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Abstract: A basic task in causal inference is to determine whether a cause-effect
relationship exists between two sets of variables, akin to a binary classification
problem. Given a sequence of independent and identically distributed paired
vectors, one can use the kernel mean embedding of probability distributions to
map empirical distributions into a reproducing kernel Hilbert space and then train
a classifier in that feature space to predict the causal direction for future pairs.
This strategy, however, is vulnerable to label noise (mislabeling), a common issue
in causation studies. In this paper, we analyze and quantify mislabeling effects.
We develop a valid learning method that explicitly accounts for label noise and

establish theoretical results accordingly.
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1. Introduction

Learning cause-effect relationships has attracted extensive attention in both
statistical and machine learning communities. The potential outcome frame-
work, originating from Neyman (1923)), is a popular statistical approach to
infer causality (Rubin [1974). Alternatively, learning causal relationships
among variables can be framed as a supervised classification problem. In
principle, all relevant variables, including causes, outcomes, and confound-
ing factors, can be organized into ordered pairs (X, W), where X is a can-
didate cause and W is a candidate effect. One may (possibly exhaustively)
enumerate distinct (X, W) pairs and assign a binary label, 1 or —1, to indi-
cate whether X is the cause of W using a study-specific labeling rule. The
resulting task then becomes a binary classification problem with the binary
label, denoted [, as the output and (X, W) as the input.

A motivating example is the SUP3 dataset from the Kaggle competition
(Guyon 2013), consisting of n = 162 variable pairs across diverse domains,
such as chemistry, climatology, ecology, economy, engineering, epidemiol-
ogy, genomics, medicine, physics, and sociology. Each pair is labeled as
either 1 or —1, indicating the presence or absence of a causal relationship
within the pair.

Lopez-Paz et al. (2015) framed learning cause-effect relationships for



paired vectors as a classification problem using kernel mean embeddings in
the reproducing kernel Hilbert space (RKHS), a method further explored by
other authors, including Mooij et al. (2016), Monti, Zhang and Hyvérinen
(2020), and Tagasovska, Chavez-Demoulin and Vatter (2020).

Many methods assume training data are measured without error, i.e.,
covariates are error-free and labels are correct. In practice, this assump-
tion is often violated: data may exhibit covariate error (aka input error)
and response error (aka output error) (e.g., Carroll et al. 2006; Yi 2017}
Yi, Delaigle and Gustafson [2021). When the response encodes class mem-
bership, response error is known as “label noise”, “label corruption”, or
“mis-labeling” in machine learning (e.g., Guo, Wang and Yi 2023; Guo, Yi
and Wang 2024).

Here we focus on the scenario in which input variables X and W are
measured without error, but the output label [ is subject to mislabeling,
a common issue in learning causation relationships. Label noise can stem
from ambiguous instructions, limited annotator expertise, subjective judge-
ment, uncertainty, imprecise answers to sensitive questions, or imperfect
instruments. In observational causal discovery, mislabeling is particularly
concerning because unobserved confounding and other hidden factors can

obscure the true causal direction.



Building on the framework of Lopez-Paz et al. (2015) for classification
learning without mislabeling, we examine mislabeling effects and contribute
by (1) expanding the causal learning framework to account for mislabeled
outputs, (2) analyzing the impact of ignoring label noise, (3) establishing
theoretical properties that generalize some existing results, (4) devising a
correction method to accommodate the label noise effects, and (5) intro-
ducing new metrics to evaluate classifier performance under mislabeling.

The remainder of this article is organized as follows. Sections [2] and
consider the case of precisely measured variables. Sections [4] - [6] focus
on label noise, examining its effects in Section [d, proposing our correction
method in Section [5 and introducing new metrics with sensitivity analyses
in Section [6] Finally, Section [7] provides discussions, with technical details

and additional numerical studies deferred to the supplementary material.

2. Learning Framework

2.1 Notation and Data Format

Considering the causal learning framework considered by Lopez-Paz et al.
(2015), suppose Z; = (X;,W;) are independent random variables for i =
1,---,n, and for each i, [; is a binary label, taking value 1 if X; is the

cause of W; and value -1 otherwise. Here, X; and W; can be either vectors



2.1 Notation and Data Format

or univariate random variables. As an example with n = 2, X; and W,
may represent respectively an individual’s smoking status and lung cancer
status, while X, and W5 may respectively indicate the raining status and
presence of clouds for a day. While pairs Z; and Z5 have distinct practical
meanings, a common question is to examine the presence or absence of the
causal relationship for the variables within them, which can be reflected by
the value of their associated binary label.

Additionally, for each ¢ = 1,--- ,n, there is a random sample of mea-
surements for paired input Z;, denoted as S; = {Zz-j £ (Xii, Wis) ‘ By =
1,--- ,mi}, where the Z;; with j = 1,--- ,m; are independently and identi-
cally distributed (i.i.d) having the same joint probability distribution P; of
random vector Z;, and m; is a positive integer that may depend on 7. These
samples could, for example, represent measurements of smoking status and
lung cancer status for m; patients or measurements of raining status and
the presence of clouds over m; days. This framework was considered by
Lopez-Paz et al. (2015), with the objective of training a binary classifier
using the output data {li | 1=1,--- ,n}, together with mapping the input
S; into a feature space. The goal is to predict the causation for a future
new pair of variables, say (X, W)

We make some comments here. As the practical meaning for each pair



2.1 Notation and Data Format

Z; may differ across different indices ¢, analyzing them together might ap-
pear unnatural. However, if the paired variables share a similar or the same
distribution, it is reasonable to study them within a common framework.

While the Z; differ for different index ¢, they can share some common
elements or be related in nature; the order of elements in Z; also matters.
For example, to examine the causal relationship between smoking status
and lung cancer, define 7; = (X3, W;), with X; denoteing smoking status
and W, denoting lung cancer status. Similarly, to study the relationship
between chest-pain status and lung cancer, define Zy = (Xo, Ws), with X,
denoting chest pain status and W5 denoting lung cancer status. These two
pairs share the lung-cancer status, though they are represented by different
symbols W; and W,. Additionally, we may have [; = 1, showing that
smoking is the cause of lung cancer, and [, = —1, indicating that chest
pain is not the cause of lung cancer. On the other hand, if we interchange
the roles of X, and W5 such that X, represents lung cancer status and Wy
indicates chest pain status, then we may assign [, = 1 to indicate that lung
cancer causes chest pain (Potter and Higginson 2004).

Although variables in different pairs Z; = (X;,W;) for i = 1,--+ | n
may share some elements or have practical connections, replicate measure-

ments for Z;, denoted {Zij 2 (X, Wi) } j=1--- ,mi}, are assumed



2.1 Notation and Data Format

to be independently collected from m; randomly selected subjects or units.
Additionally, &1, -+, S, are assumed to be independently formed.

More formally, let (Z,7,) denote a separable topological space, with
T, representing the topology on the set Z (Armstrong [1983)), and let o(7,)
denote the o-algebra generated by 7,. Let P denote the set of all Borel prob-
ability measures on the measurable space (Z,0(7,)), and let £ = {—1,+1}
denote the label space. Let M denote a mother distribution defined on
P x L. Fori=1,--- n, we assume that Z; is a random variable mapping
from a probability space (€2, &, P) to the measurable space (Z,0(7,)), with
2, £ and P representing a set, o-algebra, and probability measure, respec-
tively. We further assume that {{Pz-,li} ‘ i=1,--- ,n} are independent
and identically distributed (i.i.d.) from M, where P; is the probability
measure of Z;.

In summary, the data collection process involves two-stage sampling.
First, n i.i.d. pairs {{Pi,li} ‘ =1, ,n} are generated from the mother
distribution M; and then for each 7, m; i.i.d random pairs S; = {Zij | g =
1,--- ,mi} are generated from the probability measure P;. This two-stage
sampling framework is widely used in various domains, including distribu-

tion learning (e.g., Szabd et al. |2016) and multi-instance learning (e.g.,

Zhou and Xu 2007). In distribution learning, the mother distribution M



2.2 Training and Prediction Procedures

is called a Meta distribution, where the i.i.d. assumption in the first stage
sampling is typically imposed in both causal learning and distribution learn-
ing, although testing this assumption is difficult due to the unavailability

of the probability measure P;.

2.2 Training and Prediction Procedures

Lopez-Paz et al. (2015]) developed the following learning algorithm:

e Step 1: for each 7, we construct the probability measure:

]

Ps,(A*) £ . Z[{ZU € A*} forany A* € o(7.), (2.1)
U

where I(-) represents the indicator function.

e Step 2: Let £ : Z x Z — R denote a continuous, bounded, and
positive-definite kernel function, and let H, denote the induced repro-
ducing kernel Hilbert space (RKHS) with the inner product, denoted
<+, - >y,, (Muandet et al. 2017, Section 2.2). For each i, use the
kernel mean embedding of probability distributions to map Ps, into Hy,

and let ug(Ps,) denote its empirical kernel mean embedding, given by

1
Ps)=—S " k(Z:.-)
i (Ps,) mizl (Zij, )

j=

As explained in Section of the supplementary material, p(Ps,) is a

random function from Z to R due to the randomness of S;; when the



sample S, is realized as s;, the resulting p;(Ps,) becomes a determinis-
tic function from Z to R. Theorem [S1|in the supplementary material
establishes the convergence in mean of the empirical kernel mean em-
bedding to the true kernel mean embedding. This mapping allows us

to leverage the useful properties of the Hilbert space to analyze the

data S; through p(Ps,).

o Step 3: Using the data {{ux(P,).Li} | i = 1,---,n}, we train a
nonlinear binary classifier with {y4(P,) |i=1,--- ,n} and {l; | i =

1,--- ,n} taken as the input and output, respectively.

The goal is to use the trained classifier to predict whether a new vector,

say X, is the cause of another new vector, say W, using their realizations,

denoted by 5 = {(fj,fu;) ‘ j=1,--- ,ﬁz}.
3. Causation Learning Theory

For the kernel function k considered in Step 2 of Section[2.2]and any P € P,
let py(P) denote the kernel mean embedding of probability distributions that
maps P into RKHS H}, which represents a function from Z to R, as detailed
in Section of the supplementary material. Let py(P) = {ux(P) | P €
73}, which is a subset of Hy: pup(P) C Hy. Let M; denote a measure

on pi(P) x L induced by M (Lopez-Paz et al. 2015, Lemma 2). Then



{{uk(Pi),li} ‘ i=1,--- ,n} is a sequence of i.i.d copies drawn from My,
which are used to train a binary classifier in the space Hy.

Let G = { g Hr — ]R’ g is a measurable functional}, where ¢ in G is
termed a functional because it maps a space of functions (i.e., Hj) to R,
and g from Hy to R is called measurable if the preimage of any element in
Borel o-algebra in R belongs to a c-algebra in Hy. Let L : L x L — R*
denote the 0 — 1 loss, given by L(ly, 1) = w For f € H;., define the risk

for the classifier f to be:

R(f) & E{L(sign(f(ux(P))), 1)} (3.1)

where the sign of f(ux(P)) is used to predict the output [ of p(P), the
expectation is evaluated with respect to the joint distribution My for
{mr(P),1}, and sign(t) is given by sign(t) = 1 if ¢ > 0, and sign(t) = —1 if

t < 0. Letting {(a) = I{a € [0,00)}, we re-write (3.1]) as

R(f) = ELL(=Lf (1 (P)))}- (3.2)

Following Vapnik (1998)), we aim to find f; = arg rjpelg R(f) and let
Ry denote R(f;). However, minimizing is generally difficult due to
the nonconvexity of ¢(-). As a remedy, one considers a surrogate function,
say ¢ : R — RT, which is convex and tightly upper bound ¢(-), with

l(a) < p(a) for any a € R. Replacing £(+) in (3.2]) with the convex surrogate



©(+), we define the p-risk as R,(f) £ E{o(—1f(ux(P)))}.

Further, assessing R,(f) for all f € G is infeasible because G is too
big. In practice, we usually consider a smaller set of G, denoted F. For
example, F can be taken as the set of all bounded linear functionals on

(e.g., Conway [2019). We aim to find

fo=argmin; . R,(f). (3.3)

The convexity of ¢ enables efficient convex optimization for solving
. The -risk offers us a mathematically convenient measure to describe
an upper bound for risk . While different surrogate functions may
yield different upper bounds for , a well-calibrated surrogate function
©(+) can accurately approximate £(-) and allows us to identify meaningful
upper bounds of risk , as discussed by Bartlett et al. (2006), who
also explored a useful class of surrogate functions known as classification-

calibrated convex surrogates, defined as follows.

Definition (Bartlett et al. 2006). A convex function ¢ : R — R is called

classification-calibrated if, for any n € (0,1) \ {1/2},

a:a(%v?fl)go Ro(ain) > clerlJi Ry(asm),

where R, (a;n) = ne(a) + (1 —n)p(—a). The definition equivalently

requires that the global minimizer of R,(a;n) must satisfy a(2n —1) > 0,



i.e., sign(a) = sign(2n — 1).

The class of classification-calibrated convex surrogate functions includes
familiar functions such as ¢(u) = log, {1 + exp(u)} for the logistic loss
L(y, f(z)) = logy, (1 + exp(—yf(z))) used in logistic regression, ¢(u) =
max{0, 1+ u} for the hinge loss L(y, f(z)) = max{0,1 —yf(z)} used in the
support vector machine (SVM), and p(u) = exp(u) for the exponential loss
L(y, f(x)) = exp{ — yf(.:t)} used in Adaboost, where y € {—1,1}, and f(x)
represents a predicted value.

Although using a convex surrogate function enables us to convert the
intractable minimization problem to a convex optimization problem,
the unknown distribution M}, prevents us from obtaining f, directly from
. To get around this difficulty, we replace R,(f) in with the
empirical -risk:

Ro(F) 2 3 o 1af (us(Ps.),
i=1

and aim to find

PN

J = argming Rw(f) (3.4)

The excess @-risk R ( ) —R,(fo) and excess risk R( f)— Ry describe the
performance of the classifier f, where R,(f) and R(f) are random due to

the involvement of data in f . With a well-chosen ¢ function, in conjunction



A N

of F and kernel k, R,(f) and R(f) are expected to be close to R,(fo) and
Ry in expectation, respectively. Let m = 1r£11<n m;, and let R(F) denote the
Rademacher complexity of F. Typically, the class F is chosen to ensure

R(F) is of order O(n"2), as considered in this paper (e.g., Lopez-Paz et al.

2015| Section 3.1).
Theorem 1. Assume the following conditions hold:

(R1). All elements in F are Lipschitz continuous with respect to the norm
in Hy, and there exists a common Lipschitz constant, denoted L,
such that for any f € F and h,h' € Hy, |f(h) — f(R')| < Lg||h —

Wl

(R2). There exists a positive constant B such that o(—1f(h)) < B for any

feF, heHy, andl € L;

(R3). ¢ : R — RT is a Lipschitz continuous function with a Lipschitz

constant Ly;
(R4). The kernel function k associated with Hy, satisfies sup,¢z k(z, z) < 1.
For any 0 < 4§ <1, let

log(2 4L,L
C(n,m, Ly, Ly, B) £ 4L,R(F) + 2B 092(71”)+ i

E{k(Zi, Z;)} n \/W] . (3.5)

n

D

=1




Then forf mn and fo in ,

(a). 0 S E{R,(f) = Ro(fo)} < C(nom, Ly, Ly, B) + 22

(b). lim lim E{Rw(f) — Ry(fo)} = 0;

n—0o0 m—0o0

(c). if ¢ is classification-calibrated and }Lng R,(h) = I}H]I__l R,(f) = R,(fo),
S S

then

(1) there ezists a nondecreasing continuous function ¢, : R — [0, 1]

with (,(0) =0, such that

E{R(f) — o} < (C(n, m, Lo Ly, B) + §>;

n

(i) lim li OOIE{R(f) — Ro} =0.

n—oo m—r

(d). If }Lng R,(h) = rfmjrrl R,(f) = Ry(fo), then there exists a nonnegative,
S S

convez, continuous, and strictly increasing function v, : [0,1] = R

such that
Vo (BLR(F) — Fo}) < E{R,(f) — Ro(fo)}: (3.6)
Furthermore, the following three conditions are equivalent:

(i) ¢ is classification-calibrated;

(ii) For any sequence {91- € [0, 1]‘1 =1,2,--- } of constants,

lim ¢, (0;) =0 if and only if lim 6, = 0;
1—00 1—00



(iii) For any sequence {fi D Hy — R‘i = 1,2,---} of measurable

functionals,

lim R,(f;) = Ry(fo) implies lim R(f;) = Ry.
1—00 100

The proof of Theorem [1} is presented in Section of the supple-
mentary material. Theorem [I| (a) is related to but differs from Theorem
3 of Lopez-Paz et al. (2015). Both theorems assume the same condi-
tions and they describe upper bounds for R,(f) — R,(fo). However, they
focus on distinct perspectives. Theorem 3 of Lopez-Paz et al. (2015
presents a high probability upper bound for Ry( f ) — R, (fo), whereas our
result establishes an upper bound on its expectation. In addition, Theo-
rem [1] (b) further strengthenes the result from the asymptotic viewpoint
and shows that as n and m grow sufficiently large, the expected difference
R,( - R, (fo) approaches 0. Considering the excess risk R( f)— Ry, Theo-
rem (¢) identifies an upper bound for its expectation, both nonasymptot-
ically and asymptotically. Notably, we present Theorem (1| (d) to connect
E{R(f) — Ro} with E{R,(f) — R,(fo)} through a strictly increasing, non-
negative, continuous and convex function 1,. This connection offers us a

guideline in choosing a suitable yp-surrogate function. When ¢ is chosen

as a classification-calibrated convex surrogate, ¥, has desirable mathemat-



ical properties, as reflected by that lim lim E{R,(f) — R,(fo)} = 0 im-

n—00 M—r00

plies nhj& Tilinw E{R(f) — Ry} = 0. All these results offer multiple angles
to describe how p-surrogate functions may behave in comparison with the
original 0-1 loss, which are, however, not covered in Lopez-Paz et al. (2015)).

Condition (R1) in Theorem [l is commonly imposed on classifiers in
machine learning contexts (e.g., Gouk et al. 2021). This condition can
be easily met in practice, such as in the settings where H; degenerates to
the Euclidean space and F is specified as the set of linear functions with
bounded coefficients. With a continuous ¢(-) function, condition (R2) is
met by considering the class F in which |f()| is bounded by a common
constant for all f € F. This follows from the property that any continuous
function is bounded over a bounded closed set in R. Condition (R3) holds
for practically used loss functions such as the logistic loss and hinge loss,
as shown in Section of the supplementary material. Condition (R4) is
satisfied by the Gaussian kernel, a widely-used kernel functions.

Theorem [1| describes the ¢-risk for the minimizer fin 1) relative to
the ¢-risk for the minimizer f; in . More broadly, one may examine
the p-risk for any g in F relative to R,(fo) through the difference of ¢ from

f , as shown in the following theorem whose proof is included in Section

of the supplementary material.



Theorem 2. Assume the conditions of Theorem[1. Let g : Hi — R denote

any measurable functional in F, and let

F(f.g,L,) =E{L, sup |g(z) — f(z)|}.

TEH

Then the following results hold:
(a). E{Ry(g) = Rylf0)} < C(n.m, Ly, Ly, B) + £ + F(f,g,L,)

(b). E{R,(9) — Ry(fo)} < limsuplimsup F(f,g,Ly,)

n—oo m— 00

(c). If ¢ is classification-calibrated and lllng R,(h) = 1}11;1 R,(f) = R,(fo),
S S

then

E{R(g) - RO} S QP{C(TL,’ITL, LSD?L]:?B) + % + F(fvnggo)}

and

E{R(g) — Ro} < ({ limsuplimsup F(f,g,L,)},  (3.7)

n—oo m— 00

where (,(-) is as in Theorem [1]

(). If inf Ry (h) = min Ro(f) = Ry(Jo), then

Ve (B{R(9) — Ro}) < E{R(9) ~ Ro(fo)},

where 1, is introduced in Theorem (1| (d).



Instead of comparing the minimizer f in {) with the minimizer
fo in (3.3), Theorem [2| extends Theorem [I| by comparing f, with any
functional ¢g in F. The upper bound in Theorem [2| (a) retains the term
C (n, m, Ly, Lr, B) from Theorem (a) but extends the term % in Theo-
rem (a) to 22 in Theorem 2 (a), in addition to the inclusion of an extra
term F'( f .9, L) to account for the comparison with an arbitrary functional

g rather than just f .

4. Impact of Mismeasured Output

Theorems [1| and [2] apply only to the case where the true labels [; are avail-
able. Here we consider the setting where the true label /; is unavailable but
its observed version, denoted by [ € L, is available for i =1,--- ,n.

To facilitate the relationship between [} and [;, one may consider
pi 2Pl =alS;,l; =a) fora=—1orl, (4.1)

which is often combined with the assumption that P(I; = a|S;,l; = a) =
P(l* = all; = a), also called instance-independent label noise, as done in

this paper. Alternatively, swapping [ and /; in (4.1) gives
pa = P(l; = a|S;,l; =a) fora=—1lorl, (4.2)

7

for which one may assume that P(l; = a|S;, [} = a) =P(l; = a|l} = a). Both



and can describe the degrees of mislabeling, and they are called
the (mis)classification and reclassification probabilities (Yi 2017, p.70), re-
spectively.

Now we study the impact of mislabeling with either or used.
To highlight the ideas, we assume that p*; and pi (or p_; and p;) are
known for now. The extension to accommodating scenarios with unknown
misclassifications is included in the last section. Different from Section [
with {{Si, Li} | 1=1,--- ,n} available, here only the error-prone measure-
ments {{Si,l;"} ‘ i=1,--- ,n} are accessible, with {{Pi,l;“} | i=1,--- ,n}
being i.i.d. following the distribution, denoted M* on P x L. Similar to the
discussion in Section |3| let M denote the measure on p(P) x £ induced
from M*, then {{,uk(PZ-),lf} | i=1,--- ,n} is a sequence of i.i.d copies
from M.

It may be tempting to train the classifier using the same process dis-
cussed in Section [2| by replacing /; with [}, i.e., use the error-prone samples
{{me(Ps,), 1z} | i = 1,-- ,n} for Step 3 in Section 2.2 We call such a

trained classifier the naive classifier, given by

~

[*=argming.» R;(f), (4.3)

where R3(f) 2 L2 o(~I; f(1ue(Py,))) is a naive version of R,(f) in (3.4).



Let D denote the total degree of misclassification in the label, given by

2 —pt, —pi, if () is taken;
D=

2—p_1—p1, if (4.2)) is taken.
Theorem 3. Assume the conditions in Theorem [1 and the following con-

ditions:

(R5). All elements in F are uniformly bounded. That is, there exists a
constant M > 0 such that |f(h)| < M||h||x, for any f € F and

h e Hk,'

(R6). There ezists a constant A > 0 such that k(z1,22) < A for any z1, 22 €

Z.
Then the following results hold:
(a). for any given data size n,
E{IR,(f) ~ R} < C(mm, L Lr, B) + 2 +AML,AD; (1.4
Furthermore, if @ is classification-calibrated and }Lrelg R,(h) =minser R (f) =

R(fo), then

E{|R(f*) — R(H)|} < 2¢, <0<n,m, Lo, Ly, B) n % n 2ML¢AD>,

where Cy(+) is as in Theorem 1]



(b). Asymptotically, we have

lim sup lim sup E{| R, (f*) — R,(f)|} < 4ML,AD. (4.5)

n—oo m— 00

Furthermore, if  is classification-calibrated and ing R,(h) = 1;{11;1 R,(f) =
€ €

R(fy), then

lim sup lim sup E{|R(f*) — R(f)|} < 2¢,(2M L,AD),

n—o0 m—r0o0

where (,(-) is as in Theorem [1]

The proof of this theorem is presented in Section of the supple-
mentary material. Conditions (R5) and (R6) share similarities to those in
Theorem [Il When f(0) = 0 for all f € F, condition (R1) in Theorem
implies condition (R5) in Theorem 3] If A in condition (R6) equals 1,
condition (R4) in Theorem [I] evidently holds. Notably, Theorem [3| suggests
that the empirical -risk derived from the naive classifier cannot indefi-
nitely differ from that of the correct classifier. It describes upper bounds
for the expected value of |R¥,(j:*) - Rw(f)| and of }R(f*) - R(f)} for the
naive classifier f *in two different manners, nonasymptotically and asymp-
totically. Although the upper bound is not necessarily sharp, it carries
important implications. This bound is the sum of the asymptotic bound

in (4.5) and C(n,m, Ly, L, B) + 4Bn~', where the latter term reflects the



influence of the size n of data and the Rademacher complezity of F. As
n — oo and m — oo, C(n,m, Ly, Ly, B) — 0, and thus, Theorem 3| (a)
leads to Theorem (3| (b). Further, applying Jensen’s inequality to Theorem

(a) gives that

IE{R,(f*) — Ro(f)}] < C<n,m, L, L, B) + % +4ML,AD, (4.6)

~ A

which characterizes a range for the difference between R,(f*) and R,(f)
under finite settings, influenced by various factors such as M, L,, A, B,
R(F), and the total degree D of label misclassification. Theorem |3 (b)
suggests that with a small degree of label noise, the upper bound is
close to zero, showing the practical utility of the naive classifier. Under
such circumstances, even in the absence of precise measurements, using
error-contaminated data can still aid in learning f, by increasing sample

sizes m; or n.

5. Correcting Mislabeling Effects

To correct mislabeling effects, we propose a new surrogate function by mod-

ifying the initial surrogate function ¢ introduced in Section |3| defined for



true labels. For any ¢ € R and [* € £, we define

pY e p(—tl")—(1—pji ) (tl*) . . )
e , if (4.1)) is taken;

@ (t,17) = (5.1)
(=t )pr 4 (L) (1 — pp), if (4.2)) is taken,

and similar to (3.3), we define the p*-risk as

Ry (f) & E{o" (f (u(P)), 1)}, (5:2)

where the expectation is evaluated with respect to the joint distribution
M of {u(P), 1"}, and f is a functional from #Hy to R.

By incorporating the misclassification probabilities pj and p*,, or the
reclassification probabilities p; and p_;, into the modified surrogate func-
tion ¢*(-, -), we effectively mitigate the mislabeling effects. The adjustment
ensures our original objective of minimizing the -risk to be preserved by
minimizing the ¢*-risk, as demonstrated by the following Theorem [4], whose
proof is presented in Section of the supplementary material. Impor-
tantly, this new surrogate function ¢*(¢,1*) can be directly applied to iden-

tify the optimal learner using the observed noisy labels.

Theorem 4. For any f € F, we have that

where Ry-(f) and R,(f) are defined in and , respectively.



Similar to R,(-) in (3.4), we define

R ()2 537 ¢ (PO, (5:3)

and determine the classifier based on using error-corrupted data:

feorreet — argmin y » Ry (f). (5.4)

When applying (4.1)), ¢* in is a nonconvex function with respect to
t due to the negative coefficient of ¢ (#*), which presents a computational
challenge in solving . In this case, a common strategy is to relax
nonconvex problems into convex ones, similar to the idea of replacing the
0-1 loss function with a convex surrogate loss, as discussed in Section [3]
Alternatively, one can solve nonconvex optimization problems directly using
techniques such as projected gradient descent, alternating minimization, or
stochastic optimization algorithms (Jain and Kar 2017). In our numerical
studies below, we employ stochastic gradient descent.

Let

|1_§*L—_(Pp*|, if (4.1)) is taken;
Y (5.5)
@5 if (4.2)) is taken.

and

%, if (4.1)) is taken;

B* = (5.6)

B, if (4.2)) is taken.

\



Theorem 5. Assume that the conditions of Theorem (1| hold. Then for

fcorrect in and fO mn ’

(@) 0 < B{R,(F"*) = Ry(fo)} < C(n,m, Ly, L, BY) + 22

n

(b). lim lim E{R,(f*""*") — R, (fo)} = 0;

n—0o0 m—oQ

(c). if v is classification-calibrated and }lng R,(h) = rfm;l R,(f) = R(fo),
S S

then

(i) Ogﬂﬂfﬂf“”“ﬁ—ﬁh}§(b<0<nﬂml@,Lﬁfﬁ)+%?>,whme

Co(+) is as in Theorem .

(i) lim lim E{R(fre) — Ry} = 0.

n—o0 m—oo

The proof of Theorem [5] is presented in Section of the supple-
mentary material. The theorem states that E{R,( feorreet) R,(fo)} and
E{R( fc"”“t) — R(fo)} converge to zero as the sample sizes m and n ap-
proach infinity, which align with the convergence of E{R,(f) — R,(fo)}
and E{R(f) — Ry}, respectively, as shown in Theorem |1} That is, like the
empirically optimal classifier f obtained from precise measurements, the
corrected classifier f*"* obtained from mismeasured data is asymptoti-

cally consistent for ¢-risk in expectation.



We further comment on the performance of the classifier fc"”’“t. Rela-
tive to the classifier f trained from clean data, Theorem |5|is a counterpart
of Theorem [1| (a)-(c), which incorporates the label noise effects through L7
and B*. The upper bounds established for fco”e‘:t are identical to those
for f when model is used, but larger than those for f when model
is used, potentially indicating the price paid to train a valid classifier
using noisy data relative to clean data. On the other hand, regarding the
naive classifier f * trained from noisy data without accounting for the label
noise effects, though Theorems |3 and |5( do not compare f * and fc"”“t rel-
ative to the same reference classifier, it is interesting to compare the upper
bounds they identify. Specifically, comparing the upper bound in and

Theorem 5| (a), the resulting difference is

1 log (2n 4B 2B
Dwé4{R<I>+gL}'}(Lg&_L;)+2 %(B—B*)‘i‘?— 0

+4ML,AD.

When model is used, D, = 4M L,AD + %, indicating that the upper
bound for the classifier fre¢t in Theorem (a) is 4M L,AD + 22 smaller
than that for the naive classifier in . On the other hand, when model
(4.1) is considered, D, < 4ML,AD when n is large, as other terms in D,

is close to 0.



The preceding development focuses on classification within the infinite-
dimensional RKHS H;. While this provides a theoretical foundation, prac-
tical implementation often requires working within a finite-dimensional ap-
proximation of Hj. To this end, we construct a finite-dimensional space that
approximates Hy, and provides the detail in Section [S2| of the supplemen-
tary material, where we devise a classification method to address label noise
within the finite-dimensional space approximating H; and establish infor-
mative upper bounds for the ¢-risk of the naive and correction classifiers
relative to the true classifier in Theorems [S2] and [S3] of the supplementary

material.

6. Sensitivity Analyses and Proposed Metrics

In this section, we propose assessment metrics to characterize the impact
of mislabeling and examine the performance of the proposed correction
method by using the SUP3 dataset discussed in Section I with the details
deferred to Section [S3| of the supplementary material. While the provided
causal information is deemed to involve mislabeling, there is no validation
dataset to quantify the degree of mislabeling. Consequently, we undertake
sensitivity analyses to explore the impact of mislabeling and assess the

performance of the proposed correction method, as detailed below.



6.1 Implementation Details

6.1 Implementation Details

Causal learning is practically executed by transforming classification in
the infinite-dimensional RKHS space H, with kernel function k into an
r-dimensional vector space that approximates Hj, as also implemented in
our study here, where we use the Gaussian kernel function, k(vi,vy) =
exp(—7||lvy — vo]|3), with hyper parameter . The parameter r is user-
specified; a larger value r leads to a more accurate approximation but entails
a higher computational cost.

To assess the impact of different approximations, we consider different
values for r and ~ within specified ranges, denoted |a,, b,] and [a,, b,], re-
spectively. We set [a,, b.] = [100,1000] by evenly dividing it into 10 subin-
tervals and setting r to each of those cutpoint values; we take [a.,b,] =
[0.01, 10] by dividing it into 10 subintervals with equal length after taking
the transformation of logarithm to the base ten and letting v take each of
the cutpoint values, that is, 10723 with j = 0,1,--- ,9.

In characterizing different degrees of label noise, we consider model
and allow p; and p_; to take values in an interval, denoted [a,, b,], where we
set [a,, by] = [0.5, 1] by dividing it into 50 subintervals with equal length and
let p; and p_; take each of those cutpoint values except (p1,p_1) = (0.5,0.5)

or (1,1). Let 8 = (p1,p_1,7,7). The sensitivity analyses proceed in the



6.1 Implementation Details

following three steps:

Step 1:

Step 2:

Step 3:

For given values of p; and p_;, independently generate values of [;

based on the reported value of [} using (4.2) fori =1,--- n.

With the specified values for r in (S.49) and ~ in (S.1)) of the supple-
mentary material, for ¢ = 1,--- ,n, we use the r-dimensional vector
i (Ps,) discussed in Section [S2| of the supplementary material to

approximate pu(Ps,) described in Section [2.2]

Given a value of 6, we consider three methods of using data, by
respectively solving , , and , with pg(Ps,) in éso(')
replaced by py-(Ps,) that is presented in of the supplemen-
tary material. We call these the true, naive, and correction meth-
ods, respectively; and for a given classification method, let sign( fy),
sign(fy), and sign(f§7"**) denote the true, naive, and correction
classifiers, respectively, where fp, fi, and f§7"°" represent the cor-
responding discriminant functions from R" to R obtained from an
employed classification method: either logistic regression (LR) or

Gaussian kernel-based support vector machine (SVM).

In the LR method, we specify the convex surrogate function (-)

to be p(u) = log, {1 + exp(u)} for the logistic loss, and take the



6.2 Evaluation Metrics and Results

class F as F, & {f ‘ f(x) = whz + ¢, with w € R” and ¢ €
R satisfying ||w||? < C, and |c|] < C’r}. For the SVM method, we
set the convex surrogate function ¢(-) to be p(u) = max{1,1 + u}
for the hinge loss, and let F, £ {f ‘ flz) = iailik(ﬂk,r(PSi)a x)+
b, with |oy| < C, fori=1,--- n and |b] _S C’r}. Here, C, is
a large constant, and k represents the Gaussian kernel with
~ = 1 (Section 6.3, Mohri, Rostamizadeh, and Talwalkar 2018), i.e.,
k(z,2'") = exp(—||z — 2'||3). We employ the gradient decent (GD)

method (Boyd and Vandenberghe 2004) to train a classifier.

When the convex surrogate ¢ is chosen for the logistic or hinge loss,
and the class F of functionals is set to ., we show in Section
of the supplementary material that the conditions of Theorem
are satisfied. Consequently, the theoretical results in Theorem

apply to the correction classifier sign(f5o ).

6.2 Evaluation Metrics and Results

We compute the accuracy and recall of true classifier sign(fy), given by

an |t =] fj I{l;=1}|l; =]
Alf) = 1 - = and RO) = 1 — =
23 I{l;=1}
1=1

2n
l; represents the predicted value for [; using classifier sign(fy). Similarly,

, respectively, where

A*(0) and R*(#) are defined for the naive classifier sign(f;), and A" e(0)



6.2 Evaluation Metrics and Results

and R () are defined for corrected classifier sign( f§ome").
To quantify the mislabeling effects and assess the performance of the

proposed correction method, we define
Da(0) £ A(0) — A*(0) and Dg(0) £ R(0) — R*(0),
referred to as accuracy-bias and recall-bias, respectively, along with
DETTeet () 2 A() — AU Q) and  DET(G) 2 R(6) — RN,

termed accuracy-correction and recall-correction, respectively. A large value
of D4(f) or Dg(#) indicates a substantial mislabeling effect, and a large
value of D" (6) or D" *“*(0) indicates a poor performance of the pro-
posed correction method for a given value of 6.
To see how these measures vary with the degree of mislabeling, we divide
[0.5,1] into N equal length subintervals with the cutpoints 0.5 = ag < a; <
- < an-—1 < ay = 1, and calculate these measures for 0 = (a;,a;,r,7)
with ¢, = 1,---,N. To provide a comprehensive view, we construct a
heatmap for Da(p1,p-1,7.7), Dr(p1,p-1,7,7), DX (p1,p-1,7,7), and
D@rrect(py, p_1,r,y) with given values of r and ~, where p; and p_; take
values of a; and a; for i,5 = 1,--- | N, respectively, excluding (p1,p_1) =

AL

(0.5,0.5) or (1,1). To assess the influence by r and , we calculate Tx (N, r,7)

N N N N
> > Dx(a,a;,7,7v); and T (N, r,¥) £ > > DTt (ay, ag, 1, 7y), with

=1j=1 i=1j=1



6.2 Evaluation Metrics and Results

“X7 representing “A” or “R”. These metrics reflect the overall performance
of the naive or proposed correction method in terms of accuracy and recall.

In our sensitivity analyses, we take N = 50, and display heatmaps
for Dx(p1,p-1,500,3) and D" (py, p_1,500,3) in the first and last two
columns in Figure[l], respectively, where “X” represents “A” or “R”. Clearly,
D(0) and Dg(0) differs from zero for nearly all values of p; and p_1, show-
ing the existence of mismeasurement effects. As expected, such effects be-
come more substantial as the degree of mislabeling increases regardless of
whether the LR or SVM classifier is used, although the impact varies with
the classifier used. The proposed correction method generally outperforms
the naive method in terms of accuracy and recall for both the LR and SVM
classifiers.

(insert Figure|l] about here)

To assess how the mislabeling effects and the performance of the pro-
posed correction method vary with » and v, we consider » = 100, 500, or
1000, and v = 0.01,0.1,1,3, or 10, and report in Table [1| the results of
Tx (50,7,7), and T¢"(50,r,v) obtained from the logistic regression and
SVM classifiers, where “X” stands for “A” or “R”. Additional results are
reported in Figure of the supplementary material. Clearly, the misla-

beling effects may be differently exhibited by different choices of a classifier.



The choice of r and + can impact the performance of both the naive and
proposed methods. Overall, the proposed correction method outperforms
the naive methods in all settings of r and ~.

(insert Table 1] about here)

7. Discussion

In this paper, we consider causal relationship learning by extending the
framework of Lopez-Paz et al. (2015) to accommodate data with label noise.
While determining causal relationships among variables may be cast as a
binary classification problem by considering all possible grouping combina-
tions to form different pairs, as noted in Section (1| this process, however,
entails a myriad of possibilities when the number of variables is moderate or
large. Refining structures to better facilitate relationships among variables
is an intriguing prospect. Instead of simply examining causal links between
two vectors X; and W, one might pool all components in X; and W; and
use a directed acyclic graph (DAG) to represent causal relationships, where
nodes represent variables and edges denote causal directions. One might
also explore directed random graphs, where edge existence and direction are
probabilistic. Labeling causal relationships would then involve probability

components.



Our focus is on settings with homogeneous mislabeling, where every
unit has the same probability of being mislabeled. When only a subset of
units is subject to label noise and the rest are error-free, the development
here can be refined by partitioning the study units into two groups: (i)
units without label noise and (ii) units with label noise, and then modify
the formulation of accordingly.

As commented by a referee, when predicting labels for a new pair of
variables, (X, W), with a sample of measurements, S = {(Xk, W) | o=
1,--- Jh}, it may be interesting to include the new data S to the origi-
nal dataset to retrain the classifier for possible performance enhancement.
Techniques of handling missing outcomes may be useful in this regard.

Our development assumes knowledge of misclassification probabilities
p*, and pf (or p_; and pq), typically used in sensitivity analyses to assess
classifier performance under varying degrees of label noise. Extending our
method to handle unknown misclassifications is interesting. This extension
can be achieved by utilizing validation data with measurements for both
true labels and their surrogate versions and using a two-stage procedure:
in the first stage, estimate misclassification probabilities using validation

data, and in the second stage, apply our approach using these estimates.

Without validation data, an alternative is to construct a new loss func-
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tion independent of misclassification probabilities. Using the minimax tech-
nique, we maximize the empirical ¢*-risk with respect to misclassifica-
tion probabilities p* ; and p} (or p_; and p;) over a user-specified set B, and
minimize this with respect to the classifier f over the class F of candidate
classifiers. Ideally, B would contain the true misclassification probabilities,

with a smaller B leading to better classifier performance.

Supplementary Material

The online Supplementary Material contains additional theorems, detailed
technical derivations, extended numerical studies, and supporting material

for the manuscript.
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Table 1: Sensitivity analyses of the SUP3 data: assessing the impact of

different choices of r and ~v on accuracy and recall

T (50,100, ~) T4 (50, 500, 7) T4 (50, 1000, v) Tr(50,100,7) Tr (50,500, ~) Tr (50, 1000, v)

LR SVM LR SVM LR SVM LR SVM LR §SVM LR SVM

0.01 263 330 570 597 612 599 861 827 1074 1082 1110 1076

0.1 299 377 563 600 640 600 895 948 1087 1096 1154 1068

1 332 403 596 598 617 602 949 995 1196 1076 1108 1072

3 307 401 291 603 635 600 939 1071 1148 1092 1151 1075

10 339 408 575 298 640 602 1004 1021 1108 1075 1165 1075

TSorTect(50,100,~) TSO™e¢H(50,500,7) TS (50, 1000, ~) TE™mee (50, 100,7) TE™™e¢*(50,500,7)  TE™ (50,1000, %)

LR SVM LR SVM LR SVM LR SVM LR SVM LR SVM

0.01 22 209 405 199 557 39 126 122 639 402 926 95

0.1 44 299 427 204 590 49 135 778 722 396 987 5

28 Gl 444 207 590 46 310 3 749 416 989 79

3 108 281 436 222 604 45 343 548 720 443 1031 78

10 99 357 455 202 585 46 252 646 759 388 997 7
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Figure 1: Heatmaps generated from a naive method for D a(p1,p_1,7,7) and
Dg(p1,p—1,7,7) and the proposed correction method for D™ (p1, p—1,7,7)
and D™ (py, p_1,r,7), where the results for LR and SVM classifiers are

reported in the top and bottom panels, respectively.
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