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Abstract: The Genotype-Tissue Expression (GTEx) project collects samples from multiple human

tissues to study the relationship between genetic variation or single nucleotide polymorphisms (SNPs)

and gene expression in each tissue. However, most existing eQTL analyses only focus on single

tissue information. In this paper, we develop a multi-tissue method that improves prediction of gene

expression based on cis-SNPs by borrowing information across tissues. Specifically, we propose an

empirical Bayes regression model for SNP-expression association using data from multiple tissues. To

allow the effects of SNPs to vary greatly among tissues, we use a mixture distribution as the prior,

which is a mixture of a multivariate Gaussian distribution and a Dirac mass at zero. We show that the

proposed estimator of the cis-SNP effects on gene expression asymptotically achieves the minimum

Bayes risk among all estimators. Analyses of the GTEx data show that our proposed method is

superior to existing methods in terms of prediction accuracy for gene expression using cis-SNPs in

testing sets.
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1. Introduction

Genome-wide association studies (GWAS) have successfully associated single nucleotide

polymorphisms (SNPs) with complex human traits (Uffelmann et al., 2021). However, there

are still problems in statistical power and interpretation of GWAS results due to complexity
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of linkage disequilibrium (LD) and gene regulation (Boyle et al., 2017). To alleviate these

problems, a popular approach is the transcriptome-wide association study (TWAS) that in-

tegrates the SNP-trait association with SNP-based prediction of gene expression (Wainberg

et al., 2019). Specifically, TWAS first predicts expression levels using SNPs, and then tests

whether the predicted values are associated with human traits. In this paper, we focus on

the first part in TWAS and aim to improve the SNP-based prediction of gene expression.

Many large data sets have been generated for such genetics of gene expression studies for

various tissues, which have provided important insights into gene regulations. Among these

studies, the Genotype-Tissue Expression (GTEx) project aims to characterize variation in

gene expression levels across individuals and diverse tissues, many of which are not easily

accessible (Consortium et al., 2017). The project found that local genetic variation affects

gene expression levels for the majority of genes, and identified inter-chromosomal genetic

effects for a small number of genes and loci. Such expression quantitative trait loci (eQTL)

analyses provide important insights into genetic regulation of gene expressions. The GTEx

data sets have also been applied to impute gene expression levels based on genetic variants

data and the imputed gene expressions are subsequently used in TWAS analysis (Gamazon

et al., 2015; Gusev et al., 2016; Hu et al., 2019).

However, small sample sizes of many studies, e.g., only hundreds of samples for each

tissue type in the GTEx study, often limits the prediction accuracy of gene expression

levels based on genotype data. To date, most eQTL studies have considered the association

between genetic variation and expression in a single tissue (Brem et al., 2005; Stranger

et al., 2007; Stegle et al., 2012). Multi-tissue eQTL analysis has the potential to improve

the findings of single tissue analyses by borrowing strength across tissues and to elucidate
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the genetic basis of the difference in expressions between tissues (Flutre et al., 2013; Sul

et al., 2013; Duong et al., 2017; Li et al., 2018). However, these methods only focus on

testing the association between gene expression and a single SNP.

More recently, several multi-tissue multi-locus models have been proposed in Morgante

et al. (2023); Shi et al. (2020); Hu et al. (2019); Molstad et al. (2021). For example, Hu et al.

(2019) and Molstad et al. (2021) considered fixed effects and integrated information across

multiple tissues using a group-lasso penalty on effects of each SNP in all the tissues. Shi et al.

(2020) adopted a factorizable assumption to borrow information across tissues. Specifically,

they assumed that the effects of SNPs on the gene expression in multiple tissues can be

decomposed into genomic variant-dependent and tissue-dependent components, where the

genomic variant-dependent one contains shared information across tissues. Nevertheless,

these methods do not account for potential large variation of genetic effects across tissues,

i.e., where SNPs are associated with expression in only a subset of tissues for some genes.

In such circumstances, estimators of shared effects from all the tissues will be biased by

inclusion of tissues where SNPs are not involved with expression. In fact, gene expression

and regulation are often tissue-specific (Sonawane et al., 2017), and some genes express

uniquely in certain tissues (Dezső et al., 2008), which is important to discovery of new

drugs and biomarkers of tissue-targeted diseases.

There are also several empirical Bayes methods developed for multi-tissue analysis. For

instance, for each SNP, Kim et al. (2024) assumed a finite mixture of univariate normal

distributions as a prior of the effect in each tissue, while Morgante et al. (2023) adopted

a mixture of multivariate normal distributions as a prior of effects in multiple tissues and

developed Mr.Mash to captures similarity of effects across tissues through the covariance
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matrices in the multivariate normal distributions. Although the mixture of multivariate nor-

mals prior is flexible, Mr.Mash assumes that the covariance matrices are pre-specified, and

treats the mixture weights as parameters to be estimated from the data. Lastly, Wang and

Zhao (2021) proposed a nonparametric empirical Bayes method, which assumes a unknown

prior distribution of effects and estimate it nonparametrically from data.

In this paper, we develop an alternative empirical Bayes regression model for SNP-based

gene-expression prediction and SNP-expression association analysis using data from multiple

tissues, allowing for potential large variation across tissues and joint effects of multiple

genetic variants on gene expressions. Our model serves two purposes. One is to predict

gene expression using corresponding cis-SNPs for each gene and tissue, where cis-SNPs of

a given gene are SNPs located either anywhere within the region from 1 Mb upstream and

downstream the gene. The other is to test whether these cis-SNPs are associated with the

gene expression (see Section B of the supplementary materials), that is, whether the gene

is an eGene whose expression level is related to at least one cis-SNP (Duong et al., 2016).

To achieve these goals, for each gene, we construct tissue-specific linear regression mod-

els with expression level of the gene as the response and its corresponding cis-SNPs as

predictors. To borrow information across different tissues, we propose an empirical Bayes

estimator for the regression coefficients based on a mixture prior distribution. We adopt the

posterior mean of the coefficients for estimation, and estimate the prior parameters in the

the posterior mean through maximizing the marginal likelihood of the gene expression val-

ues in all tissues based on the expectation–maximization (EM) algorithm (Dempster et al.,

1977). We then extract evidence of whether the cis-SNPs are relevant to the gene expression

from the data by calculating posterior probabilities and Bayes factor of the hypotheses.
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The main contributions of the proposed method are as follows. First, we extract shared

information across tissues via the common prior distribution of the regression coefficients

in tissue-specific models. We propose to combine the information in single tissue and the

shared information in the prior distribution using the empirical Bayes estimator. In theory,

we show that the proposed estimator is superior to the traditional ordinary least squared

(OLS) estimator for a given tissue in terms of the Bayes risk and the mean squared error.

Second, we incorporate situations where all the cis-SNPs are irrelevant to the gene

expression in some tissues through a mixture prior distribution of coefficients. One of the

two components is exactly a zero vector, while the other one has non-zero mean representing

shared information across tissues with non-zero effects. In this way, we can test whether a

gene is an eGene in a specific tissue based on the posterior probabilities of the assignments

for the two components for a given tissue. Through our analysis of the GTEx data in Section

7, we show that the proposed method outperforms existing methods in terms of prediction

of gene expression. Moreover, although genetic effects on expression are extensively shared

among some tissues, we found that effect sizes can still vary greatly across tissues, illustrated

in Figure E.1 in the supplementary materials.

2. An empirical Bayes regression model for SNP-expression association across

multiple tissues

2.1 Empirical Bayes regression

In this section, we link the SNP genotypes with gene expression in each tissue by a tissue-

specific linear regression model. Specifically, we let Y denote a n × m matrix consisting

of expression values of a gene in m tissues of n samples and X denote a n × p constant
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2.1 Empirical Bayes regression6

matrix consisting of cis-SNPs for the gene, where n is the number of total individuals, m is

the number of tissues in the data, and p is the number of cis-SNPs. For the t-th tissue, the

tissue-specific linear regression model is

Y (t) = Xβ(t) + ε(t), (2.1)

where Y (t) denotes the t-th column in Y , β(t) is a p-dimensional coefficient vector for the

t-th tissue, and ε(t) ∼ Nn(0, σ
2In) is the error term with parameter σ > 0 and independent

of Xβ(t). We also assume that ε(t) for t = 1, . . . ,m are independent. The ordinary least

squares (OLS) estimator of β(t) based on information in a single tissue is

β̂(t) = (XTX)−1XTY (t) = β(t) + (XTX)−1XTε(t), (2.2)

Then β̂(t) | β(t) ∼ Np(β
(t), σ2(XTX)−1).

To borrow information across tissues, we assume that coefficient vectors β(t) over all

the tissues are random and have a common prior distribution. This common prior contains

shared effects of cis-SNPs across tissues. However, the effects of cis-SNPs in different tissues

could vary greatly. Especially, the cis-SNPs could be “inactive” and have no effects on gene

expression in some tissues, which can not contribute to the shared effects.

To accommodate this possibility, we define a random indicator I(t), which follows a

Bernoulli distribution with probability τ1 ∈ (0, 1), to reflect the status of β(t). We assign a

mixture prior distribution with two mixture components for β(t), that is,

β(t) | I(t) = 1 ∼ Np(β, η(X
TX)−1), (2.3)

β(t) | I(t) = 0 ≡ 0, (2.4)

independently for t = 1, . . . ,m, where η > 0 is a parameter. Here the prior mean β

represents shared effects across tissues, and I(t) is a latent configuration variable reflecting
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2.1 Empirical Bayes regression7

the status of β(t). When I(t) = 0, the cis-SNPs are “inactive” and have no effects on the

gene expression Y (t). In contrast, when I(t) = 1, the cis-SNPs are “active” and the effects

β(t) follows a multivariate normal distribution with mean β. We refer to our proposed

method as “multivariate Empirical Bayes method with mixture Prior” or “mEBmix”.

We provide the posterior probabilities of I(t) and the posterior mean of β(t) in the

following proposition. Let ψ(z;µ0,Σ0) denote the density function of the multivariate

normal distribution N(µ0,Σ0).

Proposition 1. The posterior means of β(t) given I(t) are

E(β(t) | Y (t), I(t) = 1) =

(
1

η
+

1

σ2

)−1
(
β

η
+

β̂(t)

σ2

)
,

and E(β(t) | Y (t), I(t) = 0) = 0. The posterior probabilities of I(t) are

P (I(t) = 1 | Y ) = h1(Y
(t); τ1,β, η, σ

2),

and P (I(t) = 0 | Y ) = 1− h1(Y
(t); τ1,β, η, σ

2), where

h1(Y
(t); τ1,β, η, σ

2) =
τ1ψ(Y

(t);Xβ, σ2In + ηH)

τ1ψ(Y (t);Xβ, σ2In + ηH) + τ0ψ(Y (t);0, σ2In)
,

with H = X(XTX)−1XT and τ0 = 1− τ1. Thus, the posterior mean of β(t) is

E(β(t) | Y ) = E(β(t) | Y (t)) = h1(Y
(t); τ1,β, η, σ

2)

(
1

η
+

1

σ2

)−1
(
β

η
+

β̂(t)

σ2

)
. (2.5)

According to the Proposition 1, the posterior mean of β(t) is a weighted average of the

OLS estimator in Equation (2.2) and the mean of the prior distribution in Equation (2.3),

which combines the information in the t-th tissue and the shared information across tissues

in the prior. The first equality in (2.5) follows from the fact that β(t) and columns in Y

other than Y (t) are conditionally independent given Y (t). The weights in (2.5) are related

to the variance of the error term and the variance of the prior distribution.
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Moreover, we calculate Bayes factors (BF) and posterior odds ratios in Section B of

the supplementary materials to determine whether the cis-SNPs is relevant to the gene

expression or not. In Section 3, we estimate the unknown parameters in Equation (2.5) via

an expectation-maximization (EM) algorithm (Dempster et al., 1977).

3. Parameter estimation and EM algorithm

In this section, we provide a detailed iterative algorithm to estimate the parameters in the

mixture prior distribution through maximizing the likelihood of the data. Specifically, we

exploit an EM algorithm (Dempster et al., 1977) to find the maximum likelihood estimate

(MLE) of θ, where θ consists of all the parameters in the model, that is, θ = (τ1, τ0,β, η, σ
2).

Each iteration consists of an expectation step and a maximization step. Suppose that we

have both Y (t) and I(t) for each t = 1, . . . ,m. We refer to {Y , I(1), . . . , I(m)} as the complete

data. The complete-data likelihood is

p(Y , I(1), . . . , I(m); τ1, τ0,β, η, σ
2) =

m∏
t=1

1∏
s=0

{
τsgs(Y

(t);β, η, σ2)
}I(I(t)=s)

,

where I(·) is an indicator function, g0(Y
(t);β, η, σ2) = g0(Y

(t);σ2) = ψ(Y (t);0, σ2In) and

g1(Y
(t);β, η, σ2) = ψ(Y (t);Xβ, σ2In + ηH) denote the likelihoods of Y (t) when I(t) = 0

and I(t) = 1, respectively.

In the expectation step, since we typically do not observe {I(1), . . . , I(m)} in practice,

given the current estimate θ(k) at the k-th iteration, we first calculate the posterior distri-

bution of I(t)

T
(t)
s,(k) = P (I(t) = s | Y ,θ(k)) =

τs,(k)gs(Y
(t);β(k), η(k), σ(k))

τ1,(k)g1(Y (t);β(k), η(k), σ(k)) + τ0,(k)g0(Y (t);σ(k))

for s = 0, 1, where τs,(k), β(k), η(k), and σ(k) denote estimates of τ , β, η, and σ at the k-th
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iteration. Moreover, we calculate the expectation of the complete-data log-likelihood under

the posterior distribution of the latent variables {I(1), . . . , I(m)}:

Q(θ | θ(k)) = EI(1),...,I(m)|Y ,θ(k)

[
log p(Y , I(1), . . . , I(m);θ)

]
=

m∑
t=1

1∑
s=0

T
(t)
s,(k)

{
log τs + log gs(Y

(t);β, η, σ2)
}
.

In the maximization step, we maximize this expectation to determine the next estimate

for all the parameters. The maximizer of Q(θ | θ(k)) consists of

τs,(k+1) =

∑m
t=1 T

(t)
s,(k)∑m

t=1

{
T

(t)
0,(k) + T

(t)
1,(k)

} for s = 1, 0, β(k+1) =

∑m
t=1 T

(t)
1,(k)β̂

(t)∑m
t=1 T

(t)
1,(k)

,

σ2
(k+1) =

∑m
t=1

(
Y (t)

)T (
Y (t)

)
−
∑m

t=1 T
(t)
1,(k)

(
Y (t)

)T
H
(
Y (t)

)
mn− p

∑m
t=1 T

(t)
1,(k)

,

and

η(k+1) =

∑m
t=1 T

(t)
1,(k)

(
Y (t) −Xβ(k+1)

)T
H
(
Y (t) −Xβ(k+1)

)
p
∑m

t=1 T
(t)
1,(k)

− σ2
(k+1).

In this way, we derive closed-form expression updates for each iteration, which are straight-

forward to compute. In addition, this EM algorithm converges since each iteration does

increase the likelihood of observed data.

4. Statistical properties

In this section, we provide the asymptotic results of the proposed estimator in terms of a

Bayes risk function. Specifically, we define the Bayes risk function of an estimator δm(Y ) ∈

Dm for β(t) as

Rm(δm) =

∫
l
(
β(t), δm(Y )

) m∏
i=1

{
p(Y (i) | β(i))p(β(i))dY (i)dβ(i)

}
,
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where Dm is the set consisting of all available estimators of β(t), and

l
(
β(t), β̃(t)(Y )

)
=
{
β̃(t)(Y )− β(t)

}T

∆
{
β̃(t)(Y )− β(t)

}
,

is a squared error loss function with a positive definite matrix ∆. Let τ̃0, τ̃1, η̃, σ̃, and β̃

be the MLEs of τ0, τ1, η, σ, and β, respectively. Then, by Proposition 1, the proposed

empirical Bayes estimator of β(t) for the t-th tissue is

β̃(t)(Y ) =
η̃σ̃2 · h1(Y (t); τ̃1, β̃, η̃, σ̃)

η̃ + σ̃2

(
β̃

η̃
+

β̂(t)

σ̃2

)
.

If τ1, η, σ, and β are known, then we can use

β̄(t)(Y ) = E(β(t) | Y (t)) =
ησ2 · h1(Y (t); τ1,β, η, σ

2)

η + σ2

(
β

η
+

β̂(t)

σ2

)
(4.1)

as an estimator for β(t). We refer to the β̄(t)(Y ) as an oracle estimator. Let φ(α) =∫
x/∈B(0,α) ψ(x;0, Ip)dx, where B(0, α) represents the ball centered at 0 with radius α. We

provide the theoretical results for the oracle estimator in the following theorem.

Theorem 1. If τ1, η, σ, and β are known, then the oracle estimator β̄(t)(Y ) in Equation

(4.1) is optimal, that is,

Rm(β̄
(t)) = inf

δm∈D∗
m

Rm(δm)

for each 1 ≤ t ≤ m, where D∗
m is the set consisting of all available estimators of β(t) with

known τ1, η, σ, and β. In addition, for each 1 ≤ t ≤ m,

Rm(β̂
(t))−Rm(β̄

(t)) ≥ σ2α2λmin(∆)

η + σ2

(
τ1φ

[
λmax{(XTX)1/2}(2∥β∥2 + α)/(σ2 + η)1/2

]
+τ0φ

[
λmax{(XTX)1/2}(∥β∥2 + α)/σ

])
, (4.2)

where α is any positive constant, and λmin(·) and λmax(·) represent the largest and smallest

eigenvalues, respectively.
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Theorem 1 states that the oracle estimator β̄(t)(Y ) can achieve the minimum Bayes risk

among all estimators based on known prior parameters. The equation (4.2) implies that

the oracle estimator is strictly better than the OLS estimator in terms of the Bayes risk

function. In the following theorem, we show the convergence of the proposed estimator to

the oracle estimator as the total number of tissues goes to infinity.

Theorem 2. The proposed estimator β̃(t)(Y ) converges in probability to the oracle estimator,

that is, ∥∥∥β̃(t)(Y )− β̄(t)(Y )
∥∥∥
2

p→ 0,

as m→ ∞.

As shown in Theorem 2, when we have more tissues, the proposed estimator gets closer

to the optimal oracle estimator β̄(t)(Y ). In contrast, the OLS estimator β̂(t) stays apart from

β̄(t)(Y ). This is due to that the proposed estimator borrows cross-tissue information in the

estimation of the common prior parameters, while the OLS estimator only uses information

in one single tissue. Note that we do not require that the sample size per tissue n goes to

infinity in Theorem 2, but we still need n > p since the OLS estimator is involved in the

proposed estimator β̃(t).

5. An empirical Bayes regression model with missing data

In this section, we consider situations where there are missing values in gene expression

matrix Y , which is motivated by missing tissue samples in the GTEx data. Specifically, for

each 1 ≤ t ≤ m, let W (t) be a n×n diagonal matrix with binary diagonal elements w
(t)
ii for

1 ≤ i ≤ n, w
(t)
ii = 1 if and only if y

(t)
i is observed, where y

(t)
i is the i-th element in Y (t). We

assume that each w
(t)
ii is independent of each other and missing is at random. Then, the
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OLS estimator for β(t) with missing data is

β̂
(t)
obs = (XTW (t)X)−1XTW (t)Y (t) = β(t) + (XTW (t)X)−1XTW (t)ε(t). (5.1)

Compared with the OLS estimator in (2.2), β̂
(t)
obs is constructed only based on subjects whose

gene expression levels in the t-th tissue type are observed. We also have β̂
(t)
obs | β(t),W (t) ∼

Np(β
(t), σ2(XTW (t)X)−1).

Following a similar derivation, we can derive the posterior mean of β(t) as

E(β(t) | Yobs,W ) = E(β(t) | Y (t)
obs,W

(t)) (5.2)

= h2(Y
(t)
obs,W

(t); τ1,β, η, σ
2)(XTX/η +XTW (t)X/σ2)−1

·(XTXβ/η +XTW (t)Y (t)/σ2).

where

h2(Y
(t)
obs,W

(t); τ1,β, η, σ
2) =

τ1ψ(Y
(t)
obs;Xtβ, σ

2Int + ηHt)

τ1ψ(Y
(t)
obs;Xtβ, σ2Int + ηHt) + τ0ψ(Y

(t)
obs;0, σ

2Int)
.

Compared with the posterior mean in (2.5), the posterior mean of β(t) in (5.2) is more

complicated since XTX and XTW (t)X are not exactly the same due to missing values.

However, E(β(t) | Yobs,W ) is still a weighted combination of the shared information in

β and the observed information for the t-th tissue. We adopt the posterior expectation

with MLEs of β, τ1, η, σ
2 as our proposed estimator. To find the MLEs, we provide an EM

algorithm in Supplementary Materials A, where the estimation for β is calculated based on

observed samples in all the tissues. Under the setting with missing data, a Bayes factor and

posterior odds ratio can be derived (see Supplemental Materials).

For each tissue t, let β̃
(t)
obs(Yobs,W ) be the posterior mean given in (5.2) with the pa-

rameters estimated using the MLEs, τ̃1, η̃, σ̃, β̃. We define the Bayes risk function of any
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estimator δm(Yobs,W ) ∈ D̄m for β(t) as

R(obs)
m (δm) =

∫
l
(
β(t), δm(Yobs,W )

) m∏
i=1

{
p(W (i),Y

(i)
obs | β

(i))p(β(i))dY
(i)
obsdW

(i)dβ(i)
}
,

where D̄m is the set consisting of all available estimators of β(t) with missing data. When

η, σ, and β are known, let β̄
(t)
obs(Yobs,W ) = E(β(t) | Yobs,W ) be the oracle estimator.

Similarly as in Theorem 1, we demonstrate that the proposed estimator β̃
(t)
obs(Yobs,W ) is

strictly better than the OLS estimator β̂
(t)
obs in equation (5.1) in terms of the Bayes risk

function via the above oracle estimator in the following theorems.

Theorem 3. If η, σ, and β are known, the oracle estimator β̄
(t)
obs(Yobs,W ) is optimal, that

is,

R(obs)
m (β̄

(t)
obs) = inf

δm∈D̄∗
m

R(obs)
m (δm)

for each 1 ≤ t ≤ m, where D̄∗
m is the set consisting of all available estimators of β(t) with

known η, σ, and β. In addition, for each 1 ≤ t ≤ m,

R(obs)
m (β̂

(t)
obs)−R(obs)

m (β̄
(t)
obs) (5.3)

≥ κ
σ2α2λmin(∆)

η + σ2

(
τ1φ

[
λmax{(XTX)1/2}((1 + κ)∥β∥2 + α)/(σ2 + η)1/2

]
+τ0φ

[
λmax{(XTX)1/2}(κ∥β∥2 + α)/σ

])
,

where α is any positive constant and κ = λmin(X
TX)/λmax(X

TX).

The equation (5.3) in Theorem 3 shows that the oracle estimator β̄
(t)
obs is optimal and has

lower Bayes risk than the OLS estimator β̂
(t)
obs for large sample size n. Similarly as in Theorem

2, we can show that the proposed estimator β̃
(t)
obs(Yobs,W ) converges in probability to the

oracle estimator,
∥∥∥β̃(t)

obs(Yobs,W )− β̄
(t)
obs(Yobs,W )

∥∥∥
2

p→ 0, as m → ∞. Thus, the proposed

estimator is superior to the OLS estimator for missing data when the number of tissues is

large enough.
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6. Simulation

In this section, we conduct simulation studies to evaluate the performance of the proposed

method and compare it with the OLS method, the unified test for molecular signatures

(UTMOST) of Hu et al. (2019), the variational empirical Bayes (VEB) method of Kim

et al. (2024), the nonparametric empirical Bayes (NEB) method of Wang and Zhao (2021),

and the multiple regression with multivariate adaptive shrinkage (Mr.Mash) method of

Morgante et al. (2023). The simulation results show that the proposed method achieves

more accurate prediction and parameter estimation than the existing methods.

The R function of the proposed method has been made publicly available online at

https://github.com/feixue-stat/Multivariate-Empirical-Bayes. The UTMOSTmethod

is implemented by codes in https://github.com/ajmolstad/MTeQTLResults (Molstad

et al., 2021). We use the R packages “mr.ash.alpha” (https://github.com/stephenslab/

mr.ash.alpha), “cole” (https://github.com/ sdzhao/cole), and “mr.mash.alpha” (https:

//github.com/stephenslab/mr.mash.alpha) to implement the VEB, NEB, and Mr.Mash

methods, respectively. Since the R function of Mr.Mash method encounters errors when

the sample size is smaller than or equal to the number of tissues, we compare the proposed

method with Mr.Mash method only under Settings 4 and 6 below.

In each simulation setting, 100 replications are performed. For each replication, we let

Y (t) = Xβ(t) + ε(t),

where ε(t) ∼ Nn(0, σ
2In), and each row of the n×p matrix X is independent and identically

distributed, for t = 1, . . . ,m. More details of simulation settings are provided in Settings

1-6 below. In each replication of each setting, we generate n training samples and n testing
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samples.

To evaluate the performance of each method, we calculate the mean squared error

(MSE) of each estimator β̂(t) based on training sets and prediction MSE (PMSE) of the

corresponding prediction Ŷ (t)(1 ≤ t ≤ m) in testing sets as follows:

1

pm

m∑
t=1

∥β̂(t) − β(t)∥22 and
1

nm

m∑
t=1

∥Ŷ (t) − Y (t)∥22,

which measures the parameter estimation accuracy and prediction accuracy, respectively,

across all tissues, where Ŷ (t) = Xtestβ̂
(t), and Xtest represents the design matrix in testing

data. We say that a method has better performance if the MSE and PMSE are smaller.

We compare the proposed method with existing methods under the following settings.

In the first two settings, we assume that there is no missing values in the response Y (t).

The difference of the two settings mainly comes from the generation of β(t). Specifically, we

generate β(t) from the proposed mixture prior distribution in Setting 1, while β(t) is defined

based on a low-rank matrix in Setting 2. For Settings 3 and 4, we consider the cases with

missing values in the response, where we adopt the proposed estimator in Section 5 to deal

with the missing responses. Moreover, in Setting 4, we directly use the cis-SNPs in the real

GTEx genotype data as covariates X to capture the linkage disequilibrium structures of the

genotype data. In Settings 5 and 6, we consider different number of tissues and different

priors of the regression coefficients, respectively.

Setting 1. Let p = 30, n = 50, m = 50, β = (βs1
T
10, (βs/2)1

T
10,0

T
10)

T , and σ2 = 1, where βs is

the signal level. We generate each row of X from Np(0,C) and generate β(t) independently
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from

β(t) | I(t) = 1 ∼ Np(β,C), (6.1)

β(t) | I(t) = 0 ≡ 0,

for t = 1, . . . ,m, where I(t) ∼ B(1, τ1) with τ1 = 0.5, and C is an exchangeable covariance

matrix with all diagonals 1 and off-diagonals ρ.

Table 1: MSEs and PMSEs of different the methods under Setting 1. “MSE OLS”,

“MSE UTMOST”, “MSE VEB”, “MSE NEB” and “MSE mEBmix” represent MSEs of the

OLS, UTMOST, VEB, NEB, and the proposed method, respectively. “PMSE OLS”,

“PMSE UTMOST”, “PMSE VEB”, “PMSE NEB”, “PMSE mEBmix” represent PMSEs of the

OLS, UTMOST, VEB, NEB, and the proposed method, respectively.

Correlation ρ 0 0.6 0.8

Signal level βs 0.5 1 2 0.5 1 2 0.5 1 2

MSE OLS 0.053 0.053 0.052 0.129 0.127 0.128 0.253 0.254 0.256

MSE UTMOST 0.273 0.369 0.770 0.265 0.314 0.612 0.286 0.354 0.611

MSE VEB 0.028 0.028 0.033 0.076 0.074 0.087 0.388 0.417 0.498

MSE NEB 0.557 0.704 1.255 0.333 0.382 0.444 0.234 0.277 0.368

MSE mEBmix 0.025 0.025 0.025 0.067 0.062 0.063 0.128 0.130 0.130

PMSE OLS 2.602 2.587 2.548 2.579 2.594 2.595 2.590 2.571 2.591

PMSE UTMOST 9.267 11.989 24.091 14.298 16.889 35.220 13.733 16.135 25.143

PMSE VEB 1.879 1.876 2.011 1.969 1.983 2.112 3.488 3.623 4.097

PMSE NEB 17.804 22.185 38.969 48.151 45.157 29.260 39.451 39.228 31.108

PMSE mEBmix 1.761 1.751 1.755 1.815 1.788 1.781 1.834 1.834 1.811

In Setting 1, we generate β(t) following our model construction in Section 2.1, but we

do not set the covariance matrix of β(t) to be exactly η(XTX)−1. Nevertheless, as shown

in Table 1, the proposed method still performs better than existing methods under various

correlation and signal levels. For example, when ρ = 0.6 and βs = 2, the MSEs of the OLS,
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UTMOST, VEB, NEB methods are 0.128, 0.612, 0.087, and 0.444, respectively, while the

MSE of the proposed method is 0.063 which is only 49.2%, 10.3%, 72.4%, and 14.2% of

that of the OLS, UTMOST, VEB, NEB methods, respectively. Moreover, the PMSEs of

the OLS, UTMOST, VEB, NEB methods are 2.595, 35.220, 2.112, and 29.260, respectively,

while the PMSE of the proposed method is only 1.781, which is 68.6%, 5.1%, 84.3, and 6.1%

of that of the OLS, UTMOST, VEB, NEB methods, respectively.

Setting 2. We consider a similar setting as Setting 1 except that β(t) is the t-th column

of AB when I(t) = 1 for t = 1, . . . ,m, where A and B are p × r and r × m matrices,

respectively, whose elements are independently drawn from a standard normal distribution.

We note that β(t) is generated from the columns of AB, which is different from our assumed

mixture normal distribution in Section 2.1. Thus, the purpose of Setting 2 is to investigate

robustness of the proposed method.

As shown in Table 2, the proposed method produces much smaller PMSE and MSE

than the existing methods. For instance, at ρ = 0.8 and r = 15, the PMSE of the proposed

method is only 69.5%, 5.3%, 5.3%, and 2% of that of the OLS, UTMOST, VEB and NEB,

respectively. The MSE of the proposed method is at most 50% of those of existing methods.

Thus, the proposed method is robust to certain errors in the model assumption.

In real genetic data such as the GTEx data, we might not collect all tissues from each

subject, indicating that the gene expression matrix Y could contain missing values. We

provided a proposed estimator in Section 5 to handle cases with missing values in Y . In the

following Settings 3 and 4, we consider missing responses, where we compare the proposed

method with only the OLS and the UTMOST methods since the VEB and the NEB methods

are unable to deal with missing data.
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Table 2: MSEs and PMSEs of all the methods under Setting 2. “MSE OLS”, “MSE UTMOST”,

“MSE VEB”, “MSE NEB”, “MSE mEBmix” represent MSEs of the OLS, UTMOST, VEB,

NEB, and the proposed method, respectively. “PMSE OLS”, “PMSE UTMOST”, “PMSE VEB”,

“PMSE NEB”, “PMSE mEBmix” represent PMSEs of the OLS, UTMOST, VEB, NEB, and the

proposed method, respectively.

Correlation ρ 0 0.6 0.8

Rank r 5 10 15 5 10 15 5 10 15

MSE OLS 0.052 0.053 0.053 0.128 0.126 0.126 0.263 0.256 0.252

MSE UTMOST 1.265 2.541 3.751 1.549 2.910 4.607 1.649 3.259 4.988

MSE VEB 0.042 0.062 0.081 0.432 0.700 1.110 1.705 3.307 5.162

MSE NEB 2.406 4.829 6.272 2.463 4.278 6.209 2.407 4.424 6.444

MSE mEBmix 0.026 0.027 0.026 0.065 0.060 0.063 0.128 0.124 0.126

PMSE OLS 2.552 2.618 2.587 2.603 2.576 2.577 2.620 2.569 2.561

PMSE UTMOST 39.016 77.867 115.268 21.277 38.524 60.730 12.166 22.103 33.590

PMSE VEB 2.284 2.932 3.533 6.527 9.800 15.032 11.677 21.605 33.384

PMSE NEB 73.767 147.736 192.539 68.910 102.722 128.812 59.925 76.017 87.425

PMSE mEBmix 1.766 1.809 1.773 1.813 1.760 1.788 1.795 1.766 1.781

Setting 3. We follow similarly as in Setting 1 except τ1 = 0.1 and that, we randomly set

20% elements in Y (t) to be missing for each t = 1, . . . ,m.

We provide results of Setting 3 in Table D.1 in Supplementary Materials. Under Setting

1, we let τ1 = 0.5, indicating that the two groups of tissues (β(t) ̸= 0 verse β(t) = 0) are

balanced, while in Setting 3, we provide simulations with τ1 = 0.1 where the two groups of

tissues are unbalanced. Due to the imbalance and missing values, the PMSEs and MSEs

of the OLS in Setting 3 are larger than those in Setting 1. In contrast, the PMSEs and

MSEs of UTMOST and the proposed method in Setting 3 are smaller than those in Setting

1, since these two methods are designed for the cases with sparse coefficients. As shown in

Table D.1, the proposed method outperforms the OLS and UTMOST methods in terms of
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both PMSE and MSE.

Setting 4. We follow similarly as in Setting 3 except n = 300 and that, for the construction

of X, we randomly select n samples independently with replacement from the 838 samples

of the 30 cis-SNPs of the gene WARS2 in the GTEx data.

The results under Setting 4 are provided in Table D.2 in Supplementary Materials,

showing that the proposed method still produces smaller PMSEs and MSEs than existing

methods when we use the real cis-SNP genotype covariates in GTEx. In particular, the

proposed method performs better than Mr.Mash under the settings with various noise levels,

correlations, and signal levels. For example, with σ = 2, ρ = 0.8 and βs = 0.5, the PMSE

of the proposed estimator is 4.094, which is smaller than PMSEs of the OLS, UTMOST, and

Mr.Mash methods. Note that, as the standard deviation (σ) of the error term increases,

signal level (βs) increases, or correlation (ρ) increases, the difference between PMSEs of

UTMOST and the proposed method becomes larger in most cases, while the PMSEs of the

proposed method across correlations and signal levels do not change much. This indicates

that the proposed method is more stable in terms of PMSE compared to the UTMOST

method.

In addition to MSE and PMSE, in Settings 1-4, we use the posterior probability of

I(t) produced by the proposed method to calculate the area under the receiver operating

characteristic curve (AUC) for identifying the tissues with non-zero cis-effects. The AUCs

of the proposed method across different settings are all above 0.95 and most are very close

to 1, indicating that the proposed method can effectively find tissues with non-zero β(t).

Since the performance of the proposed method depends on the number of tissues m

based on Theorem 2 in Section 4, we choose different m values in the following setting to
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illustrate this point.

Setting 5. We follow a similar setting as Setting 1 except that βs = 0.5, σ2 = 5, m =

3, 30, or 300, and that the covariance matrix in equation (6.1) is C/10.

The results of the proposed method are provided in Table 3. The MSE and PMSE both

decrease as the number of tissues increases under different correlation settings, indicating

that the proposed method performs better when we have more tissues.

Table 3: MSE and PMSE of the proposed method mEBmix under Setting 5.

Correlation ρ 0 0.4 0.6

Number of tissues m 3 30 300 3 30 300 3 30 300

MSE 0.525 0.116 0.063 0.833 0.145 0.100 1.227 0.272 0.196

PMSE 40.812 28.377 26.865 42.522 29.658 28.768 42.239 31.703 30.848

In the following Setting 6, we compare the methods under different priors of the regres-

sion coefficients.

Setting 6. We follow similarly as in Setting 1 except for n = 100, m = 10, βs = 0.5, ρ = 0.2,

σ2 = 2, and the prior distribution of coefficients β(t) for t = 1, . . . ,m. We consider the

following priors in this setting.

• Proposed prior in equations (2.3) and (2.4) with η = 0.1 and β = (0.5 × 1T
10, 0.25 ×

1T
10,0

T
10)

T .

• Multivariate normal mixture (MNM) prior: βj
i.i.d.∼ 0.5N(0, Im) + 0.5N(0,1m1

T
m)

for j = 1, . . . , p, where βj = (β
(1)
j , . . . ,β

(m)
j )T is a m-dimensional coefficient vector

corresponding to the j-th covariate and β
(t)
j is the j-th element in β(t) for t = 1, . . . ,m.

• Univariate normal mixture (UNM) prior: β
(t)
j

i.i.d.∼ 0.5N(0, σ2
1) + 0.5N(0, σ2

2) with

σ2
1 = 1 and σ2

2 = 0 for j = 1, . . . , p and t = 1, . . . ,m.
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In this setting, we consider not only the prior that is used in the proposed method,

but also the multivariate normal mixture (MNM) prior and the univariate normal mixture

(UNM) prior that are assumed in Morgante et al. (2023) and Kim et al. (2024) for Mr.Mash

and VEB methods, respectively. We do not consider any particular priors for the OLS,

UTMOST, and NEB methods, since these methods do not assume any specific prior of

coefficients.

The results of Setting 6 are provided in Table 4, which show that the proposed method

performs the best among all the methods in terms of both MSE and PMSE when the

proposed prior is used to generate the regression coefficients. When the multivariate normal

mixture prior and the univariate normal mixture prior are used, Mr.Mash and VEB methods

perform the best, respectively. Thus, each method achieves the best when data are generated

from its own model. Nevertheless, the proposed method still performs well and is the second

best in terms of MSE and PMSE, when coefficients are not generated from the proposed

prior, indicating certain robustness of mEBmix against the prior.

We provide computation time of each method for one replication under Setting 6 in

Table 4. It shows that, the proposed method takes longer than the OLS, VEB, and NEB

methods, but is faster than the UTMOST and Mr.Mash methods. This indicates that the

computation time of the proposed method is comparable to that of existing methods.

7. Application to GTEx data

In this section, we apply the proposed method to the Genotype-Tissue Expression (GTEx)

data (Consortium et al., 2017) and compare it with the OLS, the UTMOST, and Mr.Mash

methods in terms of predicting tissue-specific expressions using the cis-SNP data. In Section
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Table 4: MSEs, PMSEs, and computation time of OLS, UTMOST, VEB, NEB, Mr.Mash, and

the proposed method mEBmix under Setting 6. “Proposed”, “MNM”, and “UNM” represent the

proposed prior, multivariate normal mixture prior, and univariate normal mixture prior, respec-

tively. For each method. “MSE ” represents MSE, “PMSE ” represents PMSE, and “Time ”

represents computation time (in seconds) for one replication.

Prior Proposed MNM UNM

MSE OLS 0.070 0.034 0.034

MSE UTMOST 0.023 0.404 0.088

MSE VEB 0.018 0.034 0.022

MSE NEB 0.082 0.680 0.693

MSE Mash 0.036 0.017 0.055

MSE mEBmix 0.008 0.032 0.033

PMSE OLS 5.769 2.848 2.859

PMSE UTMOST 5.619 12.158 4.186

PMSE VEB 4.525 2.885 2.581

PMSE NEB 9.337 21.495 21.580

PMSE Mash 6.299 2.482 3.387

PMSE mEBmix 4.207 2.813 2.821

Time OLS 0.001 0.001 0.001

Time UTMOST 3.230 3.138 3.212

Time VEB 0.306 0.350 0.354

Time NEB 0.002 0.001 0.000

Time Mash 5.553 1.033 3.412

Time mEBmix 0.996 0.584 0.521
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6, we also compared the proposed method with the VEB and the NEB methods. However,

they are unable to deal with missing data, and thus they are not used in the real data

application.

We are interested in understanding the cis-SNP and gene expression associations across

different issues. The GTEx is an ongoing US National Institutes of Health (NIH) Common

Fund project starting from 2010, which aims to establish a comprehensive public resource

database for investigation of the relationship between genetic variation and gene expression.

The GTEx project collects non-diseased tissue samples from nearly 1000 donors, which are

sent to the Laboratory, Data Analysis and Coordinating Center (LDACC) for molecular

analysis (Lonsdale et al., 2013). DNA from each donor’s blood sample is genotyped using the

Illumina HumanOmni5M-Quad BeadChip for whole-genome SNP (Lonsdale et al., 2013),

and the Illumina TrueSeq RNA sequencing is used for the measurement of gene expression.

Specifically, the GTEx project includes genotype and gene expression data of 838 partici-

pants across 49 tissue types. We extract the gene expression values from “GTEx Analysis v8

eQTL expression matrices.tar” under “QTL” tab at https://www.gtexportal.org/home/dow

nloads/adult-gtex, which are fully processed, filtered, and normalized by the GTEx project

(Lonsdale et al., 2013; GTEx Consortium, 2020). Details about the pre-processing of the

expression data can be found in Section 3 of the Supplementary Material of GTEx Consor-

tium (2020). There are 8066 genes with expression data available in all the tissue types.

Since tissue samples of some participants are not collected for each tissue type, our analyses

of GTEx data focus on 32 tissues, each of which has at least n = 200 collected samples.

For DNA data, we use the GTEx genotype dataset “GTEx Analysis 2017-06-05 v8 Who

leGenomeSeq 838Indiv Analysis Freeze.SHAPEIT2 phased.vcf.g”, whose quality-control pro-
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cedure was also conducted by the GTEx study. More details can be found in Section 2 of

the Supplementary Material of GTEx Consortium (2020). The genotype data are GTEx pro-

tected access data, which can be obtained by following the steps at https://www.gtexportal

.org/home/protectedDataAccess.

We further process the genotype dataset as follows. We first exclude the SNPs with

minor allele frequencies less than 5%. The SNPs are further pruned for LD with a win-

dow size of 50 SNPs, a step size of 5 SNPs, and a R2 threshold of 0.2 using PLINK

1.9. In addition, we select cis-eQTLs for each gene following Wang et al. (2016), which

can be viewed as a screening of predictors. Specifically, we first obtain tissue-specific cis-

eQTLs of pairs of genes and its corresponding cis-SNPs using the “MatrixEQTL” R package

(https://cran.r-project.org/web/packages/MatrixEQTL/index.html). For each pair, we

then combine the Z statistics of the cis-eQTLs from all the tissues via the Stouffer’s Method

(Stouffer et al., 1949). We use the “poolr” R package (https://cran.r-project.org/web/pa

ckages/poolr/index.html) to carry out the Stouffer’s Method. We select the cis-eQTLs

whose Stouffer’s p values are less than 10−6. Then there are 4827 genes with at least one

selected cis-eQTL. For each gene, we order the selected cis-SNPs by the corresponding

Stouffer’s p values increasingly. To avoid highly correlated cis-SNPs, we retain the selected

cis-SNPs in a increasing order of the corresponding Stouffer’s p values, and remove cis-

SNPs which are highly correlated with previously retained cis-SNPs with the coefficient of

determination larger than 0.5.

We apply the proposed method, OLS, UTMOST method, and Mr.Mash method to

each gene and its corresponding cis-SNPs. To evaluate each method in gene expression

prediction based on cis-SNPs, we use a 10-fold cross-validation analysis. Specifically, we
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randomly split the observed samples in each tissue into 10 equally sized subsamples, named

from Subsample 1 to Subsample 10. For each 1 ≤ i ≤ 10, we use Subsample i in all the

tissues as a testing set, and the remaining 9 subsamples in all the tissues as a training set.

We predict the gene expression values of subjects in each testing set for each gene based

on each method. For the proposed method, we use the extension version in Section 5 that

can handle missing values, since there are missing samples in some tissues for a subject in

the training set. We repeat this procedure 10 times and obtain predicted values for all the

subjects. To evaluate the prediction accuracy of each method, we calculate the prediction

mean squared error and Pearson correlation between the predicted values and true gene

expression values for each gene and each tissue type.

For each tissue type, we take averages of PMSEs and correlations, respectively, across

all the genes. The results are provided in Tables E.1 and E.2 in Supplementary Mate-

rials, showing that the proposed method produces the smallest PMSE and the highest

correlation in each tissue type among all the methods. Among all the tissue types, the

improvement of PMSE by the proposed mEBmix is relatively higher in “Adrenal Gland”,

“Brain Nucleus accumbens basal gan glia”, “Colon Transverse”, “Pancreas”, “Pituitary”,

and “Spleen” tissues.

For these tissue types, we also provide the PMSEs of all genes by each method in Figures

1 and 2. Each sub-figure in Figures 1 and 2 is a scatter plot of PMSEs of all genes in one

tissue type, where x-axis represents PMSE of an existing method, and y-axis represents

PMSE of the proposed method. In each sub-figure, the majority of points are under the

red line where the PMSEs of the two methods are the same. Thus, the proposed method

overall performs better than existing methods in terms of PMSE. Especially, in most of
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Figure 1: Scatter plots of PMSEs in various tissues. Y-axis: PMSE of the proposed method.

X-axis: PMSE of OLS, UTMOST, and Mr.Mash, respectively.
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Figure 2: Scatter plots of PMSEs in various tissues. Y-axis: PMSE of the proposed method.

X-axis: PMSE of OLS, UTMOST, and Mr.Mash, respectively.
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these tissues, for some genes, the PMSEs of the proposed method is even smaller than 50%

of the corresponding PMSEs from UTMOST.

Moreover, in Figure 3, we plot the absolute increase and relative increase of corre-

lation by the proposed method compared with Mr.Mash method, where the absolute in-

crease is the difference between average correlations of the proposed method and Mr.Mash

method, and the relative increase is the absolute increase divided by the average correlation

of Mr.Mash method. We observe that the proposed method mEBmix increases the aver-

age correlations across genes in all the tissues compared to Mr.Mash method, indicating

that the predicted values from mEBmix are more correlated to the true gene expression

values. On average, the proposed method improves the correlation by 34.9% across all

the tissue types. In particular, mEBmix increases the correlation by over 100% in the

“Brain Nucleus accumbens basal ganglia” tissue.

Furthermore, we apply the proposed method to the whole dataset, calculate the poste-

rior probability of I(t) = 1 for all tissues and genes, and generate a heat map of all the pos-

terior probabilities in Section E.4 of the Supplementary Materials. The heat map indicates

that the posterior probabilities based on the proposed method indeed capture the similarity

between tissues in terms of the relationship between gene expression and cis-SNPs.

Since mEBmix assumes that gene expression values follow a normal distribution, we use

Shapiro–Wilk test to check the normality of expression values of each gene and each tissue

that we used in our real data application. Among the 4827 genes, there are only 368 genes

whose corresponding p-values are smaller than 0.05 in at least one tissue. Moreover, in

these 368 genes, there are 251 genes whose p-values are smaller than 0.05 in only one tissue.

Thus, the expression values of most genes can be regarded as being normally distributed in
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most tissues.

Figure 3: Increase of correlation by the proposed method compared with Mr.Mash method. Left:

Increase of average correlation by the proposed method. Right: Relative increase of correlation by

the proposed method.

To check robustness of the proposed method against the normal distribution assumption,

for each method and each tissue, we take average of prediction mean squared errors (PMSEs)

of genes whose p values are smaller than 0.05 in at least 20 tissues. That is, expression values

of these genes are not normally distributed in most of tissues according to the Shapiro–Wilk

test. The average PMSEs are provided in Table E.3 in Supplementary Materials. We observe

that the PMSE of the proposed method is smaller than that of other methods in each tissue.

This indicates that the proposed method still performs the best among all the methods even

when the responses, gene expression values, are not normally distributed.
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We finally provide the computation time (in seconds) of all the methods for genes with

different number of cis-SNPs in Table E.4 in Supplementary Materials. Specifically, we

record the running time of the OLS, UTMOST, Mr.Mash, and the proposed method for

a gene with the number of cis-SNPs (or predictors) p = 30, 50, 80, 105, or 125. For each

p, this gene is randomly selected from all the genes with p cis-SNPs (or predictors). The

results show that the computation time increases as the number of predictors increases in

most cases. The proposed method takes longer than the OLS method, but mostly shorter

than UTMOST and Mr.Mash, which is consistent with the results on computation time

under simulation Setting 6 in Section 6.

8. Discussion

We develop a new empirical Bayes regression model for SNP-based gene-expression predic-

tion and multi-tissue eQTL analysis. To borrow information across tissues, the proposed

method assigns a common mixture prior distribution to the cis-SNP effects in each tissue,

and estimates parameters in the prior distribution through maximizing marginal likelihood

of the expression levels in all the tissues. In addition, the method provides a way of quantify

the evidence whether the cis-SNPs are “active” or not in a certain tissue based on the pos-

terior probabilities of the latent configuration indicator in the mixture prior distribution.

We apply the EM algorithm to find the maximum likelihood estimate of prior parameters.

Moreover, to accommodate real data with missing responses such as the GTEx data, we

have also developed the empirical Bayes estimator and the corresponding asymptotic results

for missing data.

Theoretically, we have shown that the proposed estimator is asymptotically superior

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0201



31

than the OLS estimator in terms of the Bayes risk. This superiority is mainly due to

that the OLS only uses single tissue information while the proposed method incorporates

common information from other tissues. Moreover, we have demonstrated that the proposed

method converges to the optimal oracle estimator as the number of tissue types increases.

In addition, the application to the GTEx data illustrates that the proposed method predicts

gene expression more accurately than existing methods. More importantly, the proposed

method provides posterior probabilities of whether there is cis-effects or not for each tissue,

which indeed reflects similarity among tissues.

In general, the empirical Bayes method provides a powerful framework for pooling infor-

mation across multiple experiments or sources, and improving the accuracy of the estimation

or inference in each experiment. Besides the SNP-gene association, we can also extend the

empirical Bayes framework to improve the estimation of the relationship between expression

levels of genes for the GTEx project where gene expression levels are measured over multiple

tissues. For example, we could incorporate information across tissues through estimating

a common prior on the multiple precision matrices for the multiple tissues. In addition, in

this article, we mainly consider the association between gene expression and cis-SNPs. It

would be of great interest to incorporate more covariates, including not only cis-SNPs but

also trans-SNPs, in future research. We could involve penalty functions when the number

of covariates exceeds the number of subjects.

9. Supplementary Material

The online Supplementary Material file includes EM algorithm and Bayes factor for models

with missing data, all proofs and additional simulation results.
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