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Robust Tests for Changing Volatility

Jilin Wu∗, Ruike Wu∗ and Zhijie Xiao†
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Abstract: This paper develops two modified CUSUM and QS tests to examine

structural changes in volatility based on least absolute deviation (LAD) regres-

sion and consistent estimation of the long-run variance (LRV). We establish fairly

mild conditions under which the new tests have standard null distributions and

are consistent against any fixed alternatives that deviate from the null, includ-

ing smooth changes, single or multiple breakpoints in volatility. In addition, the

tests also have asymptotic unit powers against two classes of local alternatives

approaching the null at different rates. Simulations are conducted to show bet-

ter finite sample performance of the new tests relative to other popular tests

especially in the presence of heavy-tailed innovations. Finally, two empirical ap-

plications to detection of structural changes in volatilities of U.S. dollar/Russian

Ruble exchange rate and S&P 500 index highlight the usefulness of our tests in

real datasets.

Key words and phrases: CUSUM test, Heavy-tailed innovation, Least absolute

deviation, Nonparametric estimation, QS test, Structural change in volatility.
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1. Introduction

Up to now, most popular macroeconomic and financial econometric models

are constructed, whether explicitly or implicitly, under the assumption of

global stationarity in unconditional volatility. While this assumption can

help simplify inference and estimation procedures in time series analysis, it

seems implausible over long periods of time since the underlying economic

mechanisms are likely to be disturbed by various factors such as business

cycles, institutional changes and technological progress. Numerous studies

have demonstrated that structural changes in volatilities are widely exist-

ing in macroeconomic and financial data. For example, Sensier and Dijk

(2002) report that about 80% of 214 USA macroeconomic time series dis-

played breaks in volatilities during the period 1959-1999. Kim and Nelson

(1999), and Justiniano and Primiceri (2008) demonstrate that the volatili-

ties of U.S. major macroeconomic variables, especially GDP, have declined

since 1980s. Clark (2011) provides empirical evidence strongly suggesting

that the volatilities of U.S. macroeconomic variables rise sharply during

the severe recession of 2007–2009. Similarly, Andreou and Ghysels (2002)

discover that the Asian and Russian financial crises have caused obvious

structural breaks in volatility dynamics of international financial markets.

Mikosch and Stǎricǎ (2004) and Liu and Maheu (2008) also find strong
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evidence of structural changes relating to shifts in the volatility of S&P 500

returns.

The presence of time-varying unconditional volatility could invalidate

conventional statistical inference and hypothesis testing. Lamoureux and

Lastrapes (1990), and Granger and Hyung (2004) prove that changes in

unconditional volatilities can cause spurious persistence and long memory

effects in volatility dynamics. Hamori and Tokihisa (1997), Kim et al.

(2002) and Cavaliere (2005) show that ignoring the effect of a volatility

shift could result in big over-sized distortion in unit root tests. Hansen

(1995), Xu and Phillips (2008) and Linton and Xiao (2019) point out that

time-varying unconditional variances can lead to inefficient estimation and

unreliable inference in parametric and nonparametric models. Hammoudeh

and Li (2008) and Groen et al. (2013) conclude that the macroeconomic

predictors not allowing for structural breaks in volatilities can bring about

very poor point and density forecasts. Vilasuso (2001) and Patilea and

Raissi (2012) show that the presence of unconditional heteroskedasticity can

damage Granger causality testing and lead to erroneous conclusions. There-

fore, it is of great necessity and extreme importance to examine structural

changes in volatility before formally carrying out econometric analysis.

A lot of tests have been developed to detect structural changes in volatil-
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ities in literature. One of the most widely used tests is based on the cumula-

tive sum (CUSUM) of squared series, see Inclan and Tiao (1994), Andreou

and Ghysels (2002), Cavaliere and Taylor (2008) and Xu (2008), among

others. These tests differ in how they accommodate serial dependence in

asset returns. Chu (1995) considers a supremum Lagrange multiplier (LM)

test to check structural breaks in GARCH models. Berkes et al. (2004)

construct a sequential likelihood ratio (GLR) test to detect whether the

coefficients of a GARCH model keep constant over time. However, these

tests often suffer from power loss because of not considering any explicit

alternative information. In order to improve testing powers, Xu (2013) pro-

poses modified CUSUM and LM tests that are built on robust estimation

of the long-run variance (LRV) of squared series. Chen and Hong (2016)

propose a nonparametric test for smooth structural changes in GARCH

models by comparing the distance between the log likelihood of the null

and that of the alternatives. Similarly, Wu and Xiao (2018) also develop

a nonparametric test for structural changes in volatility, which is derived

from an L2-type test statistic and takes the form of a U-statistic. Although

all of the aforementioned tests have achieved power gains due to exploiting

the information of alternatives and can provide optimal performance under

Gaussian conditions, they are derived by assuming the existence of at least
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the fourth moment. Under departure from the Gaussian models, particu-

larly for the innovations with leptokurtic and heavy-tailed features, these

testing methods can exhibit rather poor power performance. Because many

applications, particularly for macroeconomic and financial data, have noto-

riously heavy-tailed behaviors without the fourth moment, even sometimes

the second moment also does not exist, see Akgiray and Booth (1988), Lore-

tan and Phillips (1994), Chen and Zhu (2015) and Wang et al. (2022) for

more discussion. Hence, it is important to develop the tests for structural

changes in volatility that are robust to departure from Gaussian conditions.

This paper proposes robust CUSUM and QS (quadratic sums) tests for

structural changes in volatility that allow for various types of heavy-tailed

innovations. The main contributions of this paper can be summarized as

follows: Firstly, the test statistics of the interest are constructed in the

framework of the LAD regression rather than the least squares (LS) regres-

sion. It is well known that the LAD is generally more robust than the LS

whenever the errors have a heavy-tailed distribution. By employing the

LAD testing procedure, we require no moment conditions on the innova-

tions, and hence make the proposed tests more robust to heavy-tailed inno-

vations. Secondly, in order to improve testing powers of the proposed tests,

we suggest estimating the LRV based on the LAD nonparametric residuals.
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We show that the tests constructed using such an LRV estimator not only

retain correct size under the null, but also achieve decent power gains under

alternatives. Thirdly, the new tests are consistent against various alterna-

tives that deviate from the null hypothesis, and no prior information about

the alternatives is required. Specifically, we do not need to know whether

the structural changes in volatility are smooth or abrupt, and in the cases

of abrupt breaks, we do not need to know the exact dates or the number of

changepoints.

The plan of this study is organized as follows. Section 2 presents the ba-

sic CUSUM and QS tests that only make use of the LAD regression residuals

under the null. In Section 3 we propose two modified CUSUM and QS tests

that are built on LAD nonparametric estimation of the unknown volatil-

ity function, and then study their asymptotic distributions under the null.

Next we also investigate their asymptotic power properties under a fixed

alternative and two sequences of local alternatives. We report the results

of Monte Carlo simulations to assess finite sample performance of our tests

compared with other popular tests in Section 4. Section 5 applies the pro-

posed tests to detect changing volatilities in two financial markets. Section

6 discusses how to extend our testing procedure to the case of multivariate

volatility. The conclusion is given in Section 7. Further simulation results

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0207



7

and mathematical proofs of the main results can be found in supplementary

materials.

2. The basic tests

We consider the following model for a sequence ut (e.g. log returns)

ut = σtεt, t = 1, · · · , T, (2.1)

where σt = σ (t/T ) is a positively deterministic and bounded sequence on

[0, 1] functioning as a proxy for all factors that affect the long-run com-

ponent of volatility; {εt} is a strictly stationary mixing error process, and

can be modeled by various kinds of stationary GARCH-type processes to

capture short-run dynamics in conditional volatility. The approach to mod-

eling the unconditional volatility by a deterministic function of scaled time

index can be referred to, e.g., Cavaliere (2005), Xu and Phillips (2008),

and Kristensen (2012). Model (2.1) also covers the popular multiplicative

volatilities, see Engle and Rangel (2008), Hafner and Linton (2010), and

Jiang et al. (2021) for more discussion.

The research question of this paper is to test whether there exist struc-

tural changes in σt over time t. Thus, the null hypotheses of interest is

given by

H0 : σt = σ0, (2.2)
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and the alternative hypothesis is HA : σt ̸= σ0. Under the null, σt is a con-

stant over time; Under the alternatives, σt can change smoothly or abruptly.

It is worth noting that the conventional tests are focusing on testing the

null hypothesis of H0 : σ2
t = σ2

0, see Xu (2008, 2013) and Wu and Xiao

(2018), while we aim at testing the null hypothesis of H0 : σt = σ0. The

two nulls are essentially the same.

Let c represent the median of |εt|, and denote gt = cσt and sgn (z) =

I (z > 0) − I (z < 0), where I (·) is the indicator function, then the model

(2.1) can be rewritten as

|ut| = gt + et,

where et = σt (|εt| − c) satisfies E (sgn (et)) = 0. As a result, testing the

null hypothesis of H0 : σt = σ0 is equivalent to checking whether gt = g0

holds over time, where g0 = σ0c is a positive constant.

Under the null, the LAD estimator for g0 is given by

g̃ = argmin
g∈R

T∑
t=1

||ut| − g| ,

and the LAD residual is ẽt = |ut| − g̃. To devise a statistical test for (2.2),

we propose to look at the following empirical process

En =
1√
T

n∑
t=1

sgn (ẽt) ,

where n = 1, . . . , T. Under H0 and some regularity conditions, En will
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converge weakly to a demeaned Brownian bridge with the LRV ω2 =∑∞
i=−∞ γ (i), where γ (i) = E [sgn (et+i) sgn (et)] is the autocovariance func-

tions of sgn (et). In the presence of structural changes in σt, En will deviate

away from mean zero. By using the different performance of En under the

null and the alternatives, we can judge whether the structural changes occur

in σt.

Since the limiting process of En has the variance ω2, appropriate stan-

dardization is needed to remove this nuisance parameter. Let ω̃2 be an LRV

estimator for ω2, we may consider the following standardized empirical pro-

cess:

SEn =
1√
T ω̃

n∑
t=1

sgn (ẽt) .

Based on the Kolmogorov–Smirnoff measure and the Cramér-von Mises

measure, we construct the following CUSUM and QS test statistics

CSMM = max
1≤n≤T

|SEn| , QSM =
1

T

T∑
n=1

(SEn)
2 .

Compared with those traditional CUSUM and QS tests derived in the

LS framework, the new tests CSMM and QSM as well as the modified

tests CSM∗
M and QS∗

M proposed in the next section possess the merit of

robustness because the fluctuation in {sgn (ẽt)}Tt=1 always stays between -1

and 1, and is not affected by outliers.
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The above tests make use of an estimated LRV, which is proportional to

the spectral density of sgn (et) at zero frequency. This quantity is usually

estimated by a nonparametric kernel method in the following form:

ω̃2 =
T−1∑

i=−T+1

l(i/qT )γ̃(i), (2.3)

where γ̃(i) = T−1
∑T

t=i+1 sgn (ẽt) sgn (ẽt−i) , for i ≥ 0, and γ̃(i) = γ̃(−i) for

i < 0, l(·) is the kernel function, and qT is the truncation parameter.

In order to study the asymptotic properties of CSMM and QSM under

the null and under the alternatives, we introduce the following regularity

conditions.

Assumption 1. (i){sgn (|εt| − c)} is a strictly stationary and strong

mixing process, where c is the median of |εt|, with the mixing coef-

ficients {α(i)}∞i=1 satisfying
∑∞

i=1 α(i) < ∞. (ii) The LRV ξ2 =∑∞
i=−∞E [sgn (|εt+i| − c) sgn (|εt| − c)] is strictly positive.

Assumption 2. (i)The probability density function f|ε| (·) of |εt| satisfies

0 < f|ε| (x) < ∞ for any x ∈ R+, and is continuous at c, where c is the

median of |εt|; (ii)The conditional cumulative density function F|ε|,t−1(x) =

P (|εt| < x|εt−1, εt−1, · · · ) has the first derivative f|ε|,t−1 (x) almost surely

with f|ε|,t−1(c) uniformly integrable and E[f r
|ε|,t−1(c)] <∞ for some r > 1.
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Assumption 3. (i) The kernel function l(·) has bounded support on [−1, 1]

and |l(x)| ≤ 1 for all x on the real line, l(x) = l(−x), l(0) = 1; l(x) is

continuous at zero and for almost all x. (ii) qT → ∞, qT/
√
T → 0 as

T → ∞.

Assumption 1(i) ensures the functional weak convergence of par-

tial sum process sgn (|εt| − c) to Brownian motion with the LRV ξ2 =∑∞
i=−∞E [sgn (|εt+i| − c) sgn (|εt| − c)] , where 0 ≤ ξ2 < ∞, see Theo-

rem 2.20 (ii) and Theorem 2.21(ii) of Fan and Yao (2003). To avoid the

possibility of ξ2 being zero, we further assume it to be strictly positive in

Assumption 1(ii). The two LRVs ω2 and ξ2 are actually equal since sgn (et)

is the same as sgn (|εt| − c). In addition, Assumption 1 does not impose

any restriction on the moments of εt, and hence allows for various types of

heavy-tailed innovations, including the case of infinite variance.

Assumption 2(i) is a general set-up for the LAD-type estimator; see,

e.g., Peng and Yao (2003), Li and Li (2005), and Zhu and Ling (2015). As-

sumption 2(ii) defines the conditional cumulative distribution function and

conditional density function for |εt|, which is also a technique requirement

for the LAD regression under serial dependence, see Assumption 1(iii) of

Herce (1996). Additionally, it is worthwhile to mention that although the

new tests are constructed by employing the LAD method, we do not assume
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the data come from the distribution with zero (conditional or unconditional)

median.

Assumption 3 ensures consistent estimation of ω2 under the null, see

Jansson (2002).

Theorem 1. Suppose Assumptions 1-3 hold, then under H0, as T → ∞

we have

CSMM
d→ sup

0<r≤1
|W (r)| , QSM

d→
∫ 1

0

W 2(r)dr,

whereW (r) = W (r)−rW (1) is a Brownian bridge, andW (·) is the standard

Brownian motion.

This theorem implies that the tests CSMM and QSM still converge to

the classical asymptotic null distributions, and hence their critical values

can be found, for example, in Andrews (1993). The proof of the asymp-

totic distributions here, however, is much more complicated than that in

the LS framework, this is because the function sgn (·) is not everywhere dif-

ferentiable and we proceed by treating the function sgn (·) as a generalized

function with a smooth regular sequence sgnm (·) defined on an appropriate

set of test functions, see more in supplementary material.

The consistency property of the test rejecting H0 for large values of

CSMM and QSM is stated in the following theorem.
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Theorem 2. Suppose that Assumptions 1-3 hold, then for any sequence of

nonstochastic constants
{
CT = o

(√
T/ qT

)}
, we have

Pr(CSMM > CT ) → 1,Pr(QSM > C2
T ) → 1

under HA as T → ∞ .

Theorem 2 shows that under the fixed alternative, CSMM and QSM

diverge to positive infinity with the rates
√
T/ qT and T/ qT respectively.

This is because both the numerator En and the denominator ω̃ in SEn

diverge to infinity under the fixed alternative as T → ∞, but En diverges

faster than ω̃. In particular, En = Op

(
T 1/2

)
and ω̃ = Op

(
q
1/2
T

)
under HA.

The factor qT arises from poor estimation of the LRV ω2 by using the null

residuals {ẽt}Tt=1, which leads to ω̃2 = Op (qT ) under HA, and hence causes

power loss.

3. The modified tests

In order to improve the testing power of CSMM and QSM under HA, we

endeavor to consistently estimate the nuisance parameter ω2 under both

the null and the alternatives. In this section, we propose a modified infer-

ence procedure that is built on nonparametric estimation of the unknown

volatility function, and can ameliorate the diagnostic strength of the tests.
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Specifically, we first employ the nonparametric LAD method to estimate

gt and then obtain a robust LRV estimator ω̂2 by using the nonparamet-

ric residual. Hall et al. (2002) and Ziegelmann (2008) employed the local

linear LAD method to estimate the conditional mean and the conditional

volatility respectively by assuming the regressors are stationary. Here we

also consider the local linear LAD estimator for gt, which is given by ĝt

φ̂t

 = arg min
g,φ∈R2

T∑
s=1

∣∣∣∣|us| − g −
(
s− t

T

)
φ

∣∣∣∣ k(s− t

Th

)
, (3.1)

where k(·) is a kernel function defined on [−1, 1] and h is a bandwidth

parameter satisfying h → 0 and Th → ∞ as T → ∞. We denote the

nonparametric LAD residual as êt = |ut| − ĝt. Based on {sgn (êt)}Tt=1, the

LRV can be estimated by

ω̂2 =
T−1∑

i=−T+1

l(i/qT )γ̂(i), (3.2)

where γ̂(i) = T−1
∑T

t=i+1 sgn (êt) sgn (êt−i) , for i ≥ 0, and γ̂(i) = γ̂(−i) for

i < 0. By comparing (3.2) with (2.3), we note that ω̂2 is constructed in the

same way as ω̃2 only by replacing ẽt with êt in (2.3).

To obtain asymptotic properties of ĝt and ω̂2, we need the following

assumptions:

Assumption 4. The positively deterministic and bounded volatility func-

tion σ (·) has continuous second derivatives on [0, 1].
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Assumption 5. (i)The kernel k(u) : [−1, 1] 7→ R+ is a symmetric and

bounded probability density function. (ii) The bandwidth h satisfies h → 0

and 1/Th→ 0 as T → ∞.

Assumption 6. (i)Assumption 3(i) holds; (ii) The truncation parameter

qT satisfies qT → ∞ and qTh
2 + q2T/Th→ 0 as T → ∞.

Assumption 4 imposes certain smoothness condition on the volatility

function σ (·) and covers both the null and the alternatives. Although this

condition rules out single or multiple breakpoints, our modified tests still

have testing powers against abrupt breaks in σ(·) since broken volatility

can be well approximated by certain smooth functions. Note that we can

approximate the indicator function I(t/T ≥ τ ∗) for some given τ ∗ ∈ (0, 1)

by a smooth function ψ(·) such that I(t/T ≥ τ ∗) ≈ ψ[(t/T −τ ∗)/rT ], where

ψ(·) behaves like a cumulative distribution function (CDF) and rT (rT → 0)

is a smoothing parameter (also see Case II of the local sharp alternative in

Section 3). A popular example of ψ(·) is the CDF of the standard normal

distribution. In the simulation part, we have considered two alternatives

(i.e. DGPP.1 and DGPP.2) where abrupt breaks are allowed in σ(·). Our

tests appear to work satisfactorily for them.

Assumption 5 is a standard assumption in the kernel regression liter-

ature. Under Assumption 5(i), we have
∫ 1

−1
k(u)du = 1,

∫ 1

−1
uk(u)du = 0
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and
∫ 1

−1
u2k(u)du <∞.

Assumption 6(ii) imposes a more strict restriction on qT than that in

Assumption 3(ii).

Lemma 1. Suppose that Assumptions 1-2, 4-5 hold, then for any τ ∈ (0, 1)

we have

√
Th

(
ĝ (τ)− g (τ)− 1

2
h2cσ′′ (τ)µ2

)
d→ N

(
0,
σ2 (τ) ξ2υ2
4f 2

|ε| (c)

)
, (3.3)

where µ2 =
∫ 1

−1
u2k(u)du, υ2 =

∫ 1

−1
k2(u)du , and σ′′ (·) is the second deriva-

tive of σ (·).

We see from Lemma 1 that the asymptotic bias 1
2
h2cσ′′ (·)µ2 of ĝ (·) is

the same as that of the corresponding local linear LS estimator, whereas

their asymptotic variances are different. In most cases, the local linear LAD

estimator can be more efficient than the local linear LS one. Additionally,

the bias disappears when the null holds since σ′′ (·) = 0 under H0.

Lemma 2. Suppose that Assumptions 1-2, 4-6 hold, then the corrected LRV

estimator

ω̂2 p→ ω2

under both the null and the alternatives.

Let SE∗
n =

(√
T ω̂
)−1∑n

t=1 sgn (ẽt), then the modified CUSUM and

Statistica Sinica: Preprint 
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QS tests based on ω̂2 are given by

CSM∗
M = max

1≤n≤T
|SE∗

n| , QS∗
M =

1

T

T∑
n=1

(SE∗
n)

2

By Lemma 2, the corrected LRV estimator ω̂2 always converges to the

true LRV ω2 under both the null and the alternatives due to exploiting

the nonparametric residuals. Thus the modified tests CSM∗
M and QS∗

M

are expected to have correct sizes and enjoy higher testing powers. The

following two theorems show that this intuition is correct.

Theorem 3. Suppose Assumptions 1-2, 4-6 hold, then under H0, as T →

∞ we have

CSM∗
M

d→ sup
0<r≤1

|W (r)| , QS∗
M

d→
∫ 1

0

W 2(r)dr,

whereW (r) = W (r)−rW (1) is a Brownian bridge, andW (·) is the standard

Brownian motion.

Theorem 4. Suppose that Assumptions 1-2, 4-6 hold. Then under HA,

for any nonstochastic sequence CT = o(T 1/2), as T → ∞ we have

Pr(CSM∗
M > CT ) → 1,Pr(QS∗

M > C2
T ) → 1.

The two modified tests CSM∗
M and QS∗

M still converge to the null

asymptotic distributions as before when the null holds, but achieve higher
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testing powers under alternatives since they diverge to positive infinity with

the rates T 1/2 and T , faster than
√
T/ qT and T/ qT , the rates of the two

basic tests CSMM and QSM . This is because ω̂2 always converges to the

true LRV ω2 under both the null and alternatives, which helps remove the

estimated bias.

In order to study the local powers of CSM∗
M and QS∗

M , the next theo-

rem establishes their asymptotic distributions under two sequences of local

alternatives that converge to the null at different rates; namely, H1
LA and

H2
LA given by (3.4) and (3.5) below.

Case I: Local smooth alternatives:

H1
LA : σt = σ0 + bTπ (t/T ) , (3.4)

where bT → 0 and π(·) is a twice continuously differentiable function.

The term bTπ (t/T ) characterizes the degree of departure of the smoothly-

changing volatility σt from the null σ0 at time t. Specifically, π (·) denotes

the direction of departure, while bT is the speed at which the departure of

σt from σ0 at each time point t vanishes to 0 as T → ∞.

Case II: Local sharp alternatives at some point τ ∗:

H2
LA : σt = σ0 + dTψ

(
t/T − τ ∗

rT

)
, (3.5)

where τ ∗ is a given point in (0, 1), ψ (·) is a twice continuously differ-
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entiable function that is unknown and satisfies supz∈R |ψ (z)| < C and

supz∈R |ψ′′ (z)| < C with ψ′′ (·) the second derivative of ψ (·), dT = d (T ) →

0 and rT = r (T ) → 0 as T → ∞. This type of alternatives is also con-

sidered by Chen and Hong (2012) and Chen and Huang (2018) in different

contexts and can be regarded as a type of high frequency local alternatives.

Under H2
LA, the volatility function σt becomes a non-smooth spike at lo-

cation τ ∗ as T → ∞, due to the shrinking width parameter rT . Here, rT

controls the sharpness of the deviation from the null around τ ∗, while dT is

the speed at which the departure of σt from σ0 at each t vanishes to zero.

Theorem 5. Suppose that Assumptions 1-2, 4-6 hold. (i) Under H1
LA with

bT = T−1/2, as T → ∞ we have

CSM∗
M

d→ sup
0<r≤1

|W (r) + ζ1(r)| , QS∗
M

d→
∫ 1

0

(W (r) + ζ1(r))
2 dr,

where ζ1(r) =2cf|ε| (c)
(∫ r

0
π (s) ds− r

∫ 1

0
π (s) ds

)
/σ0ω.

(ii) Under H2
LA with dT → 0, rT → 0,and dT rT = T−1/2, as T → ∞ we

have

CSM∗
M

d→ sup
0<r≤1

|W (r) + ζ2(r)| , QS∗
M

d→
∫ 1

0

(W (r) + ζ2(r))
2 dr,

where ζ2(r) = 2cf|ε| (c)
(∫ (r−τ∗)/rT

−∞ ψ (s) ds− r
∫∞
−∞ ψ (s) ds

)
/σ0ω.

Clearly, when π(·) = 0 in Case I or ψ(·) = 0 in Case II, the results in

Theorem 5 degenerate to Theorem 4. The “non-centrality parameters” ζ1(·)
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and ζ2(·) represent the shifts in charge of asymptotic local powers against

H1
LA and H2

LA. Theorem 5(i) means that CSM∗
M and QS∗

M have non-trivial

asymptotic powers against H1
LA that diverge from the null hypothesis at a

parametric rate of T−1/2. On the other hand, under H2
LA, as long as ψ (·) is a

non-zero function, the non-centrality parameter ζ2(·) is non-trivial. Then,

by choosing suitable sequences of dT and rT , Theorem 5(ii) implies that

our tests also have asymptotic powers in detecting various kinds of struc-

tural breaks in volatilities such as single or multiple breaks since the local

non-smooth and sharp spikes under H2
LA are similar to jumps or temporal

structural breaks.

4. Monte Carlo simulations

Section 4.1 discusses how to choose the bandwidth h for the nonparametric

estimation, and Section 4.2 then conducts a set of simulations to assess the

finite sample performance of the new proposed tests.

4.1 Bandwidth selection

The choice of the bandwidth parameter h plays an important role in non-

parametric estimation. For independent observations, the leave-one-out

cross-validation (CV) is an attractive data-driven method for choosing the
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4.1 Bandwidth selection21

bandwidth, although it also suffers from sample noise, see Härdle et al.

(1988) for detailed discussion. However, if the observations are serially de-

pendent, then the leave-one-out CV is known to be severely affected by the

dependence and will not produce good bandwidths. In order to eliminate

the effect caused by serial dependence, Chu and Marron (1991) suggested

using leave-(2p+ 1)-out CV to choose the bandwidth h. Define a “leave-

(2p+ 1)-out” estimator as ĝcv,t

φ̂cv,t

 = arg min
g,φ∈R2

T∑
s:|s−t|>pT

∣∣∣∣|us| − g −
(
s− t

T

)
φ

∣∣∣∣ k(s− t

Th

)
, (4.1)

where ĝcv,t is the same as ĝt except that the summation is taken for |s− t| >

pT , where pT satisfies pT → ∞ and pT/Th→ 0 as T → ∞.

In addition, the asymptotic mean integrated squared error (AMISE) of

ĝ(·) in (3.3) is given by

AMISE =
υ2ξ

2
∫ 1

0
σ2 (r) dr

4Thf 2
|ε| (c)

+
h4µ2

2c
2
∫ 1

0
(σ′′ (r))2 dr

4
.

By minimizing the AMISE, we obtain the optimal bandwidth

hopt = δξ2/5T−1/5, (4.2)

where ξ2 is the LRV of {sgn (|εt| − c)}Tt=1, and

δ =

(
υ2
∫ 1

0
σ2 (r) dr

4c2f 2
|ε| (c)µ

2
2

∫ 1

0
(σ′′ (r))2 dr

)1/5

.
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The formula(4.2) means that the optimal bandwidth hopt should be

proportional to T−1/5. Consequently, a data-driven choice of h is given by

hcv = argmin
c1T−1/5≤h≤c2T−1/5

T∑
t=1

||ut| − ĝcv,t| , (4.3)

where c1 and c2 are two prespecified constants.

4.2 Simulation results

In this subsection we study finite sample performance of the modified tests

CSM∗
M andQS∗

M , and compare them with the basic tests CSMM andQSM ,

the standard tests LM (LMB) and CUSUM (CSMB), Xu’s (2013) modified

tests LM (LMX) and CUSUM (CSMX).For the tests LMB, CSMB,LMX

and CSMX , we completely follow the testing procedures of Xu (2013). For

nonparametric estimation of gt in (3.1), we use the Epanechnikov kernel

and let the truncation parameter pT = ⌊T 1/3⌋ in (4.1), where ⌊x⌋ is the

integer part of x. Additionally, we set c1 = 0.5 and c2 = 4 in (4.3), which

allows h to be chosen from a wide range. For the LRV estimation in the tests

CSMM , QSM , CSM∗
M and QS∗

M , we choose the Bartlett kernel and specify

the truncation parameter as qT = ⌊T 1/3⌋. Additionally, just as suggested

by one of the referees it seems more reasonable and efficient to directly test

the null H0 : σt = σ0 in mean of the transformed data {|ut|}, which can

also help relax moment restriction on innovations. Hence, we also include
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two mean-based CUSUM(CSMA) and QS(QSA) tests as competitors, and

they are constructed in the same way as our modified tests except that the

calculation are based on the least squares.

First, to investigate the size performance of our tests under H0, we

generate 1000 data sets of random sample {ut}Tt=1 for each T = 250, 500

and 750, and consider the following data generating processes (DGPs)

ut = σtεt, εt = ϕtηt,

ϕ2
t = µ0 + α0ε

2
t−1 + β0ϕ

2
t−1,

where the GARCH(1,1) parameters are set as µ0 = α0 = 0.1 and β0 = 0.6,

and {ηt} is an independently identically distributed (i.i.d.) random variable.

We consider both normal and non-normal disturbances in our experiment,

and specify four types of errors for {ηt}: (1) The standard normal, N(0, 1);

(2) The student-t-distribution with 2 degrees of freedom, t(2); (3) The

skewed student-t-distribution with 3 degrees of freedom and the skewness

parameter being -0.8, st(3,−0.8); (4) The centered chi-squared distribution

with 1 degrees of freedom, x2 (1). We specify σ0 = 1 for the null, and thus

ut is the stationary GARCH(1,1) process under the null.

Table 1 reports the rejection rates of all tests under the null at the

5% significance level, using asymptotic critical values. We find that the

Xu’s tests LMX and CSMX as well as the test QSA suffer from some over-
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Table 1: Empirical rejection probabilities of the tests under the null.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.061 0.049 0.112 0.116 0.062 0.072 0.037 0.050 0.060 0.071

500 0.056 0.061 0.094 0.085 0.067 0.079 0.039 0.047 0.051 0.055

750 0.056 0.053 0.084 0.085 0.052 0.055 0.048 0.053 0.053 0.058

t(2) 250 0.044 0.018 0.064 0.038 0.035 0.062 0.037 0.040 0.055 0.057

500 0.027 0.017 0.042 0.019 0.037 0.056 0.047 0.048 0.062 0.063

750 0.039 0.015 0.048 0.024 0.039 0.067 0.053 0.062 0.055 0.062

st(3,−0.8) 250 0.041 0.014 0.072 0.037 0.041 0.066 0.062 0.066 0.078 0.078

500 0.047 0.023 0.065 0.037 0.049 0.067 0.044 0.048 0.059 0.060

750 0.050 0.029 0.071 0.047 0.063 0.084 0.048 0.052 0.058 0.056

x2(1) 250 0.066 0.026 0.105 0.069 0.068 0.086 0.059 0.062 0.063 0.065

500 0.053 0.034 0.073 0.053 0.061 0.080 0.057 0.063 0.059 0.063

750 0.044 0.035 0.063 0.055 0.074 0.079 0.053 0.060 0.055 0.062

sized distortion under the distributionsN(0, 1) and x2(1) . The tests CSMB

and CSMX display some under-sized distortion under the distributions t(2)

and st(3,−0.8). For the tests LMB and CSMA as well the four LAD-based

tests CSMM , QSM , CSM∗
M and QS∗

M , they all have acceptable sizes in

most cases although they also exhibit a little size distortion, and increasing

sample size T seems to help improve the size performance more or less.

Comparatively speaking, the sizes of the LS-based tests LMB, CSMA and

QSA, especially CSMB, LMX and CSMX , are a little more sensitive to

the types of the error distributions, and the other four LAD-based tests are

more robust and have more stable size performance.

To investigate the empirical powers of the proposed tests under HA, we
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still employ the above DGPs except that we consider the following specifi-

cations for σt:

DGPP.1—Single structural break:

σt =

 σ0

σ0 + σ1

t/T ≤ 0.5

t/T > 0.5
,

DGPP.2—Two structural breaks:

σt =


σ0

σ0 + σ1

σ0

t/T < 0.3

0.3 ≤ t/T ≤ 0.7

t/T > 0.7

,

DGPP.3— Quadratic smooth structural change:

σt = σ0 + σ1 (t/T )
2 ,

DGPP.4—Non-monotonic smooth structural change:

σt = σ0 + σ1G (t/T ) , G (t/T ) = 1− exp
{
−15 (t/T − 0.5)2

}
,

DGPP.5—Oscillating smooth structural change:

σt = σ0 + 0.5σ1(sin(2πt/T ) + 1).

DGPP.1 corresponds to one abrupt change of volatility from σ0 to σ0+σ1

at the middle time ⌊0.5T ⌋. In DGPP.2, the volatility jumps from the level

of σ0 to σ0+σ1 at time ⌊0.3T ⌋ and stays for a period before jumping back at

time ⌊0.7T ⌋. DGPP.3 is a quadratic form in structural change. In DGPP.4,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0207



4.2 Simulation results26

the volatility changes smoothly by exhibiting a symmetric ‘U ’ shape. Lastly,

the volatility in DGPP.5 oscillates between σ0 and σ0+σ1. Without loss of

generality, we specify σ0 = σ1 = 1.

Table 2: Empirical rejection probabilities of the tests under DGPP.1.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.992 0.998 1.000 1.000 1.000 0.999 0.971 0.969 0.979 0.975

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t(2) 250 0.177 0.176 0.260 0.255 0.699 0.747 0.925 0.930 0.942 0.947

500 0.236 0.258 0.302 0.314 0.848 0.873 0.998 0.998 0.998 1.000

750 0.319 0.348 0.377 0.394 1.000 1.000 1.000 1.000 1.000 1.000

st(3,−0.8) 250 0.294 0.333 0.411 0.433 0.885 0.907 0.995 0.992 0.999 0.995

500 0.454 0.481 0.528 0.546 0.968 1.000 1.000 1.000 1.000 1.000

750 0.535 0.556 0.583 0.607 1.000 1.000 1.000 1.000 1.000 1.000

x2(1) 250 0.348 0.422 0.521 0.577 0.934 0.942 1.000 1.000 1.000 1.000

500 0.645 0.712 0.733 0.769 0.995 0.997 1.000 1.000 1.000 1.000

750 0.830 0.861 0.868 0.899 0.999 0.999 1.000 1.000 1.000 1.000

Tables 2-6 report the testing powers for DGPP.1-5, which are still cal-

culated at the 5% significance level. When the error follows the normal

distribution, we find that the six LS-based tests clearly outperform the

other four LAD-based tests in almost all cases. The tests LMX and CSMX

are the best ones; the tests CSMA and QSA also perform very well and

their powers are very close to those of LMX and CSMX in most cases.

However, when we turn to the non-normal errors, the four LAD-based tests

CSMM , QSM , CSM
∗
M and QS∗

M come to exhibit obvious advantages over
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Table 3: Empirical rejection probabilities of the tests under DGPP.2.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.111 0.139 0.757 0.777 0.622 0.718 0.329 0.273 0.505 0.458

500 0.852 0.872 0.990 0.991 0.992 0.997 0.797 0.776 0.887 0.857

750 0.982 0.984 0.998 0.998 1.000 1.000 0.963 0.952 0.986 0.972

t(2) 250 0.003 0.002 0.027 0.033 0.110 0.132 0.272 0.211 0.422 0.355

500 0.010 0.008 0.028 0.029 0.309 0.385 0.702 0.663 0.790 0.767

750 0.013 0.014 0.033 0.039 0.527 0.570 0.915 0.886 0.965 0.930

st(3,−0.8) 250 0.008 0.008 0.046 0.047 0.233 0.286 0.450 0.407 0.639 0.606

500 0.019 0.023 0.058 0.082 0.620 0.684 0.911 0.913 0.955 0.950

750 0.050 0.063 0.140 0.156 0.802 0.847 0.997 0.996 1.000 0.998

x2(1) 250 0.004 0.008 0.036 0.056 0.239 0.322 0.678 0.689 0.839 0.814

500 0.022 0.036 0.114 0.145 0.687 0.775 0.995 0.996 0.997 0.998

750 0.071 0.098 0.268 0.301 0.926 0.939 1.000 1.000 1.000 1.000

Table 4: Empirical rejection probabilities of the tests under DGPP.3.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.924 0.916 0.957 0.958 0.923 0.955 0.638 0.740 0.722 0.776

500 0.995 0.995 0.997 0.997 0.995 0.998 0.923 0.954 0.934 0.959

750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t(2) 250 0.143 0.103 0.204 0.163 0.404 0.510 0.535 0.646 0.609 0.680

500 0.192 0.155 0.243 0.196 0.621 0.718 0.855 0.906 0.874 0.915

750 0.241 0.191 0.277 0.234 0.736 0.808 0.947 0.972 0.963 0.977

st(3,−0.8) 250 0.242 0.217 0.331 0.294 0.605 0.720 0.794 0.873 0.844 0.886

500 0.353 0.290 0.420 0.362 0.832 0.891 0.986 0.992 0.987 0.993

750 0.430 0.397 0.486 0.455 0.911 0.939 0.999 1.000 0.999 1.000

x2(1) 250 0.289 0.223 0.391 0.345 0.656 0.755 0.983 0.995 0.990 0.996

500 0.477 0.440 0.556 0.529 0.883 0.923 0.999 1.000 0.999 1.000

750 0.650 0.625 0.705 0.690 0.958 0.980 1.000 1.000 1.000 1.000
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Table 5: Empirical rejection probabilities of the tests under DGPP.4.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.555 0.363 0.810 0.704 0.521 0.576 0.173 0.160 0.324 0.307

500 0.837 0.659 0.946 0.915 0.813 0.890 0.458 0.511 0.613 0.641

750 0.957 0.882 0.991 0.977 0.962 0.993 0.691 0.814 0.832 0.893

t(2) 250 0.133 0.066 0.202 0.115 0.189 0.189 0.153 0.120 0.251 0.214

500 0.121 0.055 0.174 0.089 0.286 0.270 0.375 0.393 0.482 0.478

750 0.168 0.076 0.208 0.119 0.389 0.412 0.574 0.657 0.702 0.744

st(3,−0.8) 250 0.171 0.073 0.260 0.165 0.291 0.282 0.276 0.262 0.467 0.458

500 0.236 0.111 0.304 0.188 0.449 0.490 0.663 0.800 0.808 0.874

750 0.267 0.153 0.343 0.218 0.619 0.662 0.880 0.975 0.951 0.992

x2(1) 250 0.225 0.108 0.341 0.227 0.314 0.302 0.515 0.725 0.744 0.838

500 0.312 0.174 0.426 0.274 0.509 0.526 0.958 0.999 0.986 0.998

750 0.413 0.243 0.525 0.385 0.717 0.777 0.999 1.000 1.000 1.000

Table 6: Empirical rejection probabilities of the tests under DGPP.5.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.857 0.896 0.938 0.962 0.943 0.937 0.713 0.734 0.771 0.769

500 0.992 0.995 0.997 0.998 0.997 0.997 0.950 0.949 0.963 0.958

750 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.996 0.999 0.998

t(2) 250 0.088 0.088 0.146 0.139 0.375 0.429 0.601 0.598 0.645 0.643

500 0.112 0.130 0.161 0.157 0.575 0.619 0.901 0.894 0.912 0.906

750 0.152 0.165 0.200 0.202 0.766 0.781 0.980 0.979 0.985 0.982

st(3,−0.8) 250 0.139 0.147 0.226 0.250 0.620 0.654 0.851 0.864 0.890 0.893

500 0.234 0.273 0.307 0.337 0.826 0.859 0.990 0.989 0.991 0.990

750 0.295 0.354 0.378 0.412 0.923 0.915 1.000 1.000 1.000 1.000

x2(1) 250 0.176 0.196 0.291 0.318 0.675 0.717 0.995 0.995 0.997 0.997

500 0.347 0.410 0.453 0.511 0.900 0.902 1.000 1.000 1.000 1.000

750 0.496 0.566 0.588 0.649 0.964 0.969 1.000 1.000 1.000 1.000
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the six LS-based tests. Specifically, the two modified tests CSM∗
M and

QS∗
M always enjoy higher testing powers than the corresponding basic tests

CSMM and QSM all the time, this is because the modified ones are con-

structed by using information of the alternatives, so no doubt they are

expected to have better power performance in finite samples. Additionally,

although the tests CSMA and QSA are inferior to the four LAD-based tests

when the errors are non-normally distributed, they are the best among the

six LS-based ones. After all, they only require the existence of the second

moment, and hence are also robust to heavy-tailed innovations.

To confirm that the proposed tests exhibit monotonic powers when the

deviation from the null is increased, we assume the empirical powers of all

tests to be a function of σ1. Here we keep all specifications unchanged as

before except that we let T = 250 (since the results for T = 500, 750 are

similar). The resulting power functions of DGPP.1-5 with four types of

error distributions are plotted in Figure 1. The rows denote the different

specifications for error distributions, and the columns represent the differ-

ent alternatives for σt. From Figure 1, it appears that the power functions

of the ten tests except LMB and CSMB all enjoy monotonic powers for the

different distributions and the different alternatives although they exhibit

different climbing rates. Comparatively speaking, when the errors are nor-
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Figure 1: Empirical power curves of all tests under DGPP.1-5 with different

distributions.
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maly distributed the tests CSM∗
M and QS∗

M perform well although they

are still inferior to Xu’s tests LMX and CSMX as well as the tests CSMA

and QSA. When the errors are non-normally distributed, CSM∗
M and QS∗

M

have much faster climbing-up rates than the other tests. In addition, we

note that the tests CSMM and QSM also display excellent performance

under DGPP.1-5.

In the supplemental material we also examine residual-based tests for

changing volatility when ut is not directly observable and is estimated by

the regression residuals. Suppose that the time series follows an AR(1)

model: yt = 0.1 + 0.5yt−1 + ut, where ut is still generated by the model

(2.1). The whole Monte Carlo experiment designs for ut are the same as

before. To test for changing volatility, we first estimate the AR(1) model

by the OLS regression and obtain the estimated residuals ût. Then the

residual-based tests are constructed by employing ût to replace ut. We find

the effects of estimating ut are almost negligible, and the residual-based

tests have very similar finite sample performance under both H0 and HA as

if ut were observed.

Additionally, we also study the time-varying coefficient GARCH(1, 1)

model for ut:

ut = ftηt, f
2
t = µt + αtε

2
t−1 + βtf

2
t−1,
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where {ηt} is specified the same as before, allowing for four types of errors,

and the coefficients µt, αt and βt are time dependent under alternatives.

Although this time-varying coefficient GARCHmodel does not directly fit in

our testing framework, our simulation results show that our proposed tests

also have testing powers against this sort of alternatives. For simplicity, we

only consider one break occurring at the middle time in the following two

DGPs:

DGPP.6: Structural break in the ARCH coefficient αt:

µt = 0.1, αt =

 0.1

0.3

t/T ≤ 0.5

t/T > 0.5
, βt = 0.6,

DGPP.7: Structural break in the GARCH coefficient βt:

µt = 0.1, αt = 0.1, βt =

 0.4

0.8

t/T ≤ 0.5

t/T > 0.5
.

The testing powers for DGPP.6-7 are reported in Tables 7- 8. We find

that all tests have powers to detect the structural break in the GARCH

coefficients αt and βt. Under the normal distribution, the four LAD-based

tests are still a little inferior to the six LS-based tests in most cases. On

the contrary, under the non-normal distributions, the former four tests ob-

viously outperform the latter six ones, and the proposed tests CSM∗
M and

QS∗
M always enjoy highest testing powers in all tests considered. These

testing results are also consistent with those findings in Tables 2-6.
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Table 7: Empirical rejection probabilities of the tests under DGPP.6.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.559 0.601 0.715 0.756 0.493 0.573 0.485 0.489 0.523 0.512

500 0.809 0.855 0.880 0.912 0.766 0.809 0.746 0.753 0.766 0.757

750 0.904 0.921 0.940 0.957 0.914 0.927 0.884 0.872 0.891 0.876

t(2) 250 0.058 0.031 0.105 0.057 0.088 0.112 0.078 0.093 0.098 0.105

500 0.045 0.021 0.072 0.042 0.095 0.144 0.126 0.135 0.139 0.146

750 0.047 0.031 0.076 0.040 0.110 0.148 0.158 0.167 0.173 0.174

st(3,−0.8) 250 0.098 0.062 0.144 0.115 0.123 0.173 0.213 0.240 0.245 0.267

500 0.113 0.071 0.153 0.125 0.149 0.216 0.339 0.359 0.357 0.366

750 0.120 0.079 0.157 0.134 0.194 0.262 0.432 0.426 0.469 0.444

x2(1) 250 0.133 0.090 0.216 0.193 0.280 0.301 0.490 0.498 0.508 0.523

500 0.177 0.142 0.232 0.214 0.403 0.439 0.725 0.722 0.734 0.726

750 0.228 0.210 0.302 0.278 0.546 0.578 0.816 0.815 0.823 0.818

Table 8: Empirical rejection probabilities of the tests under DGPP.7.

Error T LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

N(0, 1) 250 0.996 0.999 1.000 1.000 0.999 0.997 0.980 0.981 0.985 0.982

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t(2) 250 0.163 0.159 0.247 0.250 0.672 0.744 0.854 0.870 0.888 0.891

500 0.249 0.249 0.324 0.305 0.853 0.874 0.996 0.994 0.996 0.994

750 0.304 0.326 0.377 0.384 0.921 0.930 1.000 1.000 1.000 1.000

st(3,−0.8) 250 0.343 0.362 0.467 0.477 0.822 0.868 0.991 0.989 0.993 0.992

500 0.505 0.517 0.590 0.605 0.940 0.947 1.000 1.000 1.000 1.000

750 0.599 0.622 0.678 0.672 0.976 0.986 1.000 1.000 1.000 1.000

x2(1) 250 0.472 0.525 0.633 0.664 0.967 0.972 1.000 1.000 1.000 1.000

500 0.720 0.768 0.810 0.838 0.999 0.997 1.000 1.000 1.000 1.000

750 0.862 0.880 0.901 0.921 0.999 0.998 1.000 1.000 1.000 1.000
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To sum up, our simulation results suggest that the two modified tests

CSM∗
M and QS∗

M exhibit reasonable size accuracy for both normal and

non-normal errors. When the data are characterized by heavy-tailed distri-

butions, they also have all-around better powers in detecting various types

of changing volatilities than other popular tests.

5. Real data applications

In this section we compare the modified tests CSM∗
M and QS∗

M with six

other tests LMB,CSMB, LMX , CSMX , CSMA, QSA, CSMM and QSM in

detecting whether there exist structural changes in the volatilities of daily

U.S. dollar/Russian Ruble exchange rate during Russia-Ukraine war and of

daily S&P 500 index during COVID-19. The whole testing procedures of

building these tests completely follow the simulation section.

5.1 U.S. dollar/Russian Ruble exchange rate

In this subsection, we consider the log return (×100%) of U.S. dol-

lar/Russian Ruble exchange rate over the period September 1, 2021 to Au-

gust 31, 2022 with a total of 255 observations {rt}255t=1. Figure 2(a) displays

the time plot of the absolute values of {rt}255t=1 as the proxies for volatilities

and Figure 2(b) is the plot of the absolute values of AR(1) residuals {et}254t=1
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5.1 U.S. dollar/Russian Ruble exchange rate35

based on the autoregressive model with lag order one. Visual inspection of

Figure 2(a)-(b) reveals that the exchange rate return experienced a highly

volatile period, and exhibited completely different dynamic characteristics

since the middle time of the samples, which coincided with Russian invasion

of Ukraine that started on February 24, 2022. So, any reasonable tests are

expected to find such abnormal dynamics in volatility due to outbreak of

the war. By simple calculation we have the skewness 2.571 and the kurtosis

22.53 for {rt}255t=1, and the skewness 2.004 and the kurtosis 21.73 for {et}254t=1.

Figure 3(a)–(b) also plot the kernel densities of {rt}255t=1 and {et}254t=1 with

their corresponding normal densities. By comparison, we know that the ex-

change rate sequences obviously deviate away from the normal distribution.

Hence it is more suitable to use the LAD-based tests in this case.

LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

Return(T = 255) 5.549 1.177 6.995 1.321∗ 1.885∗∗∗ 0.813∗∗∗ 2.042∗∗∗ 1.265∗∗∗ 2.228∗∗∗ 1.640∗∗∗

Residual(T = 254) 5.299 1.149 6.625 1.284∗ 1.822∗∗∗ 0.747∗∗∗ 1.973∗∗∗ 1.107∗∗∗ 2.240∗∗∗ 1.427∗∗∗

Table 9: The testing results for U.S. dollar/Russian Ruble exchange rate based on the

original series and AR(1) residuals with * and *** representing 10% and 1% significance

levels respectively.

Table 9 reports the testing results for the null hypothesis. As a by-

product of our testing procedure, the LAD nonparametric estimate of gt
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Figure 2: Absolute log returns, absolute AR(1) residuals, and nonparametric

volatility estimate (thick solid lines) for U.S. dollar/Russian Ruble exchange rate.
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Figure 3: The kernel densities of log returns and AR(1) residuals and the normal

densities with the corresponding same means and variances.
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that is proportional to the deterministic volatility σt is also plotted as a

thick solid line in Figure 2(a)-(b). From Table 9, we find that the four

LAD-based tests reject the null at 1% significance level by using either

the log returns or the AR(1) residuals. Of course, the two modified tests

CSM∗
M and QS∗

M have bigger values than the corresponding tests CSMM

and QSM , respectively. The test CSMX of Xu (2013) is only significant

at 10% level, and his test LMX as well as the conventional tests LMB

and CSMB can not reject the null even at 10% significance level. We also

find that the tests CSMA and QSA suggested by one of the referees also

work well, and reject the null at 1% level, but their statistical values are

smaller than those of CSMM and QSM , let alone the values of CSM∗
M and

QS∗
M .This result manifests the robustness of the proposed tests for heavy-

tailed financial data. As a consequence, we draw the conclusion that the

volatility of the U.S. dollar/Russian Ruble exchange rate return experienced

structural changes during September, 2021 to August, 2022.

5.2 S&P 500 index

The second example is to apply our proposed tests to detect structural

changes in volatility of daily S&P 500 index during the first year of the

outbreak of COVID-19. The data cover the period from November 1, 2019

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0207



5.2 S&P 500 index38

to October 29, 2020 with 252 daily observations {Rt}252t=1, which is calculated

by taking logdifference (×100%) of the daily closing price index. Similarly,

Figure 4(a)-(b) give the time plots of absolute returns {Rt}252t=1 and the

absolute AR(1) residuals {et}251t=1. It is obvious that the two series suffer

big volatilities after March, 2020. Similarly, we also calculate the skewness

and the kurtosis, with -0.860 and 11.83 for {Rt}252t=1 and -1.336 and 11.41 for

{et}251t=1. Figure 5(a)-(b) then plot the kernel densities of {Rt}252t=1 and {et}251t=1

as well as their corresponding normal densities. All evidence demonstrates

that the S&P 500 index follows a non-gaussian distribution.

2019/11 2020/03 2020/11
0

5

10

15
(a) Absolute log returns

2019/11 2020/03 2020/11
0

5

10

15
(b) Absolute AR(1) residuals

Figure 4: Absolute log returns, absolute AR(1) residuals, and nonparametric

volatility estimate (thick solid lines) for S&P 500 index

Now we formally examine whether there exist structural changes in

volatility of daily stock returns during the period of COVID-19. Table 10
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Figure 5: The kernel densities of log returns and AR(1) residuals and the normal

densities with the corresponding same means and variances.

shows that the four LAD-based tests LMB, CSMB, LMX and CSMX are all

statistically insignificant even at 10% significance level whether the original

series or AR residuals are used. The two tests CSMA and QSA reject the

null only at 10% significance level. In contrast, the four LAD-based tests

CSMM , QSM , CSM∗
M and QS∗

M all reject the constant volatility at 1%

significance level.

The above two examples demonstrate that the presence of heavy tails

in empirical data can invalidate the traditional CUSUM and QS tests as

well as the modified tests of Xu(2013). Although the two tests suggested

by one of the referees also work well and have some powers to detect struc-

tural changes in volatilities, our proposed LAD-based tests , especially the
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LMB CSMB LMX CSMX CSMA QSA CSMM QSM CSM∗
M QS∗

M

Return(T = 252) 3.321 0.903 4.755 1.080 1.234∗ 0.385∗ 2.000∗∗∗ 0.796∗∗∗ 2.287∗∗∗ 0.996∗∗∗

Residual(T = 251) 3.635 0.950 5.612 1.180 1.319∗ 0.410∗ 1.877∗∗∗ 0.613∗∗∗ 2.091∗∗∗ 0.765∗∗∗

Table 10: The testing results for S&P 500 index based on the original series and AR(1)

residuals with * and *** representing 10% and 1% significance levels respectively.

two modified ones, are more robust and more powerful under non-normal

distributions.

6. Extension to multivariate volatility

As pointed out by one of the referees, it is important to consider testing for

structural changes in multivariate volatility. This section extends univariate

volatility models to multivariate ones. For simplifying exposition, some

notations are introduced first. For anm×1 vector α =(α1, . . . , αm)
′ ,∥α∥1 =∑m

i=1 |ai|. For a d× d matrix A, A(i,j) denotes its (i, j) th element, vech(A)

is a vector obtained by stacking all columns of the lower triangular part

of A, and sgn (A) denotes calculating every element A(i,j) in A with the

function sgn (·).

Let ut = (u1t, . . . , udt)
′, t = 1, . . . , T , be a d-dimensional vector of
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random variables. The multivariate volatility model is given by

ut = Σ
1/2
t εt, t = 1, · · · , T, (6.1)

where Σt = Σ(t/T ) is assumed to be an unknown d × d positive def-

inite and deterministic covariance matrix of the scaled time t/T , and

εt = (ε1t, · · · , εdt)′ is a d × 1 strictly stationary and strong mixing error

process. Here we are interested in testing the null hypothesis

H0 : Σt = Σ0,

and the alternative is HA : Σt ̸= Σ0. Let C represent the median of εtε
′
t

and denote Gt = Σ
1/2
t CΣ

1/2
t , then the model (6.1) can be rewritten as

utu
′
t = Gt + et,

where et = Σ
1/2
t (εtε

′
t − C) Σ

1/2
t satisfies E [sgn (et)] = 0. As a result,

testing the null hypothesis of H0 : Σt = Σ0 is equivalent to checking whether

Gt = G0 holds over time, where G0 = Σ
1/2
0 CΣ

1/2
0 is a positive definite

constant matrix.

Under the null, the LAD estimator for G0 is given by

G̃ = arg min
G∈Rd×d

T∑
t=1

∥vech (utu′t −G)∥1 ,

and the LAD residual is ẽt = utu
′
t − G̃. Define the following empirical

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0207



42

process

S̃n =
1√
T

n∑
t=1

vech [sgn (ẽt)] ,

where n = 1, . . . , T . Under H0, the fluctuation in {vech [sgn (ẽt)]}Tt=1 is sta-

ble around zero vector, and S̃n, under some regularity conditions, converges

weakly to a multivariate Brownian bridge with the LRV Ω =
∑∞

i=−∞ Υ(i)

with Υ (i) = E
{
vech [sgn (et)] (vech [sgn (et−i)])

′}. In the presence of

structural changes in Σt, S̃n will deviate away from mean zero vector. Since

the limiting process of S̃n has the LRV Ω, appropriate standardization is

needed to remove it. Let Ω̃ be an LRV estimator for Ω, we may consider

the multivariate versions of the CUSUM and QS test statistics as follows:

MSM = max
1≤n≤T

S̃ ′
nΩ̃

−1S̃n,MQM =
1

T

T∑
n=1

S̃ ′
nΩ̃

−1S̃n,

where Ω̃ =
∑T−1

i=−T+1 l(i/qT )Υ̃(i), Υ̃(i) =

T−1
∑T

t=i+1 vech [sgn (ẽt)] (vech [sgn (ẽt−i)])
′ for i ≥ 0, and Υ̃(i) = Υ̃′(−i)

for i < 0, l(·) is the kernel function, and qT is the truncation parameter.

Similarly, the LRV estimator Ω̃ is not consistent for Ω under alterna-

tives, and may lead to power loss in our testing procedure. In order to im-

prove testing powers, we can construct the modified multivariate CUSUM

and QS tests that are built on nonparametric estimation of Gt. The local

linear LAD estimator for Gt , denoted as Ĝt, is obtained by minimizing the
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following target function

T∑
s=1

∥∥∥∥vech [usu′s −G−
(
s− t

T

)
G∗
]∥∥∥∥

1

k

(
s− t

Th

)
,

and the LAD nonparametric residual, say êt = utu
′
t − Ĝt, is obtained as

well. Then the two modified test statistics are given by

MS∗
M = max

1≤n≤T
S̃ ′
nΩ̂

−1S̃n,MQ∗
M =

1

T

T∑
n=1

S̃ ′
nΩ̂

−1S̃n,

where Ω̂ is estimated in the same way as Ω̃ except that we replace the null

residual ẽt by the nonparametric residual êt.

Under certain assumptions, we can derive the asymptotic distributions

ofMSM ,MQM ,MS∗
M andMQ∗

M under the null and under the alternatives,

whose proofs are beyond the scope of the present paper, and are left for

future researches.

7. Conclusion

This paper proposes two modified CUSUM and LM tests to examine struc-

tural changes in volatility. The two tests are constructed in the framework

of LAD regression so that they are robust to various kinds of heavy-tailed

innovations and outliers. In addition, we also utilize information of the al-

ternatives to estimate the long-run variance so that the two modified tests

enjoy higher testing powers compared with the tests that are built only
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using information of the nulls. The asymptotic results demonstrate that

the new tests weakly converge to the supremum of the absolute value of a

Brownian bridge and the integral of a squared Brownian bridge respectively

under the null, and are consistent against any fixed alternatives that devi-

ate from the null. They also have nontrivial asymptotic powers against two

sequences of local alternatives. Monte Carlo simulations indicate that our

proposed tests have both acceptable sizes and all-around good powers in

finite samples, obviously outperforming the tests built on the LS regression

if the errors are heavy-tailed and skewed. So the proposed tests can be

used as effective supplements to existing tests when the data are charac-

terized by non-Gaussian distributions. Two empirical examples concerning

detection of the structural changes in volatilities of U.S. dollar/Russian Ru-

ble exchange rate and S&P 500 index also illustrate the usefulness of our

testing methods in real datasets. One possible extension is to generalize

our proposed tests to the context of multivariate volatility, which is left for

future research.

Supplementary Material

The online Supplementary Material contains two Appendices S1 and S2,

where Appendix S1 provides the technique details of Theorem 1-5 and
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Lemma 1-2, and Appendix S2 gives some additional simulation results when

ut is not directly observable.
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