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Abstract: In this article, we consider change point inference for high dimensional

linear models. For change point detection, given any subgroup of variables, we

propose a new method for testing the homogeneity of corresponding regression co-

efficients across the observations. Under some regularity conditions, the proposed

new testing procedure controls the type I error asymptotically and is powerful

against sparse alternatives and enjoys certain optimality. For change point iden-

tification, an “argmax” based change point estimator is proposed which is shown

to be consistent for the true change point location. Moreover, combining with the

binary segmentation technique, we further extend our new method for detecting

and identifying multiple change points. Extensive numerical studies justify the

validity of our new method and demonstrate its competitive performance.

Key words and phrases: Change point inference; High dimensions; Linear regres-

sion; Multiplier bootstrap; Subgroups.

1. Introduction

Driven by the great improvement of data collection and storage ca-
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pacity, high dimensional linear regression models have attracted a lot of

attentions because of its simplicity for interpreting the effect of different

variables in predicting the response. Specifically, we are interested in the

following model:

Y = X⊤β + ϵ,

where Y ∈ R is the response variable, X = (X1, . . . , Xp) ∈ Rp is the

covariate vector, β = (β1, . . . , βp)
⊤ is a p-dimensional unknown vector of

coefficients, and ϵ ∈ R is the error term.

For high dimensional linear regression, the L1-penalized technique lasso

(Tibshirani (1996)) is a popular method for estimating β. In the past

decades, lots of research attentions both in machine learning and statistics

have been focused on studying theoretical properties of lasso and other pe-

nalized methods. Most of the existing literature on high dimensional linear

regression focuses on the case with a homogeneous linear model, where the

regression coefficients are assumed invariant across the observations. With

many modern complex datasets for analysis in practice, data heterogeneity

is a common challenge in many real applications such as economy and ge-

netics. In some applications, the regression coefficients may have a sudden

change at some unknown time point, which is called a change point. Typ-

ical examples include racial segregation and crime prediction in sociology,
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and financial contagion in economy. For these problems, methods and the-

ories designed for independently and identically (i.i.d.) distributed settings

are no longer applicable. As a result, ignoring these structural breaks in

machine learning applications may lead to misleading results and wrong

decision making. For the regression change point problem, a fundamental

question is whether the underlying regression model remains homogenous

across the observations. To address this issue, in this article, we investigate

change point inference for high dimensional linear models. Specifically, let

(Yi,Xi)
n
i=1 be n ordered independent realizations of (Y,X). We aim to

detect whether the regression coefficients have a change point during the

observations. In particular, let β(1) and β(2) be two p-dimensional vectors

of coefficients with β(1) = (β
(1)
1 , . . . , β

(1)
p )⊤ and β(2) = (β

(2)
1 , . . . , β

(2)
p )⊤. We

consider the following linear regression model with a possible change point:

Yi = X⊤
i β

(1)1{1 ≤ i ≤ k∗}+X⊤
i β

(2)1{k∗ + 1 ≤ i ≤ n}+ ϵi, (1.1)

where k∗ is the possible but unknown change point location and (ϵi)
n
i=1 are

the error terms. In this paper, we assume k∗ = ⌊nt0⌋ for some t0 ∈ (0, 1).

For any given subgroup G ⊂ {1, . . . , p}, the first goal is to test

H0,G : β
(1)
s = β

(2)
s for all s ∈ G v.s.

H1,G : There exist s ∈ G and k∗ ∈ {1, . . . , n− 1} s.t. β
(1)
s ̸= β

(2)
s .

(1.2)
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In other words, under H0,G, the regression coefficients in each subgroup G

are homogeneous across the observations, and under H1,G there is a change

point at an unknown time point k∗ such that the regression coefficients

have a sudden change after k∗. Our second goal of the paper is to identify

the change point location once we reject H0,G in (1.2). In this paper, we

assume that the number of coefficients can be much larger than the number

of observations, i.e., p ⪰ n, which is known as a high dimensional problem.

For the low dimensional setting with a fixed p and p < n, change point

inference for linear regression models has been well-studied. For example,

Quandt (1960) considered testing (1.2) for a simple regression model with

p = 2. Based on that, several techniques were proposed in the literature.

Among them are maximum likelihood ratio tests (Horváth, 1995), partial

sums of regression residuals (Bai and Perron, 1998), and the union inter-

section test (Horváth and Shao, 1995). Moreover, as a special case of linear

regression models, Chan et al. (2014) considered change point detection

for the autoregressive model. As compared to the broad literature in the

low dimensional setting, methods and theory for high dimensional change

point inference of (1.1) have not been investigated much until recently. For

instance, Lee et al. (2016) considered a high dimensional regression model

with a possible change point due to a covariate threshold. Based on the
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L1/L0 regularization, Kaul et al. (2019) proposed a two-step algorithm for

the detection and estimation of parameters in a high-dimensional change

point regression model. As extensions to multiple structural breaks in high

dimensional linear models, Leonardi and Bühlmann (2016) proposed fast

algorithms for multiple change point estimation based on dynamic program-

ming and binary search algorithms. In addition, Zhang et al. (2015) de-

veloped an approach for estimating multiple change points based on sparse

group lasso. Wang et al. (2021) proposed a projection-based algorithm for

estimating multiple change points. Recently, Cho and Owens (2022); Bai

and Safikhani (2023) constructed estimates for the multiple change points

in high-dimensional regression models based on methods of moving window

and blocked fused lasso. Kaul et al. (2021); Xu et al. (2022) respectively

considered the problem of constructing confidence interval for the change

point in the context of high dimensional mean vector-based models and

linear regression models. Chen et al. (2023) proposed a new method for

determing the number of change points with false discovery rate controls.

Other related papers include He et al. (2023); Wang et al. (2022).

It is worth noting that the majority of above mentioned papers mainly

focus on the estimation of regression coefficients as well as the change point

locations by assuming a pre-existing change point in the model. To our
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best knowledge, the testing problem of (1.2) has not been considered yet.

How to make effective change point detection remains to be an urgent but

challenging task. To fill this gap, in this article, we consider change point

inference in the context of high dimensional linear models.

The main contributions of this paper are as follows. For any pre-

specified subgroup G ⊂ {1, . . . , p}, we propose a new method for testing

the homogeneity of corresponding regression coefficients across the obser-

vations. For change point detection, the proposed test statistic TG is con-

structed based on a weighted L∞ aggregation, both temporally and spa-

tially, of the process {Zj(⌊nt⌋)}j∈G,t∈[τ0,1−τ0], where Zj(⌊nt⌋) = β̆
(0,t)
j − β̆

(t,1)
j

with β̆
(0,t)
j and β̆

(t,1)
j denoting the de-biased lasso estimators for coordinate j

before and after time point ⌊nt⌋, respectively. It is shown that TG is power-

ful against sparse alternatives with only a few entries in G having a change

point. To approximate its limiting null distribution, a multiplier bootstrap

procedure is introduced. The proposed bootstrap can automatically ac-

count for the dependence structures of {Zj(⌊nt⌋)}j∈G,t∈[τ0,1−τ0] and allow the

group size |G| to grow exponentially with the sample size n. Furthermore, to

identify the change point location, for each time point ⌊nt⌋, we first aggre-

gate the coordinates with the L∞-norm, then a change point estimator t̂0,G

is obtained by taking “argmax” with respect to t of the above aggregated
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process with some proper weights. In addition to single change point de-

tection, by combining with the binary segmentation technique (Vostrikova,

1981), we extend our new algorithm for detecting multiple change points

which enjoys better performance than the existing methods.

In terms of theoretical investigation, with mild moment conditions on

the covariates and errors in the regression model, we justify the validity

of our proposed method in terms of change point detection and identifi-

cation. In particular, our bootstrap procedure consistently approximates

the limiting null distribution of TG, which implies that the proposed new

test preserves the pre-specified significance level asymptotically. Further-

more, under H1,G, our new method is sensitive to sparse alternatives and

can reject the null hypothesis with probability tending to one. It is worth

mentioning that Xia et al. (2018) considered two sample tests for high

dimensional linear regression models. They derived some conditions for

consistently distinguishing two sample regression models, which are shown

to be minimax optimal. Our requirement for detecting a change point

under H1,G has the same order as the condition derived in Xia et al.

(2018). As for the change point estimation, we prove that our proposed

argmax-based change point estimator is consistent for t0 with an estima-

tion error rate of
∣∣t̂0,G − t0

∣∣ = Op

( log(|G|n)
n∥δ∥2G,∞

)
, where δ := β(1) − β(2)
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with ∥δ∥G,∞ =: maxj∈G |β(1)
j − β

(2)
j |. Hence, the above estimation result

shows that our proposed change point estimator is consistent as long as

∥β(1) − β(2)∥G,∞ ≫
√
log(|G|n)/n and allows the overall sparsity of re-

gression coefficients and the group’s magnitude |G| to grow simultaneously

with the sample size n. We demonstrate that our new testing procedure

is relatively simple to implement and extensive numerical studies provide

strong support to our theory. Moreover, an R package called “RegCpt” is

developed to implement our proposed new algorithms.

The rest of this paper is organized as follows. In Section 2, we introduce

our new methodology for Problem (1.2). In Section 3, some theoretical

results are derived in terms of change point detection and identification. In

Section 4, extensive numerical studies are investigated. The detailed proofs

of the main theorems, additional numerical studies and an interesting real

data application are given in the Appendix.

For v = (v1, . . . , vp)
⊤ ∈ Rp, define its Lp norm as ∥v∥p = (

∑d
j=1 |vj|p)1/p

for 1 ≤ p ≤ ∞. For p = ∞, define ∥v∥∞ = max1≤j≤d |vj|. For a subset

G ⊂ {1, . . . , p}, denote ∥v∥G,∞ by maxj∈G |vj|. For any set S, denote its

cardinality by |S|. For two real numbered sequences an and bn, we set an =

O(bn) if there exits a constant C such that |an| ≤ C|bn| for a sufficiently

large n; an = o(bn) if an/bn → 0 as n → ∞; an ≍ bn if there exists
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constants c and C such that c|bn| ≤ |an| ≤ C|bn| for a sufficiently large

n. For a sequence of random variables {ξ1, ξ2, . . .}, we denote ξn = op(1) if

ξn
P−→ 0. Define ⌊x⌋ as the largest integer less than or equal to x for x ≥ 0.

2. Methodology

2.1 New test statistic

We present our methodology for testing the existence of a change point

in Model (1.1). To this end, we first introduce some basic model settings.

Recall the regression model

Yi = X⊤
i β

(1)1{1 ≤ i ≤ ⌊nt0⌋}+X⊤
i β

(2)1{⌊nt0⌋+ 1 ≤ i ≤ n}+ ϵi. (2.1)

Denote Y = (Y1, . . . , Yn)
⊤ as a n × 1 response vector, X is a n × p design

matrix with Xi = (Xi,1, . . . , Xi,p)
⊤ being its i-th row for 1 ≤ i ≤ n, and

ϵ = (ϵ1, · · · , ϵn)⊤ is the error vector. For the unknown p × 1 regression

vectors β(1) = (β
(1)
1 , . . . , β

(1)
p )⊤ and β(2) = (β

(2)
1 , . . . , β

(2)
p )⊤, define S(1) =

{1 ≤ j ≤ p : β
(1)
j ̸= 0} and S(2) = {1 ≤ j ≤ p : β

(2)
j ̸= 0} as the active sets

of variables. Denote s(1) = |S(1)| and s(2) = |S(2)| as the cardinalities of

S(1) and S(2), respectively. Define Σ = (Σi,j) = Cov(X1) as the covariance

matrix of X1 and Θ = (θi,j) as the inverse of Σ. For Θ, let sj = |{1 ≤ k ≤

p : θj,k ̸= 0, k ̸= j}|. In addition to the above notations, we assume that the
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change point does not happen at the beginning or end of data observations.

In other words, there exists some τ0 ∈ (0, 0.5) such that t0 ∈ [τ0, 1 − τ0]

holds. Note that the search boundary scales with n by allowing τ0 → 0.

To propose our method, we first introduce the de-sparsified (de-biased)

lasso estimator, which was proposed in Van de Geer et al. (2014) and Zhang

and Zhang (2014). Specifically, for Model (2.1), let β̂n be a lasso estimator

from β̂n = argminβ∈Rp ∥Y − Xβ∥22/n + 2λn∥β∥1, where λn is the non-

negative regularization parameter. Then for a homogeneous model with no

change points, the de-biased lasso estimator is defined:

β̆n = β̂n + Θ̂X⊤(Y −Xβ̂n
)
/n, (2.2)

where Θ̂ is some appropriate estimator for Θ. Essentially, the de-biased

lasso estimator β̆n is a lasso solution by plugging in a Karush-Kuhn-Tucker

(KKT) condition. It has been widely used for constructing confidence in-

tervals and statistical tests for high dimensional parameters, and proven to

be asymptotically optimal in terms of semiparametric efficiency.

Remark 1. In this paper, we adopt the node-wise estimation for obtaining

Θ̂, as proposed in Meinshausen and Bühlmann (2006). The main idea is to

perform regression on each variable using the remaining ones. In particular,

denote Xj as the j-th column of X and X−j as the remaining columns. For
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each j = 1 . . . , p, define

γ̂j = argmin
γ∈Rp−1

(
∥Xj −X−jγ∥22/n+ 2λ(j)∥γ∥1

)
, (2.3)

with γ̂j = {γ̂j,k : k = 1 . . . , p, k ̸= j}. Denote by Ĉ = (ĉi,j)
p
i,j with ĉi,i = 1

and ĉi,j = −γi,j for i ̸= j. Let τ̂ 2j = ∥Xj − X−jγ̂j∥22/n + λ(j)∥γ̂j∥1 and

T̂2 = diag{τ̂ 21 , . . . , τ̂ 2p }. The node-wise lasso estimator for Θ is defined as

Θ̂ = T̂−2Ĉ. (2.4)

It is shown that Θ̂ enjoys good properties in estimation accuracy. More

importantly, it is possible to use parallel computation for calculating Θ̂,

which is more appropriate for modern statistical applications with large

scale datasets.

Since there is a possible but unknown change point in Model (2.1), we

can not use (2.2) directly to make statistical inferences on β(1) and β(2).

The main challenge comes from the unknown change point t0. To overcome

this difficulty, instead of only calculating a single de-biased lasso estimator

β̆n, we need to construct the de-biased lasso-based process. To that end,

we need some notations. For any 0 ≤ s < t ≤ 1, define

Y(s,t) = (Y⌊ns⌋+1, . . . , Y⌊nt⌋)
⊤, ϵ(s,t) = (ϵ⌊ns⌋+1, . . . , ϵ⌊nt⌋)

⊤,

X(s,t) = (X⌊ns⌋+1, . . . ,X⌊nt⌋)
⊤, Σ̂(s,t) =

1

⌊nt⌋ − ⌊ns⌋+ 1

⌊nt⌋∑
i=⌊ns⌋+1

XiX
⊤
i .
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To motivate our testing statistic, for each fixed t ∈ [τ0, 1− τ0], we define

β(0,t) = argmin
β∈Rp

E
∥∥Y(0,t) −X(0,t)β

∥∥2
2
,β(t,1) = argmin

β∈Rp
E
∥∥Y(t,1) −X(t,1)β

∥∥2
2
.

(2.5)

By definition, β(0,t) and β(t,1) are the best regression coefficients for pre-

dicting Y(0,t) and Y(t,1) under the squared error loss, respectively. More

importantly, suppose there is a change point t0 in the linear model (2.1).

According to the search location t and the true change point location t0,

the underlying true parameters can have the following explicit form:

β(0,t) = β(1)1{t ∈ [τ0, t0]}+
(⌊nt0⌋
⌊nt⌋

β(1)+
⌊nt⌋ − ⌊nt0⌋

⌊nt⌋
β(2)

)
1{t ∈ [t0, 1−τ0]},

and

β(t,1) =
(⌊nt0⌋ − ⌊nt⌋

n− ⌊nt⌋
β(1)+

n− ⌊nt0⌋
n− ⌊nt⌋

β(2)
)
1{t ∈ [τ0, t0]}+β(2)1{t ∈ [t0, 1−τ0]}.

From the population level, we can define the theoretical signal jump process:

δn(t) :=
√
n
⌊nt⌋
n

⌊nt⌋∗

n
(β(0,t) − β(t,1))

=
√
n
⌊nt⌋
n

⌊nt0⌋∗

n

(
β(1) − β(2)

)
1{t ∈ [τ0, t0]}

+
√
n
⌊nt0⌋
n

⌊nt⌋∗

n

(
β(1) − β(2)

)
1{t ∈ [t0, 1− τ0]},

(2.6)

where ⌊nt⌋∗ := n− ⌊nt⌋.

The signal function in (2.6) has some interesting properties. First,

under H0,G of no change points, it reduces to a vector of zeros at each

12

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0212



2.1 New test statistic

time point ⌊nt⌋. Second, under H1,G, δn(t) is at most (s(1) + s(2))-sparse

since we require sparse regression coefficients in the model. Third, we can

see that ∥δn(t)∥G,∞ with t ∈ [τ0, 1 − τ0] obtains its maximum value at

the true change point location t0. Hence, to make change point inference

for high dimensional linear models, the key point is how to propose a test

statistic that can estimate δn(t) well under H1,G, and has some theoretically

tractable limiting null distributions under H0,G. A natural idea is to use

the lasso estimators directly. Specifically, for each time point, we obtain the

lasso estimators β̂(0,t) = (β̂
(0,t)
1 , . . . , β̂

(0,t)
p )⊤ and β̂(t,1) = (β̂

(t,1)
1 , . . . , β̂

(t,1)
p )⊤:

β̂(0,t) = argmin
β∈Rp

1

2⌊nt⌋
∥∥Y(0,t) −X(0,t)β

∥∥2

2
+ λ1(t)∥β∥1,

β̂(t,1) = argmin
β∈Rp

1

2⌊nt⌋∗
∥∥Y(t,1) −X(t,1)β

∥∥2

2
+ λ2(t)∥β∥1,

(2.7)

where λ1(t) and λ2(t) are some regularity parameters to account for the data

heterogeneity. It is well known that due to the ℓ1 regularized penalization in

(2.7), the lasso estimators are typically biased and do not have a tractable

limiting null distribution. As a result, some“de-biased” process is needed.

The main idea is to plug into the KKT conditions under both H0,G andH1,G

for the change point model. To give an insight into the de-biased process

for change point detection, in what follows, we assume H1,G holds.

Firstly, we consider the case that the search location satisfies t ∈ [τ0, t0].

Let κ̂1(t) ∈ Rp and κ̂2(t) ∈ Rp be the subdifferentials of ∥β∥1 for the first

13
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and second optimization problems in (2.7), respectively. Then, by the KKT

condition, we have:

−X⊤
(0,t)(Y(0,t) −X(0,t)β̂

(0,t))/⌊nt⌋+ λ1(t)κ̂1(t) = 0,

−X⊤
(t,1)(Y(t,1) −X(t,1)β̂

(t,1))/⌊nt⌋∗ + λ2(t)κ̂2(t) = 0.

(2.8)

Note that for t ∈ [τ0, t0], the samples {Y(0,t),X(0,t)} are homogeneous with

regression coefficients being β(0,t) = β(1). Hence, similar to the analysis in

Van de Geer et al. (2014), for the first term in (2.8), for t ∈ [τ0, t0], we have

the following decomposition:

β̂(0,t) + Θ̂λ1(t)κ̂1(t)− β(1) = X⊤
(0,t)ϵ(0,t)/⌊nt⌋

∆I
(0,t)︷ ︸︸ ︷

−(Θ̂Σ̂(0,t) − I)(β̂(0,t) − β(1)) .

(2.9)

For the second term in (2.8), we note that the samples {Y(t,1),X(t,1)} with

t ∈ [τ0, t0] are heterogeneous due to the change point at t0. Observe that

X⊤
(t,1) = (X⊤

(t,t0)
,X⊤

(t0,1)
), andY(t,1) = ((X(t,t0)β

(1))⊤+ϵ⊤(t,t0), (X(t0,1)β
(2))⊤+ϵ⊤(t0,1))

⊤.

Then, the KKT condition for the second equation in (2.8) becomes:

λ2(t)κ̂2(t)

= X⊤
(t,t0)

X(t,t0)(β
(1) − β̂(t,1))/⌊nt⌋∗ +X⊤

(t0,1)
X(t0,1)(β

(2) − β̂(t,1))/⌊nt⌋∗ +X⊤
(t,1)ϵ(t,1)/⌊nt⌋∗

= Σ̂(t,1)(β
(2) − β̂(t,1)) +

⌊nt0⌋ − ⌊nt⌋
⌊nt⌋∗

Σ̂(t,t0)(β
(1) − β(2)) +X⊤

(t,1)ϵ(t,1)/⌊nt⌋∗.

(2.10)
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Multiplying Θ̂ on both sides of (2.10), for the case of t ∈ [τ0, t0], we have:

β̂(t,1) + Θ̂λ2(t)κ̂2(t)−
(⌊nt0⌋ − ⌊nt⌋

⌊nt⌋∗
β(1) +

n− ⌊nt0⌋
⌊nt⌋∗

β(2)
)

︸ ︷︷ ︸
β(t,1)

= −(Θ̂Σ̂(t,1) − I)(β̂(t,1) − β(2))− ⌊nt0⌋ − ⌊nt⌋
⌊nt⌋∗

(Θ̂Σ̂(t,t0) − I)(β(2) − β(1))︸ ︷︷ ︸
∆I

(t,1)

+X⊤
(t,1)ϵ(t,1)/⌊nt⌋

∗.

(2.11)

Secondly, for the case of t ∈ [t0, 1 − τ0], using a very similar analysis, we

can prove that:

β̂(0,t) + Θ̂λ1(t)κ̂1(t)−
(⌊nt0⌋
⌊nt⌋

β(1) +
⌊nt⌋ − ⌊nt0⌋

⌊nt⌋
β(2)

)
︸ ︷︷ ︸

β(0,t)

= X⊤
(0,t)ϵ(0,t)/⌊nt⌋+∆II

(0,t),

β̂(t,1) + Θ̂λ2(t)κ̂2(t)− β(2)︸︷︷︸
β(t,1)

= X⊤
(t,1)ϵ(t,1)/⌊nt⌋∗ +∆II

(t,1),

(2.12)

where the two terms ∆II
(0,t) are ∆II

(t,1) are defined as

∆II
(0,t) := −⌊nt⌋ − ⌊nt0⌋

⌊nt⌋
(
Θ̂Σ̂(t0,t) − I

)(
β(1) − β(2)

)
−
(
Θ̂Σ̂(0,t) − I

)(
β̂(0,t) − β(1)

)
,

∆II
(t,1) := −

(
Θ̂Σ̂(t,1) − I

)(
β̂(t,1) − β(2)

)
.

Combining the results in (2.8)-(2.12), for each t ∈ [τ0, 1 − τ0], we then

construct the de-biased lasso estimators β̆(0,t) = (β̆
(0,t)
1 , . . . , β̆

(0,t)
p )⊤ and

β̆(t,1) = (β̆
(t,1)
1 , . . . , β̆

(t,1)
p )⊤ as follows:

β̆(0,t) = β̂(0,t) + Θ̂X⊤
(0,t)

(
Y(0,t) −X(0,t)β̂

(0,t)
)
/⌊nt⌋,

β̆(t,1) = β̂(t,1) + Θ̂X⊤
(t,1)

(
Y(t,1) −X(t,1)β̂

(t,1)
)
/⌊nt⌋∗.

(2.13)
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2.1 New test statistic

The construction of our new test statistic comes from our important new

derivation (2.13). In particular, under some regularity conditions, the dif-

ference between β̆(0,t) and β̆(t,1) has the following decomposition:

√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
β̆(0,t)−β̆(t,1)

)
= δn(t)︸ ︷︷ ︸

Signal function

+
1√
n

⌊nt⌋∑
i=1

Θ̂Xiϵi︸ ︷︷ ︸
Random noise

+
√
n
⌊nt⌋
n

⌊nt⌋∗

n
(R(0,t) −R(t,1))︸ ︷︷ ︸

Random bias

,

(2.14)

where δn(t) is defined in (2.6), and R(0,t) and R(t,1) are the residuals:

R(0,t) = ∆I
(0,t)1{t ∈ [τ0, t0]}+∆II

(0,t)1{t ∈ [t0, 1− τ0]},

R(t,1) = ∆I
(t,1)1{t ∈ [τ0, t0]}+∆II

(t,1)1{t ∈ [t0, 1− τ0]}.

The above de-biased lasso-based process enjoys several advantages for

making change point inference. Firstly, under H0,G of no change points, it

is the combination of a partial sum-based process plus a random bias term.

The latter one can be shown to be negligible. Moreover, under H1,G, we

can see that the de-biased lasso-based process is an asymptotically unbiased

estimator for the signal function defined in (2.6), allowing us to make change

point detection and identification. The derivation of (2.14) is different from

the original de-biased lasso estimator in (2.2) and requires a fundamental

modification of Bickel et al. (2009)) to account for data heterogeneity. More

details can be found in the Appendix.

Motived by the above observation, for any given subgroup G ⊂ {1, . . . , p},
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2.2 Weighted variance estimation

a natural test statistic for the hypothesis (1.2) is defined as

T̃G = max
t∈[τ0,1−τ0]

max
j∈G

√
n
⌊nt⌋
n

(
1− ⌊nt⌋

n

)∣∣∣β̆(0,t)
j − β̆

(t,1)
j

∣∣∣.
For any given subgroup G, the proposed new statistic T̃G searches all possible

locations of time points. It is demonstrated that T̃G is powerful against

sparse alternatives with only a few entries in G having a change point, and

a large value of T̃G leads to a rejection of H0,G.

2.2 Weighted variance estimation

In Section 2.1, we introduced T̃G for the hypothesis (1.2). Considering

the variability of the design matrix X and the error term ϵ, the test statistic

T̃G is heterogeneous. Hence, we need to take its variance into account and

standardize it. In this paper, we adopt a weighted variance estimator.

Specifically, let Ω̂ = (ω̂i,j)
p
i,j = Θ̂Σ̂nΘ̂

⊤ with Σ̂n := X⊤X/n. For each

t ∈ [τ0, 1− τ0], denote

σ̂2
ϵ (t) =

1

n

(∥∥Y(0,t) −X(0,t)β̂
(0,t)

∥∥2

2
+
∥∥Y(t,1) −X(t,1)β̂

(t,1)
∥∥2

2

)
. (2.15)

Under H0,G of no change points in the model, we can prove that

max
τ0≤t≤1−τ0

max
1≤j≤p

|σ̂2
ϵ (t)ω̂j,j − σ2

ϵωj,j| = op(1).

Under H1,G, however, σ̂
2
ϵ (t) is not a consistent estimator for σ2

ϵ because of

the unknown change point t0. Furthermore, as discussed in Shao and Zhang
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2.2 Weighted variance estimation

(2010), an inappropriate variance estimator may lead to non-monotonic

power performance. In order to form a powerful test statistic, it is nec-

essary to construct consistent variance estimation for H0,G and H1,G. To

address this issue, we need to deal with the unknown change point first. In

particular, for a given subgroup G, define

HG(t) = max
j∈G

⌊nt⌋
n

(
1− ⌊nt⌋

n

)∣∣∣β̆(0,t)
j − β̆

(t,1)
j

∣∣∣, with t ∈ [τ0, 1− τ0].

By maximizing HG(t), we obtain the argmax-based change point estimator:

t̂0,G = argmax
t∈[τ0,1−τ0]

HG(t). (2.16)

Based on (2.16), let t̂0 = t̂0,G with G = {1, . . . , p}. We put t̂0 into σ̂2
ϵ (t) and

get a weighted variance estimator for σ2
ϵ as

σ̂2
ϵ =

1

n

(∥∥Y(0,t̂0)
−X(0,t̂0)

β̂(0,t̂0)
∥∥2

2
+
∥∥Y(t̂0,1)

−X(t̂0,1)
β̂(t̂0,1)

∥∥2

2

)
. (2.17)

As shown in our theoretical analysis, the new variance estimation in (2.17) is

consistent under both H0,G and H1,G. The proof is nontrivial since we need

to justify the consistency of t̂0,G for t0, which is known to be an important

but difficult task for high dimensional linear models (Lee et al. (2016)).

Using the new variance estimator in (2.17), for any given subgroup

G ⊂ {1, . . . , p}, our new test statistic for the hypothesis (1.2) is finally

defined as follows:

TG = max
t∈[τ0,1−τ0]

max
j∈G

√
n
⌊nt⌋
n

(
1− ⌊nt⌋

n

)∣∣∣ β̆(0,t)
j − β̆

(t,1)
j√

σ̂2
ϵ ω̂j,j

∣∣∣. (2.18)
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2.3 Multiplier bootstrap for approximating the null distribution

2.3 Multiplier bootstrap for approximating the null distribution

In Section 2.2, we have proposed the new test statistic TG for the hy-

pothesis (1.2). It is challenging to directly obtain its limiting null distri-

bution in high dimensions. Bootstrap has been widely used for making

statistical inference on high dimensional linear models since the seminal

work of Chernozhukov et al. (2013). For high dimensional linear models

with change points, however, existing bootstrap techniques are not applica-

ble and it is desirable to design a new method. To overcome this problem,

we investigate two types of multiplier bootstrap.

2.3.1 Bootstrap-I

Recall the decomposition in (2.14). Under H0,G, we have

√
n
⌊nt⌋
n

⌊nt⌋∗

n

(
β̆(0,t) − β̆(t,1)) = 1√

n

⌊nt⌋∑
i=1

Θ̂Xiϵi + (R(0,t) −R(t,1)).

It is shown that under H0,G, the residual-based process {R(0,t) −R(t,1), t ∈

[τ0, 1 − τ0]} is asymptotically negligible and the partial sum-based process

{n−1/2
∑⌊nt⌋

i=1 Θ̂Xiϵi, t ∈ [τ0, 1−τ0]} determines the limiting null distribution

of TG, which is known as the leading term. This motivates us to first consider

the following bootstrap method:

Step 1: For the b-th bootstrap, generate i.i.d. random variables ϵb1, . . . , ϵ
b
n

with ϵbi ∼ N(0, 1).
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2.3 Multiplier bootstrap for approximating the null distribution

Step 2: Calculate the testing statistic for the b-th bootstrap by

W b
G = max

t∈[τ0,1−τ0]
max
j∈G

√
n
⌊nt⌋
n

⌊nt⌋∗

n
ω̂
−1/2
j,j

∣∣∣ 1

⌊nt⌋

⌊nt⌋∑
i=1

Θ̂⊤
j Xiϵ

b
i−

1

⌊nt⌋∗
n∑

i=⌊nt⌋+1

Θ̂⊤
j Xiϵ

b
i

∣∣∣,
where Θ̂⊤

j is the j-th row of Θ̂.

Step 3: Repeat the above process for B times.

Step 4: Based on the bootstrap samples {W 1
G , . . . ,W

B
G }, calculate the

bootstrap sample-based critical value

ŵG,α = inf
{
t : (B + 1)−1

B∑
b=1

1{W b
G ≤ t|X,Y } ≥ 1− α

}
.

Step 5: Reject H0,G if and only if TG ≥ ŵG,1−α.

Note that the above bootstrap method essentially bootstraps the par-

tial sum-based process, which has been recently used for change point de-

tection of high dimensional mean vectors in Jirak (2015); Yu and Chen

(2021). As shown in our numerical studies, Bootstrap-I suffers from serious

size distortions. This phenomenon is due to large biases arising from the

residual-based process {R(0,t) − R(t,1), t ∈ [τ0, 1 − τ0]}, which can not be

ignored in finite sample performance although it is asymptotically negligi-

ble. Hence, for change point detection in high dimensional linear models,

substantial modifications are needed and it is desirable to consider a new

candidate bootstrap method. To overcome this problem, different from the

existing methods, we choose to bootstrap the entire de-biased lasso-based
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2.3 Multiplier bootstrap for approximating the null distribution

process as shown in the following Bootstrap-II.

2.3.2 Bootstrap-II

The key idea of this bootstrap procedure is to approximate the null

limiting distribution under both H0,G and H1,G. It proceeds as follows:

Step 1: Given σ̂2
ϵ in (2.17), for the b-th bootstrap, let ϵb1, . . . , ϵ

b
n be i.i.d.

random variables following N(0, σ̂2
ϵ ). Define the b-th bootstrap of response

vectors Y b = (Y b
1 , . . . , Y

b
n )

⊤:

Y b
i = X⊤

i β̂
(0,t̂0)1{1 ≤ i ≤ ⌊nt̂0⌋}+X⊤

i β̂
(t̂0,1)1{⌊nt̂0⌋ < i ≤ n}+ ϵbi , (2.19)

where β̂(0,t̂0) and β̂(t̂0,1) are the lasso estimators before and after t̂0.

Step 2: Denote Y b
(0,t) = (Y b

1 , . . . , Y
b
⌊nt⌋)

⊤, and Y b
(t,1) = (Y b

⌊nt⌋+1, . . . , Y
b
n )

⊤.

We then define the b-th bootstrap version of the de-biased lasso estima-

tors before and after ⌊nt⌋ as β̆b,(0,t) = (β̆
b,(0,t)
1 , . . . , β̆

b,(0,t)
p )⊤ and β̆b,(t,1) =

(β̆
b,(t,1)
1 , . . . , β̆

b,(t,1)
p )⊤, where

β̆b,(0,t) := β̂b,(0,t) + Θ̂X⊤
(0,t)

(
Y b

(0,t) −X(0,t)β̂
b,(0,t)

)
/⌊nt⌋,

β̆b,(t,1) := β̂b,(t,1) + Θ̂X⊤
(t,1)

(
Y b

(t,1) −X(t,1)β̂
b,(t,1)

)
/⌊nt⌋∗,

(2.20)

and β̂b,(0,t) and β̂b,(t,1) are the lasso estimators before and after t using the

bootstrap samples {Y b
(0,t),X(0,t)} and {Y b

(t,1),X(t,1)}.
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2.3 Multiplier bootstrap for approximating the null distribution

Step 3: Define the bootstrap sample-based signal function δ̂(t) = (δ̂1(t), . . . , δ̂p(t))
⊤:

δ̂(t) =
n− ⌊nt̂0⌋
n− ⌊nt⌋

(
β̂(0,t̂0)−β̂(t̂0,1)

)
1{t ∈ [τ0, t̂0]}+

⌊nt̂0⌋
⌊nt⌋

(
β̂(0,t̂0)−β̂(t̂0,1)

)
1{t ∈ [t̂0, 1−τ0]}.

Step 4: Calculate the b-th bootstrap version for the test statistic TG by

T b
G = max

t∈[τ0,1−τ0]
max
j∈G

√
n
⌊nt⌋
n

(
1− ⌊nt⌋

n

)∣∣∣ β̆b,(0,t)
j − β̆

b,(t,1)
j − δ̂j(t)√
σ̂2
ϵ ω̂j,j

∣∣∣. (2.21)

Step 5: Repeat the above procedures (2.19)-(2.21) for B times and obtain

the bootstrap samples {T 1
G , . . . , T

B
G }. Let cG,α := inf{t : P(TG ≤ t) ≥

1− α} be the theoretical critical value of TG. Using the bootstrap samples

{T 1
G , . . . , T

B
G }, we estimate cG,α by

ĉG,α = inf
{
t : (B + 1)−1

B∑
b=1

1{T b
G ≤ t|X,Y } ≥ 1− α

}
. (2.22)

Step 6: Define the new test for the hypothesis (1.2) as follows:

ΦG,α = 1{TG ≥ ĉG,α}. (2.23)

Given a significance level α ∈ (0, 1) and a prespecified subgroup G, for the

hypothesis (1.2), we reject H0,G if ΦG,α = 1.

It is shown in theory that the Bootsrap-II-based test statistic T b
G approx-

imates the limiting null distribution of TG. More importantly, by bootstrap-

ping the whole de-biased lasso-based process, Bootstrap-II enjoys better test

size performance than Bootstrap-I under various candidate subgroups. This

is supported by our extensive numerical studies in Section 4.
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3. Theoretical properties

In this section, we examine some theoretical properties of our proposed

method including the size, power and the change point estimation results.

3.1 Basic assumptions

To save space, we provide brief descriptions of our assumptions below.

More details on basic assumptions for making change point inference on

high dimensional linear models can be found in the Supplementary Mate-

rials. Assumptions (A.1) – (A.3) impose some regular conditions on the

design matrix as well as the error terms. Assumption (A.4) contains ba-

sic requirements on model parameters. Assumption (A.5) is a technical

condition on the regularity parameters in (2.3) and (2.7).

3.2 Main results

We derive some theoretical results of our proposed new test. In Section

3.2.1, we consider the control of Type I error. In Section 3.2.2, we examine

the power performance as well as the accuracy of change point estimation.
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3.2 Main results

3.2.1 The validity of test size

Before giving the test size results, we first consider the variance esti-

mation. Theorem 1 shows that the pooled weighted variance estimator is

uniformly consistent under the null hypothesis. It is crucial for deriving the

Gaussian approximation results as in Theorem 2.

Theorem 1. Suppose Assumptions (A.1) – (A.5) hold. Under H0,G, for

the variance estimator, with probability at least 1− C1(np)
−C2, we have

max
1≤j,k≤p

|σ̂2
ϵ ω̂j,k − σ2

ϵωj,k| ≤ C3

(√ log(n)

n
+max

j
λ(j)

√
sj
)
,

where C1, . . . , C3 are universal positive constants not depending on n or p.

Based on Theorem 1 as well as other regularity conditions, the following

Theorem 2 justifies the validity of our bootstrap procedure.

Theorem 2. Suppose Assumptions (A.1) – (A.5) hold. Under H0,G, for

any given subgroup G ⊂ {1, . . . , p}, we have

sup
z∈(0,∞)

∣∣P(TG ≤ z)− P(T b
G ≤ z|{X,Y })

∣∣ = op(1), as n, p → ∞.

Theorem 2 shows that we can uniformly approximate the distribution

of TG using that of T b
G. As a corollary, the following Corollary 1 shows that

our proposed new test can control the Type I error asymptotically for any

given pre-specified significance level α.
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3.2 Main results

Corollary 1. Assume Assumptions (A.1)–(A.5) hold. Under H0,G, for any

given subgroup G ⊂ {1, . . . , p}, we have P(ΦG,α = 1) → α, as n, p,B → ∞.

3.2.2 Analysis under H1,G

After analyzing the theoretical results under the null hypothesis, we

next consider the performance under H1,G. To this end, some additional

assumptions are needed.

Assumption (A.6). Let δ = β(1) − β(2). For the signal jump, we require

there exists a constant c∗ ∈ [0,∞) such that limn,p→∞ s∥δ∥∞ → c∗.

Note that Assumption (A.6) is a signal strength requirement for iden-

tifying the change point location t0 with high accuracy. It allows weak

signals that can scale to zero as (n, p) → ∞. With the additional assump-

tion as well as those of (A.1) – (A.5), the following Theorem 3 provides a

non-asymptotic estimation error bound of t̂0,G for t0.

Theorem 3. Suppose Assumptions (A.1) - (A.6) hold. Assume addition-

ally ∥δ∥G,∞ ≫
√

log(|G|n)/n holds. For any given subgroup G ⊂ {1, . . . , p},

under H1,G, with probability at least 1− C1(np)
−C2, we have

∣∣t̂0,G − t0
∣∣ ≤ C∗ log(|G|n)

n∥δ∥2G,∞
, (3.1)

where C∗ is a universal positive constant not depending on n or p.
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3.2 Main results

Theorem 3 shows that our subgroup-based change point estimator is

asymptotically consistent, which allows the group size |G| to grow with the

sample size n as long as ∥δ∥G,∞ ≫
√
log(|G|n)/n holds.

Remark 2. Note that Jirak (2015); Yu and Chen (2021) considered the

change point estimation for high dimensional mean vectors. They obtained

the change point estimators by taking “argmax” of the corresponding par-

tial sum processes with an estimation error rate of Op

(
log(p)/(n∥∆∥2min)

)
,

where ∆ = (∆1, . . . ,∆p)
⊤ is the signal jump of mean vectors before and

after the change point and ∥∆∥min is the minimum signal jump for the co-

ordinates with a change point. Different from Jirak (2015); Yu and Chen

(2021), we adopt a different proof technique and derive an estimation error

bound of Op

(
log(p)/(n∥∆∥2∞)

)
. Considering ∥∆∥∞ can be much larger

than ∥∆∥min, our result is sharper than Jirak (2015); Yu and Chen (2021).

More proof details can be found in the Appendix.

After analyzing the change point identification, we next consider the

change point detection. Note that for the change point problem, variance es-

timation under the alternative is a difficult but important task. As pointed

out in Shao and Zhang (2010), due to the unknown change point, any im-

proper estimation may lead to non-monotonic power performance. This

distinguishes the change point problem substantially from one-sample or
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3.2 Main results

two-sample tests where homogenous data are used to construct consistent

variance estimation.

Theorem 4 shows that the pooled weighted variance estimation is uni-

formly consistent under H1,G. This guarantees that our new testing method

has reasonable power performance.

Theorem 4. Suppose Assumptions (A.1) - (A.6) hold. Then, for the

weighted variance estimation, under H1,G, we have

max
1≤j,k≤p

|σ̂2
ϵ ω̂j,k − σ2

ϵωj,k| = op(1), as n, p → ∞. (3.2)

From the proof of Theorem 4, some interesting observations can be

found. On one hand, if the signal strength is too weak such that ∥δ∥G,∞ =

O(
√

log(pn)/n) holds, then the pooled weighted variance estimator σ̂2
ϵ is a

consistent estimator for σ2
ϵ even though we can not guarantee a consistent

change point estimator in this case. On the other hand, if the signal strength

is big enough such that ∥δ∥G,∞ ≫
√
log(pn)/n holds, then a consistent

change point estimator t̂0,G is needed to guarantee (3.2) holds. These are

insightful findings for variance estimation in change point analysis, which

is different from the i.i.d. case.

Lastly, we discuss the power properties. To this end, we need some

additional notations. Recall Π = {j : β
(1)
j ̸= β

(2)
j } as the set of coordinates
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3.2 Main results

having a change point. Define the oracle signal to noise ratio vector D =

(D1, . . . , Dp)
⊤ with

Dj :=


0, for j ∈ Πc∣∣∣t0(1− t0)(β

(2)
j − β

(1)
j )

(σ2
ϵωj,j)1/2

∣∣∣, for j ∈ Π.

(3.3)

With the above notations and some regularity conditions, the following

Theorem 5 shows that we can reject the null hypothesis of no change points

with overwhelming probability.

Theorem 5. Suppose Assumptions (A.1) – (A.6) hold. Let ϵn = o(1). For

any given subgroup G ⊂ {1, . . . , p}, if D satisfies

√
n
∥∥D∥∥

G,∞ ≥ C0

1− ϵn

(√
2 log(|G|n) +

√
2 log(α−1)

)
, (3.4)

under H1,G, we have P(ΦG,α = 1) → 1, as n, p,B → ∞, where C0 is a large

enough universal positive constant not depending on n or p.

Theorem 5 demonstrates that with probability tending to one, our pro-

posed new test can detect the existence of a change point for any given

subgroup as long as the corresponding signal to noise ratio satisfies (3.4).

Combining (3.3) and (3.4), we note that with a larger signal jump, a smaller

noise level, and a closer change point location to the middle of data obser-

vations, it is more likely to trigger a rejection of the null hypothesis.
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Lastly, we would like to point out that the requirements for identifying

and detecting a change point are different. More specifically, from Theorem

3, to correctly identify the location of a change point with desirable accu-

racy, the signal strength should at least satisfy ∥δ∥G,∞ ≫
√
log(|G|n)/n.

In contrast, Theorem 5 shows that it is sufficient to detect a change point

if ∥D
∥∥
G,∞ ≥ C

√
log(|G|n)/n holds. Hence, we need more stringent condi-

tions for locating a change point than detecting its existence.

4. Numerical studies

We examine the numerical performance of our proposed method and

compare it with several existing state-of-art techniques.

We first consider single change point detection. For the design matrix

X, we generate Xi (i.i.d.) from N(0,Σ), where the following two types of

covariance structures are investigated: Σ = Ip×p (Model 1) and Σ = Σ∗

with Σ∗ = (σ∗)pi,j=1, where σ∗
i,j = 0.5|i−j| for 1 ≤ i, j ≤ p (Model 2).

To show the bootstrap performance, for each model, the error terms

(ϵi)
n
i=1 are i.i.d. generated from standard normal distributions, standardized

Gamma(4, 1) distributions as well as Student’s t5 distributions.

For the regression coefficient β(1), for each replication, we generate s

non-zero covariates randomly selected from S = {1, . . . , 50}. The corre-
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4.1 Empirical sizes

sponding selected coefficients are i.i.d. from U(0, 2), and the remaining p−s

covariates are 0’s. Note that we generate regression coefficients out of S,

which is denoted as the active set. UnderH0,G, we set β
(2) = β(1). Through-

out the simulations, we consider various combinations of the sample sizes

n, data dimensions p, and overall sparsities s by setting n ∈ {200, 300},

p ∈ {100, 200, 300, 400} and s ∈ {5, 10}. The number of bootstrap replica-

tions is B = 100. Without additional specifications, all numerical results

are based on 2000 replications.

4.1 Empirical sizes

We investigate the empirical sizes. We set the significance levels α =

1%, 5%. Furthermore, three different types of subgroups are investigated:

G = S, G = Sc, and G = S ∪ Sc = {1, . . . , p}. To evaluate the numerical

performance, in addition to our proposed methods, we consider four exist-

ing well-known techniques for change point detection of high dimensional

linear models: the high dimensional lasso-based method in Lee et al. (2016)

(Lee2016), the sparse group lasso-based method in Zhang et al. (2015)

(SGL), the binary segmentation-based method in Leonardi and Bühlmann

(2016) (L&B), and the Variance Projected Wild Binary Segmentation in

Wang et al. (2021) (VPWBS).
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4.1 Empirical sizes

It is worth noting that under H0,G with β(1) = β(2), SGL and L&B can

potentially select the true homogeneous model by identifying the change

points at {1, n}. Hence, we record their rates of false selections as their

“empirical sizes”. As for Lee2016, their main purpose is to simultaneously

estimate the potential single change point as well as the regression coeffi-

cients. Therefore, we do not report their empirical sizes and powers here.

Table 1 summarizes the empirical sizes for Models 1 and 2 with different

combinations of (n, p, s) under N(0, 1) distributions. We can see that both

SGL and L&B are only applicable for the case of the overall subset with

G = {1, . . . , p}. In those cases, SGL suffers from serious size distortions

with too many false selections. One reasonable explanation is that SGL

builds their algorithms on the sparse group lasso which tends to overesti-

mate the number of change points. Moreover, we observe that L&B seems

to be conservative although it can select the homogenous model with no

false selections. As for our proposed methods, the empirical sizes of Boot-

I are out of control (especially for the active set S). This suggests that

for change point detection of high dimensional linear models, the residual

term of the de-biased lasso-based process can not be ignored, even though

it is asymptotically negligible in theory. As compared to Boot-I, Boot-II

benefits from bootstrapping the whole de-biased lasso-based process. In
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4.1 Empirical sizes

Table 1: Empirical sizes for Models 1 and 2. The errors are generated from

N(0, 1). The results are based on 2000 replications.

Empirical sizes (%) with (n, s) = (200, 5)

Model G p Boot-I (α = 1%) Boot-II (α = 1%) Boot-I (α = 5%) Boot-II (α = 5%) SGL L&B

Σ = I S 200 7.61 1.70 18.52 3.86 NA NA

400 10.70 1.80 23.05 5.30 NA NA

Sc 200 8.23 1.44 15.43 4.06 NA NA

400 11.93 0.93 21.60 3.40 NA NA

S ∪ Sc 200 7.41 1.03 14.20 2.93 38.89 0.00

400 12.55 1.39 27.37 3.86 46.67 0.00

Σ = Σ∗ S 200 7.61 1.49 14.40 4.73 NA NA

400 8.64 1.65 16.26 4.68 NA NA

Sc 200 3.50 0.82 12.14 3.09 NA NA

400 5.76 0.67 12.76 3.03 NA NA

S ∪ Sc 200 4.73 0.82 13.37 3.29 77.78 0.00

400 7.82 1.23 17.08 3.19 80.00 0.00

Empirical sizes (%) with (n, s) = (300, 10)

Model G p Boot-I (α = 1%) Boot-II (α = 1%) Boot-I (α = 5%) Boot-II (α = 5%) SGL L&B

Σ = I S 200 12.76 1.83 23.66 3.25 NA NA

400 19.55 1.88 33.74 7.35 NA NA

Sc 200 8.33 1.02 16.67 3.25 NA NA

400 13.79 1.63 26.95 3.06 NA NA

S ∪ Sc 200 11.52 0.82 22.43 3.27 56.67 0.00

400 17.49 2.45 32.30 5.71 62.30 0.00

Σ = Σ∗ S 200 10.91 0.62 22.63 2.67 NA NA

400 17.07 2.26 28.86 5.56 NA NA

Sc 200 4.32 0.41 11.32 1.65 NA NA

400 3.66 0.81 10.77 2.44 NA NA

S ∪ Sc 200 6.50 1.85 16.06 4.32 56.67 0.00

400 7.06 0.61 17.57 3.25 55.30 0.00
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most cases, the empirical sizes for Boot-II are close to the nominal level

across various dimensions and subgroups. Interestingly, it shows that the

empirical performance of Boot-II is affected by the candidate subgroups.

More specifically, empirical sizes for the active set S are sometimes larger

than the nominal level and the size performance of the non-active set Sc

performs the best among all candidate subgroups. Note that similar find-

ings are also observed in constructing simultaneous confidence intervals in

Zhang and Cheng (2017) for the given subgroup G. In addition, we can

see that Boot-II can still have satisfactory size performance as the non-zero

elements increase slowly from s = 5 to s = 10.

In the supplemental materials, we report the size performance under

standardized Gamma(4, 1) and Student’s t5 distributions in Tables S5.1

and S5.2. In both cases, our proposed method can control the size under

the nominal level. This suggests that the bootstrap null distribution is

correctly calibrated even for non-normal underlying errors.

4.2 Empirical powers

We next analyze the empirical powers. Denote the signal jump

δ = C
√
log(p)/n×

(
23, 22, 21, 20, 2−1

)⊤
.
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4.2 Empirical powers

Table 2: Empirical powers (%) under Model 1. The numerical results are

based on 2000 replications.

Empirical powers (%) with δ = 0.5
√

log(p)/n× (23, 22, 21, 20, 2−1).

Change point at k∗ = 0.5n Change point at k∗ = 0.3n

Model G p Boot-II L&B Boot-II L&B

Σ = I S 200 58.33 NA 36.46 NA

400 64.93 NA 42.71 NA

Sc 200 2.08 NA 4.17 NA

400 3.47 NA 3.82 NA

S ∪ Sc 200 43.75 0.00 29.17 0.00

400 40.97 0.00 27.17 0.00

Empirical powers (%) with δ =
√

log(p)/n× (23, 22, 21, 20, 2−1).

Change point at k∗ = 0.5n Change point at k∗ = 0.3n

Model G p Boot-II L&B Boot-II L&B

Σ = I S 200 100.00 NA 99.38 NA

400 99.59 NA 99.38 NA

Sc 1 200 3.50 NA 3.91 NA

400 3.09 NA 2.06 NA

S ∪ Sc 200 100.00 36.87 99.18 29.29

400 99.38 38.38 99.38 28.28

Empirical powers (%) with δ = 2
√

log(p)/n× (23, 22, 21, 20, 2−1).

Change point at k∗ = 0.5n Change point at k∗ = 0.3n

Model G p Boot-II L&B Boot-II L&B

Σ = I S 200 100.00 NA 100.00 NA

400 100.00 NA 100.00 NA

Sc 200 2.47 NA 1.65 NA

400 3.50 NA 2.88 NA

S ∪ Sc 200 100.00 99.49 100.00 98.48

400 100.00 100.00 100.00 97.98
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We set n = 200. We first generate β(1) with s = 5 non-zero elements

following U(0, 2) distributions out of S = {1, . . . , 50}. Then, we add δ with

C ∈ {0.5, 1, 2} on the corresponding 5 non-zero covariates of β(1) to generate

β(2). Note that in this setting, β(1) and β(2) have a common support.

Table 2 shows the power results with n = 200, where various data di-

mensions, change point locations, candidate subgroups, and signal strength

are considered. Note that we do not report the results of SGL and Boot-I

because of their serious size distortions. According to Table 2, we see that

our proposed method can detect a change point with a very high proba-

bility across various data dimensions when the candidate subgroup has a

change point (G = S and G = S ∪ Sc). Interestingly, it is shown that the

powers in Sc are close to the nominal level since the coefficients in Sc are

zeros before and after the change point. As for L&B, we see that it can

successfully detect a change point when the signal jump is relatively strong

(C = 2). However, L&B is not very sensitive to weak signals with C = 0.5

and C = 1. The above analysis suggests that our proposed method is

very powerful to sparse alternatives and is more efficient and flexible than

the existing methods for change point detection of high dimensional lin-

ear models. Moreover, Table S5.3 in the supplemental materials shows the

power performance similar to Table 2 for Model 2 with banded covariance
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structures.

In addition to single change point detection, we also combine the pro-

posed new testing method with the binary segmentation technique for de-

tecting multiple change points. The detailed algorithms and numerical per-

formance are provided in the supplementary materials. The results further

demonstrate the superior performance of our method over its competitors.

5. Conclusions

In this paper, we propose a new method for change point inference in

the context of high dimensional linear models. For any given subgroup

G ⊂ {1, . . . , p}, a L∞-norm-based test statistic TG is constructed for test-

ing the homogeneity of regression coefficients across the observations. To

approximate its limiting null distribution, a novel multiplier bootstrap pro-

cedure is introduced. Our new method is powerful against sparse alterna-

tives with only a few entries in G having a change point, and allows the

group size |G| to grow exponentially with the sample size n. As for the

change point identification, a new change point estimator is obtained by

taking “argmax” of the L∞-aggregated process HG(t). Theoretically, the

change point estimator is shown to be consistent, allowing the overall spar-

sity s of regression coefficients and the group size |G| to grow simultaneously
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with the sample size n. In addition to single change point detection, we

further combine our proposed method with the binary segmentation-based

technique for detecting and identifying multiple change points. Our new

testing method is relatively easy to implement and is justified via extensive

numerical studies.
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