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Abstract: This study proposes a maximum penalized likelihood procedure for

simultaneous estimation and variable selection in the context of Cox propor-

tional hazards models with informative right-censored data. A copula function is

adopted to model the dependence between censoring and event times. Moreover,

two penalty functions are introduced to accommodate the sparsity of regression

coefficients and smooth the baseline hazard estimate. Since the baseline hazard

function is nonnegative, we propose a specific algorithm comprising a modified

Newton algorithm for updating regression coefficients and a multiplicative it-

erative algorithm for updating baseline hazard at each iteration. Furthermore,

we establish the asymptotic properties of the proposed estimators. Simulation

studies show that the proposed method performs satisfactorily. Finally, we ap-

ply the proposed method to investigate the potential risk factors of AIDS for

HIV-1-infected patients from the AIDS Clinical Trials Group Protocol 175 study.
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1. Introduction

Survival data with informative censoring are commonly encountered in

biomedical studies Examples include the Prospective Research In MEmory

(PRIME) study (Brodaty et al., 2011) and the Acquired Immunodeficiency

Syndrome (AIDS) Clinical Trials Group Protocol 175 (ACTG 175) study

(Hammer et al., 1996). The PRIME concerned patients with either de-

mentia or mild cognitive impairment, with time to institutionalization as

the endpoint. Brodaty et al. (2014) showed that patients who withdrew

from the study were older, had lower cognitive and functional abilities,

and more severe neuropsychiatric symptoms, and were thus more likely to

be institutionalized than those who remained in the study, suggesting a

clear dependence between the withdrawal and endpoint times. The ACTG

175 study evaluated nucleoside monotherapy versus combination therapy in

HIV-1 infected patients, with time to 50% decline in CD4 from baseline as

the primary endpoint. Scharfstein and Robins (2002) showed that those

reporting injection-drug use and with lower CD4 cell counts, lower Karnof-

sky scores, and symptoms of HIV infection at enrolment were significantly
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more likely to discontinue treatment before the study ended, suggesting in-

formative censoring. They also revealed that the Kaplan-Meier estimators

would overestimate the true treatment-specific survival curves when disre-

garding informative censoring as noninformative. An essential feature of

informative censoring data is that the event time T and censoring time C

are correlated, and ignoring such correction may yield unreliable results.

Meanwhile, variable selection for improving model efficiency and inter-

pretability has received wide attention in survival analysis. Over the past

decades, sparse estimation via a regularized or penalized log-likelihood (or

estimating function) has attracted increasing interest. Commonly used pe-

nalized approaches include the least absolute shrinkage and selection oper-

ator (LASSO) (Tibshirani, 1996), LASSO-type estimator and its sparsity

for penalized linear regression (Knight and Fu, 2000), the smoothly clipped

absolute deviation (SCAD) (Fan and Li, 2001), elastic net (Zou and Hastie,

2005), adaptive LASSO (Zou, 2006), grouped LASSO (Yuan and Lin, 2006),

the minimax concave penalty (MCP) (Zhang, 2010), and the seamless-L0

(SELO) (Dicker, Huang and Lin, 2013), among others. In addition, vari-

ous computational methods, such as the shooting method for implementing

LASSO in the context of linear regression models (Fu, 1998), active shoot-

ing for partial correlation estimation based on joint sparse regression (Peng
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et al., 2009), least angle regression (LARS) for linear model selection (Efron

et al., 2004), and the generalized cross-validation (GCV) procedure for tun-

ing parameter estimation (Fu, 2005), have also been developed. Moreover,

variable selection has attracted significant attention in survival analysis

(see, e.g., Tibshirani, 1997; Fan and Li, 2002; Zhang and Lu, 2007; Zhao et

al., 2020; Zhang et al., 2024, and references therein). Despite the fruitful

literature mentioned above, existing works mainly focused on independent

censoring. When informative censoring occurs, variable selection becomes

highly challenging, and available state-of-the-art procedures are still lack-

ing.

Many regression-based estimation approaches have been available for

Cox proportional hazard (PH) models in the presence of informative right-

censored data. Existing literature for PH models can be grouped into

copula-based (Huang and Zhang, 2008; Chen, 2010; Chen, Hu and Sun,

2017; Xu et al., 2018; Jo et al., 2023) and frailty-based methods (Huang

and Wolfe, 2002; Ha et al., 2014; Reeder, Lu and Haneuse, 2023). Frailty

methods assume conditional independence between the failure and censor-

ing times given a frailty term and focus only on estimating the conditional

hazard function. For example, Xu et al. (2018) proposed maximum penal-

ized likelihood (MPL) estimation for PH models under informative right-
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censored data. They estimated parameters by maximizing the nonconcave

likelihood function, which involves estimating nonparametric functions and

complicated gradients of the objective function. Hence, their method in-

evitably computed the inverse of the Hessian matrix or the second-order

differential matrix with respect to regression parameters, getting into the

dilemma of dealing with the singularity of these inverse matrices when

the number of covariates becomes large. Unlike frailty methods, copula

methods assess the marginal hazard functions, in which a copula function

provides an approximated joint survival function of the failure and cen-

soring times and facilitates estimation of the marginal hazard functions.

However, due to the complexity of the data structure, a correlation be-

tween the censoring and survival times formulated by copulas or frailty

terms, and the nonparametric baseline hazard function, variable selection

by commonly used regularization approaches in the presence of informative

censoring faces both sophisticated mathematical derivation and challenging

implementation, making the computation and inference a formidable task.

To tackle these issues, we adopt the “minimum approximated infor-

mation criterion (MIC)” (Su et al., 2016) to conduct variable selection for

PH models with dependent right-censored data. Specifically, we propose

a novel variable selection procedure based on MPL with a MIC penalty.
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Motivated by Xu et al. (2018), an assumed copula function is adopted to

model the dependence between censoring and event times, and two penalty

functions are introduced to encourage the sparsity of the regression coeffi-

cients and smooth the baseline hazard estimate, respectively. We develop a

modified Newton multiplicative-iterative algorithm to estimate the baseline

hazard function and regression coefficients. Compared to Xu et al. (2018),

the proposed algorithm is computationally more efficient because it can

avoid computing the inverse of the Hessian matrix and thus considerably

save computational costs in the case of large-scale covariates. Although

coordinate-descent approaches, such as the shooting algorithm (Fu, 1998)

and LARS (Efron et al., 2004; Peng et al., 2009), can also avoid computing

the inverse matrix and have been demonstrated efficient in analyzing inde-

pendently censored data, directly applying them in the presence of infor-

mative censoring is challenging because of the highly intractable likelihood

induced by the complex data structure, the presence of correlation between

the censoring and survival times described by copula functions, and the

nonparametric approximation of the basis functions. Unlike available meth-

ods in the literature, the proposed algorithm approximates the nonconcave

likelihood function by a new convex objective function, which enables us to

have a closed-form solution for the optimization problem involving highly
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intractable likelihood function, thereby performing stably and efficiently.

We also establish the asymptotic properties of these estimates and provide

their convergence rate under mild conditions.

The remainder of the article is organized as follows. Section 2 presents

the penalized log-likelihood function based on an assumed copula and the

MPL estimation procedure for regression parameters. Section 2 discusses

how to compute the MPL estimate of the nonnegatively constrained base-

line hazard and the regression coefficients. We propose a BIC-type tuning

parameter selection method for the MIC procedure in the Supplementary

Material. The asymptotic properties of the proposed estimators are es-

tablished in Section 3. Section 4 presents simulation studies to evaluate

the empirical performance of the proposed method. Section 5 applies the

methodology to the ACTG 175 dataset. Section 6 concludes. Proofs and

additional numerical results are provided in the Supplementary Material.

2. Methodology

Let T , C, and X denote the failure (event), censoring, and observed times,

respectively. For the ith subject, Ti may not be observed and is subject

to right censoring. Throughout the paper, we assume observations from

different individuals are independent, but for each individual, its failure
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2.1 Copula-based Penalized Likelihood Function

time Ti and censoring time Ci are dependent. For right-censored data, we

observe X = min(T,C) and the failure indicator δ = I(T ≤ C), where I(·)

is the indicator function. Suppose that there exists a p-dimensional vector

of covariates denoted by Zi = (Zi1, . . . , Zip)
T, i = 1, . . . , n. Assume that

{(Xi, δi,Z
T
i ) : i = 1, . . . , n} are independent and identically distributed.

2.1 Copula-based Penalized Likelihood Function

We consider semiparametric PH models to formulate the hazard functions

of the event time and the dependent censoring time as follows:

hT (t|Zi) = h0T (t) exp (Z
T
i β),

hC(t|Zi) = h0C(t) exp (Z
T
i ϕ),

(2.1)

where β and ϕ are unknown regression coefficient vectors, and h0C(·) and

h0C(·) are unknown baseline hazard functions. Denote their cumulative

baseline hazard function by H0T (·) and H0C(·). Roughly speaking, a copula

is a function to link two random variables by specifying their dependence

structure. In this section, we explore the way in which a copula function

(Xu et al., 2018; Chen, 2010) to model the dependence between T and C as

follows. Let K(a, b;α) be a copula function with the degree of association

parameter α, where a, b ∈ [0, 1]. Note that α can be converted to Kendall’s

rank correlation coefficient τ between a and b. At the time t, the joint
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2.1 Copula-based Penalized Likelihood Function

survival function of the event time T and the censoring time C is modeled

by the following copula function K(·):

ST,C(x, x) = Pr {T > x,C > x} = K (ST (x), SC(x);α) ,

where ST (·) and SC(·) are the marginal survival functions of T and C,

respectively.

In what follows, we take the Archimedean copulas as an example to

describe the methodology. An extension to other copulas is straightforward.

The Archimedean copulas adopt the following functional form: K(u, v;α) =

ϕ−1(ϕ(u;α) + ϕ(v;α)), where ϕ is called the generator of K(·). It requires

that ϕ(u) satisfies: (i) ϕ(1) = 0 and (ii) ϕ(·) is a convex and decreasing

function with its domain [0, 1] and range [0,∞]. Here are some examples

of commonly used Archimedean copulas. For instance, the generator of the

Frank copula is ϕ(u) = log {(exp (αu)− 1) / (exp(α)− 1)}, where −∞ <

α < ∞ and the corresponding Kendall’s τ = 1 − 4 (D1(−α)− 1) /α with

D1(α) =
∫ α

0
t/ (exp(t)− 1) dt/α. Then, we have

K(u, v;α)=α−1 log

{
1+

(exp (αu)−1) (exp (αv)−1)

exp (α)−1

}
, α ∈ R\{0}. (2.2)

Let K1(u, v) = ∂K(u, v)/∂u and K2(u, v) = ∂K(u, v)/∂v. The likelihood
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2.1 Copula-based Penalized Likelihood Function

function associated with the PH models in (2.1) is given by

L =
n∏

i=1

{fT (xi)K1 (ST (xi) , SC (xi))}δi {fC (xi)K2 (ST (xi) , SC (xi))}1−δi .

Denote

ℓiT = log h0T (xi)+ZT
i β−HT (xi)+logK1(exp (−HT (xi)), exp (−HC (xi))) ,

ℓiC = log h0C(xi)+ZT
i ϕ−HC(xi)+logK2(exp (−HT (xi)), exp (−HC (xi))) ,

where HT (xi) =H0T (xi)exp(Z
T
iβ) and HC(xi) =H0C(xi)exp(Z

T
iϕ). Then,

the log-likelihood function is

ℓ =
n∑

i=1

{δiℓiT + (1− δi)ℓiC} . (2.3)

Manipulating the function h0T (x) or h0C(x) by directly maximizing the

log-likelihood is ill-conditioned as it is an infinite-dimensional estimation

problem from only a finite number of observations (Xu et al., 2018).

To circumvent this problem, we first approximate h0T (x) and h0C(x)

in (2.1) by a function in a finite-dimensional space. Let ψ1(x), . . . , ψm(x)

be the basis functions of this space. Then, we represent h0T (x) and h0C(x)

by h0T (x) =
∑m

u=1 θuψu(x) and h0C(x) =
∑m

u=1 γuψu(x), where θu ≥ 0 and

γu ≥ 0 for all u. Examples of basis functions include spline, kernel, and in-

dicator functions. Given the complex data structure and the introduction of
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2.1 Copula-based Penalized Likelihood Function

copula functions, using spline or kernel functions would complicate the data

likelihood further. Besides, the selection of knots in the spline approach re-

quires additional effort. As Ma, Heritier and Lô (2014) and Xu et al. (2018)

suggested, a piecewise constant function involves relatively simple computa-

tion, and the multiplicative-iterative (MI) algorithm is available to estimate

the coefficients of the baseline hazard function. Therefore, we develop our

algorithm using general indicator basis functions in this study. Indicator ba-

sis functions provide a piecewise constant (or step) baseline hazard function.

Let t(1) = min {Xi : i = 1, . . . , n} and t(n) = max {Xi : i = 1, . . . , n}. Sup-

pose sets {S1, . . . ,Sm} form a partition to D =
[
t(1), t(n)

]
; i.e., ∪m

u=1Su = D

and Su ∩ Sv = ∅ if u ̸= v. Then, the basis function ψu(t) = I (t ∈ Su),

where I(·) is an indicator function.

Let η = (ηT
1 ,η

T
2 )

T, η1 = (βT,ϕT)T, and η2 = (θT,γT)T, where θ =

(θ1, · · · , θm)T and γ = (γ1, · · · , γm)T . We aim to develop an estimation

procedure where h0T (x) and h0C(x) are assumed smooth, with smoothness

imposed through penalty functions. According to Xu et al. (2018), we

use the following roughness penalties: J(θ) =
∫
t
h′′0T (x)

2dt = θTRθ and

J(γ) =
∫
t
h′′0C(x)

2dt = γTRγ, where R is an m×m matrix with its (u, v)th

element given by
∫
t
ψ′′
u(x)ψ

′′
v (x)dt. Notably, corresponding to discretization,

any derivative operation in piecewise constant penalty function should be
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2.2 Variable Selection

replaced by difference (Ma, Heritier and Lô, 2014). The square of the first

order difference penalty J(θ) =
∑m

i=2(θi−θi−1)
2 is used for all the numerical

studies. When many covariates are present, variable selection becomes

critical in avoiding the curse of dimensionality, reducing overfitting, and

improving model interpretation. Penalized log-likelihood approaches are

well-known solutions to the problem for their multiple appealing features.

The penalized log-likelihood which we wish to maximize for estimating η is

Φ(η1,η2) = ℓ(η)−
2p∑
j=1

pλ(|η1j|)− Jh1,h2(η2), (2.4)

where the log-likelihood ℓ(η) is given in (2.3), pλ(ξ)(ξ > 0) is a penalty

function that depends on the regularization parameter λ ≥ 0, and rough-

ness penalties Jh1,h2(η2) = h1J(θ) + h2J(γ), h1 ≥ 0 and h2 ≥ 0 are the

smoothing parameters.

2.2 Variable Selection

Through employing various penalty functions, Equation (2.4) includes many

popular variable selection methods. Commonly used penalty functions in-

clude LASSO (Tibshirani, 1996), adaptive LASSO (Zou, 2006), SCAD (Fan

and Li, 2001), the elastic net (Zou and Hastie, 2005), and MCP (Zhang,
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2.2 Variable Selection

2010), and references therein. Among these penalties, the L0 penalty is

preferred as it possesses desirable theoretical properties and a strong intu-

itive appeal to penalize the cardinality of a model directly and seeks the

most parsimonious model explaining the data (Su et al., 2016; Lv and Fan,

2009; Dicker, Huang and Lin, 2013; Zhao et al., 2020). For instance, the

best subset selection (BSS) amounts to using the L0 penalty of the form:

pλ(|η1j|, λ) = λI{η1j ̸= 0}. The BSS often solves

argmin
η1∈R2p

{−2ℓ (η1) + λ0∥η1∥0} , (2.5)

where ∥η1∥0 =
∑2p

j=1 I(η1j ̸= 0), and a model selection criterion such as

AIC or BIC is required to compare models of all choices (Akaike, 1974;

Schwarz, 1978). Volinsky and Raftery (2000) suggested replacing the total

sample size n with the number of uncensored cases n0 in the BIC penalty

term for censored data because it corresponds to a more realistic prior on

the parameter space in the presence of censoring. Therefore, we adopt BIC

and set the penalty parameter as λ0 = ln (n0). Our numerical studies in

Section 4 show that this modified BIC performs satisfactorily. However,

the associated variable selection and estimation procedure is nonconvex,

and the solution to the corresponding L0-penalized nonconvex optimization
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2.2 Variable Selection

problem involves exhaustive combinatorial best subset search and hence is

computationally infeasible for high-dimensional data. These issues render

computation a formidable task and implementation challenging in statistical

practice.

We consider using the MIC method to tackle this issue. MIC makes

sparse estimation through approximating BIC, which essentially involves

the approximation of the L0 norm in its penalty with a hyperbolic tangent

function given by tanh (a|η1j|r) = {exp (2a|η1j|r)− 1} / {exp (2a|η1j|r) + 1} ,

where a > 0 is a scale parameter that controls the sharpness of the approx-

imation and r ∈ N typically takes values of 1 and 2. According to Su

et al. (2016), the setting of r = 1 leads to a non-smooth optimization

problem. Therefore, we choose r = 2 to ensure smoothness. Then, we have

tanh
(
aη21j

)
=

{
exp

(
2aη21j

)
− 1

}
/
{
exp

(
2aη21j

)
+ 1

}
. This step changes the

BBS process from discrete to continuous through a continuous smooth sur-

rogate function. Simulation studies conducted by existing works (Su et

al., 2016; Han et al., 2019) have demonstrated its satisfactory performance,

especially in dealing with complex models.

As mentioned before, the hyperbolic tangent function can be essentially

viewed as a continuous approximation of I(η1j ̸= 0):

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0227



2.2 Variable Selection

lim
a→∞

exp
(
2aη21j

)
− 1

exp
(
2aη21j

)
+ 1

=


1 if η1j ̸= 0,

0 if η1j = 0.

Besides, the tanh
(
aη21j

)
is a unit dent function, and the detailed description

of the unit dent function can be found in Su et al. (2016). Hence, we denote

the MIC penalty as pmic(|η1j|) = λ0 {exp (2a|η1j|2)− 1} / {exp (2a|η1j|2) + 1} .

For the sake of revealing the secret of seamless approximation in a nutshell,

we have

λ0∥η1∥0 = lim
a→∞

2p∑
j=1

pmic(|η1j|). (2.6)

From Equation (2.6), the pmic(|βj|) is a seamless approximation to the L0

penalty, as a → ∞. For illustration, we plot the MIC penalty in Figure 1.

By adjusting a, both unbiasedness and continuity can be easily satisfied.

Furthermore, the MIC penalty goes even further, compared to the SELO

penalty pselo(|βj|;λ) = λ/ log(2) log {|βj|/(|βj|+ τ) + 1} with τ > 0 and

the regularization parameter λ ≥ 0. We will discuss selecting the tuning

parameter a for the MIC procedure in the Supplementary Material. No-

tably, there is no explicit sparsity in the estimated parameters. Therefore,

we set a specific threshold (e.g., 0.0001) to force close-to-zero estimates to

precisely zeros to determine the sparsity in the estimated parameters.
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2.3 Maximum Penalized Likelihood Estimation Procedure
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Figure 1: Left: MIC, with the a taking the various values between 1 and
200. Right: SELO, with λ = 1 and τ taking the values between 0.01 and
0.05.

2.3 Maximum Penalized Likelihood Estimation Procedure

We first separate regression and baseline hazard parameters to simplify fu-

ture discussions. By applying the MIC method, the penalized log-likelihood

function (2.4) can be rewritten as Φ(η1,η2)=2ℓ(η)− λ0
∑2p

j=1 tanh(aη
2
1j)−

Jh1,h2(η2). Thus, we want to solve the following constrained optimization

problem:

(η̂1, η̂2) = argmax
η1∈R2p,η2⩾0

Φ (η1,η2) , (2.7)
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2.3 Maximum Penalized Likelihood Estimation Procedure

where the inequality is interpreted element-wisely. The Karush-Kuhn-

Tucker (KKT) necessary conditions for this constrained optimization are

∂Φ

∂βj
= 0 and

∂Φ

∂ϕj

= 0, (2.8)

∂Φ

∂θu
= 0 if θu > 0 and

∂Φ

∂θu
< 0 if θu = 0,

∂Φ

∂γu
= 0 if γu > 0 and

∂Φ

∂γu
< 0 if γu = 0,

(2.9)

for j = 1, . . . , p and u = 1, . . . ,m. To simplify notations, we let SiT =

ST (xi) , SiC = SC (xi) , HiT = HT (xi), and HiC = HC (xi). In (2.8), the

elements of ∂Φ/∂η1 are

∂Φ

∂βj
=

n∑
i=1

(δi − δiHiT − Λi1SiTHiT )Zij = 0,

∂Φ

∂ϕj

=
n∑

i=1

{(1− δi)− (1− δi)HiC − Λi2SiCHiC}Zij = 0,

where

Λi1 = δi
K11 (SiT , SiC)

K1 (SiT , SiC)
+ (1− δi)

K21 (SiT , SiC)

K2 (SiT , SiC)
,

Λi2 = δi
K12 (SiT , SiC)

K1 (SiT , SiC)
+ (1− δi)

K22 (SiT , SiC)

K2 (SiT , SiC)
.

(2.10)

In above expressions, Ψiu=
∫ xi

0
ψu(v)dv, SiT =exp{−

∑m
u=1 θuΨiu exp(Z

T
i β)},

SiC = exp{−
∑m

u=1 θuΨiu exp(Z
T
i ϕ)}, K12(a, b) = ∂2K/∂a∂b, K21(a, b) =

∂2K/∂b∂a, K11(a, b) = ∂2K/∂a2 and K22(a, b) = ∂2K/∂b2. Clearly, the
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2.4 A Modified Iterative Algorithm

elements of ∂Φ/∂η2 are

∂Φ

∂θu
=

n∑
i=1

{
δi
ψiu

hi0T
− (δi + Λi1SiT )Ψiu exp (Z

T
i β)

}
− h1

∂J(θ)

∂θu
,

∂Φ

∂γu
=

n∑
i=1

{
(1− δi)

ψiu

hi0C
− (1− δi + Λi2SiC)Ψiu exp (Z

T
i ϕ)

}
− h2

∂J(γ)

∂γu
,

where Λi1 and Λi2 are defined in Equation (2.10). An efficient and stable

algorithm is a key factor for the successful implementation of the MPL

estimation under dependent censoring (Xu et al., 2018). We propose an

efficient algorithm to solve Equations (2.8) and (2.9) in the following section.

2.4 A Modified Iterative Algorithm

We use an alternating algorithm similar to Ma (2010) and Xu et al. (2018)

to solve Equations (2.8) and (2.9). We call this algorithm the modified

Newton multiplicative-iterative (MI) algorithm. Let η
(k)
1 and η

(k)
2 be the

estimates of η1 and η2 at iteration k, respectively. Then, iteration k + 1

comprises two steps:

• Step 1: With η2 setting at η
(k)
2 , we update η1 using a modified

Newton-Raphson algorithm.

• Step 2: With η1 fixed at η
(k+1)
1 , we update η2 using the multiplica-

tive iterative (MI) algorithm (Ma, 2010), where a line search step is
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2.4 A Modified Iterative Algorithm

included into this iteration to guarantee Φ(η
(k+1)
1 ,η2) increases when

moving from η
(k)
2 to η

(k+1)
2 . This step also guarantees that each up-

dated η2 value respects the non-negativity constraint.

According to (2.7), we first update η1 in Step 1 with η2 fixed at its current

estimate η
(k)
2 from the following regularization problem:

η̂1 = argmax
η1∈R2p

2ℓ(η1|η
(k)
2 )− λ0

2p∑
j=1

tanh(a|η1j|2)− Jh1,h2(η
(k)
2 ). (2.11)

To simplify notations, let ℓ(η1) = −2ℓ(η1|η
(k)
2 ). Moreover, through some

algebraic manipulation, an approximate solution to (2.11) can be equally

obtained by solving the following regularization problem:

argmin
η1∈R2p

ℓ (η1) + λ0

2p∑
j=1

tanh(a|η1j|2), (2.12)

where η1 = (βT,ϕT)T, and λ0 = ln (n0). Furthermore, we assume that

a = Op(n). For ease of notations, we set tanh(| · |) = tanh(a| · |2).

To facilitate a computationally efficient selection procedure, we follow

the local quadratic approximation (LQA) approach (Fan and Li, 2001) to

approximate the penalty function tanh(| · |) with tanh(|η1j|) ≈ tanh(|αj|)+
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2.4 A Modified Iterative Algorithm

tanh′(|αj|)/2|αj|(η2j − α2
j ), for η1j ≈ αj. Then we have

p∑
j=1

pmic(|η1j|) ≈ λ0

2p∑
j=1

tanh′(|αj|)
2|αj|

η21j+λ0

2p∑
j=1

(
tanh(|αj|)−

tanh′(|αj|)
2|αj|

α2
j

)
.

(2.13)

The proposed algorithm starts with a quadratic approximation of ℓ(η1) at

a generic α by

Gt(η1|α) = ℓ(α) + (η1 −α)Tℓ′(α) +
t

2
∥η1 −α∥22 (2.14)

for some pre-specified scaling parameter t > 0, where ∥.∥2 denotes the L2

norm and ℓ′(α) = ∂ℓ(α)/∂α, ℓ′′(α) = ∂2ℓ(α)/∂α∂αT. The additivity of

Gt(η1|α) in the components of η1 enables us to have a closed-form solu-

tion for the minimization problem in (2.12), making the minimization of

Gt(η1|α) over η1 computationally highly efficient.

For k = 0, 1, 2, . . ., set the current estimate η
(k)
1 at iteration k. Accord-

ing to (2.13) and (2.14), with the approximation of the penalty function, an

approximate solution to (2.12) can be equally obtained using the following

iterative procedure:

argmin
η1∈R2p

Gt(η1|η
(k)
1 ) + λ0

2p∑
j=1

tanh′(|η(k)1j |)
2|η(k)1j |

η21j. (2.15)
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2.4 A Modified Iterative Algorithm

Stop the iterations if the sequence of {η(k)
1 } converges. Moreover, through

some algebraic manipulation, the iteration (2.15) can be rewritten as

argmin
η1∈R2p

t

2

∥∥∥η1−(η
(k)
1 −t−1ℓ′(η

(k)
1 ))

∥∥∥2

2
+λ0

2p∑
j=1

4a exp (2a|η(k)1j |2)
(exp (2a|η(k)1j |2)+1)2

η21j. (2.16)

The step size t in (2.16) can be determined by the linear search criteria

assuring ℓ(η
(k+1)
1 ) ≤ ℓ(η

(k)
1 )− (tγ/2)∥η(k+1)

1 − η
(k)
1 ∥22, where γ ∈ (0, 1). One

can obtain the MIC estimator η̂1 by solving (2.16). The resulting iterative

algorithm (Algorithm 1) is presented in the Supplementary Material. The

η̂1 computed by Algorithm 1 is sparse and updated satisfying ℓ(η̂1) ≤

ℓ(η
(k−1)
1 ).

It is worth noting that low computational costs are always desirable for

regularized variable selection. Unfortunately, most existing variable selec-

tion algorithms involve dealing with the singularity of the Hessian matrix

(i.e., [ℓ′′(η1)]
−1). By contrast, the proposed algorithm is computationally

efficient since it can avoid computing the inverse of the Hessian matrix and

save computational costs in case of large-scale matrix inversion.

In Step 2, the MI algorithm for η2 can be written as

η
(k+1)
2 = η

(k)
2 + ω

(k)
2 S

(k)
2

∂Φ(η
(k+1)
1 ,η

(k)
2 )

∂η2

, (2.17)
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2.4 A Modified Iterative Algorithm

where ω
(k)
2 ∈ (0, 1] and ∂Φ(η

(k+1)
1 ,η

(k)
2 )/∂η2 is the gradient of Φ(η

(k+1)
1 ,η2)

evaluated at η
(k)
2 and S

(k)
2 is a diagonal matrix given by S

(k)
2 = diag(S

(k)
21 ,S

(k)
22 ).

Expressions for ∂Φ/∂η2, S
(k)
21 = (θ

(k)
1 /ξ

(k)
11 , . . . , θ

(k)
m /ξ

(k)
1m) and S22 is given as

S
(k)
22 = (γ

(k)
1 /ξ

(k)
21 , . . . , γ

(k)
m /ξ

(k)
2m). Here,

ξ
(k)
1u =

n∑
i=1

(
δiTΨiue

ZT
i β

(k+1)

+Λ
(k)
i1+S

(k)
iTΨiue

ZT
i β(k+1)

)
+h1

[
∂J(θ(k))

∂θu

]+

+ϵ,

ξ
(k)
2u=

n∑
i=1

(
δiCΨiue

ZT
i β(k+1)

+ Λ
(k)
i2+S

(k)
iCΨiue

ZT
i ϕ

(k+1)
)
+h2

[
∂J

(
γ(k)

)
∂γu

]+

+ϵ,

(2.18)

where [c]+ = max(c, 0), and ϵ is a small non-zero constant (i.e 10−5 ) used

to avoid ξ
(k)
1u and ξ

(k)
2u being zero. In Equation (2.18),

Λi1+ = δi
[K11 (SiT , SiC)]

+

K1 (SiT , SiC)
+ (1− δi)

K21 (SiT , SiC)

K2 (SiT , SiC)
,

Λi2+ = (1− δi)
[K22 (SiT , SiC)]

+

K2 (SiT , SiC)
+ δi

K12 (SiT , SiC)

K1 (SiT , SiC)
,

and they are non-negative sinceK12, K21, K2, K1, andK are all non-negative.

It is clear that if η
(k)
2 ≥ 0, then η

(k+1)
2 given by Equation (2.17) is also non-

negative for any ω
(k)
2 ∈ (0, 1]. The step size ω

(k)
2 in (2.17) can be determined

by the Armijo rule assuring Φ(η
(k+1)
1 ,η

(k+1)
2 ) ≥ Φ(η

(k+1)
1 ,η

(k)
2 ). Ma, Her-

itier and Lô (2014) showed the convergence properties of the Newton-MI

algorithm.
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3. Theoretical Results

In this section, we investigate the asymptotic properties of the proposed

method. The theoretical results are summarized in Theorems 1 to 3, and

the proofs are provided in the Supplementary Material.

Let π0 = (β0,ϕ0, h
0
0T (x), h

0
0C(x)) and π̂ = (β̂, ϕ̂, ĥ0T (x), ĥ0C(x)) be the

sets for the true parameters and their MPL estimates. Let β0 = (βT
10,β

T
20)

T

and ϕ0 = (ϕT
10,ϕ

T
20)

T, where β20 = ϕ20 = 0. Without loss of generality,

we define the active set C1 = {j : βj0 ̸= 0, 1 ≤ j ≤ p} and C2 = {j :

ϕj0 ̸= 0, 1 ≤ j ≤ p}. Then, we have s1 = ∥C1∥0 and s2 = ∥C2∥0. β10

consists of all s1 nonzero elements of β0, and ϕ10 consists of all s2 nonzero

elements of ϕ0. For two different π1 and π2, we define the norm ρ(π1,π2) ={
∥β1 − β2∥

2
2 + ∥ϕ1 − ϕ2∥

2
2 + ∥h10T − h20T∥22 + ∥h10C − h20C∥22

}1/2
.

The results in Theorem 1 state that the MPL estimators converge to

their true values when the number of bins m→ ∞ but slower than n→ ∞

in that m/n → 0, and both the regularization parameter λn = λ0/n and

scaled smoothing values µ1n = h1/n, µ2n = h2/n go to zero when n→ ∞.

Theorem 1. Assume that Assumptions A1 to A6 provided in the Supple-

mentary Material hold, and h0T (x) and h0C(x) have up to r ≥ 1 derivatives.

Assume m = nν where 0 < ν < 1/2, and λn, µ1n and µ2n → 0 as n → ∞.
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Then, when n→ ∞,

(i) ∥β̂ − β0∥2 → 0 (a.s.) and ∥ϕ̂− ϕ0∥2 → 0 (a.s.);

(ii) supt∈[t(1),t(n)]
|ĥnT (t) − h00T (t)| → 0 (a.s.) and supt∈[t(1),t(n)]

|ĥnC(t) −

λ00C(t)| → 0 (a.s.).

Theorem 1 guarantees that the MPL estimators converge to their true

values under some regularity conditions. Next, we construct the conver-

gence rate for the estimated parameters.

Theorem 2. (Rate of convergence) Suppose that the assumptions listed in

Theorem 1 hold. Then, as n→ ∞, we have

ρ(π̂n,π0) = Op

(
n−(1−ν)/2 + n−ζν

)
, 0 < ζ ≤ 1.

In particular, by taking ν = 1/(2ζ+1), we have ρ(π̂n,π0) = Op

(
n−ζ/(2ζ+1)

)
.

Let η̂ denote the constrained MPL estimate of η, where θ ≥ 0 and

γ ≥ 0. Let η0 be the true parameter set with a fixed m. Following

Xu et al. (2018), we give the asymptotic properties of the MPL estima-

tors. The matrix U defined in Assumption B5 in the Supplementary

Material indicates the active sets and constraints. Note that U⊤U =

I[s1+s2+2m−q−l]×[s1+s2+2m−q−l], where q and l are the numbers of active con-

straints from θ and γ, respectively, and s1 and s2 are the numbers of nonzero
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elements of β0 and ϕ0, respectively. Let I0(η) = −Eη0

[
∂2l(η)/∂η∂ηT

]
is

the expected information matrix andG0(η) = I0(η)+µ1n∂
2J1(θ)/∂θ∂θ

T+

µ2n∂
2J2(γ)/∂γ∂γ

T + λ∂2pλ(η1)/∂η1∂η1
T.

Theorem 3. Under the conditions of Theorem 1 and Assumptions B1 to

B5 provided in the Supplementary Material, both µ1n and µ2n are o
(
n−1/2

)
.

Suppose n0 = Op(n), the MPL estimators η̂ must satisfy:

(i) With probability tending to one, (β̂
T

20, ϕ̂
T

20)
T = 0;

(ii)
√
n(η̂ − η0) converges in distribution to N

(
02×(m+p),Σ(β0)

)
when

n → ∞, with Σ(β0) = G̃0 (η0)
−1 I0 (η0)

{
G̃0 (η0)

−1
}T

and G̃0 (η0)
−1 =

U
{
UTG0(η)U

}−1
UT.

In practice, η0 is generally unavailable, and we can replace it with η̂

due to the strong consistency result. Theorem 3 has practical values since

it accommodates nonzero smoothing values and active constraints.

4. Simulation Study

This section presents simulation studies to assess the finite sample perfor-

mance of the proposed MPL method. For comparison, we also evaluate the

penalized partial likelihood (PL) method of Cox (Cox, 1972) and conduct

simulations under full (with all predictors) and oracle (with actual predic-

tors) PH models. Since our work is the first variable selection method with
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MIC penalty function for PH models in the presence of dependent censor-

ing, it is uncertain how other sparse estimation methods, such as LASSO

or SCAD, can be extended to the current model context. For this reason,

we do not compare our method with other competitive approaches.

We use the following measures to assess the performance of the selection

procedure: (i) The percentage of correct model selection (Pcorr); (ii) The

mean weighted squared error (MSE); i.e., (β̂ − β0)
TΣ(β̂ − β0), where Σ is

the population covariance matrix of the covariates; (iii) The average number

of false positives (i.e., the average number of incorrectly included variables),

denoted by F+; (iv) The average number of false negatives (i.e., the average

number of incorrectly excluded variables), denoted by F−; (v) the averaged

model size (Size). A powerful variable selection procedure must ensure

that Pcorr is close to one and F+, F−, and MSE are close to zero. Also,

the estimated model size (i.e., the estimated number of covariates) should

be close to the true model size. The tuning parameter a is selected using

an extended BIC procedure described in the Supplementary Material.

We set the sample size n = 200 and 400, and the total number of

covariates p = 10 and 20. All the simulation results given below are based

on 500 replications. According to Ma, Heritier and Lô (2014), we use the

equal bin event count strategy to define the indicator functions, where the
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common event count of each bin is denoted by n0. In practice, we set

n0 = 2 for n = 200 and n0 = 4 for n = 400 and the number of bins

m = n/n0. We apply a single tuning parameter to all the replications for

the optimal smoothing parameter h1 and h2. Based on a replicated sample

and a chosen m, the optimal smoothing parameter h1 and h2 are estimated

through BIC. Then, we obtain the initial regression coefficient estimates in

the PH models for failure and dependent censoring times using the MIC

approach with r = 2 and update them iteratively through the LQA until

convergence. We use a threshold of 0.0001 to determine the sparsity of

the estimated parameters. In practice, we include this additional step to

Algorithm 1 presented in the Supplementary Material.

We conduct relevant simulation experiments listed below. Two different

scenarios for the true sparse regression coefficients β0 and ϕ0 are considered

as follows:

Case A: β0 = (0.5; 0;−0.5; 0; 0; 0.5;0p−6), ϕ0 = (0; 0.5; 0;−0.5;0p−4).

Case B: β0 = (1.0; 0;−1.0; 0; 0; 1.0;0p−6), ϕ0 = (0; 1.0; 0;−1.0;0p−4).

Cases A and B correspond to situations with small and large covariate ef-

fects, respectively. The data used in the simulation are obtained as follows.

For a given p, we generate covariate Z from a multivariate normal distribu-
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tion with mean zero and covariance matrix Σ = (σij) with σij = ρ|i−j|. We

assume a slight and moderate correlation between the covariates by taking

ρ = 0.25 and 0.5, respectively. Our settings involve both dependent and in-

dependent censoring. Under the dependent censoring case, the marginal

hazards for T and C are set as follows: hT (t|Z) = h0T (t) exp
(
βTZ

)
,

hC(t|Z) = h0C(t) exp
(
ϕTZ

)
, where the baseline hazards are h0C(t) = 1/5

and h0T (t) = 2t/λ2t . Here, λt can be chosen for a specified censoring rate

(CR) of 30%. For each Ti, the independent censoring time Ci is generated

from the uniform distribution U(0, c0) with c0 chosen to obtain a CR of

either 25% or 45%.

Under dependent censoring, Tables 1 and 2 summarize the MSE and

variable selection results in Cases A and B, respectively. In addition, Table

3 presents the simulation results of the bias (BIAS), the sample standard

errors (SE), the average of the asymptotic standard errors (ASE), and the

coverage probabilities (CP) of the 95% confidence intervals for nonzero co-

efficients obtained by the proposed and PL methods in Case A under de-

pendent censoring. Table S1 reports the MSE and variable selection results

in Case A under independent censoring.

Table 1 indicates that Pcorr is equal to 100%, F+ and F− are very close

to zero, and Size is sufficiently close to 3 for our method. This result sug-
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Table 1: Simulation results of MPL, PL, full model, and Oracle model in
Case A (CR=30%)

Frank copula and τ̃ = 0.2, λt = 2.0 Frank copula and τ̃ = 0.5, λt = 2.3

n (ρ, p) Method Pcorr MSE F+ F− Size Pcorr MSE F+ F− Size

n = 200

(0.25, 10)

Full 0.00 0.105 6.992 0.000 9.992 0.00 0.174 6.992 0.000 9.992

PL 93.80 0.039 0.052 0.012 3.040 85.00 0.083 0.166 0.000 3.166

MPL 100.00 0.027 0.000 0.000 3.000 100.00 0.054 0.000 0.000 3.000

Oracle 100.00 0.029 0.000 0.000 3.000 100.00 0.058 0.000 0.000 3.000

(0.25, 20)

Full 0.00 0.249 16.990 0.000 19.990 0.00 0.348 16.988 0.000 19.988

PL 87.40 0.051 0.132 0.008 3.124 77.60 0.107 0.268 0.006 3.262

MPL 100.00 0.031 0.000 0.000 3.000 100.00 0.062 0.000 0.000 3.000

Oracle 100.00 0.032 0.000 0.000 3.000 100.00 0.063 0.000 0.000 3.000

(0.5, 10)

Full 0.00 0.105 6.996 0.000 9.996 0.00 0.161 6.994 0.000 9.994

PL 86.40 0.046 0.124 0.032 3.092 77.80 0.083 0.272 0.004 3.268

MPL 99.60 0.029 0.000 0.004 2.996 99.80 0.051 0.000 0.002 2.998

Oracle 100.00 0.030 0.000 0.000 3.000 100.00 0.052 0.000 0.000 3.000

(0.5, 20)

Full 0.00 0.247 16.990 0.000 19.990 0.00 0.329 16.984 0.000 19.984

PL 81.80 0.058 0.218 0.030 3.188 70.80 0.111 0.406 0.010 3.396

MPL 100.00 0.032 0.000 0.000 3.000 100.00 0.058 0.000 0.000 3.000

Oracle 100.00 0.031 0.000 0.000 3.000 100.00 0.059 0.000 0.000 3.000

n = 400

(0.25, 10)

Full 0.00 0.048 6.994 0.000 9.994 0.00 0.102 6.996 0.000 9.996

PL 99.80 0.016 0.002 0.000 3.002 97.80 0.047 0.022 0.000 3.022

MPL 100.00 0.016 0.000 0.000 3.000 100.00 0.040 0.000 0.000 3.000

Oracle 100.00 0.015 0.000 0.000 3.000 100.00 0.040 0.000 0.000 3.000

(0.25, 20)

Full 0.00 0.100 16.986 0.000 19.986 0.00 0.167 16.962 0.000 19.962

PL 99.80 0.019 0.002 0.000 3.002 96.60 0.056 0.034 0.000 3.034

MPL 100.00 0.017 0.000 0.000 3.000 100.00 0.046 0.000 0.000 3.000

Oracle 100.00 0.016 0.000 0.000 3.000 100.00 0.043 0.000 0.000 3.000

(0.5, 10)

Full 0.00 0.048 6.994 0.000 9.994 0.00 0.090 7.000 0.000 10.000

PL 99.40 0.016 0.004 0.002 3.002 96.20 0.043 0.042 0.000 3.042

MPL 100.00 0.015 0.000 0.000 3.000 100.00 0.036 0.000 0.000 3.000

Oracle 100.00 0.014 0.000 0.000 3.000 100.00 0.036 0.000 0.000 3.000

(0.5, 20)

Full 0.00 0.100 16.978 0.000 19.978 0.00 0.153 16.988 0.000 19.988

PL 99.00 0.018 0.010 0.000 3.010 93.80 0.051 0.062 0.000 3.062

MPL 100.00 0.017 0.000 0.000 3.000 100.00 0.040 0.000 0.000 3.000

Oracle 100.00 0.016 0.000 0.000 3.000 100.00 0.039 0.000 0.000 3.000
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Table 2: Simulation results of MPL, PL, full model, and Oracle model in
Case B (CR=30%)

Frank copula and τ̃ = 0.2, λt = 1.5 Frank copula and τ̃ = 0.5, λt = 1.6

n (ρ, p) Method Pcorr MSE F+ F− Size Pcorr MSE F+ F− Size

n = 200

(0.25, 10)

Full 0.00 0.121 6.994 0.000 9.994 0.00 0.203 6.992 0.000 9.992

PL 92.80 0.045 0.072 0.000 3.072 81.60 0.098 0.198 0.000 3.198

MPL 100.00 0.023 0.000 0.000 3.000 100.00 0.063 0.000 0.000 3.000

Oracle 100.00 0.039 0.000 0.000 3.000 100.00 0.069 0.000 0.000 3.000

(0.25, 20)

Full 0.00 0.277 16.988 0.000 19.988 0.00 0.394 16.988 0.000 19.988

PL 85.80 0.070 0.164 0.000 3.164 74.60 0.144 0.332 0.000 3.332

MPL 100.00 0.031 0.000 0.000 3.000 100.00 0.088 0.000 0.000 3.000

Oracle 100.00 0.039 0.000 0.000 3.000 100.00 0.071 0.000 0.000 3.000

(0.5, 10)

Full 0.00 0.119 6.996 0.000 9.996 0.00 0.200 6.996 0.000 9.996

PL 86.40 0.048 0.152 0.004 3.152 70.40 0.106 0.374 0.000 3.374

MPL 100.00 0.024 0.000 0.000 3.000 100.00 0.064 0.000 0.000 3.000

Oracle 100.00 0.035 0.000 0.000 3.000 100.00 0.069 0.000 0.000 3.000

(0.5, 20)

Full 0.00 0.267 16.990 0.000 19.990 0.00 0.376 16.992 0.000 19.992

PL 78.20 0.073 0.292 0.004 3.292 62.60 0.145 0.510 0.000 3.510

MPL 100.00 0.028 0.000 0.000 3.000 100.00 0.082 0.000 0.000 3.000

Oracle 100.00 0.037 0.000 0.000 3.000 100.00 0.071 0.000 0.000 3.000

n = 400

(0.25, 10)

Full 0.00 0.054 6.990 0.000 9.990 0.00 0.116 6.992 0.000 9.992

PL 99.80 0.017 0.002 0.000 3.002 95.40 0.048 0.050 0.000 3.050

MPL 100.00 0.010 0.000 0.000 3.000 100.00 0.043 0.000 0.000 3.000

Oracle 100.00 0.018 0.000 0.000 3.000 100.00 0.043 0.000 0.000 3.000

(0.25, 20)

Full 0.00 0.109 16.984 0.000 19.984 0.00 0.189 16.988 0.000 19.988

PL 99.00 0.021 0.004 0.000 3.000 93.80 0.064 0.068 0.000 3.068

MPL 100.00 0.013 0.000 0.000 3.000 100.00 0.057 0.000 0.000 3.000

Oracle 100.00 0.018 0.000 0.000 3.000 100.00 0.046 0.000 0.000 3.000

(0.5, 10)

Full 0.00 0.054 6.994 0.000 9.994 0.00 0.115 6.996 0.000 9.996

PL 99.20 0.016 0.006 0.000 3.006 91.20 0.051 0.094 0.000 3.094

MPL 100.00 0.011 0.000 0.000 3.000 100.00 0.045 0.000 0.000 3.000

Oracle 100.00 0.017 0.000 0.000 3.000 100.00 0.044 0.000 0.000 3.000

(0.5, 20)

Full 0.00 0.106 16.986 0.000 19.986 0.00 0.183 16.986 0.000 19.986

PL 98.80 0.020 0.012 0.004 3.012 89.80 0.063 0.120 0.000 3.120

MPL 100.00 0.013 0.000 0.000 3.000 100.00 0.054 0.000 0.000 3.000

Oracle 100.00 0.018 0.000 0.000 3.000 100.00 0.046 0.000 0.000 3.000
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Table 3: Simulation results of MPL and PL in Case A under dependent
censoring (CR=30%, λt = 2.0), Frank copula, and τ̃ = 0.2. Abbreviations:
SE, the sample standard error; ASE, the averages of asymptotic standard
error; BIAS, bias; CP, the coverage probability of the 95% confidence in-
tervals for the nonzero coefficients.

MPL PL

n (ρ, p) Para BIAS SE ASE CP BIAS SE ASE CP

n = 200

(0.25, 10)

β1 0.019 0.057 0.061 0.948 0.018 0.098 0.034 0.540

β3 -0.025 0.065 0.061 0.914 -0.016 0.102 0.033 0.470

β6 0.026 0.060 0.061 0.934 0.016 0.096 0.032 0.466

ϕ2 -0.032 0.066 0.085 0.950 - - - - - - - -

ϕ4 0.025 0.062 0.085 0.964 - - - - - - - -

(0.25, 20)

β1 0.019 0.057 0.061 0.948 0.018 0.098 0.034 0.540

β3 -0.025 0.065 0.061 0.914 -0.016 0.102 0.033 0.470

β6 0.026 0.060 0.061 0.934 0.016 0.096 0.032 0.466

ϕ2 -0.032 0.066 0.085 0.950 - - - - - - - -

ϕ4 0.025 0.062 0.085 0.964 - - - - - - - -

(0.5, 10)

β1 0.002 0.057 0.063 0.952 0.002 0.095 0.035 0.482

β3 -0.002 0.061 0.063 0.940 -0.012 0.093 0.034 0.500

β6 -0.017 0.057 0.061 0.940 -0.014 0.092 0.031 0.422

ϕ2 -0.049 0.065 0.086 0.946 - - - - - - - -

ϕ4 0.047 0.063 0.085 0.932 - - - - - - - -

(0.5, 20)

β1 0.009 0.057 0.062 0.958 0.013 0.102 0.034 0.496

β3 -0.016 0.064 0.063 0.930 -0.002 0.106 0.032 0.442

β6 0.025 0.059 0.061 0.932 0.003 0.104 0.029 0.420

ϕ2 -0.032 0.061 0.086 0.960 - - - - - - - -

ϕ4 0.030 0.067 0.086 0.960 - - - - - - - -

n = 400

(0.25, 10)

β1 -0.004 0.033 0.043 0.978 -0.010 0.059 0.028 0.592

β3 -0.001 0.035 0.043 0.970 -0.015 0.063 0.026 0.578

β6 0.008 0.038 0.043 0.958 0.009 0.064 0.026 0.544

ϕ2 -0.037 0.033 0.057 0.952 - - - - - - - -

ϕ4 0.037 0.032 0.057 0.956 - - - - - - - -

(0.25, 20)

β1 0.005 0.036 0.043 0.968 0.002 0.064 0.027 0.576

β3 -0.012 0.037 0.043 0.962 -0.001 0.069 0.026 0.506

β6 0.011 0.036 0.043 0.954 -0.003 0.066 0.026 0.544

ϕ2 -0.030 0.033 0.057 0.976 - - - - - - - -

ϕ4 0.033 0.031 0.057 0.966 - - - - - - - -

(0.5, 10)

β1 -0.014 0.034 0.044 0.970 -0.015 0.062 0.035 0.576

β3 0.006 0.036 0.044 0.966 0.024 0.065 0.028 0.540

β6 0.011 0.038 0.043 0.956 -0.014 0.064 0.027 0.480

ϕ2 -0.038 0.039 0.060 0.942 - - - - - - - -

ϕ4 0.037 0.039 0.060 0.952 - - - - - - - -

(0.5, 20)

β1 -0.005 0.036 0.044 0.970 -0.004 0.064 0.029 0.568

β3 -0.006 0.038 0.044 0.956 0.010 0.069 0.026 0.512

β6 0.012 0.038 0.043 0.946 -0.010 0.066 0.026 0.506

ϕ2 -0.031 0.039 0.060 0.960 - - - - - - - -

ϕ4 0.033 0.039 0.060 0.948 - - - - - - - -
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gests that our method can accurately discover the sparse representation of

Models (2.1). Moreover, our method outperforms the full model and PL

method in terms of Pcorr and MSE and performs similarly to the Oracle

model. Between the two procedures with penalties, the MPL performs con-

sistently better than PL in terms of all the performance measures, and the

discrepancy increases as the correlation between the survival and censoring

times increases from 0.2 to 0.5. In Case B, important variables have larger

effects than in Case A. Table 2 shows similar results to Table 1. In addition,

from Tables 1 and 2, the performance of both methods improves in terms of

all the measures as the sample size n increases from 200 to 400 but declines

when the model size p rises from 10 to 20.

Table 3 presents the results of the nonzero coefficients in Case A. We

use the standard error formula in Zhang and Lu (2007) to estimate the

standard errors for the PL estimates. The proposed MPL keeps a better

agreement between SE and ASE values than the PL method, and the cov-

erage probabilities of the 95% confidence intervals yielded by our method

are closer to the nominal level than the PL method. For all methods, the

estimated and sample standard errors decrease as n increases from 200 to

400.

Table S1 in the Supplementary Material summarizes MSE and variable
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selection results in Case A under independent censoring. As expected, the

performance of MPL and PL is comparable when censoring is independent,

and they both perform better as n increases. When n = 400, even as

the model size or CR increases, both methods still have high accuracy in

estimation and variable selection.

We also consider other settings with larger p, selecting only β and

using a spline baseline hazard. Tables S2–S6 in the Supplementary Material

suggest that our method performs well when p is relatively large and when

using a different baseline hazard but performs better when selecting β and

ϕ simultaneously.

The code for implementing the simulation study is publicly available at

https://github.com/zili-liu/mpl informative censoring.

5. The ACTG 175 study

We applied the proposed method to the ACTG 175 study, which contains

2,467 HIV-1-infected patients with CD4 counts between 200 and 500 per

cubic millimeter (Hammer et al., 1996). The ACTG 175 study evaluated

treatment with either a single nucleoside or two nucleosides, where pa-

tients were randomized to one of four daily antiretroviral regimens in equal

proportions: zidovudine only, zidovudine plus didanosine, zidovudine plus
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zalcitabine, and didanosine only (Hammer et al., 1996). Enrolment began

in December 1991 and was closed in October 1992. Patients were scheduled

to be followed until November 1994. As a result, all subjects were sched-

uled for at least two years of follow-up. The CD4 counts were collected at

baseline, week 8, and then every 12 weeks thereafter. The primary endpoint

was time to 50% decline in CD4 from baseline, as confirmed by a second

CD4 count within 3 to 21 days, AIDS or death. The censoring rate of the

dataset is approximately 76%.

Possible risk factors include those relevant to patients’ characteris-

tics, which consist of four continuous covariates: weight (kg), Karnofsky

score (scale of 0–100), CD4 count (cells/mm3) at baseline and CD8 count

(cells/mm3) at baseline, and ten binary covariates: age > 50 (1 = yes),

hemophilia (1 = yes), homosexual activity (1 = yes), non-zidovudine an-

tiretroviral therapy prior to initiation of study treatment (1 = yes), race (1

= non-white), gender (1 = male), antiretroviral history (1 = experienced),

symptomatic status (1 = symptomatic), treatment indicator (0 = zidovu-

dine only, 1 = others), and indicator of off-treatment before 96±5 weeks (1

= yes). For each subject, T was defined as the time to the primary endpoint

that would be observed under full compliance, and the censoring time, C,

was defined as the shorter time to loss to follow-up and time to discontinua-
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tion of assigned therapy. Scharfstein and Robins (2002) showed that those

reporting injection-drug use and with lower CD4 cell counts, lower Karnof-

sky scores, and symptoms of HIV infection at enrolment were significantly

more likely to discontinue treatment before the study ended, suggesting

informative censoring. Therefore, unlike Huang and Zhang (2008) who se-

lected covariates using a stepwise selection algorithm under independent

censoring, we conducted a simultaneous estimation and variable selection

in the presence of informative censoring.

We analyzed the ACTG 175 data using the proposed MPL and com-

peting PL methods. For MPL method, we analyzed the data by assuming

a Frank copula model for dependent censoring and selected the correla-

tion parameter τ using BIC. That is, we fitted the model repeatedly using

Kendall’s τ = 0 (i.e., independent censoring), 0.2 (weak dependence be-

tween event and censoring times), 0.5 (moderate dependence between event

and censoring times), and 0.7 (strong dependence between event and cen-

soring times). Then, we chose the optimal τ using BIC. In the analysis, we

adopted an equal number of observations in each bin to determine the bins

and construct a piecewise constant function to approximate the baseline

hazard. For the optimal smoothing parameter h1 and h2, given a chosen

m, the optimal smoothing parameter h1 and h2 were determined through
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BIC. The initial estimates of the regression coefficient of the PH models

were obtained using the MIC approach.

Table 4: Variable selection and estimation results for the ACTG 175 data.
Abbreviations: SE, standard error; CI, 95% confidence interval.

MPL PL

β̂ SE CI p-value β̂ SE CI p-value

age 0.3297 0.1367 (0.0617, 0.5977) 0.0159 – – – – – – – –
wtkg – – – – – – – – – – – – – – – –
hemo – – – – – – – – – – – – – – – –
homo 0.1566 0.0560 (0.0470, 0.2663) 0.0051 – – – – – – – –
karnof -0.1394 0.0284 (-0.1950, -0.0837) < 0.0001 – – – – – – – –
oprior – – – – – – – – – – – – – – – –
race – – – – – – – – – – – – – – – –
gender – – – – – – – – – – – – – – – –
str2 0.3424 0.0582 (0.2283, 0.4564) < 0.0001 0.3376 0.0564 (0.2269, 0.4482) < 0.0001
symptom 0.3185 0.0573 (0.2062, 0.4309) < 0.0001 0.3096 0.0816 (0.1496, 0.4695) < 0.0001
treat -0.6336 0.0554 (-0.7421, -0.5251) < 0.0001 -0.5109 0.0631 (-0.6345, -0.3872) < 0.0001
offtrt 0.6085 0.0618 (0.4875, 0.7296) < 0.0001 0.5056 0.0234 (0.4598, 0.5515) < 0.0001
cd40 -0.4443 0.0405 (-0.5236, -0.3650) < 0.0001 -0.4123 0.0376 (-0.4860, -0.3386) < 0.0001
cd80 0.2341 0.0296 (0.1761, 0.2921) < 0.0001 – – – – – – – –

Table 4 shows that the MPL method selected nine variables: age, homo,

karnof, str2, symptom, treat, offtrt, cd40, and cd80, in which five variables,

including age, str2, symptom, treat, and cd40, are similar to those selected

in Huang and Zhang (2008). Based on Table 4, we have several observations.

First, age at enrolment has a significantly positive effect on the hazards of

≥ 50 percent decline in the CD4 cell count, indicating that older patients

have higher risks of developing AIDS. Second, homosexual activity, symp-

tomatic HIV/AIDS, history of antiretroviral infection, off-treatment before
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96 ± 5 weeks, and CD8 cell count also significantly increase AIDS haz-

ards. Patients reporting antiretroviral infection, with previous homosexual

activity, symptoms of HIV infection at enrolment, or high levels of CD8

cell count, and discontinuing the treatment before 96 ± 5 weeks are more

predisposed to AIDS. Third, sex, race, weight, hemophilia, and previous

non-zidovudine antiretroviral therapy do not exert a significant effect on

AIDS development. In contrast, karnof and cd40 have significantly adverse

effects on AIDS hazards, implying that poor health and low levels of the

CD4 cell count increase the risk of AIDS. Besides, the treatment indica-

tor also has a significantly negative impact on developing AIDS hazards.

That is, regimens combining zidovudine with other antiretroviral agents

reduces AIDS hazards. In comparison, the PL method only selected five

variables: str2, symptom, treat, offer, and cd40, and failed to identify age,

homo, karnof, and cd80 as the risk factors of AIDS. Therefore, the proposed

MPL procedure can identify essential predictors more efficiently than the

PL method because it accounts for a range of possible Kendall’s τ values

in the presence of informative censoring. These findings have public health

implications, especially for the aggressive control of risk factors to prevent

AIDS or other complications for HIV-1-infected patients and to improve

their quality of life.
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Figure 2: Plots of regression coefficients estimates (dots) and their corre-
sponding 95% confidence intervals at τ values of 0, 0.2, 0.5, and 0.7.
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Figure 2 shows the regression coefficient versus τ values; each plot con-

tains at least one significant coefficient. The plots also include the corre-

sponding 95% confidence intervals (CIs), suggesting the following signifi-

cant (p < 0.05) predictors of institutionalization regardless of the τ values:

age, Karnofsky score, antiretroviral history, symptomatic indicator, treat-

ment indicator, indicator of off-treatment before 96± 5 weeks, CD4 T cell

count (cells/mm3) at baseline, and CD8 T cell count (cells/mm3) at base-

line. Other predictors varied in statistical significance across Kendall’s τ

values. The effects of homosexual activity become marginally significant,

which changes from nonsignificant (p = 0.23 and 0.16, when τ = 0 and

0.2, respectively) to significant (p = 0.03 and 0.2 for τ = 0.5 and 0.7,

respectively).

6. Discussion

This article considered a computationally feasible variable selection method

for PH models with dependent censoring. The associated likelihood func-

tion is nonconcave, involving unspecified baseline hazards that cannot be

canceled due to the event and censoring times being correlated. To tackle

these issues, we adopted the MIC method (Su et al., 2016) with copu-
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las for its smooth formulation. The MIC method achieves sparse estima-

tion by minimizing an approximated BIC. We adopted an efficient modi-

fied Newton-MI algorithm to estimate the baseline hazard and regression

coefficients, which can be conveniently implemented in MATLAB. The con-

sistency and asymptotic normality of the parameter estimators are estab-

lished. Simulation results demonstrated that the proposed method performs

satisfactorily. An application to the ACTG 175 dataset was provided to il-

lustrate the utility of our method.

In the current research, we employed the hyperbolic tangent function

(Su et al., 2016) to approximate the L0 penalty for popular survival models.

The MIC penalty has a simpler form and can provide a better and more

efficient way along with nice properties than conventional ones. We also

developed an iterative algorithm to effectively implement the proposed pro-

cedure. As there is no need to compute the inverse of the Hessian matrix,

the proposed algorithm also works for large-scale problems. In addition,

our method can be extended in several directions. First, our approach can

be applied to other survival models, such as additive hazards models (Lin

and Ying, 1994) and the accelerated failure time models. Second, variable

selection for PH models with latent variables (Pan et al., 2015) can be con-

sidered in this framework. Third, the proposed method requires the variable
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dimension p to be less than the sample size n. The proposed method works

well only in this situation because of its intricacy. Extending the current

approach to deal with the high-dimensional case of p≫ n is interesting.

Supplementary Material

The Supplementary Material includes the proofs of Theorems 1 to 3, Al-

gorithm 1, an extended BIC for tuning parameter selection, and additional

numerical results.
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