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Abstract: A basic task in causal inference is to determine whether a cause-effect

relationship exists between two sets of variables, akin to a binary classification

problem. Given a sequence of independent and identically distributed paired

vectors, one can use the kernel mean embedding of probability distributions to

map empirical distributions into a reproducing kernel Hilbert space and then train

a classifier in that feature space to predict the causal direction for future pairs.

This strategy, however, is vulnerable to label noise (mislabeling), a common issue

in causation studies. In this paper, we analyze and quantify mislabeling effects.

We develop a valid learning method that explicitly accounts for label noise and

establish theoretical results accordingly.
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1. Introduction

Learning cause-effect relationships has attracted extensive attention in both

statistical and machine learning communities. The potential outcome frame-

work, originating from Neyman (1923), is a popular statistical approach to

infer causality (Rubin 1974). Alternatively, learning causal relationships

among variables can be framed as a supervised classification problem. In

principle, all relevant variables, including causes, outcomes, and confound-

ing factors, can be organized into ordered pairs (X,W ), where X is a can-

didate cause and W is a candidate effect. One may (possibly exhaustively)

enumerate distinct (X,W ) pairs and assign a binary label, 1 or −1, to indi-

cate whether X is the cause of W using a study-specific labeling rule. The

resulting task then becomes a binary classification problem with the binary

label, denoted l, as the output and (X,W ) as the input.

A motivating example is the SUP3 dataset from the Kaggle competition

(Guyon 2013), consisting of n ≜ 162 variable pairs across diverse domains,

such as chemistry, climatology, ecology, economy, engineering, epidemiol-

ogy, genomics, medicine, physics, and sociology. Each pair is labeled as

either 1 or −1, indicating the presence or absence of a causal relationship

within the pair.

Lopez-Paz et al. (2015) framed learning cause-effect relationships for
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paired vectors as a classification problem using kernel mean embeddings in

the reproducing kernel Hilbert space (RKHS), a method further explored by

other authors, including Mooij et al. (2016), Monti, Zhang and Hyvärinen

(2020), and Tagasovska, Chavez-Demoulin and Vatter (2020).

Many methods assume training data are measured without error, i.e.,

covariates are error-free and labels are correct. In practice, this assump-

tion is often violated: data may exhibit covariate error (aka input error)

and response error (aka output error) (e.g., Carroll et al. 2006; Yi 2017;

Yi, Delaigle and Gustafson 2021). When the response encodes class mem-

bership, response error is known as “label noise”, “label corruption”, or

“mis-labeling” in machine learning (e.g., Guo, Wang and Yi 2023; Guo, Yi

and Wang 2024).

Here we focus on the scenario in which input variables X and W are

measured without error, but the output label l is subject to mislabeling,

a common issue in learning causation relationships. Label noise can stem

from ambiguous instructions, limited annotator expertise, subjective judge-

ment, uncertainty, imprecise answers to sensitive questions, or imperfect

instruments. In observational causal discovery, mislabeling is particularly

concerning because unobserved confounding and other hidden factors can

obscure the true causal direction.
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Building on the framework of Lopez-Paz et al. (2015) for classification

learning without mislabeling, we examine mislabeling effects and contribute

by (1) expanding the causal learning framework to account for mislabeled

outputs, (2) analyzing the impact of ignoring label noise, (3) establishing

theoretical properties that generalize some existing results, (4) devising a

correction method to accommodate the label noise effects, and (5) intro-

ducing new metrics to evaluate classifier performance under mislabeling.

The remainder of this article is organized as follows. Sections 2 and

3 consider the case of precisely measured variables. Sections 4 - 6 focus

on label noise, examining its effects in Section 4, proposing our correction

method in Section 5, and introducing new metrics with sensitivity analyses

in Section 6. Finally, Section 7 provides discussions, with technical details

and additional numerical studies deferred to the supplementary material.

2. Learning Framework

2.1 Notation and Data Format

Considering the causal learning framework considered by Lopez-Paz et al.

(2015), suppose Zi ≜ (Xi,Wi) are independent random variables for i =

1, · · · , n, and for each i, li is a binary label, taking value 1 if Xi is the

cause of Wi and value -1 otherwise. Here, Xi and Wi can be either vectors
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2.1 Notation and Data Format

or univariate random variables. As an example with n = 2, X1 and W1

may represent respectively an individual’s smoking status and lung cancer

status, while X2 and W2 may respectively indicate the raining status and

presence of clouds for a day. While pairs Z1 and Z2 have distinct practical

meanings, a common question is to examine the presence or absence of the

causal relationship for the variables within them, which can be reflected by

the value of their associated binary label.

Additionally, for each i = 1, · · · , n, there is a random sample of mea-

surements for paired input Zi, denoted as Si =
{
Zij ≜ (Xij,Wij)

∣∣ j =

1, · · · ,mi

}
, where the Zij with j = 1, · · · ,mi are independently and identi-

cally distributed (i.i.d) having the same joint probability distribution Pi of

random vector Zi, and mi is a positive integer that may depend on i. These

samples could, for example, represent measurements of smoking status and

lung cancer status for mi patients or measurements of raining status and

the presence of clouds over mi days. This framework was considered by

Lopez-Paz et al. (2015), with the objective of training a binary classifier

using the output data
{
li
∣∣ i = 1, · · · , n

}
, together with mapping the input

Si into a feature space. The goal is to predict the causation for a future

new pair of variables, say (X̃, W̃ ).

We make some comments here. As the practical meaning for each pair
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2.1 Notation and Data Format

Zi may differ across different indices i, analyzing them together might ap-

pear unnatural. However, if the paired variables share a similar or the same

distribution, it is reasonable to study them within a common framework.

While the Zi differ for different index i, they can share some common

elements or be related in nature; the order of elements in Zi also matters.

For example, to examine the causal relationship between smoking status

and lung cancer, define Z1 = (X1,W1), with X1 denoteing smoking status

and W1 denoting lung cancer status. Similarly, to study the relationship

between chest-pain status and lung cancer, define Z2 = (X2,W2), with X2

denoting chest pain status and W2 denoting lung cancer status. These two

pairs share the lung-cancer status, though they are represented by different

symbols W1 and W2. Additionally, we may have l1 = 1, showing that

smoking is the cause of lung cancer, and l2 = −1, indicating that chest

pain is not the cause of lung cancer. On the other hand, if we interchange

the roles of X2 and W2 such that X2 represents lung cancer status and W2

indicates chest pain status, then we may assign l2 = 1 to indicate that lung

cancer causes chest pain (Potter and Higginson 2004).

Although variables in different pairs Zi = (Xi,Wi) for i = 1, · · · , n

may share some elements or have practical connections, replicate measure-

ments for Zi, denoted
{
Zij ≜ (Xij,Wij)

∣∣ j = 1, · · · ,mi

}
, are assumed
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2.1 Notation and Data Format

to be independently collected from mi randomly selected subjects or units.

Additionally, S1, · · · ,Sn are assumed to be independently formed.

More formally, let (Z, τz) denote a separable topological space, with

τz representing the topology on the set Z (Armstrong 1983), and let σ(τz)

denote the σ-algebra generated by τz. Let P denote the set of all Borel prob-

ability measures on the measurable space (Z, σ(τz)), and let L = {−1,+1}

denote the label space. Let M denote a mother distribution defined on

P × L. For i = 1, · · · , n, we assume that Zi is a random variable mapping

from a probability space (Ω, E ,P) to the measurable space (Z, σ(τz)), with

Ω, E and P representing a set, σ-algebra, and probability measure, respec-

tively. We further assume that
{
{Pi, li}

∣∣ i = 1, · · · , n
}
are independent

and identically distributed (i.i.d.) from M, where Pi is the probability

measure of Zi.

In summary, the data collection process involves two-stage sampling.

First, n i.i.d. pairs
{
{Pi, li}

∣∣ i = 1, · · · , n
}
are generated from the mother

distribution M; and then for each i, mi i.i.d random pairs Si =
{
Zij

∣∣ j =
1, · · · ,mi

}
are generated from the probability measure Pi. This two-stage

sampling framework is widely used in various domains, including distribu-

tion learning (e.g., Szabó et al. 2016) and multi-instance learning (e.g.,

Zhou and Xu 2007). In distribution learning, the mother distribution M
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2.2 Training and Prediction Procedures

is called a Meta distribution, where the i.i.d. assumption in the first stage

sampling is typically imposed in both causal learning and distribution learn-

ing, although testing this assumption is difficult due to the unavailability

of the probability measure Pi.

2.2 Training and Prediction Procedures

Lopez-Paz et al. (2015) developed the following learning algorithm:

• Step 1: for each i, we construct the probability measure:

PSi
(A∗) ≜

1

mi

mi∑
j=1

I
{
Zij ∈ A∗} for any A∗ ∈ σ(τz), (2.1)

where I(·) represents the indicator function.

• Step 2: Let k : Z × Z → R denote a continuous, bounded, and

positive-definite kernel function, and let Hk denote the induced repro-

ducing kernel Hilbert space (RKHS) with the inner product, denoted

< ·, · >Hk
, (Muandet et al. 2017, Section 2.2). For each i, use the

kernel mean embedding of probability distributions to map PSi
into Hk

and let µk(PSi
) denote its empirical kernel mean embedding, given by

µk(PSi
) =

1

mi

mi∑
j=1

k(Zij, ·).

As explained in Section S1 of the supplementary material, µk(PSi
) is a

random function from Z to R due to the randomness of Si; when the
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sample Si is realized as si, the resulting µk(Psi) becomes a determinis-

tic function from Z to R. Theorem S1 in the supplementary material

establishes the convergence in mean of the empirical kernel mean em-

bedding to the true kernel mean embedding. This mapping allows us

to leverage the useful properties of the Hilbert space to analyze the

data Si through µk(PSi
).

• Step 3: Using the data
{
{µk(Psi), li}

∣∣ i = 1, · · · , n
}
, we train a

nonlinear binary classifier with
{
µk(Psi)

∣∣ i = 1, · · · , n
}
and

{
li
∣∣ i =

1, · · · , n
}
taken as the input and output, respectively.

The goal is to use the trained classifier to predict whether a new vector,

say X̃, is the cause of another new vector, say W̃ , using their realizations,

denoted by s̃ =
{
(x̃j, w̃j)

∣∣∣ j = 1, · · · , m̃
}
.

3. Causation Learning Theory

For the kernel function k considered in Step 2 of Section 2.2 and any P ∈ P ,

let µk(P ) denote the kernel mean embedding of probability distributions that

maps P into RKHSHk, which represents a function from Z to R, as detailed

in Section S1 of the supplementary material. Let µk(P) =
{
µk(P )

∣∣ P ∈

P
}
, which is a subset of Hk: µk(P) ⊆ Hk. Let Mk denote a measure

on µk(P) × L induced by M (Lopez-Paz et al. 2015, Lemma 2). Then
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{
{µk(Pi), li}

∣∣ i = 1, · · · , n
}
is a sequence of i.i.d copies drawn from Mk,

which are used to train a binary classifier in the space Hk.

Let G =
{
g : Hk → R

∣∣ g is a measurable functional
}
, where g in G is

termed a functional because it maps a space of functions (i.e., Hk) to R,

and g from Hk to R is called measurable if the preimage of any element in

Borel σ-algebra in R belongs to a σ-algebra in Hk. Let L : L × L → R+

denote the 0−1 loss, given by L(l1, l2) ≜
|l1−l2|

2
. For f ∈ Hk, define the risk

for the classifier f to be:

R(f) ≜ E{L(sign(f(µk(P ))), l)} (3.1)

where the sign of f(µk(P )) is used to predict the output l of µk(P ), the

expectation is evaluated with respect to the joint distribution Mk for

{µk(P ), l}, and sign(t) is given by sign(t) = 1 if t ≥ 0, and sign(t) = −1 if

t < 0. Letting ℓ(α) = I{α ∈ [0,∞)}, we re-write (3.1) as

R(f) = E{ℓ(−lf(µk(P )))}. (3.2)

Following Vapnik (1998), we aim to find f ∗
0 = argmin

f∈G
R(f) and let

R0 denote R(f ∗
0 ). However, minimizing (3.2) is generally difficult due to

the nonconvexity of ℓ(·). As a remedy, one considers a surrogate function,

say φ : R → R+, which is convex and tightly upper bound ℓ(·), with

ℓ(α) ≤ φ(α) for any α ∈ R. Replacing ℓ(·) in (3.2) with the convex surrogate
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φ(·), we define the φ-risk as Rφ(f) ≜ E{φ(−lf(µk(P )))}.

Further, assessing Rφ(f) for all f ∈ G is infeasible because G is too

big. In practice, we usually consider a smaller set of G, denoted F . For

example, F can be taken as the set of all bounded linear functionals on Hk

(e.g., Conway 2019). We aim to find

f0 = argminf∈F Rφ(f). (3.3)

The convexity of φ enables efficient convex optimization for solving

(3.3). The φ-risk offers us a mathematically convenient measure to describe

an upper bound for risk (3.2). While different surrogate functions may

yield different upper bounds for (3.2), a well-calibrated surrogate function

φ(·) can accurately approximate ℓ(·) and allows us to identify meaningful

upper bounds of risk (3.2), as discussed by Bartlett et al. (2006), who

also explored a useful class of surrogate functions known as classification-

calibrated convex surrogates, defined as follows.

Definition (Bartlett et al. 2006). A convex function φ : R → R+ is called

classification-calibrated if, for any η ∈ (0, 1) \ {1/2},

inf
α:α(2η−1)≤0

Rφ(α; η) > inf
α∈R

Rφ(α; η),

where Rφ(α; η) = η φ(α) + (1 − η)φ(−α). The definition equivalently

requires that the global minimizer of Rφ(α; η) must satisfy α(2η − 1) > 0,
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i.e., sign(α) = sign(2η − 1).

The class of classification-calibrated convex surrogate functions includes

familiar functions such as φ(u) = log2
{
1 + exp(u)

}
for the logistic loss

L(y, f(x)) = log2 (1 + exp(−yf(x))) used in logistic regression, φ(u) =

max{0, 1+u} for the hinge loss L(y, f(x)) = max{0, 1−yf(x)} used in the

support vector machine (SVM), and φ(u) = exp(u) for the exponential loss

L(y, f(x)) = exp
{
− yf(x)

}
used in Adaboost, where y ∈ {−1, 1}, and f(x)

represents a predicted value.

Although using a convex surrogate function enables us to convert the

intractable minimization problem (3.2) to a convex optimization problem,

the unknown distribution Mk prevents us from obtaining f0 directly from

(3.3). To get around this difficulty, we replace Rφ(f) in (3.3) with the

empirical φ-risk:

R̂φ(f) ≜
1

n

n∑
i=1

φ(−lif(µk(PSi
))),

and aim to find

f̂ = argminf∈F R̂φ(f). (3.4)

The excess φ-risk Rφ(f̂)−Rφ(f0) and excess risk R(f̂)−R0 describe the

performance of the classifier f̂ , where Rφ(f̂) and R(f̂) are random due to

the involvement of data in f̂ . With a well-chosen φ function, in conjunction
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of F and kernel k, Rφ(f̂) and R(f̂) are expected to be close to Rφ(f0) and

R0 in expectation, respectively. Let m = min
1≤i≤n

mi, and let R(F) denote the

Rademacher complexity of F . Typically, the class F is chosen to ensure

R(F) is of order O(n− 1
2 ), as considered in this paper (e.g., Lopez-Paz et al.

2015, Section 3.1).

Theorem 1. Assume the following conditions hold:

(R1). All elements in F are Lipschitz continuous with respect to the norm

in Hk, and there exists a common Lipschitz constant, denoted LF ,

such that for any f ∈ F and h, h′ ∈ Hk, |f(h) − f(h′)| ≤ LF ||h −

h′||Hk
;

(R2). There exists a positive constant B such that φ(−lf(h)) ≤ B for any

f ∈ F , h ∈ Hk, and l ∈ L;

(R3). φ : R → R+ is a Lipschitz continuous function with a Lipschitz

constant Lφ;

(R4). The kernel function k associated with Hk satisfies supz∈Z k(z, z) ≤ 1.

For any 0 < δ < 1, let

C(n,m,Lφ, LF , B) ≜ 4LφR(F) + 2B

√
log(2n)

2n
+

4LφLF

n
n∑

i=1

[√
E{k(Zi, Zi)}

mi

+

√
log
(
2n2
)

2mi

]
. (3.5)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0202



Then for f̂ in (3.4) and f0 in (3.3),

(a). 0 ≤ E{Rφ(f̂)−Rφ(f0)} ≤ C
(
n,m,Lφ, LF , B

)
+ 2B

n
;

(b). lim
n→∞

lim
m→∞

E{Rφ(f̂)−Rφ(f0)} = 0;

(c). if φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0),

then

(i) there exists a nondecreasing continuous function ζφ : R → [0, 1]

with ζφ(0) = 0, such that

E{R(f̂)−R0} ≤ ζφ

(
C
(
n,m,Lφ, LF , B

)
+

2B

n

)
;

(ii) lim
n→∞

lim
m→∞

E{R(f̂)−R0} = 0.

(d). If inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0), then there exists a nonnegative,

convex, continuous, and strictly increasing function ψφ : [0, 1] → R

such that

ψφ

(
E{R(f̂)−R0}

)
≤ E{Rφ(f̂)−Rφ(f0)}. (3.6)

Furthermore, the following three conditions are equivalent:

(i) φ is classification-calibrated;

(ii) For any sequence
{
θi ∈ [0, 1]

∣∣i = 1, 2, · · ·
}
of constants,

lim
i→∞

ψφ(θi) = 0 if and only if lim
i→∞

θi = 0;
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(iii) For any sequence
{
fi : Hk → R

∣∣∣i = 1, 2, · · ·
}

of measurable

functionals,

lim
i→∞

Rφ(fi) = Rφ(f0) implies lim
i→∞

R(fi) = R0.

The proof of Theorem 1 is presented in Section S1.3 of the supple-

mentary material. Theorem 1 (a) is related to but differs from Theorem

3 of Lopez-Paz et al. (2015). Both theorems assume the same condi-

tions and they describe upper bounds for Rφ(f̂) − Rφ(f0). However, they

focus on distinct perspectives. Theorem 3 of Lopez-Paz et al. (2015)

presents a high probability upper bound for Rφ(f̂) − Rφ(f0), whereas our

result establishes an upper bound on its expectation. In addition, Theo-

rem 1 (b) further strengthenes the result from the asymptotic viewpoint

and shows that as n and m grow sufficiently large, the expected difference

Rφ(f̂)−Rφ(f0) approaches 0. Considering the excess risk R(f̂)−R0, Theo-

rem 1 (c) identifies an upper bound for its expectation, both nonasymptot-

ically and asymptotically. Notably, we present Theorem 1 (d) to connect

E{R(f̂)−R0} with E{Rφ(f̂)−Rφ(f0)} through a strictly increasing, non-

negative, continuous and convex function ψφ. This connection offers us a

guideline in choosing a suitable φ-surrogate function. When φ is chosen

as a classification-calibrated convex surrogate, ψφ has desirable mathemat-
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ical properties, as reflected by that lim
n→∞

lim
m→∞

E{Rφ(f̂) − Rφ(f0)} = 0 im-

plies lim
n→∞

lim
m→∞

E{R(f̂) − R0} = 0. All these results offer multiple angles

to describe how φ-surrogate functions may behave in comparison with the

original 0-1 loss, which are, however, not covered in Lopez-Paz et al. (2015).

Condition (R1) in Theorem 1 is commonly imposed on classifiers in

machine learning contexts (e.g., Gouk et al. 2021). This condition can

be easily met in practice, such as in the settings where Hk degenerates to

the Euclidean space and F is specified as the set of linear functions with

bounded coefficients. With a continuous φ(·) function, condition (R2) is

met by considering the class F in which |f(·)| is bounded by a common

constant for all f ∈ F . This follows from the property that any continuous

function is bounded over a bounded closed set in R. Condition (R3) holds

for practically used loss functions such as the logistic loss and hinge loss,

as shown in Section S2.4 of the supplementary material. Condition (R4) is

satisfied by the Gaussian kernel, a widely-used kernel functions.

Theorem 1 describes the φ-risk for the minimizer f̂ in (3.4) relative to

the φ-risk for the minimizer f0 in (3.3). More broadly, one may examine

the φ-risk for any g in F relative to Rφ(f0) through the difference of g from

f̂ , as shown in the following theorem whose proof is included in Section

S1.4 of the supplementary material.
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Theorem 2. Assume the conditions of Theorem 1. Let g : Hk → R denote

any measurable functional in F , and let

F (f̂ , g, Lφ) = E
{
Lφ sup

x∈Hk

|g(x)− f̂(x)|
}
.

Then the following results hold:

(a). E
{
Rφ(g)−Rφ(f0)

}
≤ C

(
n,m,Lφ, LF , B

)
+ 4B

n
+ F (f̂ , g, Lφ)

(b). E
{
Rφ(g)−Rφ(f0)

}
≤ lim sup

n→∞
lim sup
m→∞

F (f̂ , g, Lφ)

(c). If φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0),

then

E{R(g)−R0} ≤ ζφ

{
C
(
n,m,Lφ, LF , B

)
+

4B

n
+ F (f̂ , g, Lφ)

}

and

E{R(g)−R0} ≤ ζφ

{
lim sup
n→∞

lim sup
m→∞

F (f̂ , g, Lφ)
}
, (3.7)

where ζφ(·) is as in Theorem 1.

(d). If inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0), then

ψφ

(
E{R(g)−R0}

)
≤ E{Rφ(g)−Rφ(f0)},

where ψφ is introduced in Theorem 1 (d).
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Instead of comparing the minimizer f̂ in (3.4) with the minimizer

f0 in (3.3), Theorem 2 extends Theorem 1 by comparing f0 with any

functional g in F . The upper bound in Theorem 2 (a) retains the term

C
(
n,m,Lφ, LF , B

)
from Theorem 1 (a) but extends the term 2B

n
in Theo-

rem 1 (a) to 4B
n

in Theorem 2 (a), in addition to the inclusion of an extra

term F (f̂ , g, Lφ) to account for the comparison with an arbitrary functional

g rather than just f̂ .

4. Impact of Mismeasured Output

Theorems 1 and 2 apply only to the case where the true labels li are avail-

able. Here we consider the setting where the true label li is unavailable but

its observed version, denoted by l∗i ∈ L, is available for i = 1, · · · , n.

To facilitate the relationship between l∗i and li, one may consider

p∗a ≜ P(l∗i = a|Si, li = a) for a = −1 or 1, (4.1)

which is often combined with the assumption that P(l∗i = a|Si, li = a) =

P(l∗i = a|li = a), also called instance-independent label noise, as done in

this paper. Alternatively, swapping l∗i and li in (4.1) gives

pa ≜ P(li = a|Si, l
∗
i = a) for a = −1 or 1, (4.2)

for which one may assume that P(li = a|Si, l
∗
i = a) = P(li = a|l∗i = a). Both
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(4.1) and (4.2) can describe the degrees of mislabeling, and they are called

the (mis)classification and reclassification probabilities (Yi 2017, p.70), re-

spectively.

Now we study the impact of mislabeling with either (4.1) or (4.2) used.

To highlight the ideas, we assume that p∗−1 and p∗1 (or p−1 and p1) are

known for now. The extension to accommodating scenarios with unknown

misclassifications is included in the last section. Different from Section 3

with
{
{Si, li}

∣∣ i = 1, · · · , n
}
available, here only the error-prone measure-

ments
{
{Si, l

∗
i }
∣∣ i = 1, · · · , n

}
are accessible, with

{
{Pi, l

∗
i }
∣∣ i = 1, · · · , n

}
being i.i.d. following the distribution, denoted M∗ on P×L. Similar to the

discussion in Section 3, let M∗
k denote the measure on µk(P)× L induced

from M∗, then
{
{µk(Pi), l

∗
i }
∣∣ i = 1, · · · , n

}
is a sequence of i.i.d copies

from M∗
k.

It may be tempting to train the classifier using the same process dis-

cussed in Section 2 by replacing li with l
∗
i , i.e., use the error-prone samples{

{µk(Psi), l
∗
i }
∣∣ i = 1, · · · , n

}
for Step 3 in Section 2.2. We call such a

trained classifier the naive classifier, given by

f̂ ∗ = argminf∈F R̂∗
φ(f), (4.3)

where R̂∗
φ(f) ≜

1
n

∑n
i=1 φ(−l∗i f(µk(Psi))) is a naive version of R̂φ(f) in (3.4).
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Let D denote the total degree of misclassification in the label, given by

D =


2− p∗−1 − p∗1, if (4.1) is taken;

2− p−1 − p1, if (4.2) is taken.

Theorem 3. Assume the conditions in Theorem 1 and the following con-

ditions:

(R5). All elements in F are uniformly bounded. That is, there exists a

constant M > 0 such that |f(h)| ≤ M ||h||Hk
for any f ∈ F and

h ∈ Hk;

(R6). There exists a constant A > 0 such that k(z1, z2) ≤ A for any z1, z2 ∈

Z.

Then the following results hold:

(a). for any given data size n,

E{|Rφ(f̂
∗)−Rφ(f̂)|} ≤ C

(
n,m,Lφ, LF , B

)
+
4B

n
+4MLφAD; (4.4)

Furthermore, if φ is classification-calibrated and inf
h∈G

Rφ(h) = minf∈F Rφ(f) =

R(f0), then

E{|R(f̂ ∗)−R(f̂)|} ≤ 2ζφ

(
C
(
n,m,Lφ, LF , B

)
+

4B

n
+ 2MLφAD

)
,

where ζφ(·) is as in Theorem 1.
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(b). Asymptotically, we have

lim sup
n→∞

lim sup
m→∞

E{|Rφ(f̂
∗)−Rφ(f̂)|} ≤ 4MLφAD. (4.5)

Furthermore, if φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) =

R(f0), then

lim sup
n→∞

lim sup
m→∞

E{|R(f̂ ∗)−R(f̂)|} ≤ 2ζφ(2MLφAD),

where ζφ(·) is as in Theorem 1.

The proof of this theorem is presented in Section S1.5 of the supple-

mentary material. Conditions (R5) and (R6) share similarities to those in

Theorem 1. When f(0) = 0 for all f ∈ F , condition (R1) in Theorem

1 implies condition (R5) in Theorem 3. If A in condition (R6) equals 1,

condition (R4) in Theorem 1 evidently holds. Notably, Theorem 3 suggests

that the empirical φ-risk derived from the naive classifier cannot indefi-

nitely differ from that of the correct classifier. It describes upper bounds

for the expected value of |Rφ(f̂
∗) − Rφ(f̂)| and of

∣∣R(f̂ ∗) − R(f̂)
∣∣ for the

naive classifier f̂ ∗ in two different manners, nonasymptotically and asymp-

totically. Although the upper bound (4.4) is not necessarily sharp, it carries

important implications. This bound is the sum of the asymptotic bound

in (4.5) and C(n,m,Lφ, LF , B) + 4Bn−1, where the latter term reflects the
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influence of the size n of data and the Rademacher complexity of F . As

n → ∞ and m → ∞, C(n,m,Lφ, LF , B) → 0, and thus, Theorem 3 (a)

leads to Theorem 3 (b). Further, applying Jensen’s inequality to Theorem

3 (a) gives that

∣∣E{Rφ(f̂
∗)−Rφ(f̂)}

∣∣ ≤ C
(
n,m,Lφ, LF , B

)
+

4B

n
+ 4MLφAD, (4.6)

which characterizes a range for the difference between Rφ(f̂
∗) and Rφ(f̂)

under finite settings, influenced by various factors such as M , Lφ, A, B,

R(F), and the total degree D of label misclassification. Theorem 3 (b)

suggests that with a small degree of label noise, the upper bound (4.5) is

close to zero, showing the practical utility of the naive classifier. Under

such circumstances, even in the absence of precise measurements, using

error-contaminated data can still aid in learning f0 by increasing sample

sizes mi or n.

5. Correcting Mislabeling Effects

To correct mislabeling effects, we propose a new surrogate function by mod-

ifying the initial surrogate function φ introduced in Section 3 defined for
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true labels. For any t ∈ R and l∗ ∈ L, we define

φ∗(t, l∗) =


p∗−l∗φ(−tl∗)−(1−p∗

l∗ )φ(tl
∗)

p∗1+p∗−1−1
, if (4.1) is taken;

φ(−tl∗)pl∗ + φ(tl∗)(1− pl∗), if (4.2) is taken,

(5.1)

and similar to (3.3), we define the φ∗-risk as

Rφ∗(f) ≜ E{φ∗(f(µk(P )), l
∗)}, (5.2)

where the expectation is evaluated with respect to the joint distribution

M∗
k of {µk(P ), l

∗}, and f is a functional from Hk to R.

By incorporating the misclassification probabilities p∗1 and p∗−1, or the

reclassification probabilities p1 and p−1, into the modified surrogate func-

tion φ∗(·, ·), we effectively mitigate the mislabeling effects. The adjustment

ensures our original objective of minimizing the φ-risk to be preserved by

minimizing the φ∗-risk, as demonstrated by the following Theorem 4, whose

proof is presented in Section S1.6 of the supplementary material. Impor-

tantly, this new surrogate function φ∗(t, l∗) can be directly applied to iden-

tify the optimal learner using the observed noisy labels.

Theorem 4. For any f ∈ F , we have that

Rφ∗(f) = Rφ(f),

where Rφ∗(f) and Rφ(f) are defined in (5.2) and (3.3), respectively.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0202



Similar to R̂φ(·) in (3.4), we define

R̂φ∗(f) ≜
1

n

n∑
i=1

φ∗(f(µk(Psi)), l
∗
i ), (5.3)

and determine the classifier based on using error-corrupted data:

f̂ correct = argminf∈F R̂φ∗(f). (5.4)

When applying (4.1), φ∗ in (5.1) is a nonconvex function with respect to

t due to the negative coefficient of φ(tl∗), which presents a computational

challenge in solving (5.4). In this case, a common strategy is to relax

nonconvex problems into convex ones, similar to the idea of replacing the

0-1 loss function with a convex surrogate loss, as discussed in Section 3.

Alternatively, one can solve nonconvex optimization problems directly using

techniques such as projected gradient descent, alternating minimization, or

stochastic optimization algorithms (Jain and Kar 2017). In our numerical

studies below, we employ stochastic gradient descent.

Let

L∗
φ =


2Lφ

|1−p∗1−p∗−1|
, if (4.1) is taken;

Lφ, if (4.2) is taken.

(5.5)

and

B∗ =


2B

|1−p∗1−p∗−1|
, if (4.1) is taken;

B, if (4.2) is taken.

(5.6)
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Theorem 5. Assume that the conditions of Theorem 1 hold. Then for

f̂ correct in (5.4) and f0 in (3.3),

(a). 0 ≤ E{Rφ(f̂
correct)−Rφ(f0)} ≤ C

(
n,m,L∗

φ, LF , B
∗
)
+ 2B∗

n
;

(b). lim
n→∞

lim
m→∞

E{Rφ(f̂
correct)−Rφ(f0)} = 0;

(c). if φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = R(f0),

then

(i) 0 ≤ E{R(f̂ correct)−R0} ≤ ζφ

(
C
(
n,m,L∗

φ, LF , B
∗
)
+ 2B∗

n

)
, where

ζφ(·) is as in Theorem 1.

(ii) lim
n→∞

lim
m→∞

E{R(f̂ correct)−R0} = 0.

The proof of Theorem 5 is presented in Section S1.7 of the supple-

mentary material. The theorem states that E{Rφ(f̂
correct) − Rφ(f0)} and

E{R(f̂ correct) − R(f0)} converge to zero as the sample sizes m and n ap-

proach infinity, which align with the convergence of E{Rφ(f̂) − Rφ(f0)}

and E{R(f̂)− R0}, respectively, as shown in Theorem 1. That is, like the

empirically optimal classifier f̂ obtained from precise measurements, the

corrected classifier f̂ correct obtained from mismeasured data is asymptoti-

cally consistent for φ-risk in expectation.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0202



We further comment on the performance of the classifier f̂ correct. Rela-

tive to the classifier f̂ trained from clean data, Theorem 5 is a counterpart

of Theorem 1 (a)-(c), which incorporates the label noise effects through L∗
φ

and B∗. The upper bounds established for f̂ correct are identical to those

for f̂ when model (4.2) is used, but larger than those for f̂ when model

(4.1) is used, potentially indicating the price paid to train a valid classifier

using noisy data relative to clean data. On the other hand, regarding the

naive classifier f̂ ∗ trained from noisy data without accounting for the label

noise effects, though Theorems 3 and 5 do not compare f̂ ∗ and f̂ correct rel-

ative to the same reference classifier, it is interesting to compare the upper

bounds they identify. Specifically, comparing the upper bound in (4.4) and

Theorem 5 (a), the resulting difference is

Dφ ≜4
{
R(F) +

1

n
LF
}
(Lφ − L∗

φ) + 2

√
log (2n)

n
(B −B∗) +

4B

n
− 2B∗

n

+ 4MLφAD.

When model (4.2) is used, Dφ = 4MLφAD+ 2B
n
, indicating that the upper

bound for the classifier f̂ correct in Theorem 5 (a) is 4MLφAD + 2B
n

smaller

than that for the naive classifier in (4.4). On the other hand, when model

(4.1) is considered, Dφ ≤ 4MLφAD when n is large, as other terms in Dφ

is close to 0.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0202



The preceding development focuses on classification within the infinite-

dimensional RKHS Hk. While this provides a theoretical foundation, prac-

tical implementation often requires working within a finite-dimensional ap-

proximation ofHk. To this end, we construct a finite-dimensional space that

approximates Hk, and provides the detail in Section S2 of the supplemen-

tary material, where we devise a classification method to address label noise

within the finite-dimensional space approximating Hk and establish infor-

mative upper bounds for the φ-risk of the naive and correction classifiers

relative to the true classifier in Theorems S2 and S3 of the supplementary

material.

6. Sensitivity Analyses and Proposed Metrics

In this section, we propose assessment metrics to characterize the impact

of mislabeling and examine the performance of the proposed correction

method by using the SUP3 dataset discussed in Section 1, with the details

deferred to Section S3 of the supplementary material. While the provided

causal information is deemed to involve mislabeling, there is no validation

dataset to quantify the degree of mislabeling. Consequently, we undertake

sensitivity analyses to explore the impact of mislabeling and assess the

performance of the proposed correction method, as detailed below.
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6.1 Implementation Details

6.1 Implementation Details

Causal learning is practically executed by transforming classification in

the infinite-dimensional RKHS space Hk with kernel function k into an

r-dimensional vector space that approximates Hk, as also implemented in

our study here, where we use the Gaussian kernel function, k(v1, v2) =

exp(−γ||v1 − v2||22), with hyper parameter γ. The parameter r is user-

specified; a larger value r leads to a more accurate approximation but entails

a higher computational cost.

To assess the impact of different approximations, we consider different

values for r and γ within specified ranges, denoted [ar, br] and [aγ, bγ], re-

spectively. We set [ar, br] = [100, 1000] by evenly dividing it into 10 subin-

tervals and setting r to each of those cutpoint values; we take [aγ, bγ] =

[0.01, 10] by dividing it into 10 subintervals with equal length after taking

the transformation of logarithm to the base ten and letting γ take each of

the cutpoint values, that is, 10−2+ j
3 with j = 0, 1, · · · , 9.

In characterizing different degrees of label noise, we consider model (4.2)

and allow p1 and p−1 to take values in an interval, denoted [ap, bp], where we

set [ap, bp] = [0.5, 1] by dividing it into 50 subintervals with equal length and

let p1 and p−1 take each of those cutpoint values except (p1, p−1) = (0.5, 0.5)

or (1, 1). Let θ = (p1, p−1, r, γ). The sensitivity analyses proceed in the
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6.1 Implementation Details

following three steps:

Step 1: For given values of p1 and p−1, independently generate values of li

based on the reported value of l∗i using (4.2) for i = 1, · · · , n.

Step 2: With the specified values for r in (S.49) and γ in (S.1) of the supple-

mentary material, for i = 1, · · · , n, we use the r-dimensional vector

µk,r(PSi
) discussed in Section S2 of the supplementary material to

approximate µk(PSi
) described in Section 2.2.

Step 3: Given a value of θ, we consider three methods of using data, by

respectively solving (3.4), (4.3), and (5.4), with µk(PSi
) in R̂φ(·)

replaced by µk,r(PSi
) that is presented in (S.56) of the supplemen-

tary material. We call these the true, naive, and correction meth-

ods, respectively; and for a given classification method, let sign(fθ),

sign(f ∗
θ ), and sign(f correct

θ ) denote the true, naive, and correction

classifiers, respectively, where fθ, f
∗
θ , and f

correct
θ represent the cor-

responding discriminant functions from Rr to R obtained from an

employed classification method: either logistic regression (LR) or

Gaussian kernel-based support vector machine (SVM).

In the LR method, we specify the convex surrogate function φ(·)

to be φ(u) = log2
{
1 + exp(u)

}
for the logistic loss, and take the
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6.2 Evaluation Metrics and Results

class F as Fr ≜
{
f
∣∣∣ f(x) = wTx + c, with w ∈ Rr and c ∈

R satisfying ||w||22 ≤ Cr and |c| ≤ Cr

}
. For the SVM method, we

set the convex surrogate function φ(·) to be φ(u) = max{1, 1 + u}

for the hinge loss, and let Fr ≜
{
f
∣∣∣ f(x) = n∑

i=1

αilik(µk,r(PSi
), x)+

b, with |αi| ≤ Cr for i = 1, · · · , n and |b| ≤ Cr

}
. Here, Cr is

a large constant, and k represents the Gaussian kernel (S.1) with

γ = 1 (Section 6.3, Mohri, Rostamizadeh, and Talwalkar 2018), i.e.,

k(z, z′) = exp(−||z − z′||22). We employ the gradient decent (GD)

method (Boyd and Vandenberghe 2004) to train a classifier.

When the convex surrogate φ is chosen for the logistic or hinge loss,

and the class F of functionals is set to Fr, we show in Section S2.4

of the supplementary material that the conditions of Theorem S3

are satisfied. Consequently, the theoretical results in Theorem S3

apply to the correction classifier sign(f correct
θ ).

6.2 Evaluation Metrics and Results

We compute the accuracy and recall of true classifier sign(fθ), given by

A(θ) = 1 −
n∑

i=1
|li−l̂i|

2n
and R(θ) = 1 −

n∑
i=1

I{li=1}|li−l̂i|

2
n∑

i=1
I{li=1}

, respectively, where

l̂i represents the predicted value for li using classifier sign(fθ). Similarly,

A∗(θ) and R∗(θ) are defined for the naive classifier sign(f ∗
θ ), and A

correct(θ)
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6.2 Evaluation Metrics and Results

and Rcorrect(θ) are defined for corrected classifier sign(f correct
θ ).

To quantify the mislabeling effects and assess the performance of the

proposed correction method, we define

DA(θ) ≜ A(θ)− A∗(θ) and DR(θ) ≜ R(θ)−R∗(θ),

referred to as accuracy-bias and recall-bias, respectively, along with

Dcorrect
A (θ) ≜ A(θ)− Acorrect(θ) and Dcorrect

R (θ) ≜ R(θ)−Rcorrect(θ),

termed accuracy-correction and recall-correction, respectively. A large value

of DA(θ) or DR(θ) indicates a substantial mislabeling effect, and a large

value of Dcorrect
A (θ) or Dcorrect

R (θ) indicates a poor performance of the pro-

posed correction method for a given value of θ.

To see how these measures vary with the degree of mislabeling, we divide

[0.5, 1] into N equal length subintervals with the cutpoints 0.5 = a0 < a1 <

· · · < aN−1 < aN = 1, and calculate these measures for θ = (ai, aj, r, γ)

with i, j = 1, · · · , N . To provide a comprehensive view, we construct a

heatmap for DA(p1, p−1, r, γ), DR(p1, p−1, r, γ), D
correct
A (p1, p−1, r, γ), and

Dcorrect
R (p1, p−1, r, γ) with given values of r and γ, where p1 and p−1 take

values of ai and aj for i, j = 1, · · · , N , respectively, excluding (p1, p−1) =

(0.5, 0.5) or (1, 1). To assess the influence by r and γ, we calculate TX(N, r, γ) ≜

N∑
i=1

N∑
j=1

DX(ai, aj, r, γ); and T
correct
X (N, r, γ) ≜

N∑
i=1

N∑
j=1

Dcorrect
X (ai, aj, r, γ), with
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6.2 Evaluation Metrics and Results

“X” representing “A” or “R”. These metrics reflect the overall performance

of the naive or proposed correction method in terms of accuracy and recall.

In our sensitivity analyses, we take N = 50, and display heatmaps

for DX(p1, p−1, 500, 3) and Dcorrect
X (p1, p−1, 500, 3) in the first and last two

columns in Figure 1, respectively, where “X” represents “A” or “R”. Clearly,

DA(θ) and DR(θ) differs from zero for nearly all values of p1 and p−1, show-

ing the existence of mismeasurement effects. As expected, such effects be-

come more substantial as the degree of mislabeling increases regardless of

whether the LR or SVM classifier is used, although the impact varies with

the classifier used. The proposed correction method generally outperforms

the naive method in terms of accuracy and recall for both the LR and SVM

classifiers.

(insert Figure 1 about here)

To assess how the mislabeling effects and the performance of the pro-

posed correction method vary with r and γ, we consider r = 100, 500, or

1000, and γ = 0.01, 0.1, 1, 3, or 10, and report in Table 1 the results of

TX(50, r, γ), and T
correct
X (50, r, γ) obtained from the logistic regression and

SVM classifiers, where “X” stands for “A” or “R”. Additional results are

reported in Figure S.1 of the supplementary material. Clearly, the misla-

beling effects may be differently exhibited by different choices of a classifier.
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The choice of r and γ can impact the performance of both the naive and

proposed methods. Overall, the proposed correction method outperforms

the naive methods in all settings of r and γ.

(insert Table 1 about here)

7. Discussion

In this paper, we consider causal relationship learning by extending the

framework of Lopez-Paz et al. (2015) to accommodate data with label noise.

While determining causal relationships among variables may be cast as a

binary classification problem by considering all possible grouping combina-

tions to form different pairs, as noted in Section 1, this process, however,

entails a myriad of possibilities when the number of variables is moderate or

large. Refining structures to better facilitate relationships among variables

is an intriguing prospect. Instead of simply examining causal links between

two vectors Xi and Wi, one might pool all components in Xi and Wi and

use a directed acyclic graph (DAG) to represent causal relationships, where

nodes represent variables and edges denote causal directions. One might

also explore directed random graphs, where edge existence and direction are

probabilistic. Labeling causal relationships would then involve probability

components.
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Our focus is on settings with homogeneous mislabeling, where every

unit has the same probability of being mislabeled. When only a subset of

units is subject to label noise and the rest are error-free, the development

here can be refined by partitioning the study units into two groups: (i)

units without label noise and (ii) units with label noise, and then modify

the formulation of (5.3) accordingly.

As commented by a referee, when predicting labels for a new pair of

variables, (X̃, W̃ ), with a sample of measurements, S̃ ≜
{
(X̃k, W̃k)

∣∣ k =

1, · · · , m̃
}
, it may be interesting to include the new data S̃ to the origi-

nal dataset to retrain the classifier for possible performance enhancement.

Techniques of handling missing outcomes may be useful in this regard.

Our development assumes knowledge of misclassification probabilities

p∗−1 and p∗1 (or p−1 and p1), typically used in sensitivity analyses to assess

classifier performance under varying degrees of label noise. Extending our

method to handle unknown misclassifications is interesting. This extension

can be achieved by utilizing validation data with measurements for both

true labels and their surrogate versions and using a two-stage procedure:

in the first stage, estimate misclassification probabilities using validation

data, and in the second stage, apply our approach using these estimates.

Without validation data, an alternative is to construct a new loss func-
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tion independent of misclassification probabilities. Using the minimax tech-

nique, we maximize the empirical φ∗-risk (5.3) with respect to misclassifica-

tion probabilities p∗−1 and p
∗
1 (or p−1 and p1) over a user-specified set B, and

minimize this with respect to the classifier f over the class F of candidate

classifiers. Ideally, B would contain the true misclassification probabilities,

with a smaller B leading to better classifier performance.

Supplementary Material

The online Supplementary Material contains additional theorems, detailed

technical derivations, extended numerical studies, and supporting material

for the manuscript.
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Table 1: Sensitivity analyses of the SUP3 data: assessing the impact of

different choices of r and γ on accuracy and recall

γ
TA(50, 100, γ) TA(50, 500, γ) TA(50, 1000, γ) TR(50, 100, γ) TR(50, 500, γ) TR(50, 1000, γ)

LR SVM LR SVM LR SVM LR SVM LR SVM LR SVM

0.01 263 330 570 597 612 599 861 827 1074 1082 1110 1076

0.1 299 377 563 600 640 600 895 948 1087 1096 1154 1068

1 332 403 596 598 617 602 949 995 1196 1076 1108 1072

3 307 401 591 603 635 600 939 1071 1148 1092 1151 1075

10 339 408 575 598 640 602 1004 1021 1108 1075 1165 1075

γ
T correct
A (50, 100, γ) T correct

A (50, 500, γ) T correct
A (50, 1000, γ) T correct

R (50, 100, γ) Tcorrect
R (50, 500, γ) Tcorrect

R (50, 1000, γ)

LR SVM LR SVM LR SVM LR SVM LR SVM LR SVM

0.01 22 209 405 199 557 39 126 122 659 402 926 55

0.1 44 299 427 204 590 49 135 778 722 396 987 75

1 128 321 444 207 590 46 310 3 749 416 989 79

3 108 281 436 222 604 45 343 548 720 443 1031 78

10 99 357 455 202 585 46 252 646 759 388 997 77
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Figure 1: Heatmaps generated from a naive method for DA(p1, p−1, r, γ) and

DR(p1, p−1, r, γ) and the proposed correction method for Dcorrect
A (p1, p−1, r, γ)

and Dcorrect
R (p1, p−1, r, γ), where the results for LR and SVM classifiers are

reported in the top and bottom panels, respectively.
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