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Abstract: Factor models have been extensively employed in high dimensional

time series. However, little is known for the case with the sparse loading matrix.

This paper introduces a sparse factor model with an easy-to-implement estima-

tion method, aiming to enhance interpretability and relax the constraints on the

dimension p of the time series. In particular, it is shown that under weak condi-

tions, the loading space could be consistently estimated with a convergence rate

related to the sparseness of each column in the loading matrix and the eigenvalues

used to recover the latent factor and loading matrix. In addition, a randomized

sequential test is introduced to determine the number of sparse factors. Simula-

tions and real data analysis on sea surface air pressure and stock portfolios are

also provided to illustrate the performance of the proposed method.

Key words and phrases: High dimensional time series, α-mixing, Orthogonal

projection, Sparse factor model.
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1. Introduction

Modeling high dimensional time series is of great interest and importance

in a wide range of fields including signal process, medical research and

financial analysis. For interpretability and simplicity, it is commonly as-

sumed that the high dimensional data is driven by a low dimensional latent

factor model. Regarding high dimensional factor models that utilize PCA

estimator, a strong-factor framework is usually employed for theoretical

consistency, which assumes that the leading eigenvalues driven by com-

mon factors are proportional to the dimension p, or the loading matrix is

dense with each element being non-vanishing, see Fan et al. (2013) and Lam

et al. (2011). Otherwise the consistency of the estimator is compromised.

For example, Baik and Silverstein (2006), Paul (2007) and Nadler (2008)

show that when the largest eigenvalue has a finite upper bound, the lead-

ing sample principal eigenvector is asymptotically orthogonal to the leading

population principal eigenvector almost surely.

Through the strong factor benefits from a large dimension p, namely

the ”blessing of dimensionality” (see the convergence rate in Lam et al.

(2011) for example), it suffers less interpretability as the dimension p in-

creases, since the loading matrix has non-vanishing elements in all the p

coordinates, see Pelger and Xiong (2022). To facilitate interpretability in
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high dimensional series, we introduce the concept of sparse factor, which

indicates that the factor does not contribute to all the p series. It can be

regarded as a special case of factor rotation, which is commonly used to

find more interpretable factors. Due to the non-uniqueness of factors and

loadings, it is possible to rotate principle components to get sparse loadings

with some coordinates equal to or close to zero. A special type of sparse

factor is the group factor structure, which is also an empirical motivation

for our work, see Ando and Bai (2016), Chang et al. (2018), and Zhang et al.

(2023). In group structure, the factors are associated with the loadings with

nonzero elements only within specific groups. Ando and Bai (2016) provide

empirical evidence for such a structure in finance.

The concept corresponding to the strong factor is the weak factor, which

has some overlap with the sparse factor we propose. The weak factor has

multiple definitions, one of which is that the eigenvalues driven by latent

factors are o(p), see Bai and Ng (2023). Others use the norm for each

column of the loading matrix to define, see Chudik et al. (2011) and Lam

et al. (2011). For example, Lam et al. (2011) define weak factor by the L2

norm with o(p1/2). In this sense, weak factors are attributed to two reasons,

one is the magnitude of most elements in the loading matrix increases slowly

(but none of elements is zero), the other is the loading matrix has a lot of
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zero elements, or both. We use L1 norm of each column to define sparse

factors. We also show that the induced eigenvalues is o(p) and related

to our sparse index, which shares some similarities with the weak factors.

Besides, weak factors are often found in financial and spatial data, but

none of these papers metioned above considers incorporating such sparse or

weak information in estimating the factor model, which also motivates our

current study.

For high dimensional factor models, there are typically two methods for

estimating, one uses the sample covariance matrix to recover the loading

matrix, see Bai and Ng (2002), Bai (2003) and subsequent papers based

on them. The other uses a symmetric and non negative-definite matrix

constructed by auto-cross covariance over different time lags, see Lam et al.

(2011), Lam and Yao (2012), Chang et al. (2015), Wang et al. (2019), Chang

et al. (2023), Chang et al. (2024), among many others. The latter assumes

that the idiosyncratic errors are white noise but the factor processes are

serially dependent, indicating that the factors drive dynamics of most time

series. To take advantage of the dynamic information of the time series, we

carry on the construction of auto-cross covariance in Lam et al. (2011) to

recover the loading space, and simultaneously add a sparse constraint on

the eigenvectors.
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The main purpose of this paper is to propose an efficient method to

estimate a factor model with sparse loadings for high dimensional time se-

ries. To implement the estimation procedure, we propose a new algorithm

by the means of divide-and-conquer, which is efficient in computation and

easy to implement. It iteratively alternates between two subtasks: con-

strained rank-one variance maximization and orthogonal projection. The

former subtask aims to find the leading pseudo eigen vector with constraints;

the latter projects the constructed matrix onto the orthogonal complemen-

tary space of the estimated leading vector in the former subtask, aiming

to eliminate the influence of it. The rank-one variance maximization is

proposed to obtain sparse loading in one direction, the orthogonal projec-

tion helps to obtain the orthogonal factor loadings. The divide-and-conquer

method keeps the optimization convex in each single direction and reduces

the computation complexities in high dimensional series therefore.

To the best of our knowledge, this paper is the first to propose a sparse

factor model based on auto-cross covariance, allowing the sparsity varies

for factors. The empirical studies on sea surface air pressure and stock

portfolios show that the sparsity enhances the interpretability and efficiency

of the factor model in high dimensional time series. Last but not least,

we derive the convergence rate of the sparse factor loading under weak
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assumptions, where we only assume that the tail of time series follows a

polynomial order, while many literature require it to be subgaussian in

high dimensional settings. Besides, it is shown that when the factors are

sufficiently sparse, our convergence rate is better than that of Lam et al.

(2011).

Regarding the topic of sparse factor model, we mention three of the

latest relevant literature. Pelger and Xiong (2022) shrink the PCA factor

weights and set many of them to zero to attain sparse and more interpretable

factors. The so-called proximate factor is inconsistent but performs well

in terms of the generalized correlation. Uematsu and Yamagata (2023)

propose a special sparsity-induced weak factor, which constrains both L0

and L1 norm. For theoretical research, Bai and Ng (2023) consider the

inference of weaker loadings in terms of the limit of the loading matrix

multiplied by its transpose in the PCA-based approaches.

Notably, a large body of literature with the theme of Sparse PCA are

also ralated to our work. Zou et al. (2006) present iterations between the

singular value decomposition and the elastic net regression step. Witten

et al. (2009) propose a penalized matrix decomposition for sample covari-

ance matrix. Johnstone and Lu (2009) apply the classical PCA along with

thresholding into a selected subset of variables with the larger sample vari-
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ances. Ma (2013) adds an additional thresholding step to the usual or-

thogonal iteration steps to seek sparse basis vectors for the subspace. In

theoretical study, Vu and Lei (2012) investigate minimax rates for the es-

timator of the first principle sparse vector. Cai et al. (2013) consider the

minimax optimality and adaptive estimation of the principal subspace. But

this category of literature does not consider any factor structures, and their

theoretical consistency is mainly obtained under the assumption of i.i.d.

normality, which is divergent to our work.

The rest of the paper is organized as follows. The sparse factor model

and the estimation methods are introduced in Section 2. The asymptotic

theories are investigated in Section 3. Simulation results are reported in

Section 4. The analyses of real data on both sea surface air pressure and

stock portfolios are provided in Section 5. Conclusions and discussions

are in Section 6. All mathematical proofs and some simulated results are

relegated to the supplementary material.

Throughout this paper, we always use the following notation. ‖u‖1 =

(
∑p

i=1 |ui|) is the L1 norm of a p-dimensional vector u = (u1, . . . , up)
T ,

‖u‖2 = (
∑p

i=1 u
2
i )

1/2
is the Euclidean norm, and Ik denotes the k × k iden-

tity matrix. For a matrix H = (hij) , ‖H‖F =
√
trace (HTH) is the Frobe-

nius norm, The superscript T denotes the transpose of a vector or matrix.
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Finally, we use the notation a � b to denote a = O(b) and b = O(a).

2. Models and the Estimation

2.1 Sparse Factor Model

Let yt be a p× 1 observation from vector time series process at time t. Let

n denote the sample size and p be the number of the series. yt is said to

have a factor structure if it has the representation as

yt = Θxt + εt, t = 1, 2, ..., n, (2.1)

where xt = (x1,t, ..., xr,t)
T is a r × 1 latent process with unknown r � p,

Θ = (θ1, ..., θr) is a p × r unknown constant matrix. εt ∼ WN(µε,Σε) is a

vector white-noise process. An effective dimension-reduction is achieved in

the sense that the serial dependence of yt is driven by that of a much lower-

dimensional process xt. We refer to xt a factor process and Θ a loading

matrix.

Since none of the elements on the pair (Θ,xt) are observable, the model

remains unchanged if we replace (Θ,xt) by (ΘH,H−1xt) for any r × r

invertible matrix H. However the factor loading space is uniquely defined,

which is the linear space spanned by the columns of Θ and denoted by
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doi:10.5705/ss.202023.0219



2.1 Sparse Factor Model9

M(Θ). Note that M(Θ) =M(ΘH) for any invertible H. Without loss of

generality, we first assume the loading matrix Θ to be column-orthogonal,

then we decompose Θ by Θ = QR where Q is unit-orthogonal and R is

upper triangular, and replace (Θ,xt) by (Q,Rxt). So in the following, we

assume that ΘTΘ = Ir, where Ir is the r × r identity matrix.

The non uniqueness of (Θ,xt) makes it possible to add some constraints

to get a specific Θ that behaves well both theoretically and practically.

Now recall the factor strength δ0 defined in Lam et al. (2011), which is for

Θ = (θ1 · · · θr), ‖θi‖2
2 � pδ0 , for i = 1, · · · , r and 0 ≤ δ0 ≤ 1. When δ0 = 1,

the corresponding factor is named strong factor since it includes the case

where all the elements of θi are O(1). When δ0 < 1, the factors are weak

factors. According to Theorem 1 of Lam et al. (2011), the convergence rate

of the estimated loadings is slower in the presence of weak factors. In this

situation, adding a constraint to the norm of Θ will improve the estimation.

In this paper, we purpose a sparse index to character the sparsity of factors,

that is

‖θi‖1 � pδi , for i = 1, · · · , r and 0 ≤ δi ≤ 1/2. (2.2)

Notably, our configuration differs from the factor strength mentioned above,

but it is similar to the definition of the semi-weak factor in Chudik et al.

(2011). Since we assume ‖θi‖2 = 1 and ‖θi‖1 ≤
√
p ‖θi‖2 =

√
p, δi should

Statistica Sinica: Preprint 
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2.2 The Estimation10

be no more than 1/2, otherwise the L1-penalty does not work.

Our goal is to estimate the p × r sparse factor loading Θ, or more

precisely the sparse factor loading space M(Θ). Once an estimator Θ̂ is

obtained, we can estimate the factor process as x̂t = (Θ̂T Θ̂)−1Θ̂Tyt. and

the resulting residuals are ε̂t =
(
Id − Θ̂Θ̂T

)
yt.

In this paper, we focus on the estimation of Θ so the number of factors

r is first assumed to be fixed and known. Then we adopt the randomized

sequential procedure in Trapani (2018) to determine the factor number r.

Other useful methods on the determination of r include the information

criterion, see Bai and Ng (2002) and Hallin and Lǐska (2007), the ratio-

based method, see Lam and Yao (2012), and the hypothesis testing, see

Pan and Yao (2008), Onatski (2009) and Onatski (2010).

2.2 The Estimation

We are considering the stationary case. We introduce some notations now.

Σy(k) = Cov (yt+k,yt) , Σx(k) = Cov (xt+k,xt) ,

Σxε(k) = Cov (xt+k, εt) .
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For a prescribed integer k0 ≥ 1,

M =

k0∑
k=1

Σy(k)Σy(k)T ,

M makes full use of the information in different time lags, and simultane-

ously remains nonnegative and symmetric, just like the covariance matrix.

For the sparse factor model we propose, the following assumptions are re-

quired.

Condition 1. (factor) xt is weak stationary and Σx(k) is full-ranked for

k = 0, 1, · · · , k0, where k0 ≥ 1 is a small positive integer.

Condition 2. (loading) Θ = (θ1 · · · θr) is column-orthogonal and sparse in

the sense that ‖θi‖2 = 1, ‖θi‖1 � pδi , i = 1, · · · , r, 0 ≤ δi ≤ 1/2. δi is the

sparse index.

Condition 3. (noise) (i)εt ∼ WN(µε,Σε) with the elements of Σε bounded

as (n, p)→∞; (ii) Σx,ε(k) = Cov (xt+k, εt) has elements of order O(1); (iii)

For k > 0, Cov (xt, εt+k) = 0.

Condition 4. The first r eigenvalues of M satisfy λ1 > · · · > λr.

Condition 1 is commonly assumed in factor model, if Σx is not full-

ranked, we need to reduce the number of factors to eliminate the redundant
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ones. Condition 2 is the sparse condition. Condition 3 is to ensure that

the construction of M is effective to offset the impact of noise. Condition 4

assumes that the r nonzero eigenvalues are distinct from each other so that

we can distinguish r factors. In this paper, we allow λi(1 ≤ i ≤ r) to be

diverging with p and the entries of θi to depend on λi. Since we scale the

loading matrix Θ such that ΘTΘ = Ir, which means that if the entries of

θi is scaled by
√
λi, we multiple the variances of the factors with λi. This

ensures that each component of yt has a constant variance and is stationary.

Let M̂ be the sample version of M, that is

M̂ =

k0∑
k=1

Σ̂y(k)Σ̂y(k)T , (2.3)

where Σ̂y(k) = 1
n−k

∑n−k
t=1 (yt+k − y) (yt − y)T , and y = n−1

∑n
t=1 yt.

Under (2.2), we estimate Θ by imposing constraints on sparsity and

column-orthogonality, which is equivalent to solving the following optimiza-

tion problem:

Θ̂ = arg max
Θ

tr
(

ΘTM̂Θ
)

subject to ‖θi‖1 ≤ pδi and ΘTΘ = Ir, (2.4)

where θi is the i-th column of Θ. In L1-penalty the coefficients are not

required to be zeros, but their absolute magnitude must decay at a relatively
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rapid rate. This kind of soft sparsity remains convex and is more realistic for

many applications. (2.4) is similar to the SCoTLASS procedure, see Jolliffe

et al. (2003). Such kind of problem is not convex and of high computational

cost therefore. We finesse this problem by iteratively alternating between

two subtasks: constrained rank-one variance maximization and orthogonal

projection. In the i-th round we get a sparse vector θ̂i by solving the

following optimization problem

θ̂i = arg max
θ
θTM̂θ, subject to ‖θ‖2 = 1, ‖θ‖1 ≤ pδi . (2.5)

We adopt the Penalized Matrix Decomposition Analysis (PMA) for

sparse PCA in Witten et al. (2009) to deal with (2.5), named the rank

one maximization. Then we restrict θ̂i+1 to the orthogonal complementary

space of θ̂i, where the projection operator is expressed as Ip − θ̂iθ̂Ti . Then,

in the (i+ 1)-th round, the optimization problem is converted to

θ̂i+1 = arg max
θ
θT (Ip − θ̂iθ̂Ti )M̂(Ip − θ̂iθ̂Ti )θ,

subject to ‖(Ip − θ̂iθ̂Ti )θ‖2 = 1, ‖(Ip − θ̂iθ̂Ti )θ‖1 ≤ pδi+1 .

(2.6)

Taking (Ip− θ̂iθ̂Ti )M̂(Ip− θ̂iθ̂Ti ) as a whole, such a treatment is as the matrix

deflation which modifies the matrix M̂ to eliminate the influence of a given
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vector θ̂i (see White (1958) and Mackey (2008)). The complete steps of our

method are shown in Algorithm 1.

Algorithm 1 Orthogonal Projection Method for Sparse Factor Model

Input:
The auto-cross sample covariance matrix M̂;
the number of factors r; the sparse index δ = (δ1, ..., δr).

Output:
Estimated sparse loadings matrix Θ̂ = (θ̂1, ..., θ̂r).

1: Initialize i = 1
2: repeat
3: (Rank one maximization)

(i) Initialize θ̂i to have L2-norm 1.

(ii) Iterate until convergence: θ̂i ← S(M̂θ̂i,∆)

‖S(M̂θ̂i,∆)‖2
,

where ∆ = 0 if ‖θ̂i‖1 6 pδi ; otherwise, ∆ is chosen such that ‖θ̂i‖1 =
pδi .

4: Return θ̂i
5: (Orthogonal projection)

Update M̂ by M̂← (Ip − θ̂iθ̂Ti )M̂(Ip − θ̂iθ̂Ti ).
Update i← i+ 1.

6: until i = r + 1

Remark 1. (i) S is the soft thresholding operator, which is, S(a,∆) =

sgn(a)(|a| −∆)+, where s > 0 is a constant and x+ is defined to equal x if

x > 0 and 0 if x 6 0.

(ii) The algorithm is not sensitive to the initial estimator of θ̂i. When

p = o(n), it can be generated from the classical PCA, adopting the leading

eigen vector of matrix M̂. When p > n, it can be estimated from the Elastic

net (Zou et al. (2006)), diagonal thresholding (Johnstone and Lu (2009))
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2.3 Determine the Number of Sparse Factors15

or other similar methods.

(iii) The algorithmic solution Θ̂ from Algorithm 1 converges to the the-

oretical solution of (2.4). This is based on two facts: the rank one maxi-

mization is convex, so the extremum is on the boundary according to KKT

conditions; the loading space after orthogonal projection is a consistent es-

timator of the original one without projection, see Theorem 2 and Remark

3 of Zhang et al. (2023) for theoretical support.

Algorithm 1 requires the number of factors r and the sparse index δ as

inputs, but they are unknown in practice. We explore the estimation of r

and δ in the following sections.

2.3 Determine the Number of Sparse Factors

In strong factor models, it is usually assumed that the first r eigenvalues

are Op(p), and λr+1 to λp remain finite, see Fan et al. (2013). Many existing

methods take advantage of the different convergence rates between the first

r eigenvalues and the others to determine the number of factors, for exam-

ple, the ratio-based method in Lam and Yao (2012) and Ahn and Horenstein

(2013) and the difference-based method in Onatski (2010). However, the

methods for strong factor models are likely to fail in the presence of sparse

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0219



2.3 Determine the Number of Sparse Factors16

factors, since

λi = θTi Mθi =
∑
k

∑
l

θikθilσkl ≤ max
k,l
|σkl|

∑
k

|θik|
∑
l

|θil| = Op(p
2δi),(2.7)

where 0 ≤ δi ≤ 1/2 with each element of M = (σkl)p×p be finite. Take the

ratio-based method as an example, if both strong and sparse factors exist

and the eigenvalues of them are Op(p) and Op(p
1/3) respectively, then the

biggest ratio of λi/λi+1 is not in i = r but among i < r.

Under sparse factors, the first r eigenvalues still diverge to infinity with

p → ∞ and others remain finite. We make use of this gap to separate

λ1, · · · , λr from λr+1, · · · , λp to obtain the estimated r̂. Specifically, let

λ1 > λ2 > · · · > λp be the eigenvalues of auto-cross covariance M in (2.3)

in decreasing order. Define the null and the alternative as

H
(i)
0 : λi = O(pα) v.s. H

(i)
A : λi = O(1),

Where 0 < α ≤ 1. So H
(i)
0 should be accepted for 1 ≤ i ≤ r, and be

rejected from i = r+ 1. Therefore, for each λi, we run the test in sequence

until the (i+ 1)-th hypothesis H
(i+1)
0 is rejected, then we can obtain r̂ = i.

But given that λi = O(pα) under the null, we cannot use it directly, so we

introduce the randomized sequential test in Trapani (2018). Specifically,
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2.3 Determine the Number of Sparse Factors17

for each i, we generate a series of artificial samples η(i) with distribution

N(0, φ(i)) where φ(i) ≡ exp
{
p−γ(λ̂i/λ)

}
, γ is a tuning constant and λ =∑p

i=1 λ̂i/p. Therefore, under the null, the sequence ζ
(i)
r (u) ≡ I

(
η(i) ≤ u

)
follows a Bernoulli distribution with E

{
ζ

(i)
k (u)

}
= 1

2
with u extracted from

a distribution F (u) with support Ω ⊂ R\{0}. And under the alternative,

for any u 6= 0, E
{
ζ

(i)
r (u)

}
6= 1

2
. For full details about the test statistics,

one can refer to Trapani (2018).

Remark 2. According to Theorem 1 of Lam and Yao (2012), |λ̂i − λi| =

Op(p
2n−1) for i = r + 1, · · · , p. So on the construction of φ(i), we also take

γ ≡ 1− 1
2

lnn
ln p

to make sure p−γλ̂i remains finite under the alternative when

p >
√
n.

In contrast to other methods for estimating the number of factors, this

sequential test works under p � n, p � n, and p � n. Theorem 4 shows

that it produces a consistent estimator of r. In Section 4 we compare the

sequence test with several other methods. Besides, when strong and sparse

factors exist simultaneously, one can also use the two-step estimation in

Lam and Yao (2012) or the local maximums of ratio in Zhang et al. (2023)

to determine r̂. And the information criterion in Bai and Ng (2002) remains

useful.
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2.4 Estimation of the sparse index18

2.4 Estimation of the sparse index

The sparse index reflects the strength of the factor, which is of great interest

to empirical research. Recall that pδi is the L1 norm of θi. If our proposed

estimator Θ̂ is consistent and recovers the loading matrix effectively, we

can simply and directly estimate δi as δ̂i = log ‖θ̂i‖1/ log p. Meanwhile, δ =

(δ1, · · · , δr) is an input of Algorithm 1. Without any prior information, we

use cross-validation to determine the initial value of δi, then run Algorithm 1

and use the output θ̂i to obtain δ̂i, and iterate once again through Algorithm

1 with the estimated δ̂i to obtain the final estimate of θ̂i, see Algorithm 2.

Algorithm 2 Estimation for Sparse Factor Model

1: Determine the input r by sequential test in Section 2.3
2: Use cross-validation to determine the input δ and run Algorithm 1 to

obtain Θ̂.
3: Compute δ̂i = log ‖θ̂i‖1/ log p.

4: Run Algorithm 1 again with δ̂ to obtain the final Θ̂.

3. Asymptotic theory

In this section, we consider the asymptotic properties of the estimator de-

rived by (2.4) under p varying with n. To this end, we supplement some

technical conditions on the sparse factor model (2.1).

Condition 5. As u → ∞, it holds that supt max1≤i≤p P (|yi,t| > u) =

Statistica Sinica: Preprint 
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19

O
{
u−2(l+τ)

}
for some constants l > 2 and τ > 0.

Condition 6. The weak stationary process (xt, εt) is α-mixing, that is, its

mixing coefficients αk,p → 0 as k →∞, where αk,p = supi supA∈F i
−∞,B∈F∞i+k

|P (A∩

B) − P (A)P (B)|, and F ji is the σ-field generated by {(xt, εt) : i ≤ t ≤ j}.

And αk,p satisfies the condition supp≥1 αk,p = O
{
k−(l−1)(l+τ)/τ

}
, as k →∞,

where l and τ are given in Condition 5.

Conditions 5 and 6 ensure the Fuk-Nagaev type inequalities for α-

mixing processes, similarly to Chang et al. (2018). Our conditions are

weaker than those in many papers where yt is often required to be sub-

gaussian, see Uematsu and Yamagata (2023) for example, but we only as-

sume the tail decays at a polynomial order.

Theorem 1. Let Conditions 1-6 hold and the eigenvalues of M̂ be distinct.

Denote θ̂1 as the leading vector of the theoretical solution to (2.4). Then

∥∥∥θ̂1θ̂
T
1 − θ1θ

T
1

∥∥∥2

F
= Op

(√
λ1p

δ1

λ1 − λ2

√
p log p

n

)
.

Theorem 2 is an extension to Theorem 1.

Theorem 2. Let Conditions 1-6 hold, the eigenvalues of M̂ be distinct and

the sparse indices be the same, that is δ1 = · · · = δr = δ. Denote Θ̂ as the
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theoretical solution to (2.4). Then

∥∥∥Θ̂Θ̂T −ΘΘT
∥∥∥2

F
= Op

(√
λ1p

δ

λr

√
p log p

n

)
.

Corollary 1. With the condition λi = Op(p
2δ) in (2.7) and λi − λi−1 =

Op(p
2δ) for 1 ≤ i ≤ r. Theorem 2 can be simplified to

∥∥∥Θ̂Θ̂T −ΘΘT
∥∥∥2

F
=

Op

(√
p log p
n

)
.

Remark 3. (i) The F-norm
∥∥∥Θ̂Θ̂T −ΘΘT

∥∥∥
F

measures the distance be-

tween M(Θ) and M(Θ̂) and is uniquely defined. It is similar to the com-

monly used statistic which measures the distance between two spaces in other

literature, which is D (O1,O2) =
(

1− 1
max(q1,q2)

tr (O1O
′
1O2O

′
2)
)1/2

, where

two orthogonal matrices O1 and O2 are of sizes p× q1 and p× q2, since

∥∥∥Θ̂Θ̂T −ΘΘT
∥∥∥2

F
= tr(Θ̂Θ̂T −ΘΘT )(Θ̂Θ̂T −ΘΘT )

= (r + r̂)

{
1− 2

r + r̂
tr(Θ̂Θ̂TΘΘT )

}
,

by tr(ΘΘT ) = r and tr(Θ̂Θ̂T ) = r̂. Then
∥∥∥Θ̂Θ̂T −ΘΘT

∥∥∥
F

is between 0 and

√
r + r̂. It is equal to 0 if the column spaces of Θ̂ and Θ are the same and

equal to
√
r + r̂ if they are orthogonal. When r = 1, it is equivalent to both

the Euclidean distance between θ1 and θ̂1, and the magnitude of the sine of

the angle between θ1 and θ̂1, see Vu and Lei (2012) for details.
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(ii) When p is fixed, λ1 and λ2 are finite. It follows from Theorem 1

that the convergence rate is the traditional root-n rate for fixed p, which

is consistent with the Proposition 1 of Lam and Yao (2012). And when

p is fixed, the needed condition for mixing coefficients in Condition 6 is

simplified to
∑∞

k=1 α
1−2/γ
k,p <∞, where γ > 2 is a constant.

(iii) Theorem 2 shows that the sparser the factors are, the faster the

convergence rate is, since we introduce the sparse penalty. In Lam et al.

(2011), the convergence rate is p1−δ0/
√
n with ‖θi‖2

2 � pδ0 and 0 ≤ δ0 ≤ 1.

It indicates that when δ0 < 1/2, namely the factor is weak enough in Lam

et al. (2011), our sparse estimator has a faster convergence rate.

Theorem 3. If all the eigenvalues of Σε are uniformly bounded from infin-

ity, it holds that

p−
1
2

∥∥∥Θ̂x̂t −Θxt

∥∥∥
2

= Op

(
p−

1
2

∥∥∥Θ̂Θ̂T −ΘΘT
∥∥∥
F

+ p−
1
2

)
.

Theorem 3 specifies the convergence rate for the estimated factors.

Theorem 4. Let Conditions 1–6 hold, and define the level of each individual

test as α = α(n, p). As min(n, p) → ∞. If α(n, p) → 0, it holds that

P (r̂ = r) = 1 a.s. conditionally on the sample.
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4. Numerical Results

4.1 Simulation

To illustrate the asymptotic properties in Section 3 above, we report some

simulation results. We design two examples with different constructions

for spare loadings as well as the factors, and one example with strong

factors in the appendix. We measure the estimation error by the Frobe-

nius norm discussed in Theorem 2 of Section 3, that is ‖ΘΘT − Θ̂Θ̂T‖F .

We also calculate the root-mean-square error (RMSE) given by RMSE =(
1
np

∑n
t=1

∥∥∥Θ̂x̂t −Θxt

∥∥∥2
)1/2

.

Example 1. We consider the model with three sparse factors yt =

Θxt + εt, where εt,i ∼ i.i.d. N(0, 1). For each column of Θ, we generate

the first h = [ pδ∗ ] (δ∗ = 0.3 and 0.5) elements randomly from N(0, 1)

and set the rest to zero. We perform SVD decomposition on the nonzero

part of Θ for column orthogonality. Note that here we use L0-constraint,

differently from the sparse index δ defined in (2.2), but it can also generate

sparse factors as desired. We adopt the generation scheme for intuition

and convenience. The sparse index δi for each example is shown in the

Table 2. We generate factors xi independently from AR(1) process xi,t =

ηixi,t−1 + ei,t, for i = 1, 2, 3, with coefficient ηi equal to 0.8, 0.6 and 0.4
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respectively. The noise term ei,t is independently sampled from N(0, 1) for

all i and t.

We calculate the results with k0 = 3 in the definition of M̂ and the

true number of factors r = 3. We compare our method (labeled with

”SFM”) with other similar methods including the one in Lam et al. (2011)

(denoted as ”Eigen”), which performs eigen analysis on M in (2.3) without

sparse constraints and PCA in Bai and Ng (2002), Sparse PCA (denoted

as ”SPCA”) in Zou et al. (2006), the Sparse Orthogonal Factor Regression

(denoted as ”SOFAR”) in Uematsu and Yamagata (2023) and Proximate

PCA (denoted as ”PPCA”) in Pelger and Xiong (2022). We present the

results for p = 50, 100, 200, 500, 1000, with n selected to be (i) less than p,

(ii) comparable to p, (iii) large than p, and conduct the simulation 200 times

for each parameter pair. Figure 1 presents the results with δ∗ = 0.3, which

distinctly indicates that basically the method with the sparse constraint is

better than the method without it in the presence of sparse factors. And

our SFM model performs better than others in most cases. Compared

to low-dimensional cases, the performance of PPCA is not competitive in

high dimensional ones, which may due to the fact that the PPCA method

does not guarantee pointwise convergence. Besides, SOFAR and our SFM

perform well in high dimensional situations, but the F-norm of SFM is
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slightly better. The plot with δ∗ = 0.5 is shown in the appendix.
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Figure 1: Boxplots for RMSE and F-norm of different methods. The plots
are based on the simulated data set of δ∗ = 0.3 in Example 1 of Section 4.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0219



4.1 Simulation25

Table 1: The average number of zeros in the estimated loading matrix. The
data is generated from Example 1 with δ∗ = 0.5.

Method

p n #{0} SFM Eigen PCA SPCA SOFAR PPCA
50 100 43 38.7 0 0 42.5 48.66 0

200 43 35.18 0 0 47.62 47.1 0
500 43 37.46 0 0 48.8 46.6 0

100 100 90 83.38 0 0 72.34 96.56 0
200 90 82.86 0 0 91.98 97.8 0
500 90 78.66 0 0 96.56 89.7 0

200 100 186 171.76 0 0 132.2 195.26 0
200 186 173.96 0 0 159.5 195.56 0
500 186 172.2 0 0 194.86 191.2 0

500 100 478 462.26 0 0 403.26 491.84 0
200 478 452.54 0 0 353.86 486.76 0
500 478 448.2 0 0 438.06 492.9 0

To better observe the effects of different methods, Table 1 demonstrates

the average number of 0 in each column of the load matrix obtained by the

different methods, where #{0} denotes the true the number of zeros in

each set of parameters. The method without sparsity, including ”Eigen”

and ”PCA”, naturally has no 0 elements. The PPCA method performs a

factorial regression after thresholding, so there are also no 0 elements. Our

method slightly underestimates the number of 0 elements due to the use of

the L1-norm penalty, and the SOFAR method shows a slight overestimation.

Example 2. In this example we construct the sparse factor loading

matrix Θ by diagonal blocks, that is Θ = diag(Θ1,Θ2, · · · ,Θd). For conve-

nience, we still set up a three-factor model. Let d = 3 and each block to be

a vector with dimensions of 0.4p, 0.3p, 0.3p correspondingly. All elements

of the blocks are i.i.d generated from N(0, 1). Table 2 shows the sparse
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index of each factor.

Table 2: Sparse indices for three factors in our simulation of the Example 1
and Example 2

Exaple 1 Example 2

δ∗ = 0.3 δ∗ = 0.5

p δ1 δ2 δ3 δ1 δ2 δ3 δ1 δ2 δ3
50 0.12 0.12 0.13 0.21 0.22 0.21 0.31 0.28 0.25
100 0.09 0.08 0.11 0.19 0.20 0.23 0.34 0.31 0.33
200 0.12 0.11 0.12 0.22 0.21 0.20 0.36 0.34 0.34
500 0.11 0.12 0.12 0.21 0.21 0.21 0.37 0.36 0.36
1000 0.13 0.13 0.11 0.21 0.22 0.21 0.40 0.38 0.38

We generate a moving average factors xt = (x1,t, x2,t, x3,t), defined by

x1,t = ωt, x2,t = ωt−1, x3,t = ωt−2, where ωt = 0.2zt−1 + zt, and zt are

independent N(0, 1) random variables.

We calculate the mean and standard deviation of the F-norm, RMSE

and forecast error (FE) for different methods. The results are reported

in the Supplementary Material. Next, we estimate the number of factors.

We adopt the factor loadings in Example 2 and consider two scenarios

for the factors xt. In Scenario I, xt is the same as the one in Example

1, which consists of three independent AR(1) process with coefficient 0.4,

0.6 and 0.8 respectively and independent N(0, 1) innovations. In Scenario

II, xt is the moving average series in Example 2. We compare the se-

quential test with the ratio-base method in Lam and Yao (2012), which is

r̂ = arg maxk λ̂k/λ̂k+1, and the BIC-type information criterion of Bai and Ng

(2002) given by r̂ = arg mink

{
log
(
p−1T−1

∑p
j=1 ‖ε̂j‖

2
2

)
+ k

(
n+p
np

)
log
(

np
n+p

)}
.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0219



4.2 Choose of tuning parameter27

We denote the sequential test, the ratio-based method and the information

criterion method as ”SeqTest, Ratio, IC” relatively, and report the perfor-

mance of different methods in Table 3.

Table 3 shows that the ratio-based method underperforms with sparse

factors, especially in the p > n cases. The conclusion aligns with the

discussion in Lam and Yao (2012). In Scenario I, the ratio-based method

and IC fail to capture the signal of three factors, but the sequential test

outperforms. In Scenario II, the three methods perform almost equally, but

the computational cost of IC is much higher than that of the sequential test

and ratio-based method.

4.2 Choose of tuning parameter

In this section we discuss the choice of tuning parameter si = pδi (or δi

equally). First we range s from 1 to
√
p and examine the finite-sample

performance in different tuning parameters. We take both RMSE and F -

norm ‖Θ̂Θ̂T − ΘΘT‖F as criteria. Figure 2 shows the results in different

combinations of (n, p, δ∗). It is shown that the error decreases first and

then increases with s grows up, and reaches the optimum near the true

value of s under both RMSE and the F-norm. The monotonicity in both

sides of truth value indicates the validity of our estimation. In practice,
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Table 3: Pr(r = r̂) and mean(r̂) of different method for determine the
number of factors. The true factor number is r = 3.

SeqTest Ratio IC

p n Pr(r = r̂) mean(r̂) Pr(r = r̂) mean(r̂) Pr(r = r̂) mean(r̂)

100 100 0.60 2.58 0.30 2.30 0.16 5.99
200 0.34 2.31 0.18 2.18 0.00 7.29
500 0.03 2.02 0.02 2.02 0.02 5.86
1000 0.04 2.04 0.05 2.05 0.00 6.78
1500 0.08 2.03 0.00 2.00 0.00 7.99

200 100 0.80 2.79 0.24 2.24 0.01 6.96
200 0.47 2.43 0.15 2.15 0.00 7.90
500 0.61 2.59 0.05 2.05 0.00 8.76
1000 0.16 2.11 0.02 2.02 0.00 9.29
1500 0.21 2.21 0.01 2.01 0.00 9.46

500 100 0.76 3.22 0.20 2.44 0.19 4.70
200 0.96 2.93 0.14 2.26 0.05 5.08
500 0.84 2.80 0.05 2.05 0.00 6.98
1000 0.53 2.50 00.00 2.00 0.00 8.15
1500 0.35 2.33 0.01 2.01 0.00 7.89
2000 0.44 2.43 0.03 2.03 0.00 8.83

1000 100 0.24 3.68 0.22 2.88 0.02 1.91
200 0.44 3.47 0.10 2.34 0.07 4.43
500 0.95 2.89 0.04 2.08 0.00 9.57
500 0.95 2.89 0.04 2.08 0.00 9.57
1000 0.96 2.93 0.03 2.03 0.00 9.85
1500 0.92 2.90 0.00 2.00 0.00 9.98
2000 0.76 2.72 0.00 2.00 0.00 10

(a) Scenario I: MA factors

SeqTest Ratio IC

p n Pr(r = r̂) mean(r̂) Pr(r = r̂) mean(r̂) Pr(r = r̂) mean(r̂)

50 50 0.39 1.89 0.80 2.68 0.84 3.17
100 0.37 1.82 0.58 2.40 0.95 3.05
200 0.59 2.18 0.96 2.91 0.46 3.54
500 0.98 2.96 0.98 2.98 0.58 3.42
1000 1.00 3.00 0.97 2.94 0.02 3.98
2000 1.00 3.00 0.93 2.85 0.00 4.00

100 50 0.27 1.67 0.77 2.98 0.89 3.10
100 0.47 2.01 0.89 2.75 0.42 3.58
200 0.76 2.54 0.99 2.97 1.00 3.00
500 1.00 3.00 0.96 2.94 1.00 3.00
1000 1.00 3.00 0.95 2.89 1.00 3.00
1500 1.00 3.00 0.98 2.94 1.00 3.00

200 50 0.28 1.63 0.32 3.23 1.00 3.00
100 0.40 1.89 0.76 2.78 1.00 3.00
200 0.68 2.36 0.96 2.91 0.93 3.07
500 0.86 2.72 0.98 2.96 1.00 3.00
1000 1.00 3.00 0.97 2.94 1.00 3.00
1500 1.00 3.00 0.96 2.90 1.00 3.00

500 200 0.65 2.31 0.20 3.91 1.00 3.00
500 0.98 2.96 0.94 2.89 1.00 3.00
1000 1.00 3.00 0.96 2.94 1.00 3.00
1500 1.00 3.00 0.98 2.95 1.00 3.00

(b) Scenario II: AR factors
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Figure 2: Errors as functions of tuning parameter s under different (p, n, δ∗).
The red line is the true value of s. The plot is based on the simulated data
set in Example 1 of Section 4.

both RMSE and F-norm are unknown. We use Algorithm 2 to choose the

tuning parameter and estimate δ. The mean and standard deviation of

δ̂1 of Example 2 are presented in Table 4. Generally, they are sufficiently
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accurate, but there is a slight tendency to overestimate. The precision also

increases as n increases.

Table 4: Performance for the estimation of sparse index δ1. The data is
generated from Example 2 of Section 4.

p=50, δ1=0.31 p=100, δ1=0.34 p=200, δ1=0.36 p=500, δ1=0.37

n mean(δ̂) sd ×100 mean(δ̂) sd ×100 mean(δ̂) sd ×100 mean(δ̂) sd ×100
50 0.32 0.00 0.35 0.00 0.37 0.00 0.39 0.00
100 0.32 0.46 0.35 0.07 0.37 0.04 0.39 0.00
200 0.32 0.00 0.35 0.15 0.37 0.40 0.39 0.00
500 0.32 0.60 0.34 1.18 0.37 0.26 0.39 0.36
1000 0.32 0.92 0.35 0.07 0.37 0.36 0.39 0.19
1500 0.30 2.21 0.34 0.44 0.37 0.38 0.38 0.44

5. Real Data Analysis

This section analyzes two real datasets in both geography and finance

to demonstrate our sparse factor model and newly proposed estimation

method.

5.1 Real Data Example 1: Average Sea Surface Air Pressure.

We analyze the records of monthly average sea surface air pressure (in

Pascal) from January 1958 to December 2001 (i.e., 528 months in total)

over a 22×39 grid in the North Atlantic Ocean. Let Pt(u, v) denote the air

pressure in the t-th month at the location (u, v), where u = 1, . . . , 22, v =

1, . . . , 39 and t = 1, . . . , 528. We first subtract each data point by the

monthly mean over the 44 years at its location: 1
44

∑44
i=1 P12(i−1)+j(u, v),
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where j = 1, . . . , 12, representing the 12 different months over a year. We

then line up the new data over 22× 39 = 858 grid points as a vector yt, so

that yt is a multi-variate time series with p = 858 dimensions and n = 528

observations. Different from Lam and Yao (2012), this is a situation with

p > n.

To fit the sparse factor model to yt, we need to determine the number

of factors first. We run the sequential test in Section 2.3 and the ratio-

based method in Lam and Yao (2012). Figure 3 reports the p-value of the

sequential test and the value of ratio λ̂i/λ̂i−1. In the sequential test, there

is an obvious gap between the first 5 p-values and the latter ones. The red

line is α = 0.05, and we reject the null until i > 5 and r̂ = 5 therefore. For

the ratio-based method, the largest ratio occurs at i = 1, but Figure 3 also

shows that the first local maximum of the ratio occurs in i = 5 (the red

vertical line in the figure), this is due to the differences in strength among

the common factors, see Remark 3 of Zhang et al. (2023). In other words,

there may exist other four sparse factors in addition. The conclusion is in

agreement with the result by the sequential test, indicating that the method

we used is valid.

We present the Forecast Error (FE) for different methods in Table 5,

where FE = p−1/2‖ŷ(1)
T − yT‖2, and ŷ

(1)
T = Θ̂x̂

(1)
T . x̂

(1)
t is the one-step
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predictor for xT based on x̂1, ..., x̂T−1, on which a VAR process is assumed.

We also select the initial value of tuning parameters on Algorithm 2 using

the principle of optimizing FE.

Table 5: Forecast Error (FE) for different methods in Real Data Example 1

Method SFM PCA SPCA SOFAR PPCA

FE 611.63 637.57 649.31 617.91 635.22
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Figure 3: The estimate of factor numbers
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Figure 4: Time series plot of estimated
factors

Table 5 shows the validity of our SFM model. We present the time series

plots for the five estimated factors in Figure 4. The five selected factors
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explain 96.84% of the total variance. Figure 5 presents the factor loading

surfaces, revealing some regional patterns. For instance, the first factor is

relatively strong, with positive effect in the north and negative effect in the

middle. The second factor is mainly driving force in the central north. The

third factor affects the dynamics of the middle east and west in opposite

directions. The fifth factor is so sparse that it has no force on all regions

except for the north.

Remark 4. We test the stationarity of the five estimated factors. Both

the ADF test and the ACF plot indicate that the factors are stationary.

Therefore this data satisfies Condition 1.

5.2 Real Data Example 2: Stock Portfolios.

In this example, we model the returns of different assets, which are the

stock portfolio constructed in different ways. We apply our method on two

datasets (DS). The portfolios are formed according to size (Market Equity)

and momentum (prior (2-12) return) in DS 1, while according to size and

long-term reversal (prior (13-60) return) in DS 2. Specifically, in DS 1,

all stocks are ranked into quintiles (i.e., five groups) based on their size.

Within each quintile, stocks are further ranked into quintiles based on their

momentum, resulting 25 distinct portfolios. In each dataset, the portfolios

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0219



5.2 Real Data Example 2: Stock Portfolios.34

0

0.07

-0.09

Factor-1

0

0.04

-0.12

Factor-2

0.01

0.1

-0.12

Factor-3

−0.08

0

0.13

Factor-4

−0.1

0

Factor-5

Figure 5: Factor loading surface of the first to fifth factors

monthly constructed include NYSE, AMEX, and NASDAQ stocks with

prior return data. For further details regarding data construction, please

refer to Kenneth R. French’s website.

Instead of directly applying our sparse factor model on the data, we
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model the asset returns in two parts: one is the known factors part, the other

is the latent sparse factor part, represented as yt = Dzt+ηt = Dzt+Θxt+εt,

where zt denotes the known factors and D signifies the regression coefficient

matrix. The sparse factor model is represented by ηt.

We construct yt in two different examples. In Example 1, yts are

monthly returns of 25 portfolios sorted in DS1 from January, 2008 to Febru-

ary, 2023, resulting in a dimension of p = 25 and a sample size of n = 182.

The known factor zt is designed as the market factor, aligning with the

Capital Asset Pricing Model (CAPM). In Example 2, we merge the portfo-

lios sorted by DS1 with those sorted by DS2 from January 2001 to February

2023, leading to a yt with p = 50 and n = 266. In this case, zt is designed

as the Fama-French three factors (FF3).

In each example, we first estimate D from regressing yt on zt asset by

asset (see Chang et al. (2015)) and obtain η̂t = yt − D̂zt. We then fit our

sparse factor model (SFM) on η̂t to derive Θ̂, x̂t. The sequential test is

employed too. In both examples, the estimated factor number r̂ = 2. The

p-value of the test is provided in Figure 6.

Figure 7 displays the heat maps of the combined loading matrix (D̂, Θ̂),

which reveals some noticeable characteristics. In the CAPM+SFM model,

the market factor exerts a strong positive influence on all portfolios, while
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5.2 Real Data Example 2: Stock Portfolios.36

the latent sparse factors have no or negative impacts on these. In the

FF3+SFM model, after taking out the effects of three known factors, the

remaining factors become quite sparse.

Table 7 reveals that the known factors and the latent sparse factors

within the same model are uncorrelated, signifying that SFM can capture

additional information. Specifically, in the CAPM+SFM model, the two

sparse factors are correlated with HML and SMB, indicating that the latent

factors identified share similarities with the well-established factors. In asset

pricing field, there exist skeptical concerns on if HML and SMB are true

risk factors. By employing our model, however, we can discover similar

or more influential factors, although their practical implications remain

to be elucidated. Furthermore, Table 8 illustrates that our CAPM+SFM

model outperforms the FF3 model in terms of sum of residuals, specifically

under the same premise of utilizing three factors, thereby highlighting the

superiority of our methodology.

Table 6: Forecast Error (FE) for different methods in Real Data Example 2

Example 1: CAPM+ Example 2: FF3+

Method SFM SOFAR PPCA SFM SOFAR PPCA

FE 7.15 7.50 7.51 2.35 2.36 2.36

The goodness of fit for our model compared to others is assessed by

scatter plots of yt against the mean of ŷt, as depicted in Figure 8. With the
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Figure 6: Estimation for the Factor Number
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Figure 7: Loading Surface for Two Examples

Table 7: Correlation between the Sparse Factors and the Fama-French Factors

Fama French Factors

Mkt-RF HML SMB

CAPM+SFM
SF-1 -0.015 -0.333 -0.429

SF-2 0.025 -0.200 -0.607

FF3+SFM
SF-1 -0.146 -0.008 -0.003

SF-2 -0.003 -0.017 -0.009
Note: SF-1 refers to the first sparse factor in the model.

Table 8: Sum of Residuals from Different Models

Example 1 Example 2

CAPM CAMP+SFM FF3 FF3 FF3+SFM

1.730 0.518 1.594 4.236 3.301

SFM incorporated, the scatter points are observed to be closer to the y = x

line, indicating an enhanced fitting performance of the model. It should be
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Figure 8: Scatter Plots for yt against the mean of ŷt

noted that though comparing the fitting error of FF3 with FF3+SFM is

not fair as the latter has more factors, we aim to illustrate that after taking

out the effects of known factors, if there are remaining effects (both serially

and cross sectionally), we can always apply SFM to further model them.
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6. Conclusions and discussions

Factor model has been extensively studied in high dimensional time series.

However, relatively little is known for the case where some factors take

effect only on part of the series, which is the so-called sparse factor model.

In this paper, we propose a sparse factor model with an algorithm. We

estimate the sparse loading space and factors by auto-cross covariance over

different time lags and L1-penalty, and determine the factor number based

on a randomized procedure. It is shown that the loading space and the

factor are estimated consistently, and a sparser loading matrix leads to a

faster convergence rate.

In this paper, we only consider yt = Θxt + εt, but if the loading matrix

is extremely sparse, some components of yt may be driven totally by noise

and the model would become less interpretable. To address this issue, one

can add exogenous variables in the sparse model, allowing the latent factors

and exogenous variables to jointly account for the observations, see Ando

and Bai (2016), Bai (2009) and our Real Example 2 in Section 5. After

detrending the exogenous variables term, we can then apply the proposed

method to estimate the factors and loading space.
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Supplementary Materials

The supplementary materials contains some technical lemmas, the proof of

Theorem 1-4 of the main article, and some detailed tables and figures of

simulation results which are discussed in the main paper.
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