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TESTING FOR VARIANCE CHANGES UNDER

VARYING MEAN AND SERIAL CORRELATION

Cheuk Wai Dominic Leung and Kin Wai Chan

Department of Statistics, The Chinese University of Hong Kong

Abstract: Detection of variance change points is statistically difficult when the data

exhibit a varying mean structure and autocorrelation. Existing variance change

point tests either require the assumption of mean constancy or sacrifice testing power

due to serial dependence. This article addresses these problems by proposing a trend-

robust and autocorrelation-efficient variance change point test via a differencing

approach. This approach removes the mean effect without fitting the mean function.

It also allows the test to retrieve the reduced power due to serial dependence. We

prove that the optimal difference-based test should minimize the long-run coefficient

of variation of the sample second moment of the noises instead of the long-run

variance in the presence of serial dependence. The optimal solution can be efficiently

computed by fractional quadratic programming. The asymptotic relative efficiency

under a local alternative hypothesis is derived. A rate-optimal long-run variance

estimator is also proposed. It is proven to be doubly robust against varying mean

and variance change points.

Key words and phrases: change point, cumulative sum, difference sequence, long-run

variance, non-linear time series.
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1. Introduction

Abrupt variance changes provide insights that cannot be explained by the variability

of the means. Applications cover various fields, e.g., finance (Inclan and Tiao,

1994), environmental science (Gerstenberger et al., 2020), medical science (Gao

et al., 2019), etc; see also Hsu et al. (1974), Lee and Park (2001), Lee et al. (2003),

and Aue et al. (2009). In this article, we assume that the observed time series

X1, . . . , XN are generated as follows:

Xi “ µi ` σiZi pi “ 1, . . . , Nq, (1.1)

where µ1, . . . , µN are possibly non-constant deterministic signals, σ1, . . . , σN are

deterministic marginal standard deviations, and pZiqiPZ is a zero-mean unit-variance

strictly stationary noise time series. Our goal is to test H0 : σ1 “ ¨ ¨ ¨ “ σN against

H1 : σ0 ” σ1 “ ¨ ¨ ¨ “ σk‹ ‰ σk‹`1 “ ¨ ¨ ¨ “ σN ” σ0e
∆ (1.2)

for some 1 ă k‹ ă N and ∆ ‰ 0, where k‹ is the change point and ∆ parametrizes

the change. This problem is non-trivial because of (i) non-constant means and (ii)

non-independent noises.

For (i), mean-constancy is a crucial assumption for the traditional cumulative

sum variance change point tests. Many researchers overcome it by centering the

data in advance. The first approach is differencing, which has been widely used for

variance estimation in nonparametric regression; see, e.g., Chen and Gupta (1997),
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Davis et al. (2006), Wu and Zhao (2007), and Chapman et al. (2020). However, the

effect on the power was not discussed. Indeed, differencing is also recently used for

specification test and trend test in time series; see Bai and Wu (2024) and To and

Chan (2023). The second approach is smoothing. Typically, consistent estimators

pµ̂iq
N
i“1 of the means pµiq

N
i“1 are used to construct the residuals pXi ´ µ̂iq

N
i“1. For

example, Lee et al. (2003) used Nadawaya–Watson kernel estimator, whereas Gao

et al. (2019) used a weighted spline regression estimator. The former work was

proved to be valid for time series, while the latter one was proved for independent

Gaussian data. Unfortunately, local de-trending may not lead to the highest power

as we shall show in Section 6.

For (ii), Lee et al. (2003) showed that the cumulative sum test statistic is

identical to that in the case with independent data, except that the normalizer

is switched from the marginal variance to the long-run variance. The resulting

test statistic has the same limiting distribution under certain weak dependence

conditions, e.g., mixing (Phillips, 1987) and stability (Wu, 2011). However, Lee

et al. (2003) indicated that the power declines as the serial dependence gets stronger.

So, serial dependence was regarded as a harmful structure that hurts the power. To

the best of our knowledge, the power loss issue remains unsolved no matter whether

pµiq
N
i“1 are constant or not.

In this article, we resolve the problems by a unified approach. Let d “
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pd0, d1, . . . , dmq
T P Rm`1 for m P N. We call d a difference sequence if

řm
j“0 dj “ 0

and
řm
j“0 d

2
j “ 1. If only

řm
j“0 d

2
j “ 1 is satisfied, we call d a weight sequence. When

m “ 0, we set d “ p1q. We also write d as dpmq “ pd
pmq
0 , . . . , d

pmq
m qT to emphasize

the order m. Using d, we transform Xi to

Di “

m
ÿ

j“0

djXi`m´j pi “ 1, . . . , nq, (1.3)

where n “ N ´m. We also denote Di “ φpL; dqXi`m, where L is the lag operator,

and φpL; dq “ d0 ` d1L` ¨ ¨ ¨ ` dmL
m is a difference operator. Since m is assumed

finite, N Ñ 8 and n Ñ 8 are equivalent. All asymptotic results are derived as

nÑ8.

The principle is that pDiq
n
i“1 is a good building block for inferring the variance

because the mean is approximately removed. Our goal is to derive the optimal

difference sequence d‹ so that the resulting pDiq
n
i“1 utilizes the dependent data as

antithetic variates to improve the asymptotic efficiency of the test statistic, which

consequently boosts up the power.

Our major contributions are listed as follows. First, when the data are serially

dependent, we proved that one should minimize the long-run coefficient of variation

instead of long-run variance for constructing the optimal test. It enables us to solve

the optimization problem by fractional quadratic programming. Consequently, the

optimal difference sequence can be numerically found in a computationally feasible

manner. Second, we derived a close-form expression of the asymptotic relative
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efficiency. It supports the optimality claim. Third, we proposed a doubly robust

estimation scheme for the long-run variance under (i) varying mean and (ii) variance

change points in serially dependent data. It consistently standardizes our proposed

test statistics and leads to a size-accurate tests.

The theoretic parts of this article were motivated by the differencing ideas pre-

sented in Hall et al. (1990) and Chan (2022a). These ideas were originally developed

for removing time-varying structures in the first-order moment (i.e., the mean). We

extend their concepts to handle time-varying structures in both the first-order mo-

ment and the second-order moment (i.e., the variance). In our approach, the mean

function is assumed to be Lipschitz continuous, while the variance function may

contain change points. In particular, we demonstrate that the optimal difference

sequence proposed in Hall et al. (1990) is no longer optimal for addressing vari-

ance change points. We establish that the optimal difference sequence depends on

the serial dependence structure in our problem. Additionally, we generalize the

difference-based long-run variance estimator introduced in Chan (2022a) to achieve

double robustness against changes in both the mean and the variance.

Statistica Sinica: Preprint 
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2. Background

2.1 Mathematical setup and assumptions

Let N “ t1, 2, . . .u and N0 “ NY t0u. Define
ři1
i“i0

yi “ 0 if i0 ą i1. For a random

variable V and p ě 1, denote }V }p “ pE|V |
pq1{p. The autocovariance of a stationary

time series pViqiPZ is γVk “ covpV0, Vkq, k P Z. Given V1:n “ pV1, . . . , Vnq
T, denote

V̄n “
řn
i“1 Vi{n and γ̂Vk “

řn
i“|k|`1pVi ´ V̄nqpVi´|k| ´ V̄nq{n for |k| ă n. Define

∇Vi “ pVi`1 ´ Viq{2
1{2. Denote weak convergence by “ñ” and convergence in

probability by “
pr
Ñ”. Under H0, we set k‹ “ ∆ “ 0.

Let pεi, ε
1
iqiPZ be independent and identically distributed (i.i.d.) random vari-

ables. So, ε1i is said to be an i.i.d. copy of εi for each i P Z. Assume Zi “

gpFiq and Z 1i “ gpF1
i q, where g is measurable, Fi “ p. . . , εi´1, εiq, and F1

i “

p. . . , ε´1, ε
1
0, ε1, . . . , εiq. Let ξppiq “ }Zi ´ Z

1
i}p be the physical dependence measure

(Wu, 2005) for p ě 1.

Assumption 1 (Short-range dependence). The noise sequence pZiqiPZ admits a

causal representation Zi “ gpFiq, and satisfies that (a) EpZ8`e
i q ă 8 for some e ą

0; (b) pZiq is strictly stationary; and (c) pZiq is 8-stable, i.e., Ξ8 “
ř8
i“0 ξ8piq ă 8.

Assumption 2 (Signal smoothness). The deterministic signal pµiq
N
i“1 admits the

form µi “ fpi{Nq for i “ 1, . . . , N , where f : r0, 1s Ñ R is Lipschitz continuous,

i.e., there is a C P p0,8q such that |fpx1q´fpx2q| ď C|x1´x2| for all x1, x2 P r0, 1s.

Statistica Sinica: Preprint 
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Assumption 3. Unless otherwise stated, one of the following collections of as-

sumptions is satisfied: (1) Assumption 1 holds, pµiq
N
i“1 satisfy Assumption 2, and d

is a difference sequence. (2) Assumption 1 holds, µ1 “ ¨ ¨ ¨ “ µN , and d is a weight

sequence.

2.2 Difference-based test

Our idea is to approximate the mean-zero time series φpL; dqpXi`m ´ µi`mq with

Di; see Section A.1 of the supplementary note for a detailed explanation of this ap-

proximation. A suitable d allows us to achieve a trend-robust and autocorrelation-

efficient test.

Let Qi “ D2
i for i “ 1, . . . , n. Define the forward average and backward

averages of Qi’s as ΛFn prq “
řtnru

i“1 Qi{tnru and ΛBn prq “
řn
i“tnru`1Qi{pn ´ tnruq,

respectively, for r P r0, 1s, where 0{0 “ 0 by convention. Then the difference-based

cumulative sum process is

Cnpr; dq “ n1{2rp1´ rq
 

ΛFn prq ´ ΛBn prq
(

, r P r0, 1s. (2.1)

We propose an mth order differenced Kolmogorov–Smirnov test statistic:

Tnpdq “
1

v̂
1{2
m

sup
rPr0,1s

|Cnpr; dq|, (2.2)

where the normalizer v̂m is a weakly consistent estimator of the long-run variance

vm “ lim
nÑ8

nvar
`

Q̄n
˘

, where Q̄n “
1

n

n
ÿ

i“1

Qi. (2.3)

Statistica Sinica: Preprint 
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Consistent estimation of vm under H0 and H1 is crucial to size accuracy and pow-

erfulness of the test, respectively. Estimation of vm is highly non-trivial. Our

proposed estimator of vm is presented in Section 5. From (2.2), a variance change

point estimator is k̂ “ tpm ` 1q{2u ` arg max1ďkďn |Cnpk{n; dq|. Theorem 1 below

states the asymptotic properties of Tnpdq.

Theorem 1 (Validity and consistency). Let m P N. Suppose Assumption 3 is

satisfied. Assume that v̂m
pr
Ñ vm. (1) Under H0,

Tnpdq ñ K ” sup
rPr0,1s

|Bprq ´ rBp1q|, (2.4)

where B is the standard Brownian motion. (2) Under H1, if, in addition, k‹{n Ñ

τ P p0, 1q, then pk̂ ´ k‹q{n
pr
Ñ 0 and

Tnpdq

n1{2

pr
Ñ p1´ τqτ

˜

ř

|k|ďm

řm
j“|k| djdj´|k|γ

Z
k

v
1{2
m

¸

σ2
0

ˇ

ˇ1´ e2∆
ˇ

ˇ . (2.5)

We emphasize that Theorem 1 remains valid even if pµiq
N
i“1 are not constant.

In (2.4), K is the Kolmogorov distribution, whose quantiles are available in standard

software packages. So, performing a test based on Tnpdq is straightforward. From

(2.5), Tnpdq Ñ 8 in probability under H1. Hence, the test has power one asymptot-

ically. Some remarks concerning applicability and implementation are listed below.

Remark 2.1. The proposed test is applicable to test for multiple change points,

i.e.,

H 11 : σ1 “ ¨ ¨ ¨ “ σk‹1 ‰ σk‹1`1 “ ¨ ¨ ¨ “ σk‹2 ‰ ¨ ¨ ¨ ‰ σk‹M`1 “ ¨ ¨ ¨ “ σN , (2.6)

Statistica Sinica: Preprint 
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for unknown M P N and 1 ă k‹1 ă ¨ ¨ ¨ ă k‹M ă n. Under H1, denote the initial

variance by σ0 and set σk‹ι`1 “ σ0e
∆ι for 1 ď ι ď M and ∆0 “ 0. Let k‹ι {n Ñ τι

and θι “ τι`1 ´ τι ‰ 0, where τ0 “ 0, τM`1 “ 1 and θ0 “ τ1. The analogy of

Theorem 1 is deferred to Section A.2 of the supplementary note.

Remark 2.2. We recommend doing a variance stabilizing transformation to im-

prove the finite-sample performance. Define CLn pr; dq “ n1{2rp1´rq
 

log ΛFn prq ´ log ΛBn prq
(

,

where ˘8ˆ 0 “ 0. The stabilized version of Tnpdq is

T pLqn pdq “
1

v̂
1{2
m,L

sup
rPr0,1s

ˇ

ˇCLn pr; dq
ˇ

ˇ , (2.7)

where v̂m,L is an estimator of vm,L “ limnÑ8 nvarplog Q̄nq. Our proposal of v̂m,L

is given in Section 5. The analogy of Theorem 1 and related theoretical properties

are deferred to Section A.3 of the supplementary note.

Remark 2.3. In the literature, there is a class of self-normalized tests that do

not require estimation of the long-run variance; see, e.g., Shao (2010), Shao and

Zhang (2010), Zhang and Lavitas (2018), and Cheng and Chan (2024). Although

self-normalization bypasses estimation of vm and achieves better size, it comes with

the price of lower power, as mentioned in Lobato (2001). Since the goal of the

current article is to derive a variance change point test that has high power, we

focus on the non-self-normalized approach. Besides, we would like to emphasize

that constructing a self-normalizer for a variance change point test in our setting

Statistica Sinica: Preprint 
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is not straightforward because the squared differenced data Q1, . . . , Qn exhibits

change points in both mean and variance under H1. So, the existing self-normalized

approaches that are tailor-made for handling change point in mean or change point

in variance with a constant mean may need non-trivial modification. We believe

that it is an interesting topic and leave it for future research.

3. Methodology and main results

3.1 Optimal difference sequence

We propose utilizing neighbor observations as antithetic variates to maximally boost

up the power of the test. In this section, we detail how the weights pd0, . . . , dmq

of the antithetic variates pXi, . . . , Xi`mq are optimally designed to construct Di “

φpL; dqXi`m.

In view of (2.5), the optimal difference sequence shall be chosen to minimize

wm “
vm

´

ř

|k|ďm δkγ
Z
k

¯2 , (3.1)

where δk “
řm
j“|k| djdj´|k| for |k| ď m. We will further elaborate that optimality

holds under H0 and H1 in Theorem 2. Another interpretation of maximizing (3.1)

is provided by using Asymptotic Relative Efficiency (ARE) in Theorem 4.

Notice that the denominator is reduced to pγZ0 q
2 when Zi, which means varpZiq “

vartφpL; dqZiu when Zi is uncorrelated. We highlight this finding because Hall et al.

Statistica Sinica: Preprint 
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(1990) focuses on minimizing vm if the underlying noise is i.i.d. We added the de-

nominator and generalize it to the time series optimization.

Directly optimizing wm with respect to pd0, . . . , dmq is non-standard. Instead,

we proceed in two steps as follows: (i) optimizing wm with respect to pδ0, . . . , δmq,

and (ii) converting pδ0, . . . , δmq back to pd0, . . . , dmq. In the rest of this subsection,

we prove that step (i) is a fractional quadratic programming problem, and step (ii)

can be solved iteratively by, e.g., the innovation algorithm.

To begin with, we define the following notation. Recall that γ̂Zk is the sample

autocovariance of Z1:n at lag k. For k, k1 P t0, . . . ,mu, the long-run covariance of

γ̂Zk and γ̂Zk1 is

ΥZ
k,k1 “ lim

nÑ8
ncovpγ̂Zk , γ̂

Z
k1q “

8
ÿ

j“´8

ζZk,k1pjq, (3.2)

where ζZk,k1pjq “ ζZk1,kp´jq “ EpZ0Z0`kZjZj`k1q ´ γ
Z
k γ

Z
k1 for j ě 0. Let γZ “ pγZk qk

and ΥZ “ pΥZ
k,k1qk,k1 . The limits in (3.2) exist by Assumption 1.

Note that Di « φpL; dqpσi`mZi`mq. So, to study the behavior of wm, we let

Yi “ σ0φpL; dqZi`m be a version of Di defined by the underlying stationary noises

pZiq with a constant scale σ0. Denote δ “ pδ1, . . . , δmq
T. We may also write δ as

δpmq “ pδ
pmq
1 , . . . , δ

pmq
m qT to emphasize the order m. Let

U p1qm pδ; γZq “

˜

m
ÿ

k“´m

δkγ
Z
k

¸2

and U p2qm pδ; ΥZq “

m
ÿÿ

k,k1“´m

δkδk1Υ
Z
k,k1 . (3.3)

The following theorem shows that wm is proportional to U
p2q
m pδ; γZq{U

p1q
m pδ; ΥZq,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0238



Testing for Variance Changes 12

which depends on the dependence structure of pZiq and is a ratio of the two

quadratic functions of δ.

Theorem 2 (Representation). Let m P N and Q̄n,Y “
řn
i“1 Y

2
i {n. Suppose As-

sumption 3 is satisfied. Then the following results hold. (1)

lim
nÑ8

E
`

Q̄n,Y
˘

“

!

σ4
0U

p1q
m pδ; γZq

)1{2
and lim

nÑ8
nvar

`

Q̄n,Y
˘

“ σ4
0U

p2q
m pδ; ΥZq.

(2) If k‹{nÑ τ , then

wm “ σ4
0

 

τ ` p1´ τqe4∆
(

$m, where $m “
U
p2q
m pδ; ΥZq

U
p1q
m pδ; γZq

. (3.4)

There are two implications of Theorem 2. First, minimizing wm can be statis-

tically interpreted as minimizing $m, which is the square of the long-run coefficient

of variation of Q̄n,Y . The intuition is that the limit of EpQ̄n,Y q is not free of δ, so

one should minimize varpQ̄n,Y q{tEpQ̄n,Y qu
2 instead of varpQ̄n,Y q. Second, by the

constraint δ0 “ 1 and the symmetry of δk, γ
Z
k and ΥZ

k,k1 , we can express (3.3) in

matrix forms: U
prq
m “ ar ` 4cTrδ ` 4δTHrδ for r “ 1, 2, where a1 “ 1, a2 “ ΥZ

0,0,

c1 “

»

—

—

—

—

—

—

—

–

γZ1

...

γZm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, c2 “

»

—

—

—

—

—

—

—

–

ΥZ
0,1

...

ΥZ
0,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, H1 “ c1c
T

1 , H2 “

»

—

—

—

—

—

—

—

–

ΥZ
1,1 . . . ΥZ

1,m

...
. . .

...

ΥZ
m,1 . . . ΥZ

m,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Therefore, the minimization of $m in (3.4) is a fractional quadratic programming

problem:

δ‹ ” δ‹pDm; γZ ,ΥZq “ arg min
δPDm

$m “ arg min
δPDm

a2 ` 4cT2δ ` 4δTH2δ

a1 ` 4cT1δ ` 4δTH1δ
, (3.5)
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where Dm is a feasible set of δ. Fractional quadratic programming has been exten-

sively studied; see, e.g., Dinkelbach (1967) and Schaible and Ibaraki (1983). The

solution δ‹ can be solved easily by standard software. Possible forms of Dm are

stated below.

Theorem 3 (Feasible sets). Denote δ “ Fmpdq whenever it is well defined. Let

m P N and the sets of all possible difference sequences and weight sequences be

S̄m “

#

d P Rm`1 :
m
ÿ

j“0

d2
j “ 1

+

and S̃m “

#

d P S̄m :
m
ÿ

j“0

dj “ 0

+

,

respectively. Also let

D̄m “

#

δ P Rm : min
λPr0,πs

m
ÿ

j“1

δj cospjλq ě ´
1

2

+

and D̃m “

#

δ P D̄m :
m
ÿ

j“1

δj “ ´
1

2

+

.

Then, the function Fm is surjective if Fm is defined as Fm : S̄m Ñ D̄m or Fm :

S̃m Ñ D̃m.

According to Theorem 3, we should set Dm “ D̃m under Assumption 3 (1), and

set Dm “ D̄m under Assumption 3 (2). Note that we use a tilde (resp. a bar) over

a variable to denote varying mean assumption (resp. constant mean assumption).

Besides, the function Fm is not injective in either case. To see it, one may note

that Fmpdq “ Fmp´dq. Indeed, any d satisfying δ “ Fmpdq gives an equally good

test Tnpdq.

After obtaining δ‹ in (3.5), the optimal difference sequence d‹ “ F´1
m pδ‹q can be

found by, e.g., Durbin–Levinson algorithm and the innovation algorithm (Proposi-

Statistica Sinica: Preprint 
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tions 5.2.1–5.2.2 of Brockwell and Davis (1991)), where F´1
m p¨q denotes any element

of the inverse map of Fm defined in Theorem 3. Using Dm “ D̄m and Dm “ D̃m,

we obtain the optimal weight sequence and the optimal difference sequence:

d̄‹pmq “ F´1
m pδ̄‹pmqq and d̃‹pmq “ F´1

m pδ̃‹pmqq, (3.6)

respectively, where δ̄‹pmq “ δ‹pD̄m; γZ ,ΥZq and δ̃‹pmq “ δ‹pD̃m; γZ ,ΥZq. We also

call them the autocorrelation efficient sequence and trend-robust autocorrelation

efficient sequence, respectively. The optimal tests are denoted as T̄
‹pmq
n “ Tnpd̄

‹pmqq

and T̃
‹pmq
n “ Tnpd̃

‹pmqq. Unless otherwise stated, δ‹pmq, d‹pmq and T
‹pmq
n refer to

δ̃‹pmq, d̃‹pmq and T̃
‹pmq
n , respectively. We may also omit the superscript pmq to δ‹,

d‹ and T ‹n when the order m is clear in the context. The algorithm is presented in

Section A.7 of the supplement. We conclude this subsection with two examples.

Example 3.1. Let Z1:n be generated from an arp1qmodel: Zi “ ψ1Zi´1`εi, where

εi „ Np0, s2q independently and s is chosen such that varpZiq “ 1. The optimal

difference sequences d‹pmq under ψ1 P t0,˘0.5u and m P t2, 3u are tabulated in

Table 1. When ψ1 “ 0, it reduces to Hall et al. (1990)’s optimal sequence; see

Section A.4 of the supplementary note for further discussion.

Example 3.2. Let Z1:N be generated from an armap1, 1q model: Zi ´ ψ1Zi´1 “

εi ` θεi´1, where εi „ Np0, s2q independently and s is chosen such that varpZiq “

1. We pick ψ1 P t0.2, 0.5, 0.8u and θ “ 0.5 for positive dependence and ψ1 P

Statistica Sinica: Preprint 
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Table 1: The optimal difference sequences under the arp1q model.

Differencing order m ar-parameter ψ1 Optimal difference sequence pd̃‹0, . . . , d̃
‹
mq

2 ´0.5 p0.802,´0.267,´0.534q

0 p0.809,´0.500,´0.3090q

`0.5 p0.759,´0.639,´0.120q

3 ´0.5 p0.814,´0.039,´0.520,´0.254q

0 p0.858,´0.383,´0.281,´0.194q

`0.5 p0.782,´0.612,´0.074,´0.095q

t´0.2,´0.5,´0.8u and θ “ ´0.5 for negative dependence. Let m “ 5, N “ 400,

µi “ fpi{Nq as stated in (6.1), σ0 “ 1, k‹ “ N{2, and ∆ P r0, 0.6s in (1.2). The

power curves of the test Tnpdq with the optimal difference sequence d‹pmq and Hall

et al. (1990)’s difference sequence are shown in in Figure 1. It shows that the

proposed test is significantly more powerful than the naive difference-based test.

The improvement is more obvious when the dependence is stronger.

By default, we recommend users to employ d̃‹pmq since it works for time series

with non-constant means; see Assumption 3. If users are sure that the time series

has a constant mean, d̄‹pmq can be used instead. In other words, the default choice

d̃‹pmq requires a weaker assumption on the mean structure. Therefore, it protects

us against making an incorrect assumption about the mean structure.
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Figure 1: The power curves of the test Tnpdq with two difference sequences

(DS) d: the proposed optimal DS (denoted by —˝—) and Hall et al. (1990)’s

DS (denoted by – –ˆ– –); see Example 3.1. Plots (a) and (b) show the results

for positive and negative dependence, respectively. For each d, three lines

(from top to bottom) indicate different strengths of autocorrelation (|ψ1| “

0.2, 0.5, 0.8, respectively). The number of replications is 212.

3.2 Asymptotic relative efficiency

This section provides analytical comparisons through asymptotic relative efficiency

(ARE); see, e.g., Dehling et al. (2017) and Chapter 14.3 of van der Vaart (1998)

for details. We consider an alternative hypotheses indexed by ∆:

Hp∆, τq : σi “ σ0 exp
 

∆1piątNτ uq

(

for i “ 1, . . . , N, (3.7)
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where τ P p0, 1q. Let npdq be the number of differenced observations needed for the

test Tnpdq to have size α and power β under Hp∆, τq. Hence, npdq is a function of

α, β, ∆, and τ .

Suppose that the change ∆ satisfies |∆| Ó 0 so that we can construct a sequence

of local alternative hypotheses. Then we can compare the tests Tnpdq and Tnpd
1q

via the asymptotic relative efficiency, which is defined as

ARE
`

Tnpdq, Tnpd
1q
˘

“ lim
|∆|Ó0

npd1q

npdq
, (3.8)

where d and d1 are difference sequences with ordersm,m1 P N. If ARE pTnpdq, Tnpd
1qq ą

1, it signifies that Tnpdq requires fewer observations to detect the variance change

at the prescribed size and power. In this case, we say that the test Tnpdq is more

efficient than Tnpd
1q. The value of ARE pTnpdq, Tnpd

1qq depends on α, β, τ , and the

rate how |∆| Ó 0. In particular, we consider ∆ “ ∆̄{N1{2 with ∆̄ ‰ 0.

Theorem 4 (Asymptotic relative efficiency). Let d and d1 be two difference se-

quences of order m,m1 P N. Denote δ “ Fmpdq and δ1 “ Fm1pd
1q. Also denote

$m “ U
p2q
m pδ; ΥZq{U

p1q
m pδ; γZq and $1m1 “ U

p2q
m1 pδ

1; ΥZq{U
p1q
m1 pδ

1; γZq. Suppose As-

sumption 3 holds. If ∆ “ ∆̄{N1{2 with ∆̄ ‰ 0, then

AREpTnpdq, Tnpd
1qq “

U p2qpδ1; ΥZq{U p1qpδ1; γZq

U p2qpδ; ΥZq{U p1qpδ; γZq
“
$1m1

$m
.

From Theorem 4, the asymptotic relative efficiency depends on $m and $1m1 .

It gives $m an additional statistical interpretation apart from the squared long-run
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coefficient of variation stated in Theorem 2. See Section A.5 of the supplementary

note for further discussion and comparison among different choices of d in terms of

the asymptotic relative efficiency. Also, see Example A.1 for a graphical illustration.

4. Estimation of the optimal difference sequence

4.1 Representation of the optimal difference sequence

The optimal difference sequence d‹ “ d̃‹pmq in (3.6) depends on unknown γZ and

ΥZ . Estimating them is non-trivial as pZiq is masked by varying means pµiq and

shifting variances pσiq.

We propose estimate d‹ in two steps: (i) relating the optimal difference sequence

d‹ for pXiq with the optimal average sequence for p∇Xiq, and (ii) “inconsistently”

estimating the unknowns in the optimal average sequence for p∇Xiq. These two

steps handle the two aforementioned nuisance structures, respectively. Although the

estimators in step (ii) are inconsistent, we show that they still lead to a consistent

estimator of d‹ without handling the variance structure.

Suppose d‹ is the optimal difference sequence. Since
řm
j“0 d

‹
j “ 0, we can

factorize

φpL; d‹q “ pc‹q´1{2φpL; a‹qφpL; d‹p1qq, where c‹ “ 1´
m´2
ÿ

j“0

a‹ja
‹
j´1, (4.1)

d‹p1q “ p1{21{2,´1{21{2qT is the first order difference sequence, and a‹ “ pa‹0, . . . , a
‹
m´1q

T
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is a weight sequence. So, applying the difference operator φpL; d‹q is equivalent to

applying the operators φpL; d‹p1qq and pc‹q´1{2φpL; a‹q sequentially (at any order).

Let ∇Zi “ pZi`1 ´ Ziq{2
1{2 for i P Z. Denote γ∇Zk and γ̂∇Zk as the autocovari-

ance and the sample autocovariance of p∇ZiqN´1
i“1 at lag k. Similar to ΥZ

k,k1 in (3.2),

the long-run covariance of γ̂∇Zk and γ̂∇Zk1 is

Υ∇Z
k,k1 “ lim

nÑ8
ncovpγ̂∇Zk , γ̂∇Zk1 q “

8
ÿ

j“´8

ζ∇Zk,k1pjq, (4.2)

for k, k1 P t0, . . . ,mu, where ζ∇Zk,k1pjq “ ζ∇Zk1,kp´jq “ Ep∇Z0∇Zk∇Zj∇Zj`k1q ´

γ∇Zk γ∇Zk1 . The following lemma shows that a‹ is the optimal weight sequence for

p∇Ziq.

Lemma 1. Let a‹ be defined in (4.1). Also let γ∇Z “ pγ∇Zk qk and Υ∇Z “

pΥ∇Z
k,k1qk,k1. Then

a‹ “ F´1
m´1 pα

‹q , where α‹ “ δ‹pD̄m´1; γ∇Z ,Υ∇Zq. (4.3)

Lemma 1 is remarkable. Originally, we need to estimate γZ and ΥZ using

varying mean and shifting variance data pXiq
N
i“1. Now, with Lemma 1, we only

need to estimate γ∇Z and Υ∇Z using p∇Xiq
N´1
i“1 as an approximate for p∇ZiqN´1

i“1 .

Although p∇Xiq
N´1
i“1 differs from p∇ZiqN´1

i“1 by the scaling parameter sequence pσiq,

which might contains change points as well, the structure of the data is substantially

simpler as p∇Xiq
N´1
i“1 has a nearly constant mean. The next subsection presents

estimators that address this issue.
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4.2 Consistent estimation of the optimal difference sequence

To solve for a‹, our approach is to construct inconsistent estimators γ̂∇Xk and

Υ̂∇X
k,k1 (to be defined below) of γ∇Zk and Υ∇Z

k,k1 so that they are biased by some

controllable constant multipliers, i.e., there exist κ1, κ2 ą 0 such that for all

k, k1 P t0,˘1, . . . ,˘pm´ 1qu

γ̂∇Xk
pr
Ñ κ1γ

∇Z
k and Υ̂∇X

k,k1
pr
Ñ κ2Υ∇Z

k,k1 . (4.4)

The constant multipliers κ1 and κ2 are expected to be dependent on σ2
0, τ and

∆ under H1. For this reason, we call γ̂∇Zk and Υ̂∇Z
k,k1 partial estimators instead of

estimators. This strategy relies on the fact that the minimizer of (3.5) is invariant to

scaling factors that are multiplied to the objective function. This approach bypasses

estimating or handling the potential variance change points. We highlight that this

approach is valid even under multiple change points.

First, we construct γ̂∇Xk . By Assumption 2, we have ∇Xi « σi∇Zi for most

i. So, Ep∇Xiq « 0 is a constant approximately. Consequently, the sample auto-

covariance of p∇Xiq
N´1
i“1 is a potential partial estimator of γ∇Zk “ covp∇Z0,∇Zkq,

i.e., for k “ 0,˘1, . . . ,˘pm´ 1q,

γ̂∇Xk “
1

N ´ 1

N´1
ÿ

i“1`|k|

p∇Xi ´ µ̂
∇Xqp∇Xi´|k| ´ µ̂

∇Xq, (4.5)

and µ̂∇X “
řN´1
i“1 ∇Xi{pN ´ 1q. Denote γ̂∇X “ pγ̂∇Xk qk.
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Second, we construct Υ̂∇X
k,k1 for each k and k1. We define a sequence of random

m-vectors

Vi “ p∇Xi∇Xi, ∇Xi∇Xi´1, . . . , ∇Xi∇Xi´m`1q
T (4.6)

as a proxy of the stationary time series σ2
0p∇Zi∇Zi, ∇Zi∇Zi´1, . . . , ∇Zi∇Zi´m`1q

T.

One is tempted to use the sample autocovariance of pViq in order to construct a

kernel estimator for the long-run covariance Υ∇Z
k,k1 . If the mean of Vi is constant,

then Andrews (1991) provides a consistent estimator for Υ∇Z
k,k1 . However, it does

not work in our case because EpViq « σ2
i pγ

∇Z
0 , . . . , γ∇Zm´1q

T is not a constant across

i.

We propose to apply a difference operator on Vi to get rid of the potential

change point effect. Then our proposed partial estimator of Υ∇Z
k,k1 is Υ̂∇X

k,k1 , which is

the pk ` 1, k1 ` 1q entry of

Υ̂∇X “
ÿ

|k|ďBn

Kpk{Bnqζ̂k, (4.7)

where Kp¨q is a kernel function, Bn is a bandwidth, hn “ 2Bn is a lag parameter,

and

ζ̂k “ ζ̂T

´k “
1

2pN ´mq

N´1
ÿ

i“m`k

pVi ´ Vi´hnqpVi´k ´ Vi´k´hnq
T, k ě 0.

For example, the Bartlett kernel Kpxq “ p1´|x|q1p|x|ď1q can be used. The estimator

Υ̂∇X in (4.7) admits a similar form as in Chan (2022b), however the asymptotic
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theories concerning Υ̂∇X are substantially more challenging because pXiq poten-

tially has varying mean and varying variance. Alternative estimators can be found

in Casini and Perron (2024), Casini (2023) and Chan (2022a). The probability

limits of γ̂∇X and Υ̂∇X are stated below.

Theorem 5 (Consistency). Suppose Assumption 3 holds, and uq ”
ř

iPZ |i|
q|ξ4piq ă

8 for some q P N. Define pτιq
M`1
ι“0 and p∆ιq

M
ι“0 as in Remark 2.1. If 1{Bn`Bn{n “

op1q, then under H0, H1 or H 11, (4.4) holds for each k, k1 “ 0,˘1, . . . ,˘pm ´ 1q,

where κ1 “ σ2
0

řM
ι“0pτι`1 ´ τιqe

2∆ι and κ2 “ σ4
0

řM
ι“0pτι`1 ´ τιqe

4∆ι . Also,

δ‹pD̄m´1; γ̂∇X , Υ̂∇Xq
pr
Ñ δ‹pD̄m´1; γ∇Z ,Υ∇Zq.

The assumption uq ă 8 in Theorem 5 is used to characterize the strength of

serial dependence of pZiq. The larger the value of q, the weaker the serial dependence

of pZiq. The mean squared error-optimal Bn is stated below.

Theorem 6 (Optimal bandwidth). Assume the conditions in Theorem 5. The L2-

optimal bandwidth for Υ̂∇X
k,k1 is Bn “ Otn1{p1`2qqu for each k, k1 “ 0,˘1, . . . ,˘pm´

1q.

Without prior knowledge, we assume q “ 1, which corresponds to the weakest

assumption among q P N. The algorithms for computing the optimal difference

sequence d̃‹ and the optimal average sequence d̄‹ can be found in Algorithms A.1

and A.2 of the supplement.
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5. Estimation of the long-run variance

5.1 Doubly robust estimators

This section addresses the estimation of vm and vm,L for the tests T
‹pmq
n and

T
‹pm,Lq
n . Our goal is to derive estimators that are doubly robust to (i) varying

means µ1, . . . , µN , and (ii) change points in variance σ1, . . . , σN . It ensures that

the tests are as powerful as we claim in Section 3.2.

The classical estimators (e.g., Andrews, 1991; Liu and Wu, 2010; Chan and

Yau, 2017)

ṽm “
n´1
ÿ

k“1´n

Kpk{Bnqγ̃
Q
k and ṽm,L “

ṽm
pQ̄nq2

, (5.1)

are consistent for vm and vm,L only under H0 but not H1, where γ̃Qk “
řn
i“|k|`1pQi´

Q̄nqpQi´|k| ´ Q̄nq{n; see also Chan and Yau (2024) for an alternative estimator for

vm. To see it, we note that EpQ1q, . . . , EpQnq are not constant when H0 is false. So,

Q̄n cannot be consistent for all EpQiq. Utilizing an inconsistent long-run variance

estimator in a test statistic leads to a drop of power, especially under early and

late change points as well as the existence of multiple change points; see, e.g.,

Gerstenberger et al. (2020).

To derive doubly robust estimators, we need the following representation. Re-

call from Lemma 1 that α‹ “ pα‹0, . . . , α
‹
m´1q

T, c‹ “ 1´α‹1, and α‹k “
řm´1
j“|k| a

‹
ja
‹
j´|k|

for |k| ď m´1. Then, in view of Theorem 2, the long-run variances can be expressed
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as

vm “ pc
‹q´2U

p2q
m´1pα

‹; Υ∇Zq and vm,L “
U
p2q
m´1pα

‹; Υ∇Zq

U
p1q
m´1pα

‹; γ∇Zq
,

where U
p1q
m and U

p2q
m are defined in (3.3). Our proposed estimators for vm and vm,L

are

v̂m “ pc
‹q´2U

p2q
m´1pα̂

‹; Υ̂∇Xq and v̂m,L “
U
p2q
m´1pα̂

‹; Υ̂∇Xq

U
p1q
m´1pα̂

‹; γ̂∇Xq
, (5.2)

where α̂‹ “ δ‹pD̄m´1; γ̂∇X , Υ̂∇Xq; and Υ̂∇X and γ̂∇X are defined in (4.7) and (4.5),

respectively. The theorem below states that the estimators v̂m and v̂m,L are doubly

robust, while ṽm and ṽm,L are not.

Theorem 7 (Double robustness). Suppose Assumption 3 is satisfied and uq “

ř

iPZ |i|
q|ξ4piq ă 8 for some q P N. If 1{Bn ` Bn{n “ op1q, then the following

results hold. (1) Under H0, we have ṽm
pr
Ñ vm and ṽm,L

pr
Ñ vm,L. (2) Under H0,

H1 or H 11, we have v̂m
pr
Ñ vm and v̂m,L

pr
Ñ vm,L.

Remark 5.1. We highlight that v̂m and v̂m,L do not require any additional estima-

tion since their building blocks α̂‹, Υ̂∇X and γ̂∇X are computed in Algorithm A.1

of the supplement. Also, this does not require any prior information or assumption

on the number of change points. Incorporating information of change points can

lead to better performance, and this is illustrated in the null-protected estimators

in Section 5.2.
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5.2 Null-protected estimators

According to Theorem 7, ṽm and ṽm,L are consistent only under H0, while v̂m and

v̂m,L are consistent under H0, H1 and H 11. This is achieved because v̂m and v̂m,L

are constructed based on difference-based estimators, which are consistent even in

the presence of variance change point. However, the price for this consistency is

that its efficiency is slightly lower; see Chan (2022b) for a similar phenomenon.

Consequently, the estimators ṽm and ṽm,L work better than v̂m and v̂m,L under H0,

while v̂m and v̂m,L work better than ṽm and ṽm,L under H1 and H 11.

Using good estimators of the the long-run variances under H0 ensures that the

tests control the size (i.e., type-I error rate) well. It motivates us to combine (5.1)

and (5.2) so that the resulting tests are more size-accurate. Precisely, we propose

to estimate vm and vm,L by

v̂mpλq “ λv̂m ` p1´ λqṽm and v̂m,Lpλq “ λv̂m,L ` p1´ λqṽm,L, (5.3)

where λ P r0, 1s is a weight. Ideally, λ « 1 under H1.

We propose a subsampling scheme to formulate our data-driven λ̂ of λ. The

data are partitioned into gn groups each of approximately length `n “ tn{gnu. We

require that 1{`n ` `n{n “ op1q as n Ñ 8. Using a similar notation as in Carl-

stein (1986), the group starting on index i` 1 with length `n is denoted as Di
`n
“

pDi`1, Di`2, . . . , Di``nq. We set the non-overlapping groups to be tDi1
`n,1

, Di2
`n,2

, . . . , D
ign
`n,gn

u,
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where ij “
řj´1
j1“0 `n,j1 and `n,j1 “ tn{gnu ` 1pj1ďn´gntn{gnuq, for j “ 1, . . . , gn. The

sample variance of the jth group is

ŝj “
1

`n,j

ij``n,j
ÿ

i“ij`1

pDi ´ m̂jq
2, where m̂j “

1

`n,j

ij``n,j
ÿ

i“ij`1

Di.

Let s̄ “
řgn
i“1 ŝi{gn. Also let

ς̂0 “
1

gn

gn
ÿ

j“1

pŝj ´ s̄q
2 ` en and ς̂1 “

1

2pgn ´ 1q

gn´1
ÿ

i“1

pŝi`1 ´ ŝiq
2 ` en

with a positive sequence en Ó 0 to avoid ς̂1{ς̂0 “ 0{0. By default, en “ 1{n. Our

proposed λ̂ is

λ̂ “ max p1´ ς̂1{ς̂0, 0q , (5.4)

The subsampled variance estimator ς̂0 assumes mean constancy of all pŝiq whereas

ς̂1 is still robust under a variance change. Hence, the ratio ς̂1{ς̂0 measures the degree

of constancy of pσiq. When H0 is false, ς̂0 diverges and leads to a larger value of λ̂.

In a nutshell, our proposed null-protected estimators of vm and vm,L are v̂mpλ̂q

and v̂m,Lpλ̂q, respectively. The following theorem states the consistency under H0,

H1 and H 11.

Theorem 8 (Consistency of v̂mpλ̂q and v̂m,Lpλ̂q). Assume the conditions in Theo-

rem 7. If 1{`n ` `n{n “ op1q, then v̂mpλ̂q
pr
Ñ vm and v̂m,Lpλ̂q

pr
Ñ vm,L under H0, H1

or H 11.
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Theorem 8 shows that v̂mpλ̂q and v̂m,Lpλ̂q continue to be doubly robust. The

subsample size `n is a parameter for λ̂, which does not affect the final estimators

v̂mpλ̂q and v̂m,Lpλ̂q significantly.

Remark 5.2. As suggested by one of the anonymous referees, in (5.3), it is possible

to replace v̂m and v̂m,L with estimators that can directly estimate and remove the

change points. This may possibly improve the finite-sample performance. However,

since it is beyond the scope of the current article, we leave the thorough investigation

in future research.

6. Simulation experiment

We evaluate the finite-sample performance of our proposed test T
‹pm,Lq
n “ T

pLq
n pd̃‹pmqq

in (2.7) together with the null-protected estimator v̂m,Lpλ̂q in Section 5.2 via sim-

ulation experiments. The following settings are chosen. The data are generated

as Xi “ µi ` σiZi for i “ 1, . . . , N . We consider a non-constant mean function:

µi “ fpi{Nq, where

fptq “ 3 cosp5tq ´ 10pt´ 0.7q2 ` 2pt´ 0.3q3, t P r0, 1s. (6.1)

Four noise models for pZiq
N
i“1 are considered. The innovations pεiqiPZ below are

independent Np0, s2q with s selected such that varpZiq “ 1. The value of s may

vary across different models.
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• Case 1: armap1, 1q model. Zi “ 0.9Zi´1 ` 0.9εi´1 ` εi for each i.

• Case 2: arp3q model. Zi “ ´0.3Zi´1 ´ 0.54Zi´2 ´ 0.112Zi´3 ` εi for each i.

• Case 3: Bilinear model. Zi “ p0.3` 0.6εiqZi´1 ` εi for each i.

• Case 4: arch model. Zi “ σiεi and σ2
i “ 0.2` 0.8Z2

i´1 for each i.

Case 1 generates highly autocorrelated data. Case 2 produces a non-monotone

autocovariance function. Case 3 is a non-linear time series. Case 4 generates con-

ditionally heteroskedastic data. Two existing mean-robust variance change point

tests are considered for comparison:

• (SPL) Gao et al. (2019) proposed to use smoothing splines to get rid of the

mean effect, however, their theory only supports independent and identically

distributed Gaussian noises.

• (KE) Lee et al. (2003) proposed to use a quadratic smoothing kernel to de-

trend the data. They suggest a flat top kernel with a bandwidth tn1{4u for

estimating the long-run variance.

Unless otherwise specified, we set N “ 400, σ2
0 “ 1, and the nominal size at 5%.

The power curves of the proposed tests (T
‹pm,Lq
n , m “ 1, 2, 3) and the above two

existing tests are simulated at different values of ∆. The number of replications

of each scenario is 4096. We set Bn “ t2n1{3u and `n “ tn1{2u throughout the

simulation experiments.
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Figure 2: The power curves of T
‹pm,Lq
n (our proposals), KE and SPL are

plotted under time series models in cases 1–4 stated in Section 6. Dashed

horizontal lines indicate zero, 5% and one.

First, we consider the one-change point alternative hypothesis H1 with k‹ “

t0.5N u. Figure 2 shows the results. Our methods generally have a higher power

compared to the existing methods. The improvement is prominent. On the other

hand, the size of SPL is faulty since it does not accustom to serial dependence. KE

gets more penalized in all cases as the data deviates from independence.
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Second, we consider the multiple-change point alternative H 11 with

σi “ σ0 exp
 

∆1pt0.3Nuăiďt0.7Nuq ´∆1pt0.7NuăiďNq

(

, (6.2)

which consists of two variance change points at t0.3N u and t0.7N u when ∆ ‰ 0.

The power curves are plotted in Figure 3. Our proposals continue to outperform

the existing methods significantly, and the improvement is even more obvious than

in the single change point case. Besides, the power of T
‹pm,Lq
n also increases with

m as Algorithm A.1 of the supplement is still valid under H 11.

Additional simulation experiments can be found in Section B of the supple-

ment. These experiments include (i) comparisons across different strengths of se-

rial dependence, (ii) comparisons between tests with or without variance stabilizing

transforms, and (iii) comparisons between tests that use the TRACE sequence, the

ACE sequence and the classical difference sequence proposed in Hall et al. (1990);

see Sections B.1, B.2, and B.3 of the supplementary note, respectively.

7. Market Sentiment in the Crypto Market

We illustrate an application on detecting signals in the crypto market. The Spent

Output Profit Ratio (SOPR) of Bitcoin (BTC) is a key indicator that tracks in-

vestors’ behaviour on trading Bitcoin. More description of the indicator can be

found on website of Glassnode. The indicator calculates the aggregated profit and

loss for all coins moved on chains for a day. A SOPR greater than 1 indicates that
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Figure 3: Simulation results under time series models in cases 1–4. The

multiple-change point alternative (6.2) is used. Dashed horizontal lines indi-

cate zero, 5% and one.

coins are selling at a profit, and vice versa.

We conjecture that market sentiment is not only determined by the level of

this ratio, but also its variance, because the volatility measures the activeness of

the investors in the market, which affects the common interpretation of that signal.

To justify it, we employ the proposed test T
‹p3,Lq
n , and use binary segmentation

(Vostrikova, 1981) on the SOPR of Bitcoin to locate the change points. Notice that
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Figure 4: SOPR and BTC price from January 1, 2016 to March 31, 2022

are plotted. Data are retrieved from Glassnode. The vertical lines indicate

change points detected by our proposal.

we use binary segmentation to locate the multiple change points for illustration.

The benefits of more robust methods, such as wild binary segmentation (Fryzlewicz,

2014) and the two-stage procedure proposed in Cho and Kirch (2022) may possibly

yield better results. Since it is beyond the scope of the current article, we leave it

for future research.

The data from January 1, 2016 to March 31, 2022 (N “ 2282) are collected.

Figure 4 shows the time series plot of SOPR and BTC with the detected change

points. It is observed that SOPR has a varying mean so it suggests us to use our

proposed test. For inference on the mean structure, readers may refer to, e.g., Wu

(2004) and Fryzlewicz (2014).
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Comparing with the KE method, our method detected three change points on

July 16, 2017, May 11, 2020 and July 30, 2021 with p-values 2.74ˆ10´4, 6.56ˆ10´4

and 3.67ˆ 10´4, respectively, while KE fails to reject H0 with a p-value of 6.98%.

After partitioning the SOPR by detected variance changes, we further investigate

the significance of this variance change point detection. From Figure 4, it is observed

that the price of BTC also behaves differently in those periods. The first detected

change point (July 16, 2017) locates the time when BTC price starts to fluctuate in

a higher level compared to the previous period. The second detected change point

(May 11, 2020), which signifies a drop in the variance of SOPR, coincides with

the time that BTC price starts to soar. The last change point (March 31, 2022)

detected that the variance of SOPR further drops, in which BTC prices fluctuate

a lot without an upward trend. All these findings obtained from inferences on

variance changes are useful for market sentiment analysis.

Supplementary Material

It includes the extra theoretical results, additional simulation experiments and

proofs.
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