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Heteroscedastic survival data analysis

with accelerated failure time model

Lili Yu1 and Zhezhen Jin2

Georgia Southern University1 and Columbia University2

Abstract: Recently, the accelerated failure time model has been extended to accommodate het-

eroscedastic survival data. However, the existing methods often require stringent assumptions

or complex algorithms. In this paper, a weighted least squares method is developed based

on Laplace approximation for quasi-likelihood subject to conditionally independent censoring.

The Laplace approximation is used to approximate the quasi-survival function of the censored

observations, which results in simpler and more computationally efficient estimation than the

existing methods. The consistency and asymptotic distribution of the resulting estimator are

also established. Extensive simulations are conducted to evaluate the performance of the pro-

posed method. Finally, we apply the new proposed method to Stanford heart transplant data

and colon cancer data to demonstrate its use in real applications.

Key words and phrases: Heteroscedasticity; Laplace approximation; Local polynomial regres-

sion.

1. Introduction

Right censored survival data is the most popular data type in survival analysis.

It is characterized by the possibility of censoring time, which refers to observations

that terminate before the events of interest can be observed. This may be due to the
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reasons such as being alive at the end of study, dying from other reasons or losing

contact before the end for various reasons. The Cox model (Cox (1972)) is the most

popular model for analyzing such data. However, the accelerated failure time (AFT)

model (Wei, Ying and Lin (1990); Kalbfleisch and Prentice (2002)) provides an at-

tractive alternative because it directly interprets the effects of covariates on the mean

survival time. It was traditionally proposed to handle homoscedastic survival data.

Many inference methods have been proposed for the homoscedastic AFT model. Under

the strong unconditional independence assumption that survival time and censoring

time are unconditionally independent, Koul, Susarla and Van Ryzin (1981), Leurgans

(1987), and Fan and Gijbels (1994), proposed to replace the censored observations

by synthetic data constructed by inverse weighted probability of censoring distribu-

tion. Under a weaker conditional independence assumption (currently considered as

the usual assumption) that the survival time and censoring time are independent con-

ditional on covariates, three main methods have been studied in the literature: the

rank-based method (Tsiatis (1990); Lai and Ying (1991b); Robins and Tsiatis (1992);

Ying (1993); Lin and Ying (1995); Jin et al. (2003); Zhou (2005)), the least squares

method (Buckley and James (1979); Ritov (1990); Lai and Ying (1991a); Jin, Lin and

Ying (2006)) and the profile likelihood method (Zeng and Lin (2007)).

On the other hand, it is challenging to use the AFT model for the analysis of het-

eroscedastic survival data, although the heteroscedastic survival data are often seen

in real applications, such as the colon cancer data in Section 6 of this paper. It aims
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to compare the effects of three different treatments on the survival time for patients

with colon cancer. The variance plot shown in Section 6 indicates that the variance

of the colon cancer data is not homoscedastic, but is a function of the data mean.

Stare, Heinzl and Harrell (2000) found that the least squares estimator is biased for

heteroscedastic survival data. Several researchers have attempted to address the is-

sue: see Zhang and Davidian (2008), Chen and Khan (2000), Zhou, Bathke and Kim

(2012), Heuchenne and Van Keilegom (2007). Some of the estimation methods for the

homoscedastic AFT model have been extended to heteroscedastic AFT model. Under

the strong unconditional independence assumption that the survival time and censor-

ing time are unconditionally independent, Liu and Lu (2009) extended the synthetic

data approach via inverse probability weighting method (Koul, Susarla and Van Ryzin

(1981); Leurgans (1987); Fan and Gijbels (1994)) by handling the heteroscedasticity

with a kernel smoothing approach. Under the weaker conditional independence as-

sumption that the survival time and censoring time are independent conditional on

covariates, the least squares method has been extended to the analysis of heteroscedas-

tic survival data in two ways. Yu (2011), Yu et al. (2012), Yu and Peace (2012), Yu,

Liu and Chen (2013) proposed weighted least squares approaches by handling the het-

eroscedasticity with various nonparametric estimation methods. Pang, Lu and Wang

(2015) modified Buckley and James’ approach using locally estimated Kaplan-Meier

survival function to construct synthetic data and accommodate the heteroscedasticity

simultaneously. However, the two approaches (Yu, Liu and Chen (2013); Pang, Lu
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and Wang (2015)) have some drawbacks. First, the resulting estimating equations

are neither continuous nor monotone in the parameter of interest, which results in

computational difficulty. Both approaches involve Kaplan-Meier estimation in each

iteration, which is time-consuming and sometimes yields unstable estimates. As a

result, they are often not feasible for the analysis of survival data with high censor-

ing or large sample size. In addition, it hampers further extensions to more complex

settings, such as heteroscedastic survival data with cure or frailty. Second, the vari-

ance function and the synthetic data are “bundled together” (Ding and Nan (2011)),

i.e., the variance function and the synthetic data depend on each other. Therefore,

misspecification of the variance function will affect the synthetic data and hence the

parameter estimation.

In this paper, we develop a novel weighted least squares method based on Laplace

approximation for quasi-likelihood subject to the assumption of conditional indepen-

dence between the survival time and censoring time. Our approach uses Laplace

approximation to approximate the quasi-survival function of the censored observa-

tions, instead of constructing the synthetic data. It overcomes the challenges in the

existing methodologies. First, it results in a continuous and monotone estimating equa-

tion, which facilitates the estimation procedure. The approach does not require the

calculation of the Kaplan-Meier estimator iteratively, which greatly simplifies compu-

tation and facilitates its extension to more complex settings. Second, there is no close

dependence between Laplace approximated observations and the variance function.
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Therefore, the parameter estimation is robust to variance function estimation.

This paper is organized as follows. Section 2 describes the weighted least squares

method based on Laplace approximation for quasi-likelihood. Section 3 presents the

asymptotic properties. Section 4 provides the bias of the proposed estimator and

presents a detailed algorithm on the implementation of the proposed method. Section 5

reports simulation results and section 6 presents real data analyses. Section 7 provides

concluding remarks and discussions. The online supplementary material sketches the

proofs of the asymptotic properties and presents additional simulation results.

2. The Laplace approximated weighted least squares method

2.1 Data and Model Setup

Let Ti be the survival time and Yi, Ci be the logarithm of survival time and cen-

soring time, respectively. Due to right censoring, we observe {yi, δi,Xi}, i = 1, · · · , n,

where yi = min(Yi, Ci) is the observed logarithm of survival time, δi = I(Yi ≤ Ci) is

the censoring indicator and Xi is a p-vector of covariates with the first element being

one for the ith observation. It is assumed that Yi and Ci are independent conditional

on Xi.

To accommodate the heteroscedasticity in datasets such as the colon cancer data

in Section 6, we adopt the following heteroscedastic AFT model (Yu, Liu and Chen

(2013); Pang, Lu and Wang (2015)),

Yi = µ∗
i + σ∗(µ∗

i )e
∗
i , (2.1)
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where µ∗
i = β∗TXi with β∗ being a p-vector of unknown parameters; σ∗(µ∗

i ) is the

square root of the variance of Yi, which accounts for the heteroscedasticity of the data;

e∗i is a random error with mean zero and variance one.

2.2 The Laplace approximated weighted least squares method

When there is no censoring, the classical weighted least squares method estimates

the parameter β∗ by solving

n∑
i=1

XT
i σ

∗(−2)(µ∗
i )(Yi − µ∗

i ) = 0.

It is equivalent to maximizing the quasi-likelihood (Wedderburn (1974); Heyde (1997)),

n∑
i=1

∫ µ∗
i

Yi

(Yi − a)/σ∗2(a)da.

Quasi-likelihood is an extension of the generalized linear model. It only requires as-

sumptions on the first two moments which is simpler to specify than assuming the

full likelihood. It is identical to the true log likelihood when the true distribution

belongs to the exponential family. Because the quasi-likelihood has similar algebraic

and frequency properties of a log likelihood function, that is, the quasi-score function

(derivative of the quasi-likelihood) behaves like the derivative of a log likelihood (Heyde

(1997)), we can construct a corresponding likelihood function and the parameter can

be estimated by maximizing the likelihood function.
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Now define the quasi-density function for the variable Y as

f(y|X;β∗) = h(y) exp{
∫ µ∗

y

(y − a)/σ∗2(a)da},

and the corresponding quasi-survival function

S(y|X;β∗) =

∫ ∞

y

h(u) exp{
∫ µ∗

u

(u− a)/σ∗2(a)da}du,

where h(y) ≥ 0 is some function of y, which makes the quasi-density to be a probability

density function, that is, ∫
f(y|X;β∗)dy = 1.

For example, let q(y) be some function of y. Then

h(y) =
q(y)∫

q(y) exp{
∫ µ∗

y
(y − a)/σ∗2(a)da}dy

,

where
∫
q(y) exp{

∫ µ∗

y
(y − a)/σ∗2(a)da}dy is the normalizing term. This normalizing

term may depend on the unknown parameter β∗, so we set it as its true value and

then h(y) is a function only for y. Because the quasi-density is a probability density

function, the quasi-survival function is p(Y > y|X;β∗) and it then can be used to

construct the likelihood for censored observations. Note that the derivative of the

log quasi-density function is equivalent to the quasi-score function. Therefore, the

maximum quasi-likelihood estimator is the same as the estimator that maximizes the
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likelihood function constructed based on the quasi-density. We call the log likelihood

constructed based on the quasi-density as quasi-density-likelihood.

In the presence of the censoring, we construct the quasi-density-likelihood using

the quasi-survival function for censored observations, instead of constructing synthetic

observations as in Yu, Liu and Chen (2013) and Pang, Lu and Wang (2015). Specifi-

cally, the quasi-density-likelihood for the censored data is

l(β∗) =
∑n

i=1

[
δi
{
log(h(yi)) +

∫ µ∗
i

yi

(yi−a)
σ∗2(a)

da
}
+ (1− δi) log

{∫∞
yi

h(yi) exp(
∫ µ∗

i

yi

(yi−a)
σ∗2(a)

da)dyi
}]

.

The quasi-survival function in the quasi-density-likelihood may not be possible to

calculate directly because it involves an unknown function h(.), which may require

the value of the unknown parameter. We propose to use a Laplace approximation for

the quasi-survival function. Fortunately, the final estimating equation is free of h(.)

function due to the Laplace approximation.

The Laplace approximation was proposed by Laplace (1774) to approximate the

integrals of the form

g(w) =

∫
t∈D

exp(−wr(t))h(t)dt,

where r(t) > 0 and w → ∞. By Taylor expansion of r(t) and approximating it to

quadratic order, the g(w) can be approximated by

g(w) =
exp(−wr̃)h̃

√
2π

√
w
√
r̃′′

(1 +O(w−1)),
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where r̃ = r(t̃), r̃′′ = r′′(t̃), h̃ = h(t̃) and t̃ ∈ D is the value of t that minimizes r(t).

For quasi-survival function S(y|X;β∗), let r(t,β∗) =
∫ t

µ∗(t− a)/σ∗2(a)da, so w =

1. Researchers (Breslow and Clayton (1993); Butler and Wood (2002); Harding and

Hausman (2011)) demonstrated that the Laplace approximation performs very well

when w = 1 and even in subasymptotic cases where w remains small. Algebra shows

that the Laplace approximated quasi-survival function is

S(y|X;β∗) ≈ exp(−r(ỹ,β∗))(2πσ∗2(ỹ))−1/2h(ỹ),

where r(y,β∗) =
∫ y

µ∗(y − a)/σ∗2(a)da, ỹ = µ∗ if y ≤ µ∗; ỹ = y if y > µ∗, i.e.,

ỹ = max(µ∗, y). The corresponding Laplace approximated quasi-density-likelihood is

l̃(β∗) =
n∑

i=1

{δi(log(h(yi))−r(ỹi,β
∗))−(1−δi)

(
r(ỹi,β

∗) + 1/2 log(2πσ∗2(ỹi))− log(h(ỹi))
)
},

where ỹi = (δi+(1− δi)λ
∗
i )yi+(1− δi)(1−λ∗

i )µ
∗
i and λ∗

i = I(yi > µ∗
i ). Note that when

λ∗
i = 0, the observation has value µ∗

i = max{µ∗
i , yi}, which is unknown. Therefore, it

has no contributions to the maximum Laplace approximated quasi-density-likelihood

estimator and then maximizing l̃(β) is equivalent to maximizing

n∑
i=1

{δi(log(h(yi))−r(ỹi,β
∗))−(1−δi)λ

∗
i

(
r(ỹi,β

∗) + 1/2 log(2πσ∗2(ỹi))− log(h(ỹi))
)
}.

The estimating equation based on the Laplace approximated quasi-density-likelihood
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is,

Ũ(β) =
n∑

i=1

(ỹi − µi)Xi/σ
2
n(µi), (2.2)

where σ2
n(.) is a proper estimator of σ2(.), the variance of the Laplace approximated

observations ỹi. The µi = βTXi are the means of the Laplace approximated obser-

vations. Note that because we use the Laplace approximated observations, the mean

and variance in the equation (2.2) is actually for the Laplace approximated obser-

vations. When λi ≡ I(yi > µi) = 0, it does not affect the value of Ũ(β), i.e., the

Ũi(β) = (ỹi − µi)Xi/σ
2
n(µi) = 0. Because the β and σ2(.) are parameters for the

Laplace approximated observations, they may not be the same as β∗ and σ∗2(.), re-

spectively. Now we describe how to estimate β and then how to estimate β∗ from β.

Note that we use β∗ to represent the parameters for original data Y and use β as the

parameters for Laplace approximated data ỹi. Later in this paper, we use β∗
0 and β0

as the true values for β∗ and β, respectively.

The Laplace approximated weighted least square estimate β̃ can be obtained by

solving Ũ(β) = 0. A proper estimator of σ2(.), σ2
n(.) in the estimating equation (2.2)

can be obtained by the use of the local polynomial regression approach (Fan and

Gijbels (1996)). Specifically, we use the following model,

ϵ2i = σ2(µi) + τi,

where ϵ2i = (ỹi − µi)
2 is the observed value of σ2(µi) and τi is the random error with
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mean 0. Note that in this model, we only assume that the variance function σ2(µ)

depends on µ which is explained in model (2.1), but the form of the variance function is

completely unspecified. Adopting the approach in Fan and Gijbels (1996), the variance

function estimator can be obtained by

σ2
n(u) =

n∑
i=1

ai(u)ϵ
2
i ,

where

ai(u) =
(nb)−1K(µi−u

b
){An,2(u)− (µi − u)An,1(u)}

An,0(u)An,2(u)− A2
n,1(u)

,

and An,j(u) = (nb)−1
∑n

i=1K(µi−u
b

)(µi−u)j, j = 0, 1, 2 with bandwidth b and a kernel

function K(.). To avoid boundary effects as in Chiou and Muller (1999), we only

consider µ ∈ I where I is a compact interval and contained in the interior of the

support of fµ, the density of µ = βTX, which varies with X.

We will use iterative algorithm, which is introduced in Section 4.3 below, to solve

the equation (2.2). In the iterative procedure, the variance is estimated by

σ̃2
n(u) =

n∑
i=1

ãi(u)ϵ̃
2
i ,

where ãi(u) and ϵ̃i are ai(u) and ϵi evaluated at the estimator β̃.

3 Properties of the estimator

When λ and the variance function σ2(.) are known, the maximum likelihood the-
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ory shows that the estimator based on the estimating equation (2.2) is consistent to

β0, the true value of β, and asymptotically normally distributed. When λ and the

variance function σ2(.) are unknown, we establish that the consistency and the weak

convergence of the β̃ still hold with the estimated variance function σ2
n(.) in (2.2). The

following regularity conditions are required for the asymptotic results.

We assume the true parameter value β0 for β belongs to a compact set B in Rp, and

employ the conditions (M4)-(M6), (K1)-(K4) in Chiou and Muller (1999) for the local

polynomial regression and conditions (A1) and (A3) in Yu, Liu and Chen (2013) for

censored data. The (M4) is a moment assumption of the error term for the uniform

consistency of the variance function estimator. The (M5) ensures that the linear

predictors are bounded and the (M6) is the assumption for the density function of data

mean, which assures that for discrete or binary variables, the number of combinations

of levels of the predictor variables is large. The (K1)-(K4) are regularity conditions

for kernel function and bandwidth for the uniform consistency of the variance function

estimator. The (A1) is a standard assumption of survival analysis for considering only

intervals that are bounded from right. The (A3) ensures that the variance of survival

time is finite.

Lemma 1. Under the assumptions (M4)-(M6), (K1)-(K4) and (A1), (A3), β̃ is a

consistent estimator of the parameter β0.

Next, we prove that σ̃2
n(.) is a uniformly consistent estimator of σ2(.) and show

the asymptotic distribution of the β̃.

Statistica Sinica: Preprint 
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Lemma 2. Under the assumptions (M4)-(M6), (K1)-(K4) and (A1), (A3),

supu∈I |σ̃2
n(u)− σ2(u)| = Op

(
(
log n

nb
)1/2 + b2 +

1√
nb

)
,

where I = support(fµ) and fµ is the density of µ, which varies with X.

Theorem 1. Under the assumptions (M4)-(M6), (K1)-(K4) and (A1), (A3), and

the variances σ̃2
n(µi) are truncated below by a sequence ζn > 0, which satisfies the

requirements in Chiou and Muller (1999), i.e., ζn → 0, b/ζn → 0, nb2ζ2n → ∞,

nb2ζ2n/logn → ∞. Then β̃ is asymptotically normally distributed N(β0,A
−1BA−1),

where A = E(XTΣX), and B = E(XTW−1ΣW−1X), in which X is the matrix with

rows Xi, W is a diagonal matrix with elements σ2(µi), Σ is the diagonal variance-

covariance matrix of ỹi with diagonal elements E(Y 2
i | Yi < Ci)P (yi < Ci) − {E(Yi |

Yi < Ci)P (Yi < Ci)}2 + E(C2
i | Yi > Ci, Ci > µi)P (yi > Ci, Ci > µi) − {E(Ci | Yi >

Ci)P (Yi > Ci, Ci > µi)}2 + µ2P (yi > Ci, Ci < µi)(1− P (yi > Ci, Ci < µi)).

Remark: Theorem 1 shows that for censored observations, if the Laplace approx-

imated observation ỹi and its variance yield valid approximations to E(Yi|Yi > Ci)

and Var(E(Yi|Yi > Ci)) respectively, then β̃ has the same asymptotic distribution as

the weighted least squares estimator β̂W (Yu, Liu and Chen (2013)), an estimator

based on a discrete estimating function. Specifically, for censoring observations, if

ỹi = E(Yi|Yi > Ci) + op(n
−1/2), and hence Var(ỹi) = Var(E(Yi|Yi > Ci)) + op(n

−1/2),

then β̃ is consistent to β∗
0, the true value for β∗ (Ritov (1990)). For the asymptotic

Statistica Sinica: Preprint 
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variance, let Var(β̂W ) = A−1
w BwA

−1
w , then Bw = B based on Theorem 5.1 in Ritov

(1990) and

A = −E(
∂Ũi(β)

∂β
)

= −∂E(Ũi(β))

∂β
+

∫
Ũi(β)f

′(ei)Xi/σ(µi)dei

= Cov(Ũi(β),
XT

i

σ(µi)

f ′(ei)

f(ei)
)

= Aw,

where f(.) is the density function of ei = (ỹi − βTXi)/σ(µi), i = 1, · · · , n.

The sketches of the proofs of the Lemmas and Theorem are provided in online

supplementary materials.

4 Inference

4.1 The bias of the estimation

Because the β satisfying EŨ(β) = 0 may not be the same as the β∗ in model (1),

the estimator by solving Ũ(β) = 0 may be a biased estimator of β∗
0, the true value for

β∗. Next, we will quantify the bias and describe how to adjust.
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Because E(Yi/σ̃n(µ̃i)|Xi) = β∗T
0 Xi/σ̃n(µ̃i), the bias can be quantified as

b(β) = E(β̃)− β∗
0

= β0 − β∗
0 + op(1)

=

(
n∑

i=1

(Xi/σ̃n(µ̃i))
⊗2

)−1 n∑
i=1

Xi/σ̃n(µ̃i)[E(Ỹi|Xi)− E(Yi|Xi)]/σ̃n(µ̃i) + op(1)

=

(
n∑

i=1

(Xi/σ̃n(µ̃i))
⊗2

)−1 n∑
i=1

Xi/σ̃n(µ̃i)[Ai +Bi]/σ̃n(µ̃i) + op(1),

Ai =

∫ µi

0

∫ ∞

Ci

(µi − Yi)f(Yi|Xi)dYigi(Ci)dCi,

and

Bi =

∫ ∞

µi

∫ ∞

Ci

(Ci − Yi)f(Yi|Xi)dYigi(Ci)dCi,

where ⊗ represents Kronecker product, Ỹi is a random variable with realizations ỹi,

gi(.) is the probability density function of the censoring time Ci. If the censoring time

is discrete, the integral will be changed into a sum of the censoring values at and above

the observed Ci value. It is easy to see that Ai, the bias when δi = 0, λi = 0, can be

both positive and negative and Bi, when δi = 0, λi = 1, is always negative.

Because E(E(Yi|Yi > Ci)|Xi) = E(Yi|Xi), the bias can be estimated by

b̂(β) = β̃−

(
n∑

i=1

(Xi/σ̃n(µ̃i))
⊗2

)−1 n∑
i=1

Xi/σ̃n(µ̃i)[δiyi+(1−δi)Ê(Yi|Yi > Ci,Xi)]/σ̃n(µ̃i),

Statistica Sinica: Preprint 
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where

Ê(Yi|Yi > Ci,Xi) = µ̃∗
i + σ̃n(µ̃i)Ê(ei|ei > ri,Xi),

Ê(ei|ei > ri,Xi) =

∫∞
ri

udF̂ (u)

1− F̂ (ri)
,

and

F̂ (r) = 1−
n∏

{j:rj<r}

δj∑n
k=1 I(rk ≥ rj)

,

which is the Kaplan-Meier estimate of the survival function of ei. Here ei = (Yi −

µ∗
i )/σ̃n(µ̃i) and ri = (yi − µ̃∗

i )/σ̃n(µ̃i), µ̃
∗
i = β̃

∗T
Xi and

β̃
∗
=

(
n∑

i=1

(Xi/σ̃n(µ̃i))
⊗2

)−1 n∑
i=1

Xi/σ̃n(µ̃i)Ê(Yi|Yi > Ci,Xi)/σ̃n(µ̃i).

Note that Ê(Yi|Yi > Ci,Xi) includes β̃
∗
, the estimator of β∗, so we use a iterative

algorithm to solve β̃
∗
, which is provided in Section 4.3.

Based on E(ei) = 0 and the work of Ritov (1990), it is easy to see that β̃
∗ −

β∗
0 = Op(n

−1/2). As a result, b̂(β) is a consistent estimator of b(β). Therefore,

limn→∞ p(β∗
0 ∈ (β̃ − Z1−α/2SE(β̃)− b̂(β), β̃ + Z1−α/2SE(β̃)− b̂(β))) = 1− α.

4.2 Variance Estimation

Theorem 1 shows that the asymptotic variance of β̃ involves the unknown condi-

tional expectation of Ci and Yi. Although we can estimate the unknown parameters in

the asymptotic variance, this may lead to loss of efficiency for small samples. Here we

propose to use a bootstrap approach to estimate the variance of β̃. Specifically, we can

Statistica Sinica: Preprint 
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repeatedly sample B times of n observations {Ti, δi,Xi} from the original dataset with

replacement, and then use the Laplace approximated weighted least squares method

in section 2 to obtain {β̃1, · · · , β̃B}. The variance of β̃ can be estimated by the sample

variance of β̃j, j = 1, · · · , B.

4.3 Algorithm of the proposed method

For practical implementation, we propose iterative updating procedures in the two

main parts, calculation of β̃ and calculation its bias correction, for the new proposed

Laplace approximated weighted least squares method.

• Set the least squares estimator (Jin, Lin and Ying (2006)) of β as the initial

value β̃
(0)
, and set the initial σ̃2

n(.) = 1.

• At the mth step,

– Calculate µ̃
(m)
i = (β̃

(m−1)
)TXi, λ̃

(m)
i = I(yi > µ̃

(m)
i ), ỹi = δiyi + (1 −

δi)λ̃
(m)
i yi + (1− δi)(1− λ̃

(m)
i )µ̃

(m)
i .

– Update variance function σ̃2
n(.) using the local polynomial regression with

the optimal global bandwidth n−1/5 and the Epanechnikov Kernel as in Fan

and Yao (1998).

– Obtain β̃
(m)

based on the weighted least squares method,

β̃
(m)

=
n∑

i=1

[XT
i Xi/σ̃

2
n(µ̃

(m)
i )]−1XT

i ỹi/σ̃
2
n(µ̃

(m)
i ).

• Stop the iterations when β̃
(m)

converges and denote the convergent value as β̃
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and calculate µ̃.

• For the bias correction, set the initial values as β̃
∗(0)

= β̃ and µ̃
∗(0)
i = µ̃i.

• At the lth step,

– Estimate Ê(l)(Yi|Yi > Ci,Xi) = µ̃
∗(l−1)
i + σ̃n(µ̃i)Ê(ei|ei > r̃i,Xi) as in Sec-

tion 4.1, where r̃i = (yi − µ̃
∗(l−1)
i )/σ̃n(µ̃i).

– Calculate the bias by

b̂(l) =

(
n∑

i=1

(Xi/σ̃n(µ̃i))
⊗2

)−1 n∑
i=1

Xi/σ̃n(µ̃i)(ỹi−Ê(l)(Yi|Yi > Ci,Xi))/σ̃n(µ̃i).

– Calculate β̃
∗(l)

= β̃
∗(l−1) − b̂(l) and µ̃

∗(l)
i = (β̃

∗(l)
)
T

Xi.

• Stop the iterations when b̂(l) converges and denote the bias as b̂ at the conver-

gence.

• Calculate β̃
∗
= β̃ − b̂.

• Calculate the (1− α)× 100% confidence interval for β∗
0 by (β̃

∗ − Z1−α/2SE(β̃),

β̃
∗
+ Z1−α/2SE(β̃)), where SE(β̃) is the standard deviation of β̃ obtained by

the bootstrap method in Section 4.2.

5 Simulation Studies

5.1 Simulation settings
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We considered three scenarios for the simulation studies. The first scenario con-

sidered homoscedastic data. The second scenario considered heteroscedastic data with

covariate-independent censoring. The third scenario considered heteroscedastic data

with covariate-dependent censoring. In the second and third scenarios, we also con-

sidered different variance functions.

We report the bias and empirical standard error (SE) to compare the bias and effi-

ciency of the Laplace approximated weighted least squares method (hereafter, we call

it Laplace method for convenience) with those of weighted least squares method (WLS)

(Yu, Liu and Chen (2013)) and of the local Buckley-James method (LBJ) (Pang, Lu

and Wang (2015)) for both homoscedastic and heteroscedastic survival data and of

the least squares method (LS) (Buckley and James (1979)) for homoscedastic survival

data. In order to check the validity of the variance estimation method proposed for

the Laplace method, we report its estimated standard error (SEE) and coverage prob-

ability of the 95% confidence interval (Cov) as well. The results were based on 500

Monte Carlo runs for each setting.

5.2 Data simulation

To investigate the performance of the new proposed Laplace method when the

variance function depends on different subsets of the covariates, we simulated data

with several covariates from the following model as in Pang, Lu and Wang (2015),

Yi ≡ log(Ti) = βTXi + σ(βTXi)ei,
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where Xi = {1, xi1, xi2, xi3, xi4}, and xi1 ∼ Unif(−1, 1), xi2 = xi1/3 + 2xi5/3, xi3 ∼

Bernoulli(0.5), xi4 ∼ Bernoulli(0.5), xi5 ∼ Triangle(−2, 2). The β = {β0, β1, β2, β3, β4}.

For scenarios 1 and 2, β = {1,−1, 2, 1,−1}, while β = {0,−1, 2, 1,−1} for scenario

3. The variance σi ≡ σ(βTXi) = 0.7 for scenario 1. For scenario 2, we considered two

variance functions: σi1 = exp(−0.5 − βTXi), which satisfies the variance assumption

that variance is a function of the mean in model (2.1); σi2 = exp(−2.5− x1β1 − x3β3),

which violates the variance assumption, that is, the variance depends on subsets of

the covariates instead of the mean. For scenario 3, we also considered two variance

functions: σi1, which is same as in scenario 2 and σi3 = exp(−1.5−x1β1−x2β2−x3β3),

which violates the assumption for variance function. Note that σi3 involves more co-

variates than σi2, which means that the domain of σi3 is closer to the mean values

than that of σi2.

Two different error distributions of ei were considered: standard normal distribu-

tion and centered standard extreme value distribution. These two error distributions

correspond to two popular distributed survival data, log normal and Weibull survival

data. Also, two censoring percentages (CP) were considered to investigate its effect

on the estimation. The censoring time Ci was generated from N(c1, 2) for scenarios 1

and 2, with c1 = 3.0 for 20% censoring and c1 = 1.6 for 40% censoring. For scenario

3, censoring time was generated from N(c2, 2) when Xi3 = 1 and from N(c3, 2) when

Xi3 = 0, with c2 = 1.6, c3 = 2.2 for 20% censoring and c2 = 0.4, c3 = 0.8 for 40% cen-

soring. The sample size n=200 or 400 for each setting. The variance of the proposed
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estimator was calculated with 500 bootstrap samples.

5.3 Simulation results

The results for scenario 1 are summarized in Table 1. For homoscedastic survival

data with covariate independent censoring, all methods are unbiased. For the Laplace

method, the bootstrap standard errors matches the empirical standard errors well and

the coverages probabilities of the confidence intervals close to the nominal level. The

LS method is slightly most efficient than the LBJ method because the homoscedas-

ticity assumption is satisfied in this scenario. The LS and LBJ methods are more

efficient than the laplace and WLS methods. One explanation is that the LS and

LBJ methods use the ordinary least squares estimating equation, which assumes the

data is homoscedastic, while the laplace and WLS methods use weighted least squares

estimating equation, which uses the estimated variances.

The results obtained from scenario 2 using normally distributed data are sum-

marized in Table 2. In the case of heteroscedastic survival data with covariate-

independent censoring and a variance function σ1, the LS method exhibits clear bias,

especially in situations with heavy censoring (40%). Conversely, the other three meth-

ods remain unbiased due to their consideration of the heteroscedasticity nature in the

data. The Laplace and WLS methods outperform the LBJ method in terms of effi-

ciency. This is because the Laplace and WLS methods utilize the weighted version

of the least squares method and the variance assumption in model (2.1) is satisfied.

However, when the variance function σ2 is used, which fails to satisfy the variance
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Table 1: Simulation results for homoscedastic survival data

distr n CP para Laplace WLS LBJ LS
bias SE SEE Cov bias SE bias SE bias SE

Normal 200 20% β1 0.001 0.100 0.125 0.942 -0.005 0.101 -0.011 0.085 -0.010 0.085
β2 -0.013 0.106 0.135 0.944 -0.003 0.108 0.004 0.085 0.003 0.084
β3 -0.013 0.100 0.131 0.964 -0.009 0.098 -0.004 0.088 -0.004 0.087
β4 0.014 0.096 0.132 0.962 0.010 0.096 0.007 0.089 0.007 0.088

400 20% β1 0.014 0.065 0.084 0.948 0.008 0.066 0.001 0.059 0.001 0.059
β2 -0.023 0.072 0.093 0.938 -0.012 0.072 0.001 0.058 0.001 0.058
β3 -0.007 0.064 0.088 0.952 -0.002 0.064 0.005 0.058 0.005 0.057
β4 0.005 0.064 0.088 0.974 -0.001 0.064 -0.007 0.061 -0.007 0.061

200 40% β1 0.002 0.117 0.138 0.910 0.001 0.119 -0.015 0.098 -0.014 0.096
β2 -0.027 0.124 0.145 0.928 -0.024 0.127 0.007 0.099 0.005 0.095
β3 -0.026 0.118 0.149 0.944 -0.025 0.118 -0.006 0.101 -0.007 0.099
β4 0.030 0.113 0.15 0.940 0.028 0.116 0.010 0.100 0.011 0.098

400 40% β1 0.023 0.080 0.097 0.958 0.019 0.080 0.002 0.064 0.002 0.063
β2 -0.042 0.088 0.105 0.928 -0.035 0.087 0.001 0.066 0.001 0.064
β3 -0.019 0.077 0.103 0.958 -0.015 0.078 0.004 0.065 0.004 0.064
β4 0.019 0.075 0.103 0.966 0.014 0.076 -0.004 0.068 -0.004 0.066

Extreme 200 20% β1 0.017 0.116 0.154 0.958 0.008 0.116 0.006 0.097 0.005 0.098
β2 -0.029 0.131 0.168 0.946 -0.014 0.133 -0.003 0.106 -0.001 0.110
β3 -0.011 0.128 0.165 0.964 -0.002 0.125 -0.002 0.120 -0.001 0.121
β4 0.019 0.131 0.164 0.960 0.012 0.127 -0.001 0.116 -0.002 0.117

400 20% β1 0.006 0.081 0.105 0.968 -0.004 0.082 -0.009 0.072 -0.010 0.073
β2 -0.030 0.093 0.118 0.940 -0.012 0.091 -0.004 0.074 -0.002 0.078
β3 -0.012 0.084 0.112 0.952 -0.002 0.084 0.004 0.084 0.005 0.084
β4 0.013 0.081 0.112 0.956 0.003 0.081 -0.003 0.074 -0.004 0.075

200 40% β1 0.027 0.139 0.172 0.936 0.023 0.140 0.005 0.114 0.004 0.115
β2 -0.056 0.156 0.181 0.920 -0.054 0.161 -0.005 0.121 -0.003 0.128
β3 -0.027 0.151 0.188 0.942 -0.028 0.152 -0.011 0.138 -0.009 0.140
β4 0.031 0.149 0.187 0.948 0.027 0.151 0.006 0.131 0.005 0.133

400 40% β1 0.025 0.100 0.127 0.956 0.019 0.101 -0.006 0.082 -0.008 0.085
β2 -0.059 0.119 0.138 0.924 -0.044 0.118 -0.001 0.085 0.002 0.091
β3 -0.026 0.100 0.136 0.964 -0.018 0.100 0.007 0.095 0.008 0.097
β4 0.027 0.099 0.136 0.960 0.018 0.098 -0.006 0.087 -0.007 0.086
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Table 2: Simulation results for scenario 2 with normal distribution

n CP variance para Laplace WLS LBJ LS
bias SE SEE Cov bias SE bias SE bias SE

200 20% σ1 β1 -0.007 0.025 0.035 0.970 -0.006 0.024 -0.023 0.121 -0.052 0.133
β2 0.013 0.038 0.054 0.964 0.012 0.035 0.016 0.163 0.074 0.187
β3 0.005 0.028 0.036 0.966 0.004 0.026 0.003 0.113 0.032 0.121
β4 -0.006 0.028 0.037 0.978 -0.005 0.026 0.001 0.121 -0.028 0.130

σ2 β1 -0.001 0.007 0.008 0.928 -0.002 0.011 -0.001 0.007 -0.001 0.007
β2 0.000 0.006 0.007 0.944 0.002 0.011 0.000 0.006 0.000 0.006
β3 0.000 0.006 0.008 0.940 0.027 0.033 0.000 0.006 0.000 0.006
β4 0.001 0.007 0.008 0.928 0.027 0.034 0.001 0.007 0.001 0.007

400 20% σ1 β1 -0.003 0.016 0.025 0.962 -0.001 0.016 -0.010 0.094 -0.040 0.104
β2 0.005 0.023 0.041 0.978 0.002 0.023 0.023 0.115 0.083 0.144
β3 0.004 0.018 0.026 0.938 0.002 0.018 0.015 0.076 0.046 0.089
β4 -0.003 0.017 0.026 0.974 -0.002 0.017 -0.020 0.081 -0.051 0.096

σ2 β1 0.000 0.005 0.006 0.934 -0.002 0.007 0.000 0.005 0.000 0.005
β2 0.000 0.004 0.005 0.936 0.002 0.007 0.000 0.004 0.000 0.004
β3 0.001 0.004 0.005 0.954 0.017 0.021 0.000 0.004 0.001 0.004
β4 0.000 0.004 0.006 0.958 0.015 0.020 0.000 0.004 -0.001 0.004

200 40% σ1 β1 -0.015 0.038 0.048 0.966 -0.011 0.033 -0.036 0.141 -0.106 0.176
β2 0.027 0.056 0.072 0.964 0.019 0.048 0.034 0.181 0.174 0.255
β3 0.012 0.039 0.050 0.956 0.008 0.035 0.013 0.131 0.082 0.160
β4 -0.011 0.038 0.049 0.970 -0.007 0.034 -0.007 0.137 -0.077 0.167

σ2 β1 -0.002 0.008 0.010 0.932 -0.004 0.012 -0.001 0.008 -0.001 0.008
β2 0.000 0.007 0.009 0.916 0.003 0.013 0.000 0.007 0.000 0.007
β3 0.001 0.007 0.009 0.928 0.027 0.034 0.000 0.007 0.000 0.007
β4 0.001 0.008 0.009 0.916 0.026 0.032 0.001 0.008 0.001 0.008

400 40% σ1 β1 -0.006 0.023 0.033 0.956 -0.006 0.022 -0.019 0.108 -0.092 0.141
β2 0.012 0.033 0.052 0.976 0.011 0.031 0.039 0.126 0.184 0.219
β3 0.007 0.025 0.034 0.956 0.007 0.024 0.026 0.089 0.099 0.129
β4 -0.006 0.023 0.034 0.974 -0.005 0.022 -0.028 0.094 -0.102 0.136

σ2 β1 -0.001 0.006 0.007 0.932 -0.002 0.008 -0.001 0.006 -0.001 0.006
β2 0.000 0.005 0.006 0.924 0.002 0.008 0.000 0.005 0.000 0.005
β3 0.001 0.005 0.006 0.928 0.016 0.020 0.001 0.005 0.001 0.005
β4 0.000 0.005 0.007 0.952 0.014 0.020 0.000 0.005 0.000 0.005

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0229



Heteroscedastic survival data analysis 24

assumption in model (2.1), the WLS method exhibits the least efficiency, while the

Laplace, and LBJ methods demonstrate similar efficiencies. This phenomenon can be

explained as follows: when the variance function is misspecified, it has the most signif-

icant impact on the WLS method since both the variance function and the synthetic

data, which are bundled with the variance function in the estimating equation, are

affected. In the case of the Laplace method, the variance function in the estimating

equation is affected, but the Laplace approximated data remain unaffected by the mis-

specified variance function because their values do not directly depend on the variance

function. Similarly, for the LBJ method, only the synthetic data is affected by the

misspecified variance function because it does not include the variance function in the

estimating equation. Additionally, simulations were conducted for scenario 2 using

extreme value distributed data, and the results are provided in the online supplemen-

tary material. The performance is found to be similar to that observed for data with a

normal distribution, indicating the robustness of the results for the AFT model across

different error distributions.

The results for scenario 3 are summarized in Table 3 for normally distributed data.

This scenario is complex as the data is heteroscedastic and the censoring depends on

the covariates, which violates the assumption required by LS method. Clearly, the LS

method is biased, while other three methods are unbiased. In cases where the variance

functions σ1 satisfy the assumption in model (2.1), both the Laplace and WLS methods

exhibit similar efficiencies, which are superior to that of the LBJ method. This finding
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aligns with the results observed in scenario 2 with the variance function σ1. However,

for scenarios with σ3 that violate the variance assumption in model (2.1), the efficiency

pattern differs from that observed in scenario 2 with σ2. In scenario 3 with σ3, the LBJ

method is less efficient than the WLS and Laplace methods. Conversely, in scenario

2 with σ2, the WLS method is less efficient than the LBJ and Laplace methods. This

disparity might arise because σ3 depends on more covariates than σ2, causing the

domain of σ3 to be closer to the mean than that of σ2. Consequently, the violation of

the variance function assumption in model (2.1) has a lesser impact on σ3 compared to

σ2. This suggests that as the domain of the variance function moves further away from

the mean, the LBJ method becomes more efficient while the WLS method becomes

less efficient. However, the Laplace method consistently remains the most efficient,

underscoring its robustness. The simulation results for scenario 3 involving extreme

value distributed data can be found in the online supplementary material, and they

yield similar outcomes to those obtained for normal distribution.

Overall, the LS method is biased for heteroscedastic survival data. The Laplace

method is the most efficient method among the three methods for heteroscedastic

survival data. Moreover, it is robust to different variance functions, compared with

WLS and LBJ methods. In addition, for the Laplace method, the estimated standard

error matches the empirical standard error well and the coverage probability of the

confidence interval is close to the nominal level. In terms of computational time on

a Lenovo Yoga 12 machine with Processor i5-5300U, the Laplace method is much
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Table 3: Simulation results for scenario 3 with normal distribution

n CP variance para Laplace WLS LBJ LS
bias SE SEE Cov bias SE bias SE bias SE

200 20% σ1 β1 -0.009 0.028 0.037 0.970 -0.006 0.024 -0.024 0.125 -0.056 0.137
β2 0.018 0.044 0.059 0.964 0.012 0.036 0.013 0.165 0.078 0.192
β3 0.008 0.030 0.039 0.960 0.005 0.026 0.006 0.114 0.050 0.130
β4 -0.010 0.031 0.040 0.974 -0.006 0.027 0.003 0.125 -0.029 0.138

σ3 β1 -0.003 0.020 0.026 0.958 -0.003 0.019 -0.009 0.067 -0.020 0.071
β2 0.005 0.029 0.038 0.956 0.005 0.029 0.001 0.088 0.023 0.098
β3 0.000 0.020 0.027 0.960 0.000 0.020 -0.001 0.059 0.013 0.063
β4 0.001 0.016 0.022 0.972 0.001 0.016 0.014 0.068 0.003 0.069

400 20% σ1 β1 -0.002 0.016 0.026 0.964 -0.002 0.016 -0.008 0.097 -0.041 0.107
β2 0.004 0.022 0.042 0.978 0.002 0.022 0.021 0.119 0.085 0.151
β3 0.003 0.016 0.027 0.968 0.002 0.016 0.015 0.079 0.059 0.098
β4 -0.002 0.017 0.027 0.970 -0.002 0.018 -0.020 0.080 -0.053 0.097

σ3 β1 -0.001 0.013 0.017 0.950 -0.001 0.013 0.001 0.050 -0.010 0.054
β2 0.002 0.019 0.025 0.972 0.001 0.019 0.000 0.062 0.022 0.071
β3 0.001 0.014 0.018 0.954 0.001 0.014 0.001 0.041 0.016 0.046
β4 0.001 0.011 0.014 0.966 0.001 0.010 -0.001 0.042 -0.014 0.045

200 40% σ1 β1 -0.012 0.038 0.049 0.968 -0.010 0.033 -0.036 0.143 -0.108 0.181
β2 0.024 0.059 0.075 0.958 0.019 0.050 0.032 0.182 0.176 0.259
β3 0.011 0.040 0.051 0.958 0.007 0.033 0.017 0.131 0.099 0.169
β4 -0.011 0.042 0.052 0.966 -0.008 0.036 -0.005 0.139 -0.074 0.171

σ3 β1 -0.007 0.026 0.035 0.952 -0.005 0.025 -0.015 0.078 -0.039 0.090
β2 0.012 0.039 0.051 0.950 0.009 0.037 0.011 0.100 0.059 0.127
β3 0.004 0.027 0.036 0.964 0.002 0.026 0.003 0.069 0.030 0.080
β4 0.001 0.023 0.031 0.970 0.002 0.022 0.026 0.082 0.002 0.083

400 40% σ1 β1 -0.005 0.023 0.034 0.960 -0.004 0.023 -0.015 0.109 -0.086 0.137
β2 0.010 0.033 0.054 0.974 0.006 0.031 0.033 0.128 0.178 0.217
β3 0.007 0.023 0.035 0.966 0.005 0.023 0.022 0.090 0.108 0.137
β4 -0.007 0.025 0.036 0.960 -0.004 0.025 -0.030 0.092 -0.103 0.135

σ3 β1 -0.003 0.018 0.023 0.938 -0.002 0.017 -0.003 0.059 -0.026 0.067
β2 0.007 0.026 0.032 0.960 0.004 0.025 0.006 0.068 0.054 0.093
β3 0.005 0.018 0.024 0.962 0.003 0.018 0.004 0.047 0.032 0.059
β4 0.001 0.014 0.019 0.980 0.002 0.014 0.009 0.049 -0.018 0.055
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faster than WLS and LBJ methods. For example, for data with n = 400 and 40%

censoring, the approximate computational time for Laplace method with 500 bootstrap

samples was 30 seconds, while it was 17 minutes for WLS method with 50 bootstrap

samples and 3 minutes for LBJ method with 500 resampling procedures. For data

with n = 200 and 40% censoring, the approximate computational time for Laplace

method with 500 bootstrap samples was 10 seconds, while it was 2 minutes for WLS

method with 50 bootstrap samples and 1 minute for LBJ method with 500 resampling

procedures. Therefore, it is important to note that the sample size has little effect

on the computational time of the Laplace method, but has a significant effect on the

WLS and LBJ methods as they need iteratively update the Kaplan-Meier estimate,

whose computational time relies much on the sample size.

6 Real Data Analysis

First, we applied our proposed method to Stanford Heart Transplant data (Miller

and Halpern (1982)). The data comes from the Stanford Heart Transplant program

from October 1967 till February 1980. In this time period, 184 patients received heart

transplantation. The goal of our analysis is to investigate the effect of age at the time

of transplant on the survival time after heart transplant. As in Wei, Ying and Lin

(1990), we took 176 observations with survival times at least 10 days. Among them,

107 are uncensored. We used the same model as in Miller and Halpern (1982) and in
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Wei, Ying and Lin (1990),

log10 T = β0 + β1age+ β2age
2 + ϵ.

Yu, Yu and Liu (2009) showed that the data is heteroscedastic. Therefore, we applied

the new proposed Laplace method to this dataset. For comparison, we applied the

least squares method, local Buckley-James method and weighted least squares method

as well.

The results with parameter estimates, estimated standard errors and p-values are

shown in Table 4. The p-values were calculated based on the Wald statistic. The least

squares method concludes that both age and age2 are significant. However, this data

is heteroscedastic, so the least squares method may be biased based on the simulation

studies. We observed that the point estimates of the least squares method are further

away from those of other three methods, indicating that the estimation from the least

squares method may be biased. As a consequence, the reliability of the Wald test-

based p-value is questionable, as it assumes an unbiased estimator. Among the three

methods for heteroscedastic survival data, the weighted least squares method is the

least efficient and concludes that both age and age2 are not significant. The Laplace

method and the local Buckley-James method reach the same conclusion, i.e., the age

is not significant, while age2 is significant (p-value < 0.05). In addition, these two

methods have similar efficiencies. Based on simulation studies, the results indicate

that the variance assumption in model (2.1) is not satisfied and the domain of the
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Table 4: Results for Stanford Heart Transplant data

Laplace WLS LBJ LS
covariate estimate SE p-value estimate SE p-value estimate SE p-value estimate SE p-value
age 0.0541 0.0288 0.060 0.0572 0.0695 0.410 0.0796 0.0413 0.054 0.1072 0.0372 0.004
age2 -0.0010 0.0004 0.012 -0.0010 0.0009 0.267 -0.0013 0.0005 0.009 -0.0017 0.0005 0.001

variance function is further away from the data mean. Therefore, the weighted least

squares method is the least efficient and fails to identify the significance of age2.

Our second example is the Chemotherapy for Stage B/C colon cancer data in

R survival package. This data is from one of the first successful trials of adjuvant

chemotherapy for colon cancer. The patients with resected stages B and C colorec-

tal carcinoma were randomly assigned to three treatment groups (just observation,

Levamisole treatment and Levamisole plus fluorouracil treatment). Levamisole, a low-

toxicity compound, was previously administered to animals to treat worm infestations,

while fluorouracil is a moderately toxic chemotherapy agent. The goal of this data is

to compare the effects of these different treatments on survival time (in days) by

controlling age, sex, differentiation of tumour, time from surgery to registration and

perforation of colon. There are a total of 906 observations. Among them, 441 are un-

censored. Therefore, we regressed the natural logarithm of the survival time on age (in

years), sex (1=male, 0=female), treatment, differentiation of tumour (1=well, 2=mod-

erate, 3=poor), time from surgery to registration (0=short, 1=long) and perforation

of colon (1=perforation, 0=no perforation), i.e.,

log(T ) = β0+β1age+β2sex+β3rxLev+β4rxLev5Fu+β5differ+β6surg+β7perfor+ϵ,
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where rxLev is the Levamisole treatment (1=if treatment is Levamisole; 0=other

treatments), rxLev5Fu is Levamisole+fluorouracil treatment (1=if treatment is Lev-

amisole+fluorouracil, 0=other treatments), differ is the differentiation of tumour, surg

is the time from surgery to registration and perfor is perforation of colon.

We applied the new proposed method for this data. However, it takes significant

computational time for the least squares method, local Buckley-James method and

weighted least squares method due to the large sample size. Therefore, we used the

naive subset estimation for the weighted least squares method and the local Buckley-

James method. Specifically, we randomly divided the data into 5 subsets, so each of the

first 4 subsets has 180 observations and the 5th subset has 186 observations. Because

of the small sample size of each subset, we can apply both the weighted least squares

method and local Buckley-James method. Then the estimators from each subset were

combined to obtain the final estimator. For example, let β̂
(i)
, i = 1, · · · , 5 represent the

estimators from ith subset for a method, and the corresponding variances are denoted

by ˆvar(β̂
(i)
), i = 1, · · · , 5. Then the final estimator was calculated by

∑5
i=1 β̂

(i)
/5, and

its variance was calculated by
∑5

i=1 ˆvar(β(i))/25. We did not include the results from

the least squares method as it is only for homoscedastic survival data and is time-

consuming. Instead, we provided the estimation from the Cox proportional hazards

model for comparison.

The parameter estimates, estimated standard errors and p-values are summarized

in Table 5. The Laplace method and the Cox model reach the same conclusion.
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They showed that the treatment Levamisole+fluorouracil significantly improves the

survival time, compared with the observation group (p-value < 0.05). However, the

Levamisole treatment alone does not have a significant difference from the observation

group in terms of survival time. Among the controlling variables, differentiation of

the tumor and time from surgery to registration show a significant effect on survival.

The weighted least squares method and the local Buckley-James method are much

less efficient than the newly proposed method. This is primarily due to their time-

consuming nature when applied to large datasets, requiring the use of subset method

that includes less information due to smaller sample sizes. As a result, the significance

of the time from surgery to registration is not identified, and the weighted least squares

method fails to detect the significance of the Levamisole+fluorouracil treatment as

well. These findings indicate that the weighted least squares method and the local

Buckley-James method experience decreased efficiency when employed through subset

methods for large samples. Consequently, the newly proposed method proves to be

significantly more efficient than these two methods.

To compare the computational time, the new proposed method used 3 minutes,

the weighted least squares method with subset analysis used 48 minutes and the local

Buckley-James method with subset analysis used 30 minutes. To investigate the het-

eroscedasticity of the data, we plotted the variance function versus the mean based on

our proposed method in Figure 1. It clearly shows that the data is heteroscedastic.

Therefore, our new proposed method is the most efficient method in the frame of the
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Table 5: Results for Chemotherapy for Stage B/C colon cancer data

Laplace WLS LBJ Cox
covariate estimate SE p-value estimate SE p-value estimate SE p-value estimate SE p-value
age -0.003 0.002 0.158 -0.008 0.007 0.268 -0.008 0.005 0.104 0.003 0.004 0.458
sex 0.047 0.079 0.547 0.077 0.142 0.588 0.044 0.119 0.708 -0.028 0.095 0.762
rxLev -0.018 0.076 0.806 -0.066 0.156 0.673 -0.081 0.143 0.570 -0.010 0.112 0.925
rxLev5Fu 0.225 0.076 0.003 0.258 0.183 0.158 0.324 0.162 0.045 -0.354 0.119 0.003
differ -0.273 0.063 0.000 -0.566 0.157 0.000 -0.527 0.133 0.000 0.331 0.096 0.001
surg -0.170 0.068 0.012 -0.291 0.150 0.052 -0.256 0.141 0.071 0.216 0.103 0.037
perfor -0.027 0.163 0.866 0.024 0.414 0.953 -0.020 0.337 0.950 0.128 0.263 0.626

AFT model to analyze this data.

7 Discussions

We have proposed a Laplace approximated weighted least squares method, cur-

rently the most efficient method that can handle large heteroscedastic survival data

with conditional independence assumption using the accelerated failure time model.

The procedure has two steps: the first step estimates the approximated variance func-

tion and the second step performs bias correction.

The procedure has two computational advantages. One is that it avoids the it-

erative Kaplan-Meier estimation to obtain synthetic data, and the other is that it

estimates the variance of β̃, instead of β̃
∗
in the bootstrap procedure. By doing so, it

avoids the bias calculation for β̃ in each bootstrap procedure and hence saves compu-

tational time. The proposed approach is also robust to the variance function because

the Laplace approximated survival times are not “bundled” with the variance function,

i.e., the Laplace approximated survival times do not depend on the variance function.

The simulation results support that the Laplace approximation method performs well

for different variance functions.
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Figure 1: Variance function estimated by the Laplace approximation method for
Chemotherapy for Stage B/C colon cancer data.
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The bootstrap procedure proposed in this paper does not include the bias cor-

rection step and we justified its validity in Section 4.1. As a result, this approach

saves a lot of computational time, especially for large samples. It is also noted that

a bias correction step can be added to each of the bootstrap procedures to obtain

β̃
∗
. After that, the variance estimation and confidence interval can be obtained via

the bootstrap sample β̃
∗
1, · · · , β̃

∗
B. Our additional simulation studies (not shown here)

show that the coverages of the confidence intervals are similar as those obtained from

bootstrap sample β̃1, · · · , β̃B.

The conditional independence assumption used in this paper is equivalent to the

independent censoring in Andersen et al. (1993) for the heteroscedastic AFT model

(2.1). Kleinbaum and Klein (2012) interpret this assumption as the probability of

being censored for any subject in the risk set with the same covariate values at time

t does not depend on that subject’s prognosis for failure at time t. This assumption

makes sense in many practical applications, but may not hold for some situations. For

example, a subject with severe situations at time t may have larger probability to drop

out the study (censored at time t). Researchers then proposed to relax this assumption

and developed new methodologies for survival data with dependent censoring: see

Emura and Chen (2018), Deresa and Van Keilegom (2020), Czado and Van Keilegom

(2023), to name a few. Future research can extend our new proposal to survival data

with dependent censoring.

The Laplace approximation method appears quite general and yields continuous
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and differentiable estimating equations, and hence it facilitates both computational

and theoretical development. It can be employed to more complex settings, such

as heteroscedastic survival data with cure or frailty. This research will advance the

applications of the AFT model to the analysis of various survival data.

Supplementary Material

The proofs of the asymptotic properties in Section 3, and additional simulation

results in Section 5 are available in supplementary material.
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