ−θ), 8}. {εij}i≥1,j≥1 are

i.i.d. and independent of the FPC scores, with E |ε11|r2 <∞ and r2 > 4 + 2θ.

(A7) The kernel function K(·) for F̂nk(·) is twice continuously differentiable, with

bandwidth h = hn satisfying h ≍ n−t1 and 1/4 < t1 < min {(r1 − 4)/(2r1), 1/3}

as n→ ∞. The kernel function L(·) in (4.3) for density estimation has bounded

derivative, with bandwidth H = Hn satisfying H ≍ n−t2 and 1/8 < t2 <

1/4 − 1/(2r1) as n → ∞. Both kernel functions are symmetric probability

density functions supported on [−1, 1].
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Our assumptions (A1)-(A7) are standard and commonly satisfied. (A1) is fun-

damental for nonparametric estimators and supports pre-smoothing techniques like

kernel smoothing, wavelets, and B-splines. (A2) controls the decay of eigenvalues

and the growth rate of FPC scores, crucial for simultaneous inference (Cai and Hall

(2006)). (A3) ensures the smoothness of CDF Fk(·). (A4) requires sufficient data

density, with n observations on N grids. (A5) focuses on the boundedness and conti-

nuity of FPCs. To ensure (A2) and (A5) hold simultaneously, we provide an example

by considering {ψk}∞k=1 being Fourier basis with τ > 2(ϖ + 1) > θ + 2, for instance,

τ = 4. (A6) includes moment conditions and assumes independence between FPC

scores ξik and measurement errors εij. This independence is key for the joint asymp-

totic properties of F̂ †
nk and F̂nk as κn → ∞. However, in non-Gaussian processes

where the distribution of data depends on the joint distributions of FPC scores, this

assumption needs to be relaxed. Nevertheless, estimating the multivariate distribu-

tion in such cases poses a significant challenge. While we introduce the first inference

procedure for FPC scores with an increasing number of components, addressing high-

dimensional multivariate distribution estimation lies outside the scope of this work.

(A7) about kernels K(·) and L(·) is common in literature (Wang et al. (2014)).

Remark 1. Assumption (A4) implies an upper limit on θ of θ ≤ 1, suggesting that

the number of grids N within each trajectory should not significantly lag behind

the sample size n. This contrasts with the sparse setting; see Yao et al. (2005a), Li
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and Hsing (2010) and Zhang and Li (2022), where the number of each trajectory’s

observation has a finite expectation, aggregating all observations is necessary to

estimate eigensystems and FPC scores, resulting in significantly different asymptotic

results, which is beyond the scope of this paper.

Below, we will present some high-level assumptions under Assumption (A2) -

(A7) to satisfy Assumption (A1), ensuring that our general methodology applies at

least to the B-spline approach.

(B1) There exist an integer q > 0 and a constant µ ∈ (0, 1], such that the mean

function m(·) ∈ H(q,µ)[0, 1]. In the following, we denote p∗ = q + µ.

(B2) The standard deviation function σ(·) ∈ H(0,ν2)[0, 1] for positive index ν2 ∈ (0, 1].

(B3) The demeaned trajectory χi(·) ∈ H(q,µ)[0, 1] almost surely with E ∥χi∥r1q,µ < ∞

for q, µ in (B1) and r1 in (A6), and there exist increasing positive integers

{kn}∞n=1 such that kn = O (nω1) for some ω1 > 0 and the small positive number

ϱ mentioned in (A1), as n→ ∞,
∑∞

k=kn+1 ∥ϕk∥∞ = O
(
n−1/2−ϱ

)
.

(B4) The number of interior knots Ns ≍ NγdN for some ι > 0 with dN + d−1
N =

O (logιN) as N → ∞. For θ in (A4), r1, r2 in (A6), p∗ in (B1), ν2 in (B2), ω1

in (B3), the spline order p ≥ p∗, r1 > 4 + 2ω1, and

max

{
θ

p∗

(
4

r1
+

1

2

)
, 1− ν2

}
< γ < 1− θ + 2

r2
− θ

(
ω1 + 2

r1
+

1

2

)
.
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In fact, these assumptions are fairly mild. (B1) - (B3) ensure the smoothness of

the mean function, the covariance function, and the FPCs. The range of parameters

specified in (A4), (A6), and (B1) - (B3) is given in (B4). A reasonable choice of

parameters in (B4) is q + µ = p∗ = 4, ν = 1, θ = 1, p = 4 (cubic spline), γ = 1/4,

and dN ≍ log logN . These constants are used as default values for implementation.

To begin with, we introduce the asymptotic linear expansion and the weak con-

vergence result about the infeasible estimator F̃nk in (2.1). Denote ζnk(x) :=

n−1
∑n

i=1 {I (ξik ≤ x)− Fk(x) + ξikfk(x) + xfk(x) (ξ
2
ik − 1) /2} .

Theorem 1. Under Assumptions (A3) and (A5) - (A7), for any k ∈ Z+, as n→ ∞,

supx∈R
√
n
∣∣∣F̃nk(x)− Fk(x)− ζnk(x)

∣∣∣ = Op(1). Then, one has
√
n
(
F̃nk(x)− Fk(x)

)
d−→

ζk(x), in the Skorokhod space D (−∞,∞), where ζk(x) is a Gaussian process with

mean zero and covariance function

Σk(x, y) = Fk(x ∧ y)− Fk(x)Fk(y) + fk(x)fk(y) + fk(x)E (ξikI (ξik ≤ y))

+ fk(y)E (ξikI (ξik ≤ x)) +
1

4

(
Eξ4ik − 1

)
xyfk(x)fk(y) +

1

2
xfk(x)E

(
(ξ2ik − 1)I (ξik ≤ y)

)
+

1

2
yfk(y)E

(
(ξ2ik − 1)I (ξik ≤ x)

)
+

1

2
xfk(x)fk(y)Eξ3ik +

1

2
yfk(y)fk(x)Eξ3ik, x, y ∈ R.

Remark 2. Theorem 1 provides that F̃nk is asymptotically equivalent to Fk plus

some correction terms n−1
∑n

i=1 ξikfk(x) and (2n)−1
∑n

i=1 (ξ
2
ik − 1)xfk(x), which arise

due to the estimation errors of m̃ and λ̃k in ξ̃ik defined in section 2.1, respectively. It
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is interesting to note that the estimation error of ψ̃k did not introduce any correction

terms, as the asymptotic expansion of ψ̃k degenerated after kernel smoothing. Sim-

ilar theoretical results can be found in Neumeyer and Van Keilegom (2010), which

discusses estimation of the distribution of the standardized measurement error after

detrending in nonparametric regression. The role of m̃ and λ̃k in ξ̃ik can be anal-

ogously compared to detrending and standardization, and Σk(·, ·) is the covariance

function of process
√
nζnk(·).

Next, the gap between the infeasible estimator F̃nk in (2.1) and the feasible

estimator F̂nk in (2.5) is compensated by the following theorem.

Theorem 2. Under Assumptions (A1) - (A7), as n→ ∞, one has that

max1≤k≤κn supx∈R
√
n
∣∣∣F̃nk(x)− F̂nk(x)

∣∣∣ = Op(1).

Theorem 2 establishes that the proposed smooth estimator F̂nk has oracle effi-

ciency, meaning that the cost of using F̂nk instead of F̃nk is asymptotically negligible

up to order n−1/2. Therefore, the proposed estimators F̂nk have the same asymptotic

property as F̃nk in Theorem 1. This leads to the following Theorem 3, which enables

us to derive the smooth SCB of Fk in Section 4.2.

Theorem 3. Under Assumptions (A1) and (A3) - (A7), for any k ∈ Z+, as n→ ∞,

sup
t∈R

∣∣∣∣P(sup
x∈R

√
n
∣∣∣F̂nk(x)− Fk(x)

∣∣∣ ≤ t

)
− P

(
sup
x∈R

|ζk(x)| ≤ t

)∣∣∣∣ = O(1).
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It is then of great interest to test all κn hypothesis (1.2) simultaneously, which is

useful for identifying important features in functional data. We consider the following

goodness fits tests, including Kolmogorov-Smirnov (KS) type test statistic Sn and

Cramér-von Mises (CVM) type test statistic Vn as

Sn = max
1≤k≤κn

sup
x∈R

√
n
∣∣∣F̂nk(x)− F ∗

k (x)
∣∣∣ , Vn =

κn∑
k=1

λ̂k

∫
R
n
(
F̂nk(x)− F ∗

k (x)
)2
dx.

The two statistics under consideration are designed for testing differences in CDFs in

different ways. The KS-type statistic emphasizes the maximum difference between

the distributions and considers all FPC scores to be equally important for testing.

The CVM-type statistic, on the other hand, focuses on the cumulative difference

between the distributions and uses the eigenvalues as weights to assess the significance

of the FPC scores. They have the same asymptotic size and power, which are stated

in Theorem 4 and Proposition 3 below, but they may yield different results with

finite sample sizes, depending on the user’s priorities about the null hypothesis (1.2).

Theorem 4. Under Assumptions (A1) - (A7) and the null H0 in (1.2), there exist

independent Gaussian processes {ζk(·)}κn

k=1, where ζk(·) is mean zero and has the

covariance function Σk(·, ·) such that, under null hypothesis, as n→ ∞,

sup
t∈R

∣∣∣∣P (Sn ≤ t)− P
(

max
1≤k≤κn

sup
x∈R

|ζk(x)| ≤ t

)∣∣∣∣→ 0,
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sup
t∈R

∣∣∣∣∣P (Vn ≤ t)− P

(
κn∑
k=1

λk

∫
R
ζ2k(x)dx ≤ t

)∣∣∣∣∣→ 0.

Theorem 4 provides the approximate distribution of Sn and Vn through the

supremum-norm and weighted L2-norm of Gaussian processes {ζk(·)}κn

k=1 under the

null H0 in (1.2). If the covariance function {Σk(·, ·)}κn

k=1 were known, these two

distributions could be easily simulated. We will discuss a uniformly consistent esti-

mator for {Σk(·, ·)}κn

k=1 and show the consistency of the proposed testing procedures

in Section 4.

To bridge the gap between the infeasible estimators F̃nk and F̃ †
nk, and between

the feasible estimators F̂nk and F̂ †
nk, we introduce Proposition 1.

Proposition 1. Under Assumptions (A1) - (A7), as n→ ∞, one has that

max1≤k≤κn supx∈R
√
n
(∣∣∣F̃nk(x)− F̃ †

nk(x)
∣∣∣+ ∣∣∣F̂nk(x)− F̂ †

nk(x)
∣∣∣) = Op(1).

Proposition 1 shows that the cost of using the proposed nonsmooth estimators

F̂ †
nk instead of F̂nk is also uniformly asymptotically indistinguishable up to order

n−1/2. Combined with Theorem 2, this implies that the nonsmooth estimator F̂ †
nk

also has oracle efficiency. In other words, the proposed estimators F̂ †
nk and F̂nk have

the same asymptotic properties as the infeasible estimators F̃ †
nk and F̃nk. Therefore,

we can use the nonsmooth estimator F̂ †
nk to obtain the following result.

Theorem 5. Under the same conditions in Theorem 3 and Theorem 4, the state-
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ments in Theorem 3 and Theorem 4 still hold respectively, after replacing F̂nk by F̂ †
nk.

The corresponding test statistics for (1.2) become S†
n and V †

n respectively,

S†
n = max

1≤k≤κn

sup
x∈R

√
n
∣∣∣F̂ †

nk(x)− F ∗
k (x)

∣∣∣ , V †
n =

κn∑
k=1

λ̂k

∫
R
n
(
F̂ †
nk(x)− F ∗

k (x)
)2
dx.

Hence, statistical inference can be performed with either F̂nk or F̂ †
nk, such as

constructing SCBs of Fk, and performing uniform hypothesis testing for {Fk}κn
k=1.

The implementation details and the power analysis will be described in Section 4.

In addition to one-sample problems, sometimes two-sample problems are also

full of interest. For example, certain physiological data of people, such as height,

weight, etc., have different means and variances between males and females, but

may indeed belong to the same family of distributions, as illustrated in Section 6,

which leads us to consider the hypothesis in (1.2) can be extended to a two-sample

problem. For processes
{
η
(s)
i (x)

}n(s)

i=1
defined on [0, 1], s = 1, 2, with mean functions

ms(x), covariance functions Gs(x, x
′), eigensystems {λsk, ψsk(x)}k∈Z+

, FPC scores{
ξ
(s)
ik

}
k∈Z+

with CDFs {Fsk(x)}k∈Z+ , variance functions σ2
s(x), and measurement

errors ε
(s)
ij ’s with zero mean and unit variance. Then, (1.2) is generalized to

H0 : F1k(x) = F2k(x), 1 ≤ k ≤ κ⋆n, v.s. H1 : F1k(x) ̸= F2k(x), ∃1 ≤ k0 ≤ κ⋆n, (3.1)

which can be used to test whether the distributions of FPC scores of {η(s)i (x)}n(s)

i=1 ,
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s = 1, 2, are the same. For the collected data

Y
(s)
ij = η

(s)
i

(
j

N (s)

)
+ σs

(
j

N (s)

)
ε
(s)
ij , 1 ≤ i ≤ n(s), 1 ≤ j ≤ N (s). (3.2)

Denote the ratio of two-sample sizes as r̂ = n(1)/n(2), and assume that r = limn(1)→∞

n(1)/n(2) exists and is positive. Applying the estimators in (2.5), one obtains F̂s,nk or

F̂ †
s,nk for s = 1, 2, and constructs the following KS-type or CVM-type statistics with

κ∗n = O
(
log n(1)

)
.

S◦
n = max

1≤k≤κ⋆
n

sup
x∈R

√
n(1)

∣∣∣F̂1,nk(x)− F̂2,nk(x)
∣∣∣ ,

S‡
n = max

1≤k≤κ⋆
n

sup
x∈R

√
n(1)

∣∣∣F̂ †
1,nk(x)− F̂ †

2,nk(x)
∣∣∣ ,

V ◦
n =

κ⋆
n∑

k=1

(
λ̂1k +

√
r̂λ̂2k

)∫
R
n(1)

(
F̂1,nk(x)− F̂2,nk(x)

)2
dx,

V ‡
n =

κ⋆
n∑

k=1

(
λ̂1k +

√
r̂λ̂2k

)∫
R
n(1)

(
F̂ †
1,nk(x)− F̂ †

2,nk(x)
)2
dx.

Let {ζsk(x)}κ
∗
n

k=1 be mutual independent Gaussian process for s = 1, 2, with mean

zero and covariance function

Σsk(x, y) = Fsk(x ∧ y)− Fsk(x)Fk(y) + fsk(x)fsk(y) + fsk(x)E
(
ξ
(s)
ik I

(
ξ
(s)
ik ≤ y

))
+ fk(t)E

(
ξ
(s)
ik I

(
ξ
(s)
ik ≤ x

))
+

1

4

(
E(ξ(s)ik )4 − 1

)
xyfsk(x)fsk(y)
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+
1

2
xfsk(x)E

(
((ξ

(s)
ik )2 − 1)I

(
ξ
(s)
ik ≤ y

))
+

1

2
yfsk(y)E

(
((ξ

(s)
ik )2 − 1)I

(
ξ
(s)
ik ≤ x

))
+

1

2
xfsk(x)fsk(y)E(ξ(s)ik )3 +

1

2
yfsk(y)fsk(x)E(ξ(s)ik )3, x, y ∈ R.

We mimic the two-sample t-test and state the following theorem whose proof is

analogous to that of Theorems 4 and 5.

Theorem 6. If Assumptions (A1) - (A7) are satisfied for the data
{
Y

(s)
ij

}
, s = 1, 2,

respectively, under the null hypothesis in (3.1), as n(1) → ∞, we have the following

sup
t∈R

∣∣∣∣P (S◦
n ≤ t)− P

(
max

1≤k≤κ⋆
n

sup
x∈R

∣∣ζ1k(x) +√
rζ2k(x)

∣∣ ≤ t

)∣∣∣∣→ 0,

sup
t∈R

∣∣∣∣P (S‡
n ≤ t

)
− P

(
max

1≤k≤κ⋆
n

sup
x∈R

∣∣ζ1k(x) +√
rζ2k(x)

∣∣ ≤ t

)∣∣∣∣→ 0,

sup
t∈R

∣∣∣∣∣P (V ◦
n ≤ t)− P

(
κ⋆
n∑

k=1

(
λ1k +

√
rλ2k

) ∫
R

∣∣ζ1k(x) +√
rζ2k(x)

∣∣2 dx ≤ t

)∣∣∣∣∣→ 0,

sup
t∈R

∣∣∣∣∣P (V ‡
n ≤ t

)
− P

(
κ⋆
n∑

k=1

(
λ1k +

√
rλ2k

) ∫
R

∣∣ζ1k(x) +√
rζ2k(x)

∣∣2 dx ≤ t

)∣∣∣∣∣→ 0.

4. Implementation

4.1 The selection of tuning parameters

A default setting of parameters was mentioned in Section 3, namely q + µ = p∗ = 4,

ν = 1, θ = 1, p = 4, and γ = 1/4. The number of knotsNs is an important smoothing

parameter, and we recommend using a data-driven method that minimizes the AIC
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4.1 The selection of tuning parameters

value corresponding to Ns ∈ [0.5N1/4, 4N1/4]. The AIC value is defined as:

AIC (Ns) = log

{
(nN)−1

n∑
i=1

N∑
j=1

(Yij − η̂i(j/N))2
}

+
8 + 2Ns

N
. (4.1)

For each trajectory, the number of knots can also be determined individually

by replacing (nN)−1
∑n

i=1

∑N
j=1 (Yij − η̂i(j/N))2 with N−1

∑N
j=1 (Yij − η̂i(j/N))2 in

(4.1). However, we prefer to select a uniform Ns since we have assumed that {ηi}ni=1

is an i.i.d. process, which is more computationally convenient.

According to Assumption (A7), the smooth estimator F̂nk is computed using

the triweight kernel K(u) = 35(1 − u2)3/32, for |u| ≤ 1, and a bandwidth of h =

IQRn−1/4/ log n, where IQR denotes the sample interquartile range of the estimated

FPC scores
{
ξ̂ik

}n

i=1
. As for the kernel density estimator f̂k defined below in (4.3), we

use the biweight kernel L(u) = 15(1− u2)2/16, for |u| ≤ 1, with the bandwidth H =

IQRn−1/6 as a rule of thumb, to satisfy Assumption (A7). In addition, based on As-

sumption (A2), the increasing number κn is chosen by the following empirically stan-

dard and efficient criteria, that is κn = min
{
Ns + p,max

{
argmin1≤v≤T

{∑v
k=1 λ̂k/

∑T
k=1 λ̂k > 0.95

}
, ⌈log n⌉

}}
,

where {λ̂k}Tj=1 are the first T estimated positive eigenvalues.
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4.2 SCBs for the distribution of FPC scores

4.2 SCBs for the distribution of FPC scores

As stated in Theorem 3 and Theorem 5, the weak convergence of the proposed smooth

estimator F̂nk and nonsmooth estimator F̂ †
nk is related to the Gaussian process ζk(·)

with covariance function Σk(·, ·). It is difficult to analytically derive the distribution

of supx∈[0,1] |ζk(x)| and calculate its quantile, as some quantities in the covariance

function are unknown and need to be estimated. To estimate the quantile, for any

fixed k, we define

Ξ̂ik(x) = I
(
ξ̂ik ≤ x

)
− F̂ †

nk(x) + f̂k(x)ξ̂ik + xf̂k(x)
ξ̂2ik − 1

2
, (4.2)

f̂k(x) : =
1

n

n∑
l=1

LH(ξ̂lk − x). (4.3)

Further define the covariance estimator Σ̂k(s, t) = n−1
∑n

i=1 Ξ̂ik(s)Ξ̂ik(t). The fol-

lowing Proposition 2 ensures that the covariance estimator Σ̂k(s, t) is uniformly con-

vergent to the Gaussian covariance function Σk(s, t).

Proposition 2. Under Assumptions (A1) - (A7), as n→ ∞, one has that

max1≤k≤κn sup(s,t)∈R2

∣∣∣Σ̂k(s, t)− Σk(s, t)
∣∣∣ = Op(1).

Using the definition in (4.2), we construct random vectors
{
Ξ̂ik(zlk)

}L

lk=1
for

1 ≤ i ≤ n, allowing the computation of the sample covariance Σ̂k(·, ·). Here, z1 <

z2 < · · · < zL are L equally spaced grid points, with minn
i=1 ξ̂ik = z1, maxni=1 ξ̂ik = zL,

and L being a large integer. To estimate the upper α quantile of the maximal
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4.3 Uniform testing for FPC scores

absolute value, we generate L-dimensional Gaussian vectors with zero mean and

covariance matrix
{
Σ̂k(zlk , zl′k)

}L

lk,l
′
k=1

B times (where B is large). The empirical

upper α quantile, Q̂1−α, is computed for each replication, with default L = 101 and

B = 1000. Denote by Q1−α the upper-α quantile of the distribution of supx∈R |ζk(x)|,

i.e., P(supx∈R |ζk(x)| ≤ Q1−α) = 1 − α. From Proposition 2 and the Continuous

Mapping theorem, Q̂1−α can replace Q1−α for a Gaussian process. Thus, we can

derive asymptotic SCBs for CDF Fk(·) for any fixed k ∈ Z+.

Corollary 1. Under Assumptions (A1) and (A3) - (A7), for any α ∈ (0, 1) and fixed

k ∈ Z+, as n→ ∞, an asymptotic 100(1−α)% smooth simultaneous confidence band

based on F̂nk for Fk and nonsmooth simultaneous confidence band based on F̂ †
nk are

respectively given by
[
F̂nk ± n−1/2Q̂1−α

]
∩ [0, 1] and

[
F̂ †
nk ± n−1/2Q̂1−α

]
∩ [0, 1] .

4.3 Uniform testing for FPC scores

The distribution of the test statistics Sn and S†
n can be well approximated by

the distribution of max1≤k≤κn supx∈R |Gk(x)| under the null hypothesis in (1.2), as

shown in Theorem 4 and Theorem 5. Following the procedures outlined in sub-

section 4.2, we construct a sequence of random vectors
{
Ξ̂ik(zkl)

}Lk

l=1
, 1 ≤ i ≤ n,

1 ≤ k ≤ κn based on (4.2), in order to obtain Σ̂k(·, ·). The Lk equally spaced

grid points are determined by min
{
minn

i=1 ξ̂ik,−n1/8
}

= zk1 < zk2 < · · · < zk,Lk
=

max
{
maxni=1 ξ̂ik, n

1/8
}
, where Lk = Lk(n) diverges to infinity with a polynomial
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4.3 Uniform testing for FPC scores

rate as n → ∞. For instance, we suggest Lk(n) ≍ n. After that, we generate∑κn

k=1 Lk-dimensional Gaussian random vectors with mean zero and covariance ma-

trix: diag

({
Σ̂1(z1l, z1l′)

}L1

l,l′
,
{
Σ̂2(z2l, z2l′)

}L2

l,l′
, · · · ,

{
Σ̂κn(zκn,l, zκn,l′)

}Lκn

l,l′

)
. We re-

peat this process B times, where B is a large predetermined integer. Then, we

compute the empirical upper α quantile of the maximal absolute value for each repli-

cation, denoted by Ẑ1−α.

Besides, the test statistics Vn and V †
n converge weakly to the weighted sum of the

squared L2-norms of Gaussian processes {ζk(x)}κn
k=1, as proved in Theorems 4 and 5.

The squared L2-norm of ζk(x) is distributed as a weighted sum of chi-squared random

variables
∑∞

m=1 bkmχ
2
km, where bkm are the eigenvalues of the covariance function Σk

and {χ2
km}∞m=1 are independent standard chi-squared random variables of degree 1.

To approximate the distribution of the weighted sum of chi-squared, we compute the

eigenvalues {b̂km}Lk
m=1 of the covariance matrix

{
Σ̂k(zkl, zkl′)

}Lk

l,l′
for all 1 ≤ k ≤ κn

and use a truncated numberMk ≍ log n to simulate independent chi-squared random

variables {χ2
km}

κn,Mk

k=1,m=1 repeatedly. The empirical upper α quantile of the weighted

sum of chi-squared, denoted by Û1−α, is obtained from the simulated data. The next

proposition demonstrates our testing procedures are asymptotically correct.

Proposition 3. Under Assumptions (A1)-(A7), for any given significance level α ∈

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0246



(0, 1), as n→ ∞, under H0 in (1.2),

P
(
Sn ≤ Ẑ1−α|{Yij}n,Ni=1,j=1

)
P−→ 1− α, P

(
S†
n ≤ Ẑ1−α|{Yij}n,Ni=1,j=1

)
P−→ 1− α, (4.4)

P
(
Vn ≤ Û1−α|{Yij}n,Ni=1,j=1

)
P−→ 1− α, P

(
V †
n ≤ Û1−α|{Yij}n,Ni=1,j=1

)
P−→ 1− α. (4.5)

Under H1 in (1.2),

P
(
Sn > Ẑ1−α|{Yij}n,Ni=1,j=1

)
P−→ 1, P

(
S†
n > Ẑ1−α|{Yij}n,Ni=1,j=1

)
P−→ 1, (4.6)

P
(
Vn > Û1−α|{Yij}n,Ni=1,j=1

)
P−→ 1, P

(
V †
n > Û1−α|{Yij}n,Ni=1,j=1

)
P−→ 1. (4.7)

5. Simulation

In this section, numerical simulation studies are conducted to investigate the finite-

sample performance of the proposed methods. The data are generated from the

following model: Yij = m (j/N) +
∑∞

k=1 ξikϕk (j/N) + σ (j/N) εij, where m(x) =

5+ sin{2π(x− 1/2)} and {ξik}n,20i=1,k=1 are i.i.d random variables. The rescaled eigen-

functions are defined as ϕk(x) =
√
λkψk(x), where λk = 5k−2 for k = 1, 2, · · · , 20 and

λk = 0 for k > 20, and ψ2k−1 =
√
2 sin(2kπx), ψ2k =

√
2 cos(2kπx) for k ∈ Z+. We

consider two options for the standard deviation function: a homoscedastic case with

σ(x) = σε and a heteroscedastic case with σ(x) = 6/5σε (5 + exp(x))−1 (5− exp(x)).

The noise level is set at σε = 1. We consider three error distributions: the standard
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Normal distribution N(0, 1), the Uniform distribution U(−
√
3,
√
3), and the stan-

dardized Laplace distribution with density f(x) = 2−1/2 exp(
√
2|x|). The number of

grid observations N is set at 100, 200, 400, and 600, and the number of trajectories

is n = cN θ with c = 0.8 and θ = 1.

To assess our SCBs for FPC score CDFs, we independently generate ξik from

either a standard Gaussian N(0, 1) or a rescaled t(10) distribution. We explore two

cases for our hypothesis testing procedure (1.2): In Case 1, testing for normality

with Fk(·) = Φ(·), ξik is drawn from N(0, 1), U(−
√
3,
√
3), or standardized Laplace

distribution. In Case 2, testing if FPC score distribution is rescaled t(10), ξik comes

from rescaled t(10), U(−
√
3,
√
3), or standardized Laplace. For both cases, κn =

⌈log n⌉. Each experiment involves 1000 bootstrap replications for quantile estimation

and 500 Monte Carlo replications.

Tables S.1-S.4 indicate that smooth SCBs based on F̂nk slightly outperform non-

smooth ones in coverage frequency, without width differences ((Wang et al., 2013,

2014)). As sample size grows, empirical coverage rates align more with the nominal

confidence level, supporting our asymptotic theory. Figures S.1 - S.2 display F̂nk

and F̂ †
nk estimators and their SCBs for ξ1k, showing narrower SCBs and estimators

closer to the true CDF as N increases. Tables S.5-S.8 show the test’s empirical size

approaching 0.05 and power nearing 1 with increasing N . The nonsmooth estimator

F̂ †
nk shows slightly higher empirical power than F̂nk, with little difference across εij
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6. Application

6.1 Well-known functional data sets

The first dataset records the heights of 54 girls and 39 boys at 31 different ages, as

shown in Figure S.3, and it is a part of object growth in the fda package; see Ramsay

et al. (2022). Since height is continuously changing with time, it can be modeled as

functional data with measurement errors. In the field of biology, there is interest in

the patterns of variation in the growth curves of males and females. Thus, we apply

the proposed methods to investigate this issue.

To analyze the growth curves of boys, the default value of κn = ⌈log n⌉ is used,

resulting in κn = 4. The first four estimated eigenvalues are 30.937, 1.555, 1.065, and

0.679, respectively, which account for more than 99% of the variation in the data.

For the curves of girls, the default value of κn = 4 is also used, and the first four

estimated eigenvalues are 29.090, 2.299, 0.726, and 0.378, explaining more than 99%

of the variation in the data. Therefore, we construct the SCBs for the CDF of the

first four FPC scores for both sets of curves, which are presented in Figures S.4- S.5.

We then address Assumption (A6), which imposes the independence of FPC

scores ξik’s across k. A natural approach involves estimating these scores and sub-

sequently employing an independent test. In this regard, we apply a K-sample test-
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ing method as proposed in Bakirov et al. (2006) and facilitated by the R package

IndependenceTests. The resulting statistic is 0.534, respectively. Notably, the cor-

responding critical value for a significance level of 0.05 is 0.822. Consequently, we

can confidently conclude that the FPC scores of the growth curves exhibit inde-

pendence over k. Subsequently, we test whether the distributions of FPC scores

for growth curves in boys and girls are equal using a two-sample testing procedure.

We also check whether the data can be assumed to follow a Gaussian process in

the space L2[0, 1] using our testing procedures and the JB test proposed in Górecki

et al. (2020). Results in Table 1 suggest no strong evidence of differences in the

distribution of FPC scores between boys and girls, or that the growth curves are not

Gaussian. Therefore, we conclude that the growth curves of boys and girls belong to

the family of Gaussian distributions. Once the curve data are verified as Gaussian

processes, one only need to model the mean function and covariance function to fully

characterize the properties of distributions.

The second dataset, containing spectral curves for 215 meat samples, is available

in the fda.usc package as tecator. The data are recorded on a Tecator Infractec Food

and Feed Analyzer working in the wavelength range 850-1050 nm by the near infrared

transmission principle. The varying fat content in each meat sample results in a

different near infrared absorbance spectrum. To explain at least 99.5% of the variance

of curves, we estimate the eigensystem with κn = 2 eigenvalues. We investigate the
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Table 1: Two-sample tests and normality tests for two curves sets with the corre-
sponding p-values in the brackets. Sn, S

◦
n (S†

n, S
‡
n) [Vn, V

◦
n (V †

n , V
‡
n )]: the KS-type

[CVM-type] test statistics based on the smooth (non-smooth) estimator; JB: the
JB-test statistic proposed in Górecki et al. (2020).

S◦
n S‡

n V ◦
n V ‡

n -

Two-sample 0.843(0.718) 0.818(0.768) 59.445(0.072) 59.220(0.072) -

Sn S†
n Vn V †

n JB

Boys 0.652(0.589) 0.671(0.530) 9.883(0.159) 9.472(0.180) 4.056(0.398)
Girls 0.837(0.216) 0.944(0.091) 11.450(0.183) 11.194(0.192) 3.750(0.441)

normality of the data using the CDF of the first FPC score and its SCBs in Figure

S.6. The CDF of standard normal random variables falls outside the SCB, suggesting

that normality of the data is questionable. Table 2 confirms this by showing that the

null hypothesis of normality (1.3) is strongly rejected. We observe that some outlier

curves have higher spectral absorbance than others, which may contribute to the

lack of normality in the data. Then, we approximate the CDF of the first FPC score

ξi1 as a centralized gamma distribution with a shape parameter of 2.831 and a scale

parameter of 0.594, and the CDF of the second FPC score ξi2, i = 1, 2, · · · , n, as a

standard normal distribution. To test this approximation, we consider the hypothesis

testing problem:

H0 : F1(x) = G(x), F2(x) = Φ(x), v.s. H1 : F1(x) ̸= G(x) or F2(x) ̸= Φ(x), (6.1)

where G(·) is the CDF of the centralized gamma distribution mentioned above.
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6.2 EEG data

Table 2: Tests for the spectral curves with the corresponding p-values in the brackets.
Sn, (S

◦
n) [Vn, (V

◦
n )]: the KS-type [CVM-type] test statistics based on the smooth

(non-smooth) estimator; JB: the JB-test statistic proposed in Górecki et al. (2020).

the null Sn S†
n Vn V †

n JB

(1.3) 1.240(0.021) 1.233(0.022) 0.388(0.000) 0.387(0.000) 210.295(0.000)
(6.1) 0.877(0.218) 0.867(0.227) 0.035(0.742) 0.038(0.696) -

Through conducting the introduced independence test, we assert that the FPC scores

are independent over k at the 95% confidence level, with the test statistic being 0.739

and the critical value being 0.762. Table 2 reports the test statistics and correspond-

ing p-values obtained by applying our proposed testing procedure. The result sup-

ports the conclusion that the tecator data does not follow a Gaussian distribution,

as the first FPC score may be drawn from a centralized gamma distribution. Given

that the proposed test implies the skewness of the spectral curves of meat, using

some robust functional data analysis methods combined with M-estimation might

be a more reasonable choice for further data analysis. For instance, one could apply

the clustering procedure for a non-Gaussian process developed in Zhong et al. (2021),

or adopt the robust functional principal component analysis in Shi and Cao (2022).

6.2 EEG data

To further illustrate the proposed inference methods, we consider to study Elec-

troEncephalogram (EEG) data, which is known for containing substantial informa-

tion about the function of the human brain. The data were collected by the research
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group of Prof. Linhong Ji at the Department of Mechanical Engineering of Tsinghua

University, and have been previously analyzed in several studies; see (Li and Yang,

2023; Zhong and Yang, 2023), and Song et al. (2024). This dataset consists of EEG

signals recorded from 32 scalp locations at a 1000Hz sample rate for 142 individuals

during a five-minute closed-eye resting state experiment. We use the mid-200 sig-

nals of each individual from the 10-th scalp location and model the data using (1.1)

with n = 142 and N = 200. Applying the estimation procedure, we recover the tra-

jectories using a B-spline smoother. Figure S.8 shows segments of raw EEG data for

6 randomly selected participants, along with the corresponding B-spline estimation.

To investigate the normality assumption of the EEG data in the L2 space, we

apply the normality test in (1.3) with κn = 7, as suggested by Song et al. (2024).

According to the discussion of independence testing of FPC scores in Section 6.1,

we obtain the test statistic of 0.817 and the rejection region of 0.899, which provide

evidence that the FPC scores are independent over k. The results of the proposed

CVM-type testing procedures and the JB test in Górecki et al. (2020) are displayed

in Table 3. Both tests strongly reject the null hypothesis (1.3), indicating that the

EEG data does not follow a Gaussian process in the L2 space. We also present the

proposed SCBs for the CDF of the first six FPC scores in Figure S.9, which suggests

that the first three FPC scores follow the standardized Laplace distribution with

CDF L(·), while the last four FPC scores can be considered Gaussian. Therefore,
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Table 3: Tests for the EEG data with the corresponding p-values in the brackets.
Sn, (S

◦
n) [Vn, (V

◦
n )]: the KS-type [CVM-type] test statistics based on the smooth

(non-smooth) estimator; JB: the JB-test statistic proposed in Górecki et al. (2020).

the null Sn S†
n Vn V †

n JB

(1.3) 0.969(0.201) 0.943(0.245) 27.945(0.001) 28.231(0.001) 119.674(0.000)
(6.2) 0.721(0.802) 0.745(0.738) 9.123(0.604) 9.420(0.557) -

we test the null hypothesis:

H0 : Fk(x) = L(x) 1 ≤ k ≤ 3 and Fk(x) = Φ(x) 4 ≤ k ≤ 7,

H1 : Fk1(x) ̸= L(x) ∃1 ≤ k1 ≤ 3 or Fk2(x) ̸= Φ(x) ∃4 ≤ k2 ≤ 7.

(6.2)

Table 3 confirms this finding, which guides us in gaining a deeper understanding of

the distribution of the EEG data.

7. Concluding Remark

In this paper, we present a novel method for estimating the CDF of FPC scores in

densely observed functional data. We introduce both smooth and non-smooth esti-

mators for the CDF, which are asymptotically equivalent and possess advantageous

properties under mild conditions. Utilizing Theorems 3 and 5, we construct SCBs

for the CDF of FPC scores. Our method also includes a new testing procedure for

the distribution of FPC scores, accommodating the sample size’s growth and the

functional data’s infinite-dimensional character. This includes testing for the nor-
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mality of functional data. We assess our approach through simulation studies and

its application to well-known functional datasets and EEG data. Future research

could expand this method to other functional data types like image data, sphere or

manifold data, functional time series, or spatially indexed functional data.

Supplementary Material

Supplementary Material contains additional tables and figures in Sections 5-6 and

detailed proofs of the theoretical results with necessarily technical lemmas.
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