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Abstract:

The power prior is a popular class of informative priors for incorporating information from historical

data. It involves raising the likelihood for the historical data to a power, which acts as discounting

parameter. When the discounting parameter is modelled as random, the normalized power prior is

recommended. In this work, we prove that the marginal posterior for the discounting parameter for

generalized linear models converges to a point mass at zero if there is any discrepancy between the

historical and current data, and that it does not converge to a point mass at one when they are fully

compatible. In addition, we explore the construction of optimal priors for the discounting parameter

in a normalized power prior. In particular, we are interested in achieving the dual objectives of

encouraging borrowing when the historical and current data are compatible and limiting borrowing

when they are in conflict. We propose intuitive procedures for eliciting the shape parameters of a beta

prior for the discounting parameter based on two minimization criteria, the Kullback-Leibler divergence

and the mean squared error. Based on the proposed criteria, the optimal priors derived are often quite

different from commonly used priors such as the uniform prior.
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1. Introduction

The power prior (Ibrahim and Chen, 2000) is a popular class of informative priors that allow the

incorporation of historical data through a tempering of the likelihood. It is constructed by raising

the historical data likelihood to a power a0, where 0 ≤ a0 ≤ 1. The discounting parameter a0 can

be fixed or modelled as random. When it is modelled as random and estimated jointly with other

parameters of interest, the normalized power prior (NPP) (Duan et al., 2006) is recommended as

it appropriately accounts for the normalizing function necessary for forming the correct joint prior

distribution (Neuenschwander et al., 2009). Many extensions of the power prior and the normalized

power prior have been developed. Banbeta et al. (2019) develop the dependent and robust depen-

dent normalized power priors which allow dependent discounting parameters for multiple historical

datasets. When the historical data model contains only a subset of covariates currently of interest

and the historical information may not be equally informative for all parameters in the current

analysis, Boonstra and Barbaro (2020) propose an extension of the power prior that adaptively

combines a prior based upon the historical information with a variance-reducing prior that shrinks

parameter values toward zero.

The power prior and the normalized power prior have been shown to have several desirable

properties. Ibrahim et al. (2003) show that the power prior defines an optimal class of priors in

the sense that it minimizes a convex combination of Kullback-Leibler (KL) divergences between a
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distribution based on no incorporation of historical data and a distribution based on completely

pooling the historical and current data. Ye et al. (2022) prove that the normalized power prior

minimizes the expected weighted KL divergence similar to the one in Ibrahim et al. (2003) with

respect to the marginal distribution of the discounting parameter. They also prove that if the prior

on a0 is non-decreasing and if the difference between the sufficient statistics of the historical and

current data is negligible from a practical standpoint, the marginal posterior mode of a0 is close

to one. Carvalho and Ibrahim (2021) show that the normalized power prior is always well-defined

when the initial prior is proper, and that, viewed as a function of the discounting parameter,

the normalizing function is a smooth and strictly convex function. Neelon and O’Malley (2010)

show through simulations that for large datasets, the normalized power prior may result in more

downweighting of the historical data than desired. Han et al. (2022) point out that the normalizing

function might be infinite with improper initial priors on the parameters of interest for a0 values

close to zero, in which case the admissible set of the discounting parameter excludes values close to

zero. Pawel et al. (2023) derive the marginal posterior distribution of a0 when a beta prior is used

for a0 for i.i.d. normal and binomial models, and show that, under these model assumptions, the

marginal posterior of a0 does not converge to a point mass at one when the sample size becomes

arbitrarily large. In this paper, we provide a formal proof of the limiting behavior of the marginal

posterior of a0 for generalized linear models (GLMs) when the historical and current datasets are

fully compatible and when there is discrepancy.

Many empirical Bayes-type approaches have been developed to adaptively determine the dis-
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counting parameter. For example, Gravestock and Held (Gravestock et al., 2017; Gravestock and

Held, 2019) propose to set a0 to the value that maximizes the marginal likelihood. Liu (2018) pro-

poses choosing a0 based on the p-value for testing the compatibility of the current and historical

data. Bennett et al. (2021) propose using an equivalence probability weight and a weight based on

tail area probabilities to assess the degree of agreement between the historical and current control

data for cases with binary outcomes. Pan et al. (2017) propose the calibrated power prior, where

a0 is defined as a function of a congruence measure between the historical and current data. The

function which links a0 and the congruence measure is prespecified and calibrated through simu-

lation. While these empirical Bayes approaches shed light on the choice of a0, there has not been

any fully Bayesian approach based on an optimal prior on a0.

In this work, we first explore the asymptotic properties of the normalized power prior when the

historical and current data are fully compatible (i.e., the sufficient statistics of the two datasets

are equal) or incompatible (i.e., the sufficient statistics of the two datasets have some non-zero

difference). We prove that for GLMs utilizing a normalized power prior, the marginal posterior

distribution of a0 converges to a point mass at zero if there is any discrepancy between the historical

and current data. When the historical and current data are fully compatible, the asymptotic

distribution of the marginal posterior of a0 is derived for GLMs; we note that it does not concentrate

around one. However, we prove an interesting finding that, for an i.i.d. normal model with finite

samples, the marginal posterior of a0 always has more mass around one when the datasets are fully

compatible, compared to the case where there is any discrepancy. Secondly, we propose a novel fully
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Bayesian approach to elicit the shape parameters of the beta prior on a0 based on two optimality

criteria, Kullback-Leibler (KL) divergence and mean squared error (MSE). For the first criterion, we

propose as optimal the beta prior whose shape parameters result in a minimized weighted average of

KL divergences between the marginal posterior for a0 and user-specified target distributions based

on hypothetical scenarios where there is no discrepancy and where there is a maximum tolerable

discrepancy. This class of priors on a0 based on the KL criterion is optimal in the sense that it

is the best possible beta prior at balancing the dual objectives of encouraging borrowing when

the historical and current data are compatible and limiting borrowing when they are in conflict.

For the second criterion, we propose as optimal the beta prior whose shape parameters result in a

minimized weighted average of the MSEs based on the posterior mean of the parameter of interest

when its hypothetical true value is equal to its estimate using the historical data, or when it differs

from its estimate by the maximum tolerable amount. We study the properties of the proposed

approaches via simulations for the i.i.d. normal and Bernoulli cases as well as for the normal

linear model. Two real-world case studies of clinical trials with binary outcomes and covariates

demonstrate the performance of the optimal priors compared to conventionally used priors on a0,

such as a uniform prior.

2. Asymptotic Properties of the Normalized Power Prior

LetD denote the current data andD0 denote the historical data. Let θ denote the model parameters

and L(θ|D) denote a general likelihood function. The power prior (Ibrahim and Chen, 2000) is
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2.1 Exponential Family

formulated as

π(θ|D0, a0) ∝ L(θ|D0)a0π0(θ),

where 0 ≤ a0 ≤ 1 is the discounting parameter which discounts the historical data likelihood, and

π0(θ) is the initial prior for θ. The discounting parameter a0 can be fixed or modelled as random.

Modelling a0 as random allows researchers to account for uncertainty when discounting historical

data and to adaptively learn the appropriate level of borrowing. Duan et al. (2006) propose the

normalized power prior, given by

π(θ, a0|D0) = π(θ|D0, a0)π(a0) =
L(θ|D0)a0π0(θ)

c(a0)
π(a0), (2.1)

where c(a0) =
∫
L(θ|D0)a0π0(θ)dθ is the normalizing function. The normalized power prior is thus

composed of a conditional prior for θ given a0 and a marginal prior for a0.

Ideally, the posterior distribution of a0 with the normalized power prior would asymptotically

concentrate around zero when the historical and current data are in conflict, and around one when

they are compatible. In this section, we study the asymptotic properties of the normalized power

prior for the exponential family of distributions as well as GLMs. Specifically, we are interested

in exploring the asymptotic behaviour of the posterior distribution of a0 when the historical and

current data are incompatible and when they are compatible, respectively.

2.1 Exponential Family

First, we study the asymptotic properties of the normalized power prior for the exponential family

of distributions. The density of a random variable Y in the one-parameter exponential family has
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2.1 Exponential Family

the form

p(y|θ) = q(y) exp (yθ − b(θ)) , (2.2)

where θ is the canonical parameter and q(·) and b(·) are known functions. Suppose D = (y1, . . . , yn)

is a sample of n i.i.d. observations from an exponential family distribution in the form of (2.2).

The likelihood is then given by

L(θ|D) = Q(D) exp

(
n∑
i=1

yiθ − nb(θ)

)
,

where Q(D) =
∏n
i=1 q(yi). Suppose D0 = (y01, . . . , y0n0

) is a sample of n0 i.i.d. observations from

the same exponential family. The likelihood for the historical data raised to the power a0 is

[L(θ|D0)]a0 = Q(D0)a0 exp

(
a0

[
n0∑
i=1

y0iθ − n0b(θ)

])
,

where Q(D0) =
∏n0

i=1 q(y0i). Using the normalized power prior defined in (2.1), the joint posterior

of θ and a0 is given by

π(θ, a0|D,D0) ∝ L(θ|D)π(θ, a0|D0) = L(θ|D)
L(θ|D0)a0π0(θ)

c(a0)
π(a0).

The marginal posterior of a0 is given by

π(a0|D,D0) =

∫
π(θ, a0|D,D0)dθ ∝

∫
L(θ|D)

L(θ|D0)a0π0(θ)

c(a0)
π(a0)dθ. (2.3)

With these calculations in place, the question now arises as to what prior should be given to a0.

One commonly used class of priors on a0 is the beta distribution (Ibrahim and Chen, 2000). Let
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2.1 Exponential Family

α0 and β0 denote the shape parameters of the beta distribution. We first prove that the marginal

posterior of a0 (2.3) with π(a0) = beta(α0, β0) converges to a point mass at zero for a fixed, non-zero

discrepancy between ȳ and ȳ0.

Theorem 1. Suppose y1, . . . , yn and y01, . . . , yn0
are independent observations from the same ex-

ponential family distribution (2.2). Let ȳ = 1
n

∑n
i=1 yi and ȳ0 = 1

n0

∑n0

i=1 y0i. Suppose also

that the difference in the estimates of the canonical parameter θ is fixed and equal to δ, i.e.,

|ḃ−1(ȳ)− ḃ−1(ȳ0)| = δ, and n0

n = r, where δ > 0 is finite and r > 0 is a constant, and ḃ(·) = ∂θb(·).

Then, the marginal posterior of a0 using the normalized power prior (2.3) with a beta(α0, β0) prior

on a0, where α > 0 and β > 0, converges to a point mass at 0. That is, lim
n→∞

∫ ε
0
π(a0|D,D0,α0,β0)da0∫ 1

0
π(a0|D,D0,α0,β0)da0

= 1

for any ε > 0.

Proof. See Supplemental Materials S1.2.

In Theorem 1, we fix the ratio of n0 to n, denoted as r, and let n go to infinity. This is because if

n0 is fixed while n is allowed to go to infinity, then the historical likelihood in the normalized power

prior becomes irrelevant for inference on θ, regardless of the prior on a0. Therefore, n0 must go to

infinity as well. Theorem 1 asserts that the normalized power prior is sensitive to any discrepancy

between the sufficient statistics in large samples, as the mass of the marginal distribution of a0

will concentrate near zero as the sample size increases for any fixed difference δ. Figure 2 in

Supplemental Materials S2 shows that the marginal posterior of a0 converges to a point mass at

zero rather quickly as the sample size grows when there is discrepancy.
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2.1 Exponential Family

The natural question to then ask is whether Theorem 1 has a sort of converse in that the

posterior should concentrate around one under compatibility. We derive the asymptotic marginal

posterior distribution of a0 when ȳ = ȳ0 and show that it does not converge to a point mass at one.

Corollary 1. Suppose y1, . . . , yn and y01, . . . , yn0
are independent observations from the same ex-

ponential family distribution (2.2). Let ȳ = 1
n

∑n
i=1 yi and ȳ0 = 1

n0

∑n0

i=1 y0i. Suppose ȳ = ȳ0 and

n0

n = r where r > 0 is a constant. The marginal posterior of a0 using the normalized power prior,

as specified in (2.3), converges to

π̃(a0|D,D0) =

√
ra0

ra0+1π(a0)∫ 1
0

√
ra0
ra0+1π(a0)da0

as n→∞.

Proof. See Supplemental Materials S1.3.

Corollary 1 shows that the normalized power prior fails to fully utilize the historical data when

the means of the historical data and the current data are equal for a generic, non-degenerate prior

on a0. It is worth noting that the adjustment to the prior
√

ra0

ra0+1 is maximized at a0 = 1. If π(a0)

is chosen to be concentrated near one, then the marginal posterior of a0 may be concentrated near

one.

We recognize that, in reality, ȳ = ȳ0 will occur with probability zero. However, the point of this

theorem is to show that even in the most extreme case where we have identical data, the marginal

posterior of a0 with the normalized power prior does not concentrate around one. Relaxing the

equality will lead to the same conclusion. In fact, Theorem 1 indicates that when the difference
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2.2 Generalized Linear Models

between ȳ and ȳ0 is fixed at some δ 6= 0, the posterior of a0 asymptotically converges to a point

mass at zero.

Even though the marginal posterior of a0 does not concentrate under one when ȳ = ȳ0, we

find that for the i.i.d. normal model, the cumulative density function when ȳ = ȳ0 is dominated

by every other cumulative density function, as demonstrated by the following theorem. This is

a novel result which establishes a desirable borrowing property of the normalized power prior for

i.i.d. normal data for finite samples.

Theorem 2. Suppose y1, . . . , yn ∼ N(θ, σ2) and y01, . . . , yn0
∼ N(θ, σ2

0), where σ2, σ2
0, n and n0

are fixed. Let ȳ = 1
n

∑n
i=1 yi and ȳ0 = 1

n0

∑n0

i=1 y0i. Let |ȳ − ȳ0| = d. Let Fd(a0) denote cumulative

density function of the marginal posterior of a0 using the normalized power prior in (2.3), and let

wd(a0) = Fd(a0)− F0(a0). The function wd(a0) > 0 for all d > 0 and 0 < a0 < 1.

Proof. See Supplemental Materials S1.4.

Theorem 2 shows that for i.i.d. normal data, for any fixed sample sizes, 1−F0(a0) will always be

greater than 1−Fd(a0) for any d > 0. This means the posterior of a0 always has more mass around

one when the datasets are fully compatible, compared to the case where there is any discrepancy,

which is a desirable property.

2.2 Generalized Linear Models

The ability to deal with non i.i.d. data and incorporate covariates is crucial to the applicability of

the normalized power prior; we thus now extend these results to generalized linear models (GLMs).
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2.2 Generalized Linear Models

We first define the GLM with a canonical link and fixed dispersion parameter. Let yi denote the

response variable and xi denote a p-dimensional vector of covariates for subject i = 1, . . . , n. Let

β = (β1, . . . , βp)
′ be a p-dimensional vector of regression coefficients. The GLM with a canonical

link is given by

p(yi|xi, β, φ) = q(yi, φ) exp{φ−1[yix
′
iβ − b(x′iβ)]}. (2.4)

Without loss of generality, we assume φ = 1. Let D = {(yi, xi), i = 1, . . . , n} ≡ (n, Yn×1, Xn×p)

where Y = (y1, . . . , yn)′ and X = (x1, . . . , xn)′. Assuming the yi’s are (conditionally) independent,

the likelihood is given by

L(β|D) = Q(Y ) exp

(
n∑
i=1

yix
′
iβ −

n∑
i=1

b(x′iβ)

)
,

whereQ(Y ) =
∏n
i=1 q(yi, 1). Let β̂ denote the posterior mode of β obtained by solving ∂β logL(β|D) =

0. Let D0 = {(y0i, x0i), i = 1, . . . , n0} ≡ (n0, Y0n0×1, X0n0×p) where Y0 = (y01, . . . , y0n0
)′ and

X0 = (x01, . . . , x0n0
)′. Assuming the y0i’s are (conditionally) independent, the historical data

likelihood raised to the power a0 is given by

[L(β|D0)]a0 = Q(Y0)a0 exp

(
a0

[
n0∑
i=1

y0ix
′
0iβ −

n∑
i=1

b(x′0iβ)

])
,

where Q(Y0) =
∏n0

i=1 q(y0i, 1). Let c∗(a0) =
∫
L(β|y0)a0π0(β)dβ. Using the normalized power prior

defined in (2.1), the joint posterior of β and a0 is given by

π(β, a0|D,D0) ∝ L(β|D)π(β, a0|D0) = L(β|D)
L(β|D0)a0π0(β)

c∗(a0)
π(a0).

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0208



2.2 Generalized Linear Models

Let β̂0 denote the posterior mode of β obtained by solving ∂β log
[
L(β|D0)a0π0(β)

c∗(a0)

]
= 0. Note that β̂0

is independent of a0 after we take the limit. The marginal posterior of a0 is given by

π(a0|D,D0) =

∫
π(β, a0|D,D0)dβ ∝

∫
L(β|D)

L(β|D0)a0π0(β)

c∗(a0)
π(a0)dβ. (2.5)

Now we extend Theorem 1 to GLMs.

Theorem 3. Suppose X is n× p of rank p and X0 is n0 × p of rank p. Suppose β̂ − β̂0 = δ where

δ 6= 0 is a finite vector, and n0

n = r where r > 0 is a constant scalar. Assume n
[
∂2 log[L(β|D)]

∂βi∂βj

]−1

and n0a0

[
∂2 log[L(β|D0)a0π0(β)]

∂βi∂βj

]−1
do not depend on n and a0. Then, the marginal posterior of a0

using the normalized power prior (2.5) with a beta(α0, β0) prior on a0, where α > 0 and β > 0,

converges to a point mass at zero. That is, lim
n→∞

∫ ε
0
π(a0|D,D0,α0,β0)da0∫ 1

0
π(a0|D,D0,α0,β0)da0

= 1 for any ε > 0.

Proof. See Supplemental Materials S1.5.

Theorem 3 asserts that the normalized power prior is sensitive to discrepancies in the his-

torical and current data in the presence of covariates. The mass of the marginal distribution of

a0 will concentrate near zero as the sample size increases for any fixed discrepancy between the

historical and current data, assuming 1
nX
′X and 1

n0
X ′0X0 are fixed, i.e., n

[
∂2 log[L(β|D)]

∂βi∂βj

]−1
and

n0a0

[
∂2 log[L(β|D0)a0π0(β)]

∂βi∂βj

]−1
do not depend on n and a0.

Next, we derive the asymptotic marginal posterior distribution of a0 when the sufficient statistics

and covariate (design) matrices of the historical and current data equal.

Corollary 2. Suppose X is n× p of rank p and X0 is n0 × p of rank p. Let Y = (y1, . . . , yn)′ and

Y0 = (y01, . . . , y0n0
)′. Consider the GLM in (2.4). If n = n0, X = X0, and X ′Y = X ′0Y0, then the
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2.2 Generalized Linear Models

marginal posterior of a0 using the normalized power prior, as specified in (2.5), converges to

π̃(a0|X,Y,X0, Y0) =

(
a0

a0+1

) p
2

π(a0)∫ 1
0

(
a0

a0+1

) p
2

π(a0)da0

,

as n→∞.

Proof. See Supplemental Materials S1.6.

Corollary 2 states that the marginal posterior of a0 using the normalized power prior does not

converge to a point mass at one when the sufficient statistics and the covariates of the historical

and current data are equal. We also observe that as p approaches infinity, the marginal posterior of

a0 specified above converges to a point mass at one. The form of the asymptotic marginal posterior

of a0 suggests that the normalized power prior may be sensitive to overfitting when the historical

and current datasets are compatible. Figure 1 in Supplemental Materials S2 presents numerical

results corroborating Corollaries 1 and 2. Therein we present histograms of posterior samples of a0

that faithfully recapitulate the theoretical density functions.

In Theorem 4 we also relax the previous result by deriving the asymptotic marginal posterior

distribution of a0 assuming only that the sufficient statistics of the historical and current data are

equal. This means that the covariate matrices need not be equal so long as the sufficient statistics

X ′Y and X ′0Y0 are, increasing the applicability of the result.

Theorem 4. Suppose X is n × p of rank p and X0 is n0 × p of rank p. Let Y = (y1, . . . , yn)′

and Y0 = (y01, . . . , y0n0
)′. Consider the GLM in (2.4), where n0

n = r and r > 0 is a constant. If
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2.2 Generalized Linear Models

X ′Y = X ′0Y0 and X 6= X0, then the marginal posterior of a0 using the normalized power prior, as

specified in (2.5), is asymptotically proportional to

π(a0) · |Σ̂g|1/2

|Σ̃k|1/2
exp

{
−n[gn(β̂)− kn(β̃)]

}
,

where the definitions of gn(β), kn(β) and |Σ̂g|
1/2

|Σ̃k|1/2
can be found in Supplemental Materials S1.7.

Proof. See Supplemental Materials S1.7.

Corollary 2 and Theorem 4 show that, for GLMs, the marginal posterior of a0 using the nor-

malized power prior does not converge to a point mass at one when the sufficient statistics of the

historical and current data are equal. From Theorems 1-4, we conclude that, asymptotically, the

normalized power prior is sensitive to discrepancies between the historical and current data, but

cannot fully utilize the historical information when there are no discrepancies. However, we show

that the posterior of a0 always has the most mass around one when the datasets are fully compatible

for finite i.i.d. normal observations.

We highlight the differences between the theorems above and the results presented in Pawel

et al. (2023). Pawel et al. (2023) derive the marginal posterior distribution of a0 when a beta prior

is used for a0 for i.i.d. normal and binomial models and show through graphical approaches that

the distribution shifts toward zero as the standard error of the current data converges to zero, when

θ̂ 6= θ̂0, and the standard error of the historical data is fixed. We prove this phenomenon much

more generally and analytically for the exponential family of distributions as well as GLMs.
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3. Optimal Beta Priors for a0

3.1 Kullback-Leibler Divergence Criterion

In this section, we propose a prior based on minimizing the KL divergence of the marginal posterior

of a0 to two reference distributions. This resulting prior is optimal in the sense that it is the best

possible beta prior at balancing the dual objectives of encouraging borrowing when the historical

and current data are compatible and limiting borrowing when they are in conflict.

Let ȳ0 denote the mean of the historical data and ȳ denote the mean of the hypothetical current

data. Let π1(a0) ≡ beta(c, 1) (c � 1 is fixed) and π2(a0) ≡ beta(1, c). The distributions π1(a0)

and π2(a0) represent two ideal scenarios, where π1(a0) is concentrated near one and π2(a0) is

concentrated near zero. The KL-based approach computes the hyperparameters (α0 and β0) for

the beta prior on a0 that will minimize a convex combination of two KL divergences; one is the

KL divergence between π1(a0) and the marginal posterior of a0 when ȳ = ȳ0, while the other is

the KL divergence between π2(a0) and the marginal posterior of a0 when there is a user-specified

difference between ȳ and ȳ0.

Let d = ȳ − ȳ0, representing the difference between the means of the hypothetical current

data and the historical data. Our approach is centered on a user-specified maximum tolerable

difference (MTD), dMTD. Let π∗(a0) denote the marginal posterior of a0 when d = 0. Let

πMTD(a0) denote the marginal posterior of a0 when d = dMTD. For d = 0, we want π∗(a0) to

resemble π1(a0) and for d = dMTD, we want πMTD(a0) to resemble π2(a0). The distributions
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3.1 Kullback-Leibler Divergence Criterion

π1(a0) and π2(a0) have been chosen to correspond to cases with substantial and little borrowing,

respectively. Therefore, our objective is to solve for α0 > 0 and β0 > 0 to minimize

K(α0, β0) = wKL(π∗(a0), π1(a0)) + (1− w)KL(πMTD(a0), π2(a0)).

Here 0 < w < 1 is a scalar and KL(p, q) for distributions P and Q with P as reference is defined as

KL(p, q) =

∫
log

(
p(x)

q(x)

)
dP (x) = Ep[log(p)]− Ep[log(q)].

The scalar w weights the two competing objectives. For w > 0.5, the objective to encourage

borrowing is given more weight, and for w < 0.5, the objective to limit borrowing is given more

weight. Even though this approach requires specifying w, c and dMTD, these parameters are much

more intuitive to choose than the hyperparameters of the prior for a0.

Below we demonstrate the simulation results using this method for the i.i.d. normal case, the

i.i.d. Bernoulli case and the normal linear model. We compare the marginal posterior of a0 using

the KL-based optimal prior with that using the uniform prior. For all simulations in this section,

we choose w = 0.5 so that the two competing objectives are given equal weight. We choose c = 10

so that π1(a0) and π2(a0) represent cases with substantial and little borrowing, respectively. We

vary the choice of dMTD and examine each resulting optimal prior. In practice, we recommend that

dMTD be no larger than the treatment effect of the historical study.
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3.1 Kullback-Leibler Divergence Criterion

3.1.1 Normal i.i.d. Case

We assume y1, . . . , yn and y01, . . . , y0n0
are i.i.d. observations from N(µ, σ2) where σ2 = 1. We

choose ȳ0 = 1.5 and n = n0 = 30. The objective function K(·, ·) is computed using numerical

integration and optimization is performed using the optim() function in (base) R (R Core Team,

2022).

In Figure 1, the first figure of each row plots the historical and current data likelihoods if the

hypothetical degree of conflict is equal to dMTD. For each row of the figure below, the maximum

tolerable difference dMTD is chosen to be 0.5, 1 and 1.5, and the corresponding optimal prior is

derived for each value of dMTD. For each optimal prior, we vary the observed sample mean, denoted

by ȳobs, to evaluate the posterior based on the optimal prior for different observed current data.

We use dobs = ȳobs− ȳ0 to represent the difference between the means of the observed current data

and the historical data. For columns 2-4, dobs is chosen to be 0, 1 and 1.5, respectively. Note that

the values of dMTD and dobs are relative to the choices of σ2, n and n0. For example, for larger n,

dMTD would need to be decreased to produce a similar plot to Figure 1.

From columns 2-4, we observe that when dMTD = 0.5, very little conflict is tolerated, and the

resulting optimal prior does not strongly encourage either borrowing substantially or borrowing

little. As dMTD becomes larger, larger conflict is allowed and the optimal prior shifts more to-

wards π1(a0). We also observe that when dMTD = 1 (the optimal hyperparameters are α0 = 1

and β0 = 0.4) and dMTD = 1.5 (the optimal hyperparameters are α0 = 2.6 and β0 = 0.5), the

marginal posterior of a0 with the optimal prior more closely mimics the target distribution when
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3.1 Kullback-Leibler Divergence Criterion

Table 1: Posterior mean (variance) of µ for the normal i.i.d. case

dobs = 0 dobs=0.5 dobs=1 dobs=1.5

dMTD=0.5 1.5 (0.022) 1.85 (0.026) 2.32 (0.036) 2.87 (0.036)

dMTD=1 1.5 (0.019) 1.82 (0.026) 2.36 (0.042) 2.93 (0.035)

dMTD=1.5 1.5 (0.018) 1.78 (0.020) 2.19 (0.040) 2.84 (0.039)

dobs = 0, i.e., the observed current and historical data are fully compatible. As dobs increases, the

marginal posterior shifts toward zero. This behaviour is highly desirable as it achieves both goals

of encouraging borrowing when the datasets are compatible and limiting borrowing when they are

incompatible.

We can compare the marginal posterior of a0 using the optimal prior with that using a uniform

prior in Figure 1. We observe that while the marginal posterior on a0 with the uniform prior is

very responsive to conflict, it does not concentrate around one even when the datasets are fully

compatible. We conclude that when dMTD is chosen to be reasonably large, the optimal prior on

a0 achieves a marginal posterior that is close to the target distribution when the datasets are fully

compatible, while remaining responsive to conflict in the data.

Table 1 shows the posterior mean and variance of the mean parameter µ for various combinations

of dMTD and dobs values corresponding to the scenarios in Figure 1. The posterior mean and variance
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of µ with a normalized power prior are computed using the R package BayesPPD (Shen et al., 2022).

Again, ȳ0 is fixed at 1.5. Since ȳobs ≥ ȳ0, within each row, the posterior mean of µ is always smaller

than ȳobs due to the incorporation of ȳ0. We can also compare the results by column. For fixed

dobs (or equivalently ȳobs), if more historical information is borrowed, we expect the posterior mean

of µ to be smaller. When dobs = 0, the posterior mean stays constant while the variance decreases

as dMTD increases. If the maximum tolerable difference is large, more historical information is

borrowed, leading to reduced variance. When dobs = 0.5, the posterior of µ decreases as more

borrowing occurs when dMTD increases. When dobs = 1 or 1.5, the posterior of µ first increases and

then decreases, as dMTD increases. This is a result of two competing phenomena interacting; as

dMTD increases, the optimal prior gravitates towards encouraging borrowing; however, since dobs

is very large, the marginal posterior of a0 moves toward zero even though the prior moves toward

one. In conclusion, we argue that the posterior estimates of µ with the optimal prior respond in a

desirable fashion to changes in the data. In Supplemental Materials S3, we have included numerical

experiments that demonstrate the reliability of the optimization scheme.

3.1.2 Bernoulli Model

For the Bernoulli model, we assume y1, . . . , yn and y01, . . . , y0n0
are i.i.d. observations from a

Bernoulli distribution with mean µ. Again, we choose n = n0 = 30 and optimization is performed

analogously to the normal case.

The resulting optimal priors and posteriors are shown in Figure 2. For each row of Figure 2
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3.1 Kullback-Leibler Divergence Criterion

below, the maximum tolerable difference dMTD is chosen to be 0.2, 0.4 and 0.6, and the correspond-

ing optimal prior is derived for each value of dMTD. For each optimal prior, we vary the observed

ȳobs to evaluate the performance of the optimal prior for different observed data. For columns 2-4,

dobs = ȳobs− ȳ0 is chosen to be 0, 0.4 and 0.6, respectively. Values of ȳ0 and ȳobs are chosen so that

the variance stays constant for different values of dMTD or dobs.

The optimal marginal prior and posterior of a0 for Bernoulli data are similar to those of the

normal model. We observe that when the datasets are perfectly compatible, i.e., dobs = 0, the

marginal posterior of a0 with the optimal prior concentrates around one when dMTD is relatively

large. When dobs increases to 0.4 or 0.6, the marginal posterior of a0 concentrates around zero

when dMTD is relatively large. The optimal prior becomes increasingly concentrated near one as

dMTD increases. Compared to the marginal posterior with the uniform prior, the optimal prior on

a0 achieves a marginal posterior that closely mimics the target distribution when the datasets are

fully compatible, while remaining responsive to conflict in the data.

3.1.3 Normal Linear Model

Suppose y01, . . . , y0n0
are independent observations from the historical data where y0i ∼ N(β0 +

β1x0i, σ
2) for the i-th observation and x0i is a single covariate. Also suppose y1, . . . , yn are in-

dependent observations from the current data where yj ∼ N(β0 + β1xj + dMTD, σ
2) for the j-th

observation and xj is a single covariate. We vary dMTD to represent different degrees of departure

of the intercept of the simulated current data to the intercept of the historical data. We choose
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β0 = 1.5, β1 = −1, σ2 = 1 and n = n0 = 30. We choose dMTD = 0.1, 0.5, and 1 and dobs = 0, 0.5,

and 1. The objective function K is computed using Monte Carlo integration and optimization is

performed using the optim() function in R.

Figure 3 shows the optimal prior and optimal posterior for a0 as well as the posterior of a0

with the uniform prior for various dMTD and dobs values. We observe that when the datasets are

perfectly compatible, i.e., dobs = 0, the marginal posterior of a0 with the optimal prior concentrates

around one when dMTD is relatively large. When dobs increases to 1, the marginal posterior of a0

concentrates around zero. The optimal prior becomes increasingly concentrated near one as dMTD

increases. Compared to the marginal posterior with the uniform prior, the optimal prior for a0

achieves a marginal posterior that closely mimics the target distribution when the datasets are

fully compatible, while remaining responsive to conflict in the data.

3.2 Mean Squared Error Criterion

In this section, we derive the optimal prior for a0 based on minimizing the MSE. This prior is

optimal in the sense that it minimizes the weighted average of the MSEs of the posterior mean

of the parameter of interest when its hypothetical true value is equal to its estimate using the

historical data, or when it differs from its estimate by the maximum tolerable amount. Suppose

y1, . . . , yn and y01, . . . , y0n0
are observations from a distribution with mean parameter µ. Let µ∗

denote the true value of µ. Let µ̄ denote the posterior mean of µ using the normalized power prior.
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Then, the MSE of µ̄ is

MSE(µ∗) =

∫
[µ̄(y)− µ∗]2 p(y|µ∗)dy.

In the regression setting, µ is replaced by the regression coefficients β.

Let ȳ0 denote the mean of the historical data. We aim to find the hyperparameters, α0 and β0,

for the beta prior for a0 that will minimize

wMSE(µ∗ = ȳ0) + (1− w)MSE(µ∗ = ȳ0 + dMTD),

where dMTD is the maximum tolerable difference. Again, we use dobs = ȳobs − ȳ0 to represent the

difference between the means of the observed current data and the historical data.

3.2.1 Normal i.i.d. Case

We demonstrate the use of this criterion for the normal i.i.d. case. Suppose y1, . . . , yn and

y01, . . . , y0n0
are i.i.d. observations from N(µ, σ2) where σ2 = 1 and n = n0 = 30. In this ex-

ample, we fix µ∗ and yMTD at 1.5, and define dMTD = ȳ0 − ȳ and dobs = ȳ0 − ȳ. The posterior

mean of µ is computed using Monte Carlo integration and optimization is performed using a grid

search. The optimal prior, optimal posterior, and the posterior using the uniform prior for a0 are

plotted in Figure 4. When dMTD = 0.5, the optimal prior is unimodal with mode around 0.3.

When dMTD = 1, the optimal prior is concentrated near zero. When dMTD = 1.5, the optimal prior

is U-shaped and favouring either strong or weak borrowing. When dMTD is small, the algorithm

cannot distinguish between the two competing scenarios in the objective function and the resulting
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optimal prior concentrates around 0.5. When dMTD is large, the optimal prior will favour the two

scenarios equally. For columns 2-4, dobs is chosen to be 0, 1 and 1.5. The marginal posterior using

the optimal prior concentrates more around zero as dobs increases for a given dMTD. Comparing

Figures 4 and 1, we observe that the optimal prior derived using the MSE criterion is more conser-

vative in the sense that it tends to discourage borrowing than that derived using the KL criterion.

Note that one might obtain very different optimal priors using the KL criterion versus the MSE

criterion, since these metrics have different objectives.

Table 2 shows the MSE for the optimal prior, beta(1, 1) (uniform) and beta(2, 2) as well as the

percent reduction of MSE of the optimal prior compared to the uniform prior. We can see that

the percent reduction of MSE increases as dMTD increases. The table in Supplemental Materials

S4 displays the decomposition of MSE into bias squared and variance for the three choices of

priors. When dMTD = 0.5 or 1, the prior discourages borrowing which results in smaller bias and

larger variance. When dMTD = 1.5, the model can distinguish easily between the two contrasting

objectives, leading to smaller bias and smaller variance. In Supplemental Materials S5, we compare

the MSE of the posterior mean based on the normalized power prior using the optimal prior for a0

and the robust mixture prior (Schmidli et al., 2014) for the case where the data are i.i.d. normal.

A key contribution of this paper is to identify the optimal single beta prior for a0 in an NPP.

The comparison in Supplementary Material S5 is designed to help the reader put this notion of

optimality in context by comparing the performance of the posterior mean point estimator from

several families of priors. Additional simulation results for varying choices of n and n0 are provided
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Table 2: MSE for different prior choices and percent reduction of MSE of the optimal prior

compared to the uniform prior

Optimal Prior beta(1, 1) beta(2, 2) Percent Reduction of MSE,

Optimal Prior vs. beta(1, 1)

dMTD = 0.5 0.054 0.057 0.057 5%

dMTD = 1 0.063 0.069 0.079 9%

dMTD = 1.5 0.052 0.059 0.067 12%

in the Supplemental Materials S6.

4. Case Studies

We now illustrate the proposed methodologies by analysing two clinical trial case studies. First, we

study an important application in a pediatric trial where historical data on adults is available. This

constitutes a situation of increased importance due to the difficulty in enrolling pediatric patients

in clinical trials (U.S. Food and Drug Administration, 2016). Then, we study a classical problem

in the analysis clinical trials: using information from a previous study. This is illustrated with data

on trials of interferon treatment for melanoma.
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4.1 Pediatric Lupus Trial

Enrolling patients for pediatric trials is often difficult due to the small number of available patients,

parental concern regarding safety and technical limitations (Psioda and Xue, 2020). For many

pediatric trials, additional information must be incorporated for any possibility of establishing

efficacy (Psioda and Xue, 2020). The use of Bayesian methods is natural for extrapolating adult

data in pediatric trials through the use of informative priors, and is demonstrated in FDA guidance

on complex innovative designs (U.S. Food and Drug Administration, 2019).

Belimumab (Benlysta) is a biologic for the treatment of adults with active, autoantibody-

positive systemic lupus erythematosus (SLE). It was proposed that the indication for Belimumab

can be expanded to include the treatment of children (Psioda and Xue, 2020). The clinical trial

PLUTO (Brunner et al., 2020) has been conducted to examine the effect of Belimumab on children

5 to 17 years of age with active, seropositive SLE who are receiving standard therapy. The PLUTO

study has a small sample size due to the rarity of childhood-onset SLE. There have been two

previous phase 3 trials, BLISS-52 and BLISS-76 (Furie et al., 2011; Navarra et al., 2011), which

established efficacy of belimumab plus standard therapy for adults. The FDA review of the PLUTO

trial submission used data from the adult trials to inform the approval decision (Psioda and Xue,

2020). All three trials employ the same composite primary outcome, the SLE Responder Index

(SRI-4).

We conduct a Bayesian analysis of the PLUTO study incorporating information from the adult

studies, BLISS-52 and BLISS-76, using a normalized power prior. We derive the optimal priors on
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a0 based on the KL criterion and the MSE criterion.

Our parameter of interest is the treatment effect of Belimumab for children, denoted by β.

The total sample size of the pooled adult data (BLISS-52 and BLISS-76) is n0 = 1125 and the

treatment effect is 0.481. We choose dMTD = 0.481 which equals the treatment effect of the

historical study. The pediatric data has a sample size of 92 and the estimated treatment effect is

0.371. We use the asymptotic normal approximation to the logistic regression model (see equation

(1.4) in Supplemental Materials) with one covariate (the treatment indicator). We choose w = 0.5

and n = 100 (sample size of the simulated current dataset). For the KL criterion, the objective

function K is computed using Monte Carlo integration and optimization is performed using the

optim() function in R. For the MSE criterion, the posterior mean of β is computed using the

R package BayesPPD and optimization is performed using a grid search where the values of α0

and β0 range from 0.5 to 6 with an increment of 0.5. The optimal priors derived using the KL

criterion and MSE criterion are displayed in Figure 5. Table 3 (left) provides the posterior mean,

standard deviation and 95% credible interval for β using the optimal priors and several other beta

priors for comparison. We observe that the optimal prior derived using the KL criterion leads

to a lower posterior standard deviation compared to the uniform prior because more historical

information is borrowed. Note that when a beta(1, 10) prior is used for a0, i.e., very little historical

information is borrowed, the 95% credible interval of β includes zero. In Supplemental Materials

S7, we demonstrate using the proposed optimal priors in a clinical trial design application for the

pediatric lupus trial.
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Table 3: Pediatric lupus trial (left) and melanoma trial (right): posterior mean, standard

deviation, and 95% credible interval for β

Lupus Trial Melanoma Trial

Prior for a0 Mean SD 95% CI Prior for a0 Mean SD 95% CI

beta(5.5, 5.5) 0.47 0.16 (0.15, 0.79) beta(0.7, 1.5) 0.05 0.19 (-0.33, 0.43)

(optimal by KL) (optimal by KL)

beta(2, 5) 0.47 0.21 (0.04, 0.89) beta(5.5, 3) -0.01 0.17 (-0.35, 0.33)

(optimal by MSE) (optimal by MSE)

beta(1, 1) 0.47 0.18 (0.12, 0.83) beta(1, 1) 0.04 0.19 (-0.32, 0.42)

beta(2, 2) 0.47 0.17 (0.13, 0.79) beta(2, 2) 0.03 0.18 (-0.34, 0.40)

beta(0.5, 0.5) 0.47 0.17 (0.12, 0.81) beta(0.5, 0.5) 0.05 0.19 (-0.33, 0.41)

beta(10, 1) 0.48 0.12 (0.24, 0.71) beta(10, 1) -0.08 0.16 (-0.38, 0.23)

beta(1, 10) 0.44 0.28 (-0.13, 1) beta(1, 10) 0.06 0.19 (-0.3, 0.44)
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4.2 Melanoma Trial

Interferon Alpha-2b (IFN) is an adjuvant chemotherapy for deep primary or regionally metastatic

melanoma. IFN was used in two phase 3 randomized controlled clinical trials, E1684 and E1690

(Kirkwood et al., 1996). In this example, we choose overall survival (indicator for death) as the

primary outcome. We conduct a Bayesian analysis of the E1690 trial incorporating information

from the E1684 trial, using a normalized power prior. We include three covariates in the analysis,

the treatment indicator, sex and the logarithm of age. As before, we obtain the optimal priors for

a0 based on both the KL criterion and the MSE criterion.

Our parameter of interest is the treatment effect of IFN, denoted by β. The total sample size

of the E1684 trial is n0 = 285 and the treatment effect is −0.423. We choose dMTD = 0.423 which

equals the treatment effect of the historical study. The E1690 trial has a sample size of 427 and the

treatment effect is 0.098. We use the asymptotic normal approximation to the logistic regression

model (see equation (1.4) in Supplemental Materials) with three covariates. We choose w = 0.5,

dMTD = 0.423 and n = 400 (sample size of the simulated current dataset). For the KL criterion,

the objective function K is computed using Monte Carlo integration and optimization is performed

using the optim() function in R. For the MSE criterion, the posterior mean of β is computed using

the R package BayesPPD and optimization is performed using a grid search where the values of

α0 and β0 range from 0.5 to 6 with an increment of 0.5. The optimal priors derived using the

KL criterion and MSE criterion are displayed in Figure 6. The optimal prior derived using the

KL criterion is beta(0.7, 1.5), which has density around zero. For the MSE criterion, the optimal
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prior derived is beta(5.5, 3), which is unimodal with mode around 0.7. This is likely due to the fact

that dMTD is small relative to the total sample size of 712 – see also simulations in Supplemental

Materials. Because the observed difference is larger than dMTD, the marginal posterior of a0 has

mode around 0.4, which discourages more strongly than the prior. Table 3 (right) provides the

posterior mean, standard deviation and 95% credible interval for β using the optimal priors and

several other beta priors for comparison. Compared to the uniform prior, the optimal prior derived

using the KL criterion results in a larger posterior mean, indicating that less historical information

is borrowed. Compared to the uniform prior, the optimal prior derived using the MSE criterion

borrows more historical information, resulting in a smaller posterior mean and a smaller variance.

5. Discussion

In this paper, we have explored the asymptotic properties of the normalized power prior when the

historical and current data are compatible and when they are incompatible. Our results demonstrate

that there is a fundamental asymmetry in the adaptive borrowing properties of the normalized

power prior: while for any discrepancy between the historical and current data sets one can expect

the marginal posterior of the discounting parameter a0 to concentrate around zero, under complete

compatibility this distribution does not concentrate around 1 – although the mode is at 1 under mild

conditions (Han et al., 2022). This has been seen as flaw with the NPP by some authors (e.g. Pawel

et al. (2023)), but we argue this view is misguided: expecting the posterior of a0 to concentrate

around 1 is effectively expecting two data sets to support exchangeability. This is a notoriously
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hard task, as exemplified by the difficulty in estimating the population variance in hierarchical

models. Moreover, we have shown that for an i.i.d. normal model with finite samples, the marginal

posterior of a0 always has more mass around one when the datasets are fully compatible, compared

to the case where there is any discrepancy.

We have proposed two criteria based on which the optimal hyperparameters of the prior for a0

can be derived. While the exact values of the hyperparameters can be obtained using our objective

functions, we suggest the following rules of thumb for estimating the optimal prior given different

choices of the maximum tolerable difference. When the KL criterion is used, a beta distribution

centered around 0.5, such as the beta(2, 2), is optimal for small values (when plots of the current

and historical data likelihoods substantially overlap) of maximum tolerable difference , while a

beta distribution with mean close to 1, such as the beta(2, 0.5), should be used for large values of

maximum tolerable difference. When the MSE criterion is used, a beta distribution with mean less

than 0.5, such as the beta(3, 6), is optimal for small values of maximum tolerable difference, while

a beta distribution with modes at zero and one, as for example a beta(0.5, 0.5), should be used for

large values of maximum tolerable difference. The MSE criterion is a more conservative criterion,

in the sense that it tends to discourage borrowing, than the KL criterion.

We observe that in Figures 1-3, the marginal posterior of a0 is bimodal, with modes at zero

and one, in some cases. Future work should further examine the issue of multi-modality. Other

potential future work includes extending our method to survival and longitudinal outcomes, as

well as accommodating dependent discounting parameters when multiple historical datasets are
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available.

Supplementary Materials

The reader is referred to the online Supplementary Materials for proofs of the theorems in section

2, additional simulations and results for section 2 and 3, and a clinical trial design application for

section 4.
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Figure 1: Simulation results for the normal i.i.d. case, where σ2 = 1, ȳ0 = 1.5 and n =

n0 = 30. The first figure of each row plots the historical (black solid line) and current

(black dashed line) data likelihoods if the hypothetical degree of conflict is equal to dMTD.

For each row of the figure, the maximum tolerable difference dMTD is chosen to be 0.5, 1

and 1.5, and the corresponding optimal prior (pink dotted line) is derived for each value

of dMTD. For each optimal prior, we vary dobs = ȳobs − ȳ0 to evaluate the performance of

the optimal prior for different observed data. For columns 2-4, dobs is chosen to be 0, 1

and 1.5, respectively. The black and blue curves correspond to π1(a0) ≡ beta(10, 1) and

π2(a0) ≡ beta(1, 10), respectively. The purple dashed line represents the marginal posterior

of a0 with the optimal prior for a given dobs. The grey dashed line plots the marginal posterior

of a0 with the uniform prior.
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Figure 2: Simulation results for the Bernoulli i.i.d. case, where σ2 = 1 and n = n0 = 30.

The first figure of each row plots the historical (black solid line) and current (black dashed

line) data likelihoods if the hypothetical degree of conflict is equal to dMTD. For each row

of the figure, the maximum tolerable difference dMTD is chosen to be 0.5, 1 and 1.5, and

the corresponding optimal prior (pink dotted line) is derived for each value of dMTD. For

each optimal prior, we vary dobs = ȳobs− ȳ0 to evaluate the performance of the optimal prior

for different observed data. For columns 2-4, dobs is chosen to be 0, 1 and 1.5, respectively.

The black and blue curves correspond to π1(a0) ≡ beta(10, 1) and π2(a0) ≡ beta(1, 10),

respectively. The purple dashed line represents the marginal posterior of a0 with the optimal

prior for a given dobs. The grey dashed line plots the marginal posterior of a0 with the uniform

prior.
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Figure 3: Simulation results for the normal linear model with one covariate where β0 = 1.5,

β1 = −1, σ2 = 1 and n = n0 = 30. The first figure of each row shows the historical (black

solid line) and current (black dashed line) data likelihoods as a function of the intercept if

the hypothetical degree of conflict is equal to dMTD. For each row, dMTD is chosen to be 0.1,

0.5 and 1, and the corresponding optimal prior (pink dotted line) is derived for each value

of dMTD. For each optimal prior, we vary dobs to represent different degrees of departure of

the intercept of current data to that of historical data. For columns 2-4, dobs is chosen to be

0, 0.5 and 1, respectively. The black and blue curves correspond to π1(a0) ≡ beta(10, 1) and

π2(a0) ≡ beta(1, 10), respectively. The purple dashed line represents the marginal posterior

of a0 with the optimal prior for a given dobs. The grey dashed line plots the marginal posterior

of a0 with the uniform prior.
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Figure 4: Simulation results for the normal i.i.d. case when minimizing a convex combination

of MSEs when n = n0 = 30. The first figure of each row shows the historical (black solid

line) and current (black dashed line) data likelihoods if the hypothetical degree of conflict

is equal to dMTD. The mean of the hypothetical current data is fixed at 1.5. For each row

of the figure, the maximum tolerable difference dMTD is chosen to be 0.5, 1 and 1.5, and

the corresponding optimal prior (pink dotted line) is derived for each value of dMTD. For

each optimal prior, we vary dobs = ȳ0 − ȳobs. For columns 2-4, dobs is chosen to be 0, 1 and

1.5, respectively. The purple dashed line represents the marginal posterior of a0 with the

optimal prior for a given dobs. The grey dashed line plots the marginal posterior of a0 with

the uniform prior.
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Figure 5: After combining studies BLISS-52 and BLISS-76 for adults, the total sample

size is n0 = 1125 and log odds ratio for treatment vs. control group is 0.481. We choose

dMTD = 0.481 to be the maximum tolerable difference. The pediatric data has a sample

size of n = 92. The actual observed log odds ratio is 0.371. The figure on the left displays

the optimal prior (pink dotted line) and posterior (purple dashed line) derived using the KL

criterion. The figure on the right displays the optimal prior for a0 and the posterior derived

using the MSE criterion. The posterior of a0 using the uniform prior (grey dashed line) is

also shown.
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Figure 6: The total sample size of the E1684 trial is n0 = 285 and log odds ratio for

treatment vs. control group is −0.423. We choose dMTD = 0.423 to be the maximum

tolerable difference. The E1690 trial has sample size n = 427. The observed log odds ratio

is 0.098. The figure on the left displays the optimal prior (pink dotted line) and posterior

(purple dashed line) derived using the KL criterion. The figure on the right displays the

optimal prior for a0 and the posterior derived using the MSE criterion. The posterior of a0

using the uniform prior (grey dashed line) is also shown.
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