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Abstract: The estimation of nonparametric discontinuous regression function is

fundamental in many applied fields, but challenges arise when the number of

jumps (or discontinuities) is large and unknown. We propose a new jump de-

tection method, via the consecutive screening and multiple testing (SaMT) al-

gorithm, for simultaneously estimating the unknown number of jump points and

detecting their locations in the flexible nonparametric regression model, guar-

anteeing the desired accuracy. The initial jump candidates are obtained in the

consecutive screening procedure combined with locally-linear smoothing method.

To further assess the significance of an individual jump candidate, we develop a

novel test based on profile likelihood inference. The ultimate selection of relevant

jump points is conducted in a multiple testing procedure, which eliminates irrel-

evant jump points with large variations, due to heteroscedastic errors, from jump

candidates. Moreover, we generalize the SaMT algorithm to detect common jump

points shared across multiple aligned sequences. The proposed method is easy
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to implement, flexible in bandwidth and threshold selection, and outperforms

existing approaches in simulations and real-data applications.

Key words and phrases: Copy number variation (CNV), False discovery rate

(FDR), Jump regression analysis, Locally-linear smoothing, Wald statistic.

1. Introduction

In many areas, such as environmental statistics, genetics, finance and engi-

neering, very long and noisy sequences of data will arise. Examples include

high-throughput sequencing data in genetics and high-frequency financial

data in econometrics. Such data usually have discontinuities or jumps which

are important data structures, and the goal is to identify and understand

structural variations, e.g., from a normal number to an excessive number of

chromosome copies in genetics, or structural changes in trends, e.g., from

a bull market to a bear market in finance. Thus, identifying multiple jump

points in the regression function is a fundamental and challenging problem.

In the literature, the issue of jump detection was investigated using dif-

ferent approaches, including locally-linear smoothing (Grégoire and Ham-

rouni (2002); Xia and Qiu (2015)), splines (Ma and Yang (2011)), and

wavelets (Wang (1995); Fan and Wang (2007)). Qiu and Yandell (1998);

Joo and Qiu (2009) investigated the derivatives of a regression function

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0216



to detect jumps, while Eubank and Speckman (1994) developed a differ-

ent method based on semiparametric model. Besides, Gijbels et al. (2004)

proposed a two-step procedure to improve the efficiency of jump points es-

timators. Comprehensive reviews and comparisons of these methods are

given by Qiu (2005).

In the context of change-point detection for the parametric piecewise-

constant model, some particular algorithms have also been developed, in-

cluding the binary segmentation algorithm (Olshen et al. (2004); Korkas and

Fryzlewicz (2017)), moving sum (MOSUM) techniques (Eichinger and Kirch

(2018)), and cumulative segmented model (Muggeo and Adelfio (2011)).

Niu and Zhang (2012) proposed a screening and ranking algorithm (SaRa)

based on locally-constant smoothing. Besides, the error rate control meth-

ods have been studied by Hao et al. (2013) and Li et al. (2016). Other ap-

proaches rely on the penalized least squares regression, using the L1 penalty

(Harchaoui and Lévy-Leduc (2010)), or combined penalties as in the fused

LASSO approach (Tibshirani and Wang (2008)).

Recently, the problem of detecting common change points that occur

at the same location in multiple noisy sequences has garnered significant

attention, as pooling data across samples can enhance the power to de-

tect simultaneously occurring signals. Many authors have addressed this
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problem using different approaches. For example, Zhang et al. (2010) pro-

posed the multi-sample scan algorithm, Bleakley and Vert (2011) applied

group LASSO techniques, and Song et al. (2016) generalized the SaRa al-

gorithm to accommodate multiple samples to detect the common change

points shared across multiple aligned sequences.

Very little work, however, has been published on the detection of jump

points for multiple sequences in the nonparametric regression. Suppose that

we observe two-dimensional array {Yk(Ti) : k = 1, . . . ,m; i = 1, . . . , n}

Yk(Ti) = µk(Ti) + εk(Ti), k = 1, . . . ,m; i = 1, . . . , n, (1.1)

wherem is the number of sequences, n is the number of observations, µk(·)’s

are smooth functions except at shared jump points {τ1, . . . , τJ}, and εk(·)’s

are heteroscedastic error processes with means zero and conditional variance

functions σ2
k(·)’s. Most existing methods failed to detect jump points in the

presence of heteroscedastic errors, since small jumps are more likely to be

contaminated by continuity points with large variations, which makes this

problem more challenging.

The nonparametric model (1.1) not only relaxes the assumptions of

parametric piecewise-constant model and reduces the risk of modeling bi-

ases theoretically, but also comes from practical needs in real data analysis.

For example, as Olshen et al. (2004) mentioned, copy number data tend
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to exhibit local trends consisting of oscillations that even elaborate prepro-

cessing fails to remove completely. Marioni et al. (2007) utilized Lowess

regression to break the waves and to improve the calling of copy number

variants (CNVs) in whole-genome tiling path arrays. They found that the

wavy patterns appear to be a general feature of array comparative genomic

hybridization (aCGH) data sets, and may prevent accurate change-point

detection if fitting is done using the conventional parametric piecewise-

constant model. Besides, model (1.1) can also be applied to estimate both

integrated volatility and jump variation of the high-frequency financial data

from several stocks simultaneously, see Fan and Wang (2007). In this paper:

(i) We show the optimal convergence rate O(n−1) of jump estimators

in the classic and popular screening procedure (Xia and Qiu (2015)).

(ii) We improve the classic screening procedure via multiple testing,

which is called screening and multiple testing (SaMT) algorithm, to esti-

mate the number and the locations of jump points. The proposed algorithm

is shown to be less sensitive to the choices of tuning parameters, thus alle-

viating the need to precisely estimate the jumps in the screening procedure.

(iii) We propose a more powerful local test of significance of an individ-

ual candidate jump point based on the profile likelihood inference.

(iv) We generalize the SaMT algorithm to accommodate the presence
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of multiple sequences to detect common jump points shared across multiple

aligned sequences by aggregating the test statistics or p-values.

(v) We develop a new change-point detection method for the array-

based DNA copy number data after considering the impacts of genomic

waves, which is quite different from the existing methods.

The rest of the paper is organized as follows. Section 2 presents the clas-

sic screening procedure (Xia and Qiu (2015)) and our improved theoretical

results. Section 3 describes the proposed SaMT algorithm to detect jump

points for both single sequence and multiple aligned sequences. Section 4

illustrates the proposed methods via simulation studies and real data ex-

amples respectively. Section 5 is devoted to discussion and suggestions for

further work. All the technical proofs and an additional simulation study

are relegated to the Supplementary Material. Both R codes and data are

available at https://github.com/ShengjiJia/SAMT.

2. Screening procedure

Let the response variable Y (t) be collected at points {Ti : i = 1, . . . , n} ⊂ T ,

where T ⊂ R is a fixed interval (e.g., T = [0, 1]), and n is the total number

of observations. Ti’s are allowed to be either random or fixed. Consider the
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model

Y (t) = µ(t) + ε(t) = α(t) +
J∑

j=1

βjI(t > τj) + ε(t), (2.1)

where α(·) is a smooth function, J and {τ1 < · · · < τJ} are the number and

the locations of jump points. Let βj ̸= 0 denote the jump size at point τj,

and I(·) be the indicator function which is equal to 1 when its argument is

true. Suppose ε(t) is a Gaussian random process with mean 0 and

cov{ε(Ti), ε(Tj) | Ti = s, Tj = t} = σ2(t)I(t = s),

where σ2(·) is a nonparametric smooth function. The Gaussian assumption

for the error process ε(t) is not essential in our framework and can be

relaxed. Denote the left- and right-limits of µ(·) at point t by

µ−(t) = lim
x↑t

µ(x), µ+(t) = lim
x↓t

µ(x).

According to (2.1), µ+(τj) − µ−(τj) = βj is the jump size at point τj,

and µ+(t) − µ−(t) = 0 when t is a continuity point. It is anticipated that

estimators, say µ̂+(t) and µ̂−(t), of µ+(t) and µ−(t) respectively, will satisfy

|µ̂+(t)− µ̂−(t)| ≈ |βj|, if t ∈ {τ1, . . . , τJ},

|µ̂+(t)− µ̂−(t)| ≈ 0, if t is a continuity point with min1≤j≤J |t− τj| > h1,

where the definition of h1 is given below. Therefore the local maximizers

of |µ̂+(t)− µ̂−(t)| may be considered as the jump candidates. Xia and Qiu
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(2015) applied the locally-linear smoothing (Fan and Gijbels (1996)), which

is known to reduce estimation bias at boundary points and perform better

than the kernel estimators (e.g., Nadaraya-Watson and Gasser-Müller), to

estimate µ+(t) and µ−(t) respectively. Specifically, let K+(·) be a kernel

function which is continuous within its support [0, 1], and K−(t) = K+(−t)

for t ∈ [−1, 0]. Then we can replace a symmetric kernel function K(·) in

the conventional locally-linear regression by the one-sided kernelsK−(·) and

K+(·) respectively to derive the estimators µ̂+(t) := â+ and µ̂−(t) := â− by

minimizing the following sum of squares:

min
(a±,b±)

n∑
i=1

{
Y (Ti)− a± − b± (Ti − t)

}2

K±
(Ti − t

h1

)
, (2.2)

where h1 > 0 is the bandwidth. The estimators µ̂+(t) and µ̂−(t) can be

written as the weighted sum of the responses (Fan and Gijbels (1996)):

µ̂±(t) =

∑n
i=1w

±
i (t)Y (Ti)∑n

i=1 w
±
i (t)

, t ∈ T , (2.3)

w±
i (t) = K±

(Ti − t

h1

){
S±
2 (t)− (Ti − t)S±

1 (t)
}
, i = 1, . . . , n,

S±
l (t) =

n∑
i=1

(Ti − t)lK±
(Ti − t

h1

)
, l = 0, 1, 2.

Now the estimation and inference of the jump points {τj : j = 1, . . . , J}

and jump sizes {βj : j = 1, . . . , J} are based on the difference process:

L(t) := |µ̂+(t)− µ̂−(t)|, t ∈ T . (2.4)
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If there is a unique discontinuity point in the regression function, i.e., J =

1, then the global maximizer of L(t) serves to estimate the single jump

point. Grégoire and Hamrouni (2002) derived the optimal convergence rate

OP(n
−1) and the asymptotic distribution for this single jump estimator. As

to multiple jumps, i.e., J > 1, the difference process L(t) should have several

local maximizers. We need a threshold λ such that any local maximum of

L(t) that exceeds λ can be regarded as a jump candidate. Assume T = [0, 1]

without loss of generality. Denote by Sλ the candidate set of the initial jump

estimators for a given threshold λ in the screening procedure, which can be

updated in the following way:

(i) Extract local maximizers {ω1, ω2, . . .} of L(t) over [h1, 1− h1] s.t.

L(ω1) ≥ L(ω2) ≥ · · · ≥ L(ωq) ≥ λ > L(ωq+1) ≥ · · · ; (2.5)

(ii) Let Sλ = {ω1} and the index set S = {1};

(iii) For the candidate ωi, with i = 2, . . . , q and q in (2.5), if

ωi /∈
⋃
j∈S

(ωj − h1, ωj + h1), (2.6)

then we add ωi into the candidate set: Sλ ← Sλ ∪ {ωi}, and S ←

S ∪ {i}; otherwise, ωi is not included in the candidate set Sλ;
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(iv) Finally, select J̃ := |S| initial jump points in the candidate set

Sλ := {τ̃1 < τ̃2 < · · · < τ̃J̃} = {ωi : i ∈ S}. (2.7)

Proposition 1. If λ′ is another threshold such that λ > λ′ > 0, then we

have Sλ ⊆ Sλ′.

Proposition 1 shows the compatibility of the candidate set Sλ for differ-

ent threshold λ: if one jump candidate is included in Sλ for some λ, then it

will also be included in Sλ′ as long as λ′ < λ, which motivates the following

sure screening property (Theorem 1(a)): when λ is small enough, for any

true jump point τj, we can find an estimator in the candidate set Sλ that

is very close to τj.

Theorem 1 (estimators for the number and locations of jumps). Suppose

that conditions A1–A7 in the Supplementary Material hold.

(a) (Sure screening property). If the threshold λ→ 0 as n→∞, then

lim
n→∞

P(J̃ ≥ J) = 1.

Besides, for each τj, j = 1, . . . , J , there exists ζ ∈ Sλ such that

|ζ − τj| = OP(n
−1), j = 1, . . . , J.
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(b) Assume conditions in part (a), and further assume λ−1h2
1 = o(1) and

λ−2 log(h−1
1 )/(nh1) = o(1). Then we have

lim
n→∞

P(J̃ = J) = 1. (2.8)

Moreover, conditioning on the event {J̃ = J}, we have

|τ̃j − τj| = OP(n
−1), j = 1, . . . , J, (2.9)

where τ̃j are in (2.7).

Actually we have shown in the proof of Theorem 1 that if we choose

λ appropriately, there exists an integer N such that J̃ = J a.s. when

n > N . So when the sample size is large enough, with probability one,

we can estimate the number of jumps without error. Besides, we have

shown the optimal convergence rate n−1 (Grégoire and Hamrouni (2002))

of the jump estimator in Theorem 1, compared with the convergence rate

{h1 log(n)/n}1/2 derived by Xia and Qiu (2015). Criteria other than the

difference process L(t) may be utilized in the screening procedure to select

the jump candidates. For example, the wavelets method (Fan and Wang

(2007)) for detecting jumps has the rate of convergence n−1 log2(n), a little

bit slower than that of the screening procedure.

Next, we will derive the asymptotic distribution of the jump size esti-

mator β̂j = µ̂+(τ̃j)− µ̂−(τ̃j).
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Theorem 2 (jump size estimator). Assume conditions of Theorem 1(b),

and nh5
1 = O(1). Then conditioning on the event {J̃ = J}, we have

√
nh1(β̂j − βj)

D→ N
(
0,

2V σ2(τj)

f(τj)

)
, j = 1, . . . , J, (2.10)

where f(·) is the density function of i.i.d. points {Ti : i = 1, . . . , n}, and

V =
µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
(µ0µ2 − µ2

1)
2

,

in which µj =
∫
ujK+(u)du and νj =

∫
uj(K+)2(u)du.

3. SaMT algorithm

According to Theorem 1(b) and 2, the choice of threshold λ is crucial,

since the estimator for the number of jumps is sensitive to λ. In the liter-

ature, various threshold selection methods have been adopted. Grégoire

and Hamrouni (2002) briefly described a method, but it is less practi-

cal since the choice of λ depends on min1≤j≤J |βj|, which is unknown in

advance and cannot be estimated before we know the number of jumps.

Niu and Zhang (2012) applied locally-constant smoothing to detect change

points in the parametric model, and suggested using a conservative thresh-

old λ = Cσ̂
√

2/(nh1), with C = 2 or 3, and σ̂ is the estimated standard

deviation of homoscedastic errors. Xia and Qiu (2015) proposed a jump in-

formation criterion and Wang et al. (2022) proposed sample-splitting strat-
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3.1 Local test: significance of individual jump candidate

egy to choose the optimal threshold. Besides, when the errors are het-

eroscedastic, the “global” threshold λ is not appropriate to detect jumps

since some continuity points with large variations can be incorrectly rec-

ognized as jump candidates. Thus we suggest to choose small threshold λ

and small bandwidth h1 such that all the true jumps can be detected in the

screening procedure (Theorem 1(a)) while allowing some continuity points

to be included, and we then conduct multiple testing procedure, which will

be introduced below, to rule out these spurious continuity points.

3.1 Local test: significance of individual jump candidate

In the literature, there are two types of tests in the jump detection prob-

lem: the local test and the global test. The local test focuses on testing

whether the regression function has a discontinuity point at a certain fixed

(prespecified) point t∗, and thus the local test relies on available informa-

tion of the location of a possible jump point. The global test examines

the null hypothesis of a smooth curve versus the alternative hypothesis of a

curve with at least one discontinuity point (at an unknown position). There

are a lot of references dealing with these tests, based on either the asymp-

totic laws (Müller and Stadtmüller (1999); Grégoire and Hamrouni (2002)),

or the bootstrap procedure (Gijbels and Goderniaux (2004); Antoch et al.
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3.1 Local test: significance of individual jump candidate

(2007)).

We focus on the local test since the jump candidates are available in

Section 2, and first consider the following hypothesis testing problem:

H0 : µ(·) is continuous on T ,

versus H1 : µ(·) is discontinuous at a prespecified time point t∗.

(3.1)

The asymptotic distribution of µ̂+(t
∗)− µ̂−(t

∗) in (2.10) may be applied di-

rectly to construct a test statistic (Müller and Stadtmüller (1999); Grégoire

and Hamrouni (2002)), but only the observations in the neighborhood of

t∗ are utilized, and the slower convergence rate
√
nh1 will result in the

less powerful test statistic. To enhance the efficacy, we will modify the

profile likelihood estimation (Fan and Huang (2005)) to construct a new

local test statistic which is more powerful than that of directly utilizing the

asymptotic distribution (2.10). Note that model (2.1) can be regarded as a

partially linear model if the jumps τj’s are known. Consider the following

model with a possible jump point t∗:

Y (Ti) = µ(Ti) + ε(Ti) = α(Ti) + βI(Ti > t∗) + ε(Ti), i = 1, . . . , n, (3.2)

and then the original hypothesis testing problem is transformed to

H0 : β = 0 versus H1 : β ̸= 0. (3.3)

We apply the profile locally-linear smoothing method to estimate {α(·), β}.
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3.1 Local test: significance of individual jump candidate

Specifically, given β, model (3.2) reduces to a nonparametric model:

Y (Ti)− Ziβ = α(Ti) + ε(Ti), i = 1, . . . , n, (3.4)

where Zi = I(Ti > t∗). The profile least squares estimator of β will enjoy a

closed form if the following notations are used. Let Y = (Y (T1), . . . , Y (Tn))
T ,

Z = (Z1, . . . , Zn)
T , m = (α(T1), . . . , α(Tn))

T , and ε = (ε(T1), . . . , ε(Tn))
T ,

then model (3.4) can be written as

Y −Zβ = m+ ε. (3.5)

Let K(·) be a symmetric kernel function, and Kh(·) = h−1K(·/h). Then

using a bandwidth h2 > 0 which differs from h1 in (2.2), the locally-linear

estimator α̂β(t0) := â1 for α(·) at time point t0 can be derived by:

min
a1,b1

n∑
i=1

{
Y (Ti)− Ziβ − a1 − b1(Ti − t0)

}2
Kh2(Ti − t0), (3.6)

which implies that m̂ = S(Y −Zβ), where S is called a smoothing matrix

of the locally-linear smoother, see Fan and Huang (2005). Substituting m̂

into (3.5) results in the synthetic linear model,

(I− S)Y = (I− S)Zβ + ε,

where I ∈ Rn×n is an identity matrix. So the estimator of β is

β̂ = {ZT (I− S)T (I− S)Z}−1ZT (I− S)T (I− S)Y . (3.7)
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3.1 Local test: significance of individual jump candidate

According to the sandwich formula (Fan and Huang (2005)), we construct

the Wald statistic for testing the hypothesis (3.3):

W =
β̂2

(Z̃T Z̃)−1(Z̃T Σ̂Z̃)(Z̃T Z̃)−1
, (3.8)

where Z̃ = (I − S)Z, and Σ̂ = diag{σ̂2(T1), . . . , σ̂
2(Tn)} with σ̂2(·) being

an estimator of σ2(·). In the literature, various methods can be applied

to estimate the conditional variance function σ2(·), e.g., the locally-linear

smoothing estimator of the squared residuals (Li (2011)), which is defined

by σ̂2(t0) := â2 at time point t0, where (â2, b̂2) are the minimizers of

min
a2,b2

n∑
i=1

{
ε̂2i − a2 − b2(Ti − t0)

}2
Kh3(Ti − t0), (3.9)

in which ε̂i = Y (Ti) − α̂β̂(Ti) − Ziβ̂ is the residual, and h3 > 0 is a new

bandwidth differs from h1 in (2.2) and h2 in (3.6). In practice, we can also

use the methods proposed by Jia et al. (2019) to guarantee the positivity of

σ̂2(·). Note that our proposed method reduces to Theorem 4.1 of Fan and

Huang (2005) when the errors are homoscedastic, i.e., σ2(t) ≡ σ2. Moreover,

compared with (2.10), the profile least squares estimator β̂ in (3.7) not only

enjoys the faster convergence rate
√
n (see the proof of Theorem 3), which

will result in the more powerful test statistic W , but also avoids estimating

the density function f(·). Thus we can test the hypothesis (3.3) based on

the following asymptotic distribution of the Wald statistic W in (3.8).
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3.2 Multiple testing procedure: ultimate detection of jump points

Theorem 3. Assume conditions A1–A3 and B1–B4 in the Supplementary

Material. Then under the null hypothesis H0 in (3.3), the Wald statistic W

in (3.8) asymptotically follows χ2
1 distribution with one degree of freedom.

We demonstrate the performance of the proposed Wald test statistic W

through an additional simulation example in the Supplementary Material.

3.2 Multiple testing procedure: ultimate detection of jump points

According to the sure screening property (Theorem 1), with a small thresh-

old λ, the candidate set Sλ will contain all of the true jumps. Of course,

some continuity points with large variances may also be added into Sλ. So

after deriving the jump candidates in the screening procedure, we need to

conduct multiple testing procedure to check whether each element in the

candidate set Sλ = {τ̃1 < τ̃2 < · · · < τ̃J̃} is the true jump point or not.

This motivates us to consider testing the following multiple hypotheses:

H0,j : µ−(τ̃j) = µ+(τ̃j),

versus H1,j : µ−(τ̃j) ̸= µ+(τ̃j), j = 1, . . . , J̃ .

(3.10)

Here we assume the initial estimators τ̃j and J̃ are prespecified, and

apply the Benjamini-Hochberg (BH) multiple testing procedure (Benjamini

and Hochberg (1995)) to control the false discovery rate (FDR):
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3.2 Multiple testing procedure: ultimate detection of jump points

(i) Define Nj as the neighborhood of a candidate τ̃j (j = 1, . . . , J̃):

Nj :=
{
Ti : Ti ∈

( τ̃j−1 + τ̃j
2

,
τ̃j + τ̃j+1

2

)
, i = 1, . . . , n

}
, (3.11)

where τ̃0 := 2T1−τ̃1, and τ̃J̃+1 := 2Tn−τ̃J̃ , such that setsNj constitute

the partitions of all the points {T1, . . . , Tn};

(ii) For j = 1, . . . , J̃ , use the subsequence {Y (Ti) : Ti ∈ Nj} to fit the

partially linear model, with the possible jump point t∗ = τ̃j in (3.2),

Y (Ti) = α(Ti) + βI(Ti > τ̃j) + ε(Ti), Ti ∈ Nj,

and derive the corresponding Wald test statistic Wj in (3.8) and the

corresponding p-value pj for testing the hypothesis H0,j;

(iii) Apply the Benjamini-Hochberg (BH) multiple testing procedure to

the p-values {p1, . . . , pJ̃} in step (ii). Let p(1) ≤ p(2) ≤ · · · ≤ p(J̃) be

the ordered p-values pj’s. For a nominal level α, say α = 0.05 or 0.1,

we reject the null hypotheses H0,j if j ∈ A := {j : pj ≤ p(Ĵ)}, where

Ĵ = max
{
j : p(j) ≤

αj

J̃

}
. (3.12)

Thus Ĵ is the final estimator for the number of jumps, and {τ̂1 < τ̂2 < · · · <

τ̂Ĵ} := {τ̃j : j ∈ A} ⊆ Sλ are the corresponding estimated locations. For

different subsequences {Y (Ti) : Ti ∈ Nj}J̃j=1, the bandwidths h2 and h3
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3.3 Extension to multiple sequences

that are utilized to construct the local tests may be different, and we will

just use the same h2 and h3 for all these subsequences for simplicity.

It is easy to check that both the partitions Nj’s and the subsequences

{Y (Ti) : Ti ∈ Nj}’s are disjoint. Since the p-value pj for testing the hypoth-

esis H0,j depends on only the data points in the subsequence {Y (Ti) : Ti ∈

Nj}, the p-values {pj}J̃j=1 are independent, and the FDR can be controlled

by the standard BH procedure (Benjamini and Hochberg (1995)).

3.3 Extension to multiple sequences

We now study the simultaneous jump detection problem for multiple aligned

sequences, i.e., m > 1 in (1.1), and generalize the proposed SaMT algorithm

to accommodate multiple sequences. The data consist of m independent

sequences (samples), where all the observations are made on a fixed interval

T ⊂ R (e.g., T = [0, 1]). For the kth sequence, k = 1, . . . ,m, the response

Yk(t) is collected at points {Ti : i = 1, . . . , n}, where n is the total number

of observations for each sequence. Let us consider the following model:

Yk(t) = µk(t) + εk(t)

= αk(t) +
J∑

j=1

βk,jI(t > τj) + εk(t), k = 1, . . . ,m, (3.13)

where αk(·)’s are smooth functions, J and {τ1, . . . , τJ} are the number and

the locations of the shared jump points respectively, and βk,j denotes the
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jump size at τj for the kth sequence. Suppose εk(·)’s are independent Gaus-

sian random processes with means 0 and

cov{εk(Ti), εk(Tj) | Ti = s, Tj = t} = σ2
k(t)I(t = s),

where σ2
k(·)’s are nonparametric smooth functions. We allow the baseline

mean levels αk(·)’s, jump sizes {βk,j}mk=1, and variance functions σ2
k(·)’s to

be subject-specified, which can differ substantially across samples. Besides,

for each j, some of the jump sizes {βk,j}mk=1 are allowed to be zero, which

means that only a subset of the sequences, called the carriers (Zhang et al.

(2010)), experience a shift in mean at the jump point τj.

Let µ̂k;±(t) be the estimator of µk;±(t), where µk;−(t) and µk;+(t) are the

left- and right-limits of µk(·) at point t respectively. Let Lk(t) = |µ̂k;+(t)−

µ̂k;−(t)| be the difference process (2.4) for the kth sequence {Yk(Ti) : i =

1, . . . , n}, which measures the level of discontinuity at t for the kth sequence.

To combine information across sequences to identify shared jump points,

we need to combine the statistics Lk(t)’s. A natural choice is the multiple

sample difference process defined as follows:

Lmulti(t) =
m∑
k=1

L2
k(t). (3.14)

Lmulti(·) is likely to be large around a jump point τj if
∑m

k=1

{
µk;+(τj) −

µk;−(τj)
}2

is large. Other metrics of the difference processes Lk(·)’s may be
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considered, such as max1≤k≤m Lk(t) or
∑m

k=1 Lk(t). Following Section 2, let

Smulti
λ = {τ̃1 < τ̃2 < · · · < τ̃J̃} (3.15)

be the set of jump candidates for a threshold λ after we replace L(t) by

Lmulti(t) in the screening procedure. Then Theorem 1 can be generalized to

the following Theorem 4 for the multi-sequence case, except that different

conditions for the threshold λ are imposed in Theorem 4(b).

Theorem 4. Assume conditions A1′, A2′, A3–A7 in the Supplementary

Material hold.

(a) (Sure screening property). If the threshold λ→ 0 as n→∞, then

lim
n→∞

P(J̃ ≥ J) = 1.

Besides, for each jump point τj, there exists ζ ∈ Smulti
λ such that

|ζ − τj| = OP(n
−1), j = 1, . . . , J.

(b) Assume conditions in part (a), and further assume λ−1h4
1 = o(1) and

λ−1 log(h−1
1 )/(nh1) = o(1). Then we have

lim
n→∞

P(J̃ = J) = 1.

Moreover, conditioning on the event {J̃ = J}, we have

|τ̃j − τj| = OP(n
−1), j = 1, . . . , J.
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After we derive the common jump candidates Smulti
λ = {τ̃1 < τ̃2 < · · · <

τ̃J̃} in (3.15), we conduct multiple testing procedure to check whether each

element in Smulti
λ is the true shared jump or not, i.e., test the hypotheses,

H0,j :
∑m

k=1

{
µk;+(τ̃j)− µk;−(τ̃j)

}2
= 0,

versus H1,j :
∑m

k=1

{
µk;+(τ̃j)− µk;−(τ̃j)

}2 ̸= 0, j = 1, . . . , J̃ .

(3.16)

In the parametric paradigms (i.e., piecewise-constant model), various

strategies including Fisher’s method, Stouffer’s method and the higher crit-

icism method (Cai et al. (2011); Song et al. (2016)) have been proposed to

detect the common change-points. In the nonparametric setting of this pa-

per, to pool statistical evidence across samples, we consider to combine the

Wald test statistics (Zhang et al. (2010)), or the p-values (Du and Zhang

(2014)) from different sequences. Let Wk,j be the Wald statistic for testing

the jump candidate τ̃j based on the kth sequence, and define the following

multiple sample Wald statistic for the hypothesis H0,j:

Wmulti
j =

m∑
k=1

Wk,j, j = 1, . . . , J̃ . (3.17)

To combine the p-values, let pk,j be the p-value derived from the Wald

test statistic Wk,j, for testing jump candidate τ̃j on the kth sequence, and

define the single-index modulated (SIM) p-value for hypothesis H0,j:

pSIMj = Φ
( m∑

k=1

wkΦ
−1(pk,j)

)
, j = 1, . . . , J̃ , (3.18)
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where Φ(·) is the c.d.f. of the standard normal distribution, and the weights

wk’s satisfy wk ≥ 0 and
∑m

k=1w
2
k = 1. Du and Zhang (2014) suggested to

choose the optimal weights wk’s based on the power consideration, and

we will, in the absence of prior information, take wk = m−1/2, i.e., all the

sequences are of the same importance. When the occurrence of jump points

is sparse across sequences, a hybrid test statistic would be a better choice,

combining the maximum-type and sum-type, see Song et al. (2016) for a

review and comparison of these methods.

Proposition 2. Suppose that conditions A1′, A2′, A3, and B1′, B2–B4 in

the Supplementary Material hold.

(a) The multiple sample Wald statistics {Wmulti
j }J̃j=1 are independent. And

under the null hypothesis H0,j in (3.16), Wmulti
j asymptotically follows

the χ2
m distribution with m degrees of freedom as n→∞.

(b) The single-index modulated p-values {pSIMj }J̃j=1 are independent. And

under the null hypothesis H0,j in (3.16), pSIMj asymptotically follows

the uniform distribution over the interval [0, 1] as n→∞.

After deriving the multiple sample p-values {pmulti
j }J̃j=1 based on the

asymptotic null distributions of {Wmulti
j }J̃j=1 in (3.17), or the single-index

modulated p-values {pSIMj }J̃j=1 in (3.18), we conduct BH procedure to rule

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0216



out continuity points, in a way similar to Section 3.2.

4. Numerical studies

In this section, we investigate the performance of our proposed SaMT al-

gorithm through Monte Carlo simulations and real data analysis.

4.1 Simulation 1: stability of SaMT algorithm

Suppose the true data generating process is model (2.1):

Y (Ti) = α(Ti) +
J∑

j=1

βjI(Ti > τj) + ε(Ti), i = 1, . . . , n,

with n = 2000 and Ti = i/n. We set J = 20, and the jump locations

τj = 0.02× ςj, where ςj’s are randomly selected from {1, 2, . . . , 49} without

replacement. Let {βj}Jj=1 be independent, having discrete uniform distribu-

tion on {±1, ±0.5}. Suppose ε(t) is a Gaussian random process with mean

0 and σ(t) = 0.1{1+θ sin(2πt)}, where θ ∈ {0, 0.5}, and θ = 0 corresponds

to the homoscedastic errors. The nonparametric component α(·) is

α(t) = 0.1
{
sin(20πt+ ϕ1) + 2 sin(8πt+ ϕ2)

}
, t ∈ [0, 1],

where {ϕ1, ϕ2}
i.i.d.∼ unif(0, 2π). We conduct the simulation 100 times, with

the nominal level α = 0.1. Throughout the paper, we use the Epanechnikov

kernel K(u) = 0.75(1−u2)+, u ∈ [−1, 1], and the one-sided kernel functions

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0216



4.1 Simulation 1: stability of SaMT algorithm

K+(u) = K(u)I(0 ≤ u ≤ 1) and K−(u) = K(u)I(−1 ≤ u < 0). For each

simulated data, we take the bandwidth h1 = 0.01 × 0.85k, k = 0, 1, 2, and

threshold λ ∈ {0.18, 0.20, 0.22, 0.24} in the screening procedure. Besides,

we assume the bandwidth h2 = 0.005, and h3 is selected automatically by

R package “np” (Li and Racine (2007)) in the multiple testing procedure.

Table 1: Means and standard errors (in parentheses) of Ĵ and FDP over

100 simulations with different λ and h1.

h1 = 0.01× 0.852 h1 = 0.01× 0.85 h1 = 0.01

θ λ Ĵ FDP Ĵ FDP Ĵ FDP

0.24 20.42(1.30) 0.06(0.05) 19.77(1.36) 0.03(0.04) 19.48(0.90) 0.01(0.02)

0.22 20.73(1.73) 0.09(0.06) 20.21(1.55) 0.06(0.05) 19.64(1.13) 0.03(0.03)

0 0.20 21.85(2.08) 0.14(0.06) 20.86(1.59) 0.09(0.06) 20.10(1.48) 0.05(0.04)

0.18 21.81(2.95) 0.16(0.08) 21.61(1.90) 0.13(0.07) 20.59(1.48) 0.08(0.05)

0.24 20.68(1.88) 0.10(0.06) 20.01(1.52) 0.07(0.05) 19.62(1.32) 0.04(0.04)

0.5 0.22 20.29(1.99) 0.12(0.07) 20.14(1.74) 0.09(0.06) 19.54(1.46) 0.06(0.04)

0.20 20.90(2.36) 0.14(0.07) 20.65(2.05) 0.10(0.06) 20.19(1.43) 0.07(0.05)

0.18 20.94(2.64) 0.15(0.08) 20.44(2.38) 0.12(0.07) 20.26(1.79) 0.09(0.06)
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Figure 1: Average number of J̃ in screening procedure (△) and Ĵ in multiple

testing procedure (◦) over 100 simulations with different λ and h1. Top

panels: θ = 0; bottom panels: θ = 0.5.

In Figure 1, we record the average number of jump candidates (J̃) in

the screening procedure, and the average number of final estimated jump

points (Ĵ) after multiple testing over 100 simulations. We find SaMT works
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well for both homoscedastic (θ = 0) and heteroscedastic (θ = 0.5) errors.

In the screening procedure, as λ decreases, more points are included in the

candidate set Sλ. On the other hand, the final estimator Ĵ remains quite

stable and is close to the true number (J = 20) of jumps, implying that

most of the spurious points are ruled out after multiple testing. Moreover,

our proposed algorithm is not sensitive to the choices of λ and h1, so there

is a wide range for selecting the tuning parameters.

Table 1 shows the accuracy of the jump points estimators {τ̂1, τ̂2, . . . , τ̂Ĵ}.

We say a true jump τj is correctly detected if there exists τ̂ ∈ {τ̂1, τ̂2, . . . , τ̂Ĵ}

such that |τ̂−τj| ≤ 2/n. We record the average estimated number of jumps

(Ĵ) and average false discovery proportion (FDP) over 100 simulations.

From Table 1, FDP will increase as the threshold λ decreases, because we

are adding just noises after all the true jumps being included in the candi-

date set Sλ. Besides, FDP will be smaller as h1 increases, since more data

points are utilized in each neighborhood to derive the difference process

L(·) in (2.4), which will result in the more precise jump candidates.

4.2 Simulation 2: comparison of different methods

Suppose the true data generating process follows model (3.13),

Yk(Ti) = αk(Ti) +
J∑

j=1

βk,jI(Ti > τj) + εk(Ti), k = 1, . . . ,m; i = 1, . . . , n,
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with n = 2048 and Ti = i/n. We assume J = 20, and the common jump

points τj = {100 × (j − 1) + ςj}/n, where ςj’s are randomly selected from

{1, 2, . . . , 100} with replacement. We take m = 1 or 4, where m = 1

corresponds to the jump detection for a single sequence. Suppose εk(t) is

a Gaussian random process with mean 0 and σk(t) = 0.1{1 + θk sin(2πt)},

with {θk}mk=1
i.i.d.∼ unif(0, 0.5). The nonparametric component αk(·) admits

the following form:

αk(t) = 0.1
{
sin(20πt+ ϕk,1) + 2 sin(50πt+ ϕk,2)

}
, t ∈ [0, 1],

where {ϕk,1, ϕk,2}mk=1
i.i.d.∼ unif(0, 2π). The mechanism for generating βk,j is:

Case I. βk,j’s are i.i.d. following the discrete uniform distribution on {−0.5, 0.5};

Case II. βk,j’s are i.i.d. following the discrete uniform distribution on {0, ±0.5, ±1}.

The following different methods are implemented to detect jumps:

1. CBS algorithm (Olshen et al. (2004)) for the single sequence;

2. cumSeg algorithm (Muggeo and Adelfio (2011)) for single sequence;

3. SaRa algorithm (Niu and Zhang (2012)) for the single sequence;

4. Wavelet: the wavelets method using Haar wavelets and universal

threshold rule (Fan and Wang (2007)) for the single sequence;
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5. SaMT(I): the proposed SaMT algorithm for the single sequence;

6. SaMT(II): the proposed SaMT algorithm for multiple sequences (m =

4) with the multiple sample Wald statistics {Wmulti
j }J̃j=1 in (3.17);

7. SaMT(III): the proposed SaMT algorithm for multiple sequences (m =

4) with the single-index modulated p-values {pSIMj }J̃j=1 in (3.18).

We conduct the simulation 100 times with the nominal level α = 0.1.

For the SaMT algorithms (methods 5–7), we take h1 = 0.01 and λ = 0.2

in the screening procedure. The choices of the (one-sided) kernel functions,

the bandwidths h2 and h3 are the same as those in Section 4.1.

Table 2 presents the average estimated number (Ĵ) and the coverage

probabilities for some jump points τj’s obtained by different methods. We

record the relative frequency that τj is correctly detected (i.e., there ex-

ists τ̂ ∈ {τ̂1, τ̂2, . . . , τ̂Ĵ} such that |τ̂ − τj| ≤ 2/n) over 100 simulations.

For the single sequence, the CBS, cumSeg and SaRa algorithms (meth-

ods 1–3), which target at parametric piecewise-constant model, detect too

many jumps because the wave patterns are incorrectly recognized as jump

points. Besides, the proposed SaMT(I) works better than the wavelets-based

method, especially when the jump points are located in the interval [0.5, 1]

where the signal-to-noise ratio is high. We also find that the coverage prob-
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Table 2: Average estimated number (Ĵ) and average coverage probabilities

of jump points with different methods over 100 simulations.

βk,j method Ĵ τ2 τ4 τ6 τ8 τ10 τ12 τ14 τ16 τ18 τ20

CBS 101.26 0.98 1.00 0.98 0.97 0.99 1.00 1.00 1.00 1.00 1.00

cumSeg 37.15 0.36 0.39 0.37 0.32 0.41 0.44 0.40 0.37 0.37 0.47

SaRa 44.05 0.73 0.66 0.73 0.66 0.70 0.74 0.73 0.76 0.67 0.78

Case I Wavelet 22.67 0.69 0.75 0.75 0.68 0.75 0.67 0.74 0.79 0.75 0.72

SaMT(I) 18.24 0.76 0.78 0.79 0.77 0.90 0.86 0.94 0.95 0.93 0.98

SaMT(II) 19.34 0.98 0.98 0.97 0.99 0.99 0.96 0.97 0.99 0.96 1.00

SaMT(III) 19.34 0.97 0.99 0.97 0.99 0.99 0.96 0.97 0.99 0.96 1.00

CBS 100.11 0.80 0.85 0.88 0.75 0.82 0.85 0.89 0.88 0.85 0.83

cumSeg 33.41 0.38 0.50 0.36 0.44 0.45 0.47 0.48 0.46 0.41 0.41

SaRa 43.83 0.68 0.66 0.68 0.66 0.67 0.75 0.74 0.71 0.76 0.67

Case II Wavelet 26.53 0.62 0.60 0.65 0.63 0.64 0.56 0.65 0.62 0.68 0.66

SaMT(I) 16.14 0.68 0.72 0.71 0.67 0.68 0.73 0.83 0.79 0.81 0.81

SaMT(II) 19.19 0.98 0.95 0.96 0.94 0.96 0.99 0.98 0.99 0.99 0.99

SaMT(III) 19.08 0.96 0.95 0.96 0.94 0.95 0.99 0.98 0.99 0.99 0.99

abilities of jump points for multiple sequences (SaMT(II) and SaMT(III))

are larger than those for a single sequence (SaMT(I) and Wavelet), which
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demonstrates the advantage of our proposed method in pooling statistical

evidence across samples to detect common jumps. Finally, SaMT(II) and

SaMT(III) are comparable in detecting the weak signals (Case I), but when

the jump sizes differ substantially across samples or when common jumps

are only shared within part of the sequences (Case II), the jump estimators

detected by SaMT(II) (which combines the Wald statistics) are more precise.

4.3 bladder tumor aCGH data

We now illustrate the proposed algorithm using the bladder tumor aCGH

data. The chromosome copy number is the number of copies of a DNA

region, and DNA copy number variation (CNV) refers to deletion or du-

plication of a region of DNA sequences compared to a reference genome

assembly, and is associated with many human diseases including cancers.

Therefore a major goal of DNA copy number data analysis is to identify

the number and exact locations of the copy number changes. The bladder

tumor aCGH dataset is publicly available from UCSF Cancer Center Ar-

ray CGH Core Facility (http://microarrays.curie.fr/publications/

oncologie_moleculaire/bladder_TCM/). The bladder tumor samples are

analyzed on CGH microarrays, which consist of more than 2000 bacterial

artificial chromosome clones covering the human genome with an average
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4.3 bladder tumor aCGH data

resolution of 1.3 Mb (HumArray 2.0). Spots located in zones of spatial bias

(abnormally high log2 ratios measured in some areas of the array, generally

due to an edge or corner effect) are ignored, see Stransky et al. (2006) for

more details. For subsequent transcriptome and CGH correlations, the log2

ratios of positions 2171559–37334583 kilobases from 4 samples (X1333-4,

X1533-1, X1533-10 and X1533-13) are included, giving us a final list of

2300 probes for each sample. The segments with concentrated high or low

log2 ratios correspond to gains or losses of copy numbers.

We compare the CBS, cumSeg, SaRa, wavelet-based methods and our

proposed SaMT algorithm to detect change points in the bladder tumor

aCGH data. In our proposed algorithm, both h1 and h2 are selected by the

data-driven (order-preserved sample-splitting) strategy proposed by Wang

et al. (2022), and h3 is selected automatically by R package “np” (Li and

Racine (2007)). We take the threshold λ = 4mad(L(T1), . . . , L(Tn)), with

mad(·) being the median absolute deviation operator. Besides, to imple-

ment the wavelets-based method, the data are augmented via a symmetric

reflection in the boundary so that the length of new sequence is 4096.

Table 3 compares the estimated number of change points for each se-

quence using different methods. We also calculate the adaptive Neyman

test statistic (Fan and Huang (2001)) TAN
n for each sequence to examine
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Table 3: Estimated number of change points with different methods and

the adaptive Neyman test statistic TAN
n for each sample, with n = 2300.

Sample CBS cumSeg SaRa Wavelet SaMT TAN
n

X1333-4 13 2 16 14 14 21.90

X1533-1 46 16 23 26 18 1.12

X1533-10 32 13 18 25 18 14.39

X1533-13 37 16 19 24 16 13.16

whether the conventional piecewise-constant model is adequate. The test

statistics for samples X1333-4, X1533-10 and X1533-13 are larger than the

critical value (− log{− log(1 − 0.05)} = 2.97) with significance level 0.05,

thus the nonparametric models (2.1) and (3.13) are necessary. The CBS,

SaRa and Wavelet algorithms tend to detect more change points, most of

which are likely to be false positives because of the existence of oscillations

(wave patterns). Since the original sequences are too long for us to observe

the oscillations, Figure 2 plots just part of the data and the corresponding

fitted lines using the SaMT algorithm. Compared with the classic piecewise-

constant model, the significant change points have been preserved, while the

wave patterns are also fitted pretty well by our proposed method. We also
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Figure 2: Data (the last 500 probes), the fitted (solid) line by SaMT al-

gorithm for each sequence and the common change points (vertical dashed

lines) according to (3.17) for multiple sequences.

show the estimators of the common change points (vertical dashed lines)

according to (3.17) for multiple sequences. Some change points estimators

(e.g., location 2251) that are significant for only one or two sequences (which

may be correlated with other diseases instead of bladder tumor), are not

detected as common change points by our proposed method.
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5. Discussion

In this paper, we propose the SaMT algorithm, which is an improvement

of the classic screening procedure (Xia and Qiu (2015)), to estimate the

number and locations of jump points in the nonparametric regression model

with heteroscedastic errors. The jump candidates are first obtained by the

screening techniques and we then conduct multiple testing procedure, which

is based on the profile likelihood inference in the partially linear model, to

rule out the continuity points with large variations. We also consider the

detection of common jump points shared across multiple aligned sequences

by combining the Wald test statistics or p-values to increase the statistical

powers. The proposed method is stable and not sensitive to the choices

of bandwidth h1 and threshold λ, thus alleviating the need to precisely

estimate the number of jumps in the screening procedure.

Several issues are desirable for further research. First, in this paper

we only considered estimating the shared jump points through the sum-

mary statistics. It is possible that the common jump points may only be

shared within part of the sequences (carriers), while we do not know which

individuals carry a particular jump. Zhang et al. (2010) and Cai et al.

(2011) proposed some methods to post-process the candidates of shared

jump points in the parametric setting (or piecewise-constant model). Thus
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it’s of interest to develop new methods to identify the carriers of a given

jump point in the nonparametric paradigm.

Secondly, the profile likelihood inference will be affected by the esti-

mation errors of the jump candidates τ̃j in the screening procedure, since

they are derived from the same data used for testing. Recently, Jewell

et al. (2022) and Chen et al. (2023) addressed the challenges associated

with post-selection inference in the context of piecewise-constant models,

while this issue is rarely studied in the nonparametric regression. In the

Supplementary Material, we conduct an additional simulation to examine

the impact of estimation error in τ̃ on the Wald test statistic, but a for-

mal investigation into post-selection inference for jump detection is highly

desirable.

Besides, in this study, our primary focus was on the detection of com-

mon jumps within a fixed number of sequences. However, as Bleakley and

Vert (2011) mentioned, the length (n) of sequence in genomic studies is typi-

cally fixed by the underlying technology, while the number (m) of sequences

can increase when we collect the data from a greater number of patients.

The asymptotic distributions derived in Proposition 2 are no longer valid

when m tends to infinity. From a statistical point of view, it is of interest

to develop new methods for the cases with fixed n and large m.
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Finally, very little work has been published on examining the adequacy

of parametric fits compared with nonparametric alternatives for change-

point detection problem. In Section 4.3, we used the adaptive Neyman

test (Fan and Huang (2001)) heuristically to verify the existence of (non-

parametric) wave patterns. It is desirable to more formally investigate the

adaptive Neyman test. This topic is beyond the scope of this article and

we plan to address this issue in a separate paper.

Supplementary Material

The online Supplementary Material contains all the technical conditions,

complete proofs of the main theoretical results, and an additional simulation

study.
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