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Abstract: Technological advances have necessitated statistical methodologies for analyz-

ing large-scale datastreams comprising multiple indefinitely time series. This manuscript

proposes a dynamic tracking and screening (DTS) framework for online learning and

model updating. Utilizing the sequential nature of datastreams, a robust estimation

approach is developed under a linear varying coefficient model framework. This ac-

commodates unequally-spaced design points and updates coefficient estimates without

storing historical data. A data-driven choice of an optimal smoothing parameter is

proposed, alongside a new multiple testing procedure for the streaming environment.

Statistical guarantees of the procedure are provided, along with simulation studies on

its finite-sample performance. The methods are demonstrated through a mobile health

example estimating when subjects’ sleep and physical activities unusually influence

their mood.
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1. Introduction

1.1 Background and motivation

Highly developed information and sensor technologies constantly generate and

store massive longitudinal data sets that become available sequentially at a high

frequency. Ranging from telecommunications (Black and Hickey, 2003), environ-

mental monitoring (Guerriero et al., 2009), retail banking (Tsung et al., 2007),

health care (Spiegelhalter et al., 2012), and network monitoring (Vaughan et al.,

2013), such a type of data collection is pervasive and is referred to as streaming

data throughout this manuscript. Other than the high-frequency feature, as

massive datastreams are often collected from distinct classes of subjects often in

highly dynamic real-life environments, it is commonly believed that they may

contain a growing number of irregular patterns (Gama, 2010).

In this context, a statistical methodology that is relevant to streaming data

analysis often pertains to algorithms that enable us to (1) dynamically revise

statistical models and update the statistical inferential results by incorporat-

ing local dynamic changes, (2) efficiently store summary statistics from past

history without the need to store an ever-increasing data history (Aggarwal,

2007), and (3) identify individual datastreams whose behavioral patterns devi-

ate significantly from that of most individuals. In this manuscript, we propose a

dynamic statistical learning procedure–so called dynamic tracking and screening

(DTS)–which is able to temporally adapt to time-varying structures, to incor-
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1.1 Background and motivation

porate time-varying covariates and to identify irregular datastreams as soon and

accurately as possible.

Our motivating example comes from the Intern Health Study (IHS)–an on-

going multi-site cohort study enrolled more than 3,000 medical interns–which

aims to assess behavioral phenotypes that precipitate stress episodes and mood

changes during the first year of residency training (Kalmbach et al., 2018; Kious

et al., 2019). Here, the datastreams represent daily ecological momentary assess-

ments (EMA) via a mobile App and temporal behavioral patterns collected from

wristbands that are preassigned to the medical interns. As a medical internship–

the first phase of professional medical training in the United States–is a stressful

period in the career of physicians, the residents are faced with difficult decisions,

long work hours and sleep deprivation. A timely identification of individuals

with sleep- or activity-sensitive emotional states informs the policy maker right

interventions, e.g, the mobile App can send out sleep or activity message in the

hope of promoting healthy outcomes. In this context, as new data batch arrives

every day (such as hours of sleep, daily step counts and daily mood scores), our

DTS framework quickly revises the statistical model and update the underlying

parameter estimation, hence it enables an efficient detection of medical interns

potentially at high stress level in a timely manner.
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1.2 Model setup and our contribution

Driven by the aforementioned examples, we formulate the dynamic tracking and

screening problem as follows. Suppose that we have p datastreams for the units

indexed by j = 1, . . . , p. Suppose the study begins at the time point t1, and

we are at the current time point tm. At each point ti, i = 1, . . . ,m, we observe

the response yij and the covariates Xij ∈ Rd. We consider the linear varying

coefficient model in the form of

yij=


X⊤

ijβ(ti) + σ(ti)εij, for ti ∈ (0, τj],

X⊤
ij{β(ti) + δj(ti)}+ σ(ti)εij, for ti > τj,

(1.1)

for j = 1, . . . , p, i = 1, 2, . . ., where εij is the random noise that satisfies E(εij |

Xij) = 0 and var(εij | Xij) = 1 for theoretical treatments, σ2(·) is the variance

function, and τj is an unknown change-point in the jth stream. The coefficient

β(·), the drift δj(·), and the variance function σ2(·) are assumed to be smooth

functions. In particular, this implies that δj(t) = 0 for t ≤ τj. In model (1.1),

different streams are assumed to share the same coefficient function β(·), while

the change-points τj’s and the drift functions δj(·)’s are allowed to vary among

different streams.

To better understand our model in (1.1), take IHS for example, the response

yij is the mood score (self-reported through the mobile App), and the covariates

Xij include traits of individual which may affect the mood score, such as hours

of sleep, step counts, or average resting heart rate. As the relationship between

the mood score and the covariates is potentially affected by factors such as
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temperature or daylight hours that change with time, it is more suitable to

treat the regression coefficients as dynamic functions of the time. In addition,

the time-varying coefficient βr(·) (i.e., the rth coordinate of β(·)) captures the

mean change in the mood score if, for example, the individual sleeps one hour

less while holding other predictors in the model constant, and therefore is shared

across different streams. Lastly, since the medical interns work in high-stress

environments, some of them may experience episodes of mood change after an

initial period during which they adapt to daily routines. Such irregular patterns

would often last for a period, which leads to (1.1).

Given Model (1.1), at the current time point tm, our goal is two-folds. First,

we want to provide accurate estimates of β(tm) and σ2(tm) without having to

store the entire historical trajectory for each subject (Section 2.1). We refer

to this parameter estimation step as the dynamic tracking step. Second, we

aim to sequentially detect the occurrence of the changes as soon as possible for

each stream (Section 2.2). We define, formally, Otm = {j : ∥δj(tm)∥ ̸= 0, j =

1, . . . , p} ⊂ {1, . . . , p} as the subset that contains the indices of the irregular

datastreams at the current time tm, where ∥ · ∥ represents the vector L2 norm.

We refer to this second change-point detection step as the dynamic screening

step.

Although there have been some recent articles expressing concern about the

online updating method for analysis of datastreams (see Schifano et al. (2016);

Luo and Song (2020) and the references therein), the issues of developing effec-
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1.2 Model setup and our contribution

tive methodologies and theories for statistical modeling and learning of massive

datastreams still remain. As most of the existing procedures and formulae were

mainly developed based on the assumption that the observations come from the

same model across time and sources. The primary goal of this manuscript is to

provide a dynamic statistical learning–dynamic tracking and screening (DTS)–

procedure that fully explores the dynamical features of datastreams. We sum-

marize our contribution from two perspectives.

From a statistical methodology standpoint, our dynamic tracking and screen-

ing (DTS) procedure efficiently adapts local dynamic structures in the streaming

data environment and detect the irregular patterns as soon as they occur. Specif-

ically, we demonstrate that incorporating exponentially weighted loss functions

into our DTS procedure allows the estimates and the test statistics to be up-

dated sequentially in a timely manner (Eqs. (2.2) and (2.10)). As a result,

DTS can quickly revise the underlying statistical model as the new data arrive,

without the need to store an ever-increasing data history (see Section S1.1 for a

discussion on computational complexity).

From a theoretical perspective, our theoretical investigations show that the

proposed estimators in DTS are uniformly consistent under some regularity con-

ditions on between-and-within streams dependence even when the proportion of

irregular streams does not vanish to zero as p goes to infinity, and the optimal

convergence rates of the proposed estimators are presented as separate results

(Theorem 2). It is also worth noting that, different from the classical nonpara-
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metric estimation literature where the smoothing parameter is often chosen to

minimize the global mean squared error, our DTS chooses the smoothing param-

eter adaptively so that the averaged prediction error is minimized (Theorem 3).

With the help of efficient tracking, a new multiple testing procedure tailed to the

streaming environment is developed for screening purposes, and we show that

the false discovery rate (FDR) with the data-driven threshold can be controlled

at the nominal level uniformly at all time points (Theorem 4).

1.3 Connections to existing work

Model (1.1) is built upon a linear varying coefficient (VC) model that incorpo-

rates potential structural changes raised by irregular patterns. The VC models

have been extensively studied in the past two decades, especially in the field

of longitudinal data analysis, and are known to be very powerful tools for an-

alyzing the relationship between a response and a group of covariates due to

its efficiency and flexibility; see Fan and Zhang (2008) for a comprehensive re-

view. The VC models are particularly useful to explore the dynamic pattern in

our problem discussed above. Nevertheless, our framework differs substantially

from existing literature in various aspects. First, traditional methods usually

assume that all of the longitudinal observations have the same model structure,

which is not appropriate in the present problem. Second, as the data are col-

lected sequentially and our aim is prospective learning rather than retrospective

analysis, only partial information is available rather than the whole functional
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curves as in the standard VC models. We need to make decisions based on the

available observations up to the current time, and with the implicit assumption

that more recent observations are more useful for making decisions. Third, as

the data collection process runs with high speed, a sequential procedure which is

capable of updating parameters with minimal storage requirements is highly de-

sirable. These differences play an important role in the setup of our approaches

for parameter estimation and hypothesis testing.

There are some efforts to adapt various sequential change-detection meth-

ods to large-scale datastreams surveillance, such as Tartakovsky et al. (2006),

Mei (2010), Xie and Siegmund (2013), Zou et al. (2015), Chan (2017) and Ren

et al. (2022). Different from our goal in developing dynamic statistical learn-

ing, their settings are completely from ours because they aim to minimize the

overall expectation delay while controlling the average run length under the null

hypothesis that none of the datastreams experience changes. Recent works on

sequential testing based on the sequential probability ratio test (SPRT) rules

such as Bartroff (2018) and Song and Fellouris (2019) are computationally in-

tensive, making it infeasible for large-scale studies such as those arising from

IHS where millions of tests are conducted simultaneously at each time.

More closely related works are Marshall et al. (2004), Grigg et al. (2009),

Spiegelhalter et al. (2012), and Gandy and Lau (2012), which considered various

applications of Benjamini and Hochberg’s FDR control procedure for statistical

surveillance. Those methods usually assume that the coefficient function β(·)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0195



1.3 Connections to existing work

is either a constant or fully known, which is not appropriate to assume in the

present problem since we need to exploit the time-varying structure of (1.1) in

a data-driven manner. Recently, some authors considered dynamic testing sys-

tems to solve the curve monitoring problem, e.g., see Qiu and Xiang (2014) and

Qiu and Xiang (2015), among others. Those methods are simple and effective,

however, they are designed under the assumption that the regular pattern is

known in advance of detection and only focus on the irregular behavior of lo-

cal streams, without taking the global false discoveries into account. It should

be also emphasized that to the authors’ best knowledge, a common feature of

most of the literature on sequential detection consists in the fact that either the

datastreams are independent (Gandy and Lau, 2012; Xie and Siegmund, 2013)

or the streaming observations are independent in the time domain (Ren et al.,

2022). However, such assumption is often violated in practice, especially for

large-scale datastreams with high frequency observations, which may in turn

hamper their applicability to massive data applications. To this end, this article

suggests a systematic DTS procedure by making connections to the VC models

and some sequential detection problems. We address two key challenges in a

unified framework: constructing efficient estimators and multiple testing proce-

dures under model (1.1), and investigating theoretical properties under lenient

requirements on the datastreams.
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1.4 Organization

Our paper is structured as follows. In Section 2, we propose the dynamic tracking

and screening procedure, followed by investigating its theoretical properties in

Section 3. In Section 4, we conduct simulation experiments to show the finite-

sample performance of the proposed method in comparison with some others,

and then apply our approach on the Intern Health Study for further illustration

in Section 5. Section 6 offers a summarizing discussion. We provide some

practical guidance about our DTS procedure and additional simulation results on

dynamic estimation in Supplementary Material. The proofs and some technical

details are delineated in the Supplementary Material.

2. Methodology

At the current time point tm, we have access to the observations up to time point

tm, i.e., {(y1j,X1j), . . . , (ymj,Xmj)}. In addition, because our over-aching goal

is to dynamically identify individuals with irregular behaviors and to estimate

β(tm) that captures the shared time-varying coefficient across all individuals,

we work under the setting that individuals with the irregular pattern δj(tm) are

minority in the study cohort. In other words, the cardinality of Otm is small

compared to p.
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2.1 Dynamic Tracking

We start with describing our approach for dynamic tracking on estimating β(tm).

Because different datastreams have different time-varying coefficients (some have

β(tm) and some have β(tm)+δj(tm)), unless the irregular set Otm is known as a

prior, we cannot naively combine all observed data {(y1j,X1j), . . . , (ymj,Xmj)}pj=1

together to construct an accurate estimator of β(tm). Instead, at current time

tm, our dynamic tracking strategy for estimating β(tm) is to first estimate each

individual stream coefficients and then perform a robust quantile-based approach

to combine those estimates after screening out the irregular ones.

For each datastream j, at the current time tm, based on the observed data

{(y1j,X1j), . . . , (ymj,Xmj)} up to the time point tm, we consider the following

loss function to better incorporate local dynamics:

Qmj,λ(b) ≡
m∑
i=1

(
yij −X⊤

ijb
)2
λtm−ti ≜

m∑
i=1

(
yij −X⊤

ijb
)2
wi(tm), (2.1)

where λ ∈ (0, 1) is a smoothing parameter, and wi(tm) assigns different weights

to different individuals.

The exponential weighting function wi(tm) invests at least two merits into

our framework. First, it respects the local dynamic nature of our streaming

data environment. Because the weighting function assigns smaller weights to

individuals farther away from the current time point tm, and all observations up

to tm are incorporated in Qmj,λ(b) to improve statistical estimation efficiency.

We note that Qmj,λ(b) combines the ideas of local smoothing and exponential
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weighting schemes used in the exponentially weighted moving average (EWMA)

procedures through the term λtm−ti , which can be regarded as weights defined by

a special kernel function (Runger and Prabhu, 1996). Second, the exponential

weighting function admits recursive expressions in both tracking and screening

steps, whereas some commonly used kernels, such as the Epanechnikov kernel

K(u) = 0.75(1 − u2)+, may not result in recursive formulae. In other words,

though this weighting scheme is just one choice among a broad class of weight-

ing functions, it serves the purpose of our DTS procedure well. In addition, as

opposed to the traditional VC model, making one-sided kernel functions is nec-

essary in our problem, since only the observations on one side of tm are available

(Wu and Chu, 1993).

Benefited from the exponential weighting function wi(tm), we can quickly

obtain an estimate of β(tm) that not only minimizes the lost function Qmj,λ(b)

but also can be updated efficiently based on the previous time point estimate

β̂j,λ(tm−1):

β̂j,λ(tm) = A−1
mj

{
wm−1(tm)Am−1,jβ̂j,λ(tm−1) +Xmjymj

}
, (2.2)

Amj = wm−1(tm)Am−1,j +XmjX
⊤
mj.

Then, by defining eij = yij −X⊤
ijβ̂j,λ(ti), the variance function σ2(·) at tm can

be estimated using the observations on the jth stream by

σ̂2
j,λ(tm) = φ−1

m

m∑
i=1

wi(tm)e
2
ij, (2.3)
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which again can be recursively updated:

σ̂2
j,λ(tm) = φ−1

m

{
wm−1(tm)φm−1σ̂

2
j,λ(tm−1) + e2mj

}
, (2.4)

with φm =
∑m

i=1wi(tm). In Section 3, we prove in Theorem 1 that β̂j,λ(tm) and

σ̂2
j,λ(tm) are appealing estimators given a properly chosen λ.

In the second step, because the majority of β̂j,λ(tm)’s are correctly centered

at β(·) and the others substantively deviate from β(·) pushed by the irregular

pattern δj(tm). This motivates us to adopt a robust quantile-based method to

better estimate β(·) and σ2(·). We estimate β(tm) component-wise. For the rth

component βr(tm), the signal set Or,tm = {j : δjr(tm) ̸= 0} ⊂ {1, . . . , p} can be

divided into two subsets

O+
r,tm ∪ O−

r,tm := {j : δjr(tm) > 0} ∪ {j : δjr(tm) < 0} ,

where O+
r,tm contains the subjects with positive biases and O−

r,tm includes the

rest. By definition, Otm = ∪d
r=1Or,tm . Accordingly, we define

π+
r,tm =

Card(O+
r,tm)

Card(Or,tm)
, π−

r,tm =
Card(O−

r,tm)

Card(Or,tm)
, πr,tm =

1

2
−
π+
r,tm − π−

r,tm

2
,

with Card(·) being the cardinality of any set. Let β̂jr,λ(t) be the rth component

of β̂j,λ(t), for r = 1, . . . , d. We estimate βr(tm) through the πr,tm-th quantile of

β̂1r,λ(tm), · · · , β̂pr,λ(tm), i.e.,

β̃r,λ(tm) = inf
{
βr : F̂p(βr, tm) ≥ πr,tm

}
, (2.5)

where F̂p(βr, tm) = p−1
∑p

j=1 I(β̂jr,λ(tm) ≤ βr) and I(·) is an indicator function.
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2.1 Dynamic Tracking

We note that πr,tm is unknown but it can be estimated consistently, and the

estimation details shall be provided in Appendix S1.1.

Constructing an estimate of σ2(tm) using the information of all datastreams

is much simpler because the consistency of σ̂2
j,λ(tm) in (3.2) can always be

obtained, regardless of whether j is an outlying stream. Naturally, we esti-

mate σ2(tm) by the pooled average from all datastreams, which is σ̃2
λ(tm) =

p−1
∑p

j=1 σ̂
2
j,λ(tm).

Like many other smoothing-based procedures, setting the value of the smooth-

ing parameter λ is a critical and non-trivial task. A larger λ may gain on the

variance side, but loses on the bias side. The optimal choice of λ often depends

on the “smoothness” of β(tm), a quantity that is only estimable under strict,

often unrealistic, assumptions. Cross-validation has been frequently adopted in

selecting the bandwidth in the VC models or longitudinal data analysis literature

(Hoover et al., 1998). The selection of an optimal λ is particularly challenging

in the present problem as we need to determine it dynamically for the current

time, say λ(tm). This is because the population coefficient function typically

varies with time and it does not make sense to assume that β(tm) and β(tm′)

have the same degree of smoothness if |tm − tm′| is large. This implies that

the optimality of estimation across all the time points simultaneously cannot be

achieved with a single choice of λ (Zhang and Lee, 2000).

Note that at the current time point tm, we are only concerned about the

estimation of β(tm) rather than the entire regression coefficients; that is, in our
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dynamic tracking procedure we do not update the estimation of β(t) for t < tm

after receiving the streaming observation at tm. As a result, it is reasonable to

define the averaged predictive squared error (APSE) of β̃λ(tm) by

APSEλ(tm) = Card(Itm)
−1

∑
j∈Itm

{y∗mj −X⊤
mjβ̃λ(tm)}2,

where Itm ⊂ {1, . . . , p} is a subset that contains most of the noise streams, y∗mj

is a new observation at (Xmj, tm), say y
∗
mj = X⊤

mjβ(tm)+ε
∗
mj, where ε

∗
mj is a new

realization of εmj. Note that Itm is allowed to contaminate with some outlying

streams provided that its size is small relative to p. We shall provide a heuristic

algorithm to select Itm in Appendix S1.1. By the smoothness assumption of

β(·), we propose a one-step APSE criterion to choose λ dynamically from

λ̂(tm) = arg inf
λ

ÂPSEλ(tm), (2.6)

where ÂPSEλ(tm) = Card(Itm)
−1

∑
j∈Itm

{ymj −X⊤
mjβ̃λ(tm−1)}2.

2.2 Dynamic screening

Now, let us turn to construct an effective screening procedure. By defining the

normalizing transformation of the response yij as zij = {yij − X⊤
ijβ(ti)}/σ(ti),

we have under model (1.1)

zij=


εij, for ti ∈ (0, τj],

γj(ti) + εij, for ti > τj,

(2.7)

where γj(ti) = X⊤
ijδj(ti)/σ(ti), and δj(·) is a smooth function defined on (τj,∞),

for j = 1, · · · , p, i = 1, 2, · · · . In this context, the goal of change points detection
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is to sequentially check if zij has zero mean at each time point. More formally,

at current time t = tm, we test the null hypotheses

H0
mj : E(zmj | Xmj) = 0, j = 1, . . . , p. (2.8)

As β(ti) and σ2(ti) can be well estimated by β̃λ(ti) and σ̃2
λ(ti), respectively,

z̃ij = {yij − X⊤
ijβ̃λ(ti)}/σ̃λ(ti) yields a natural estimate of zij. Similar to the

spirit of (2.2), we estimate γj(tm) through

γ̂j,λ(tm) := φ−1
m

m∑
i=1

wi(tm)z̃ij, (2.9)

which serves as a proper quantity at current time point tm for checkingH0
mj. The

dynamic screening procedure rejects the null hypothesis whenever the streaming

pattern of jth datastream deviates from that of the majority, i.e., if |γ̂j,λ(tm)|

exceeds a pre-specified threshold at tm.

Again, benefiting from the exponential weight function wi(tk), we have the

following recursive form to quickly update γ̂j,λ(tm) as the new data arrive

γ̂j,λ(tm) = φ−1
m {wm−1(tm)φm−1γ̂j,λ(tm−1) + z̃mj} , (2.10)

where φm =
∑m

i=1wi(tm). Under the null hypotheses and certain regularity con-

ditions, we prove that γ̂j,λ(tm) is asymptotically normal. Nevertheless, because

reliable estimates of γ̂j,λ(tm)’s long-run variance are extremely challenging to

obtain in the presence of those irregular patterns, multiple testing procedures

that directly adjust for p-values are not suitable to achieve our goal.

We consider an alternative way to apply the well known Benjamini and

Hochberg (1995)’s FDR procedure (BH) with statistical guarantees (Theorem
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4). Concretely, we rejectH0
mj if |γ̂j,λ(tm)| > L, where L is a data-driven threshold

(Storey et al., 2004) given by

L = inf

[
u :

#{j : |γ̂j,λ(t∗)| ≥ u}
#{j : |γ̂j,λ(tm)| ≥ u} ∨ 1

≤ α

]
(2.11)

for a desired FDR level α and some small t∗ > 0. The screening set is denoted

by Ôtm . In (2.11), we use a “warm-up” sample to construct a series of null test

statistics, denoted as γ̂j,λ(t∗), j = 1, . . . , p. Such a warm-up sample is generally

available since a conventional assumption in the practice of change-detection is

that the changes would be unlikely to occur at the beginning of monitoring. In

our motivating example, this is also a reasonable assumption in the context of

regular medical residence training where work and life routines are being estab-

lished as baseline from which deviations may be detected. Intuitively, if most

of |γ̂j,λ(t∗)|’s are from null states, #{j : |γ̂j,λ(t∗)| ≥ u} would be a reasonable

approximation to #{j : |γ̂j,λ(tm)| ≥ u,H0
mj}. The advantage of this empirical

formula is that we do not need to estimate other nuisance parameters and the

temporal correlation structures are allowed to be different across datastreams.

In Section 3, we shall prove that, under mild conditions, the false discovery

proportion (FDP), defined as

FDP(tm) :=
#{j : γ̂j,λ(tm) ≥ L, j /∈ Otm}

#{j : γ̂j,λ(tm) ≥ L} ∨ 1
(2.12)

with the threshold L is asymptotically controlled at the level α, and such control

is valid uniformly at tm.
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2.3 Dynamic Tracking and Screening (DTS) Procedure

Our proposed DTS procedure is summarized as follows. Some practical guid-

ances about our DTS procedures are given in the Appendix S1.1.

1. (Initiation) Set Λ = {λk, k = 1, . . . , q} and an FDR level α.

2. (Choice of the smoothing parameter) Given the observations

{(ymj,Xmj)}pj=1 at the time point tm, find the optimal λ by λ̂(tm) =

arg infλ∈Λ ÂPSEλ(tm).

3. (Dynamic tracking) Update the estimators β̂j,λ(tm) and σ̂
2
j,λ(tm) by (2.2)

and (2.3) for each λ ∈ Λ. Obtain β̃λ̂(tm)(tm) by (2.5) and σ̃2
λ̂(tm)

(tm).

4. (Dynamic screening) Compute z̃mj and calculate the test statistics γ̂j,λ(tm)(tm)

for j = 1, . . . , p using (2.10). Search for the threshold L by (2.11); Display

the discoveries with the level α, i.e., Ôtm .

In step 2, since λ̂(tm) can only be approximately identified within a compact

set of the parameter space and there might exist more than one local minimum,

in practice we recommend to find λ̂(tm) from a pre-specified set with some

admissible values, say Λ = {λk, k = 1, . . . , q}.

3. Theoretical investigations

In this section, we derive the asymptotic properties of the proposed estima-

tors. We first discuss the assumptions that are needed for the analysis and then
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summarize the main theorems. The proofs are provided in the Supplemental

Material.

3.1 Assumptions

As we are considering the problem of dynamic tracking in an unending sequence,

we assume that ti is deterministic and the incremental time ti−ti−1 = ni is lower

and upper bounded, with t0 = 0. The bandwidth in the exponential weight (i.e.,

λt−ti) is h = 1/{−m log(λ)}. We make the following assumptions to establish

the theoretical foundation of our DTS procedure.

Assumption 1. The time series processes Dj = {Xij, εij, i = 1, . . . ,m} are

strictly stationary and strongly ρ-mixing for each j. Let ρj(l) for l = 1, 2, . . .

be the mixing coefficients corresponding to the j-th time series Dj. It holds

that ρj(l) ≤ ρ(l) for all 1 ≤ j ≤ p, where the coefficients ρ(l) satisfy that∑
l ρ(l) < ∞. Moreover, assume that the eigenvalues of Γj := E(XijX

⊤
ij) are

uniformly bounded by zero and infinity.

Assumption 2. Suppose {Dj, j = 1, · · · , p} satisfy the block dependence struc-

ture in the sense that there exists a partition of the data streams {Dj,k, j =

1, · · · , J, k = 1, · · · , nj} such that Dj1,k1 are independent with Dj2,k2 for j1 ̸= j2,

and the maximal block size in each partition is of the order O(p/J). In addition,

we assume that J = pζ, for some ζ > 0.

Assumption 3. There is a real number θ > 20/3 such that supi,j E(|εij|θ) <∞.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0195



3.1 Assumptions

Assumption 4. For t ∈ [t∗, tm], the varying coefficients βr(t) and δjr(t) for

r = 1, . . . , k and the variance function σ2(t) satisfy the Lipschitz conitunity with

the dilation constant A→ 0.

Assumption 5. The number of data streams p diverges to infinity that p =

O(m). The tuning parameter h → 0 has the property that log(m)/(mh) → 0,

A(mh)3/2/
√

log(m) → 0, and h ≥ Cm−2/5 for some positive constant C > 0.

Moreover, assume that pζ/(mh) → ∞.

Assumption 6. Assume |δjr(t)|/
√

log(m)/(mhpζ) → ∞, for j ∈ Or,tm and

t > τj.

The condition on the mixing rate ρ(l) in Assumption 1 is not stringent and

it can be satisfied if ρ(l) decays to zeros by sufficiently high polynomial rates.

Assumption 2 implies that any data stream can be correlated with at most other

O(p1−ξ) data streams. The moment conditions in Assumptions 3 are used to

derive the uniform consistency of the regression coefficients; see Hansen (2008)

for similar assumptions. Assumption 4 is the Lipschitz condition with dilation

constant shrinking to zero, which is suitable for analyzing unending sequences;

a common rate of A = O(N−1), where N represents the ending of the sequence,

which could be much larger than m. The regression coefficient function β(t)

in (4.1) of the simulation study satisfies this condition. Assumption 5 imposes

restriction on the relative growth of p and m, and the smoothing parameter λ

is chosen at a rate faster than the optimal rate in the standard nonparametric
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regression problems so that the bias term will be negligible. The effective sample

size mh is required at least as large as Cm0.6 so that the block size used to prove

Lemma 4 tends to infinity. Moreover, the lower bound rate −2/5 is closely

related to the moment condition θ > 20/3 in Assumption 3; see Vogt and Linton

(2017) for similar discussions. Assumption 6 guarantees that the signals of the

alternative streams dominate the noise so that the quantile-based estimator will

be consistent. This condition can be removed if we assume that the signals in

the alternative are sparse.

3.2 Main results

We first discuss the asymptotic properties of β̂j,λ(t) and σ̂
2
j,λ(t), for t ∈ [t∗, tm],

where [0, t∗] serves as a warm-up period. Throughout this paper, we assume

Card(Otm) ≤ cp for some c < 1, which includes the sparse setting Card(Otm) =

o(p). Theorem 1 establishes the uniform consistency of β̂j,λ(t) and σ̂
2
j,λ(t) for all

t ∈ [t∗, tm].

Theorem 1. Under Assumptions 1 and 3-5, β̂j,λ(t) and σ̂
2
j,λ(t) satisfy

sup
t∈[t∗,tm]

∥∥β̂j,λ(t)− {β(t) + δj(t)}
∥∥ = Op(Amh+

√
log(m)/(mh)), (3.1)

sup
t∈[t∗,tm]

|σ̂2
j,λ(t)− σ2(t)| = Op(Amh+

√
log(m)/(mh)), (3.2)

where mh = 1/{− log(λ)} does not depend on m.

In fact, log(m) appeared in Theorem 1 can be replaced by log(mh), implying

that the uniform convergence rate only depends on λ, not m. To the best of
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our knowledge, the uniform convergence rate of one-sided kernel smoother with

correlated errors over a possibly unbounded support has not been thoroughly in-

vestigated in the literature. In Theorem 1, we establish the uniform consistency

results of the proposed estimators given the time series are ρ-mixing. In the

right-hand side of (3.1), O(Amh) is a bound for bias while Op(
√

log(m)/(mh))

is a bound for the maximum level of variation. Hence, to make the estima-

tors uniformly consistent, h (equivalently λ), that is similar to the bandwidth

in classical nonparametric regression, is required to satisfy Amh → 0 and

mh/{log(m)} → ∞. Compared to the results of local polynomial smoothers

in nonparametric regression, the vanishing rate of the bias in our estimator is h

rather than h2, which is due to the use of one-sided kernel.

Next theorem provides the uniform convergence rates of β̃λ(t) and σ̃
2
λ(t).

Theorem 2. Under Assumptions 1-6, we have

sup
t∈[t∗,tm]

∥∥β̃λ(t)− β(t)
∥∥ = Op

(√
log(m)/(mhpζ)

)
, (3.3)

sup
t∈[t∗,tm]

|σ̃2
λ(t)− σ2(t)| = Op

(√
log(m)/(mhpζ)

)
, (3.4)

where ζ satisfies that pζ/(mh) → ∞ and ζ appeared in Assumption 2.

The incremental rate p−ζ due to information fusion is determined by the

number of blocks pζ , which should diverge to infinity at a rate faster than mh

to erase the normal approximation error, where 1/
√
mh is the Berry-Esseen

bound of the
√
mh

[
β̂j,λ(t) − {β(t) + δj(t)}

]
under ρ-mixing assumption as in-

dicated in Lemma 4 of the Supplement. As shown in Theorem 1, as long as
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A(mh)3/2/ log(m) → 0 so that the bias in β̂j,λ(t) is negligible and p
ζ/(mh) → ∞,

we observe that β̃λ(t) has a faster rate of convergence than does β̂j,λ(t), which

suggests a significant efficiency again due to the fusion of information across

streams. This uniform convergence result is particularly helpful for justifying

the role of β̃λ(t) and σ̃2
λ(t) in the dynamic screening procedure described in

Section 2.2. Though uniform convergence results for kernel estimation with de-

pendent data were discussed in the literature, such as Hansen (2008) and Vogt

and Linton (2017), technical arguments for this theorem are highly non-trivial

and may be interesting in their own rights because our quantile-based estimator

β̃λ(t) is not a linear statistic.

Next result shows that λ̂(tm) is asymptotically optimal in the sense that it

minimizes the averaged predictive squared error.

Theorem 3. Under Assumptions 1-6, provided that the number of outlying

datastreams Itm is negligible, as m→ ∞, we have

APSEλ̂(tm)(tm)

infλ∈(0,1) APSEλ(tm)
→ 1

in probability, where λ̂(tm) is obtained by restricting h = 1/{−m log(λ)} ∈

[C(m)−1/2+δ,∞) in (2.6) for some constants C > 0 and δ > 0.

Theorem 3 is derived under the assumption that Itm is not contaminated

by many alternative datastreams. The choice of Itm proposed in Section S1.1

ensures that the proposed method is able to deliver satisfactory performance in

both simulations and the real-data example.
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Our main theoretical result on the asymptotic validity of the DTS method

for both FDP and FDR control is given by the next theorem. We need an

additional condition on the change magnitude.

Assumption 7. As m → ∞, ψm → ∞, where ψm = |Cµ(tm)|, Cµ(tm) = {j ∈

Otm : |γj(tm)|/νm → ∞, (m− τj)h→ ∞} and νm =
√

log(p)/(mh).

Remark 1 Assumption 7 is a technical condition for establishing the FDP

control of DTS. The νm represents the convergence rate of β̃λ(t) and σ̃2
λ(t) as

discussed in Theorem 2, and the implication of this assumption is that the

number of outlying streams with identifiable signal strengths is not too small as

m → ∞ and p → ∞ (but ψm may still be small relative to p, i.e., ψm/p → 0).

This seems to be a necessary condition for FDP control under the sparse scenario,

say Card(Otm) = o(p). For example, in the context of multiple testing, Liu and

Shao (2014) showed that even with the true p-values, no method is able to control

FDP with a high probability if the number of true alternatives is fixed as the

number of hypothesis tests goes to infinity. To see this clearer, notice that the

key step is to show the validity of (2.12) in which the convergence of empirical

sum such like
∑

j /∈Otm
I(γ̂j,λ(tm) ≥ u) is needed. When u is extremely large, the

number of nonzero terms in the summation would be finite and consequently

the convergence would fail. The condition that ψm → ∞ helps to rule out such

pathologic cases.

Theorem 4. Suppose Assumptions 1-7 hold. For any α ∈ (0, 1), the FDP of
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the DTS method satisfies FDP(tm) ≤ α + op(1) uniformly at tm. It follows that

lim sup(m,p)→∞ FDR(tm) ≤ α uniformly at tm.

This theorem shows that the DTS procedure can control the FDR level

uniformly at tm. Numerical study shows that our data-driven FDR control ap-

proach works well in finite-sample cases and thus greatly facilitates our screening

procedure.

4. Simulation

4.1 Simulation setup

To demonstrate the finite sample performance of the proposed method, we con-

sider model (1.1) with time dependent Xij = (1, Xij)
⊤ covariates, where Xij is

generated from the mean zero Gaussian process with cov {Xj1(ti1), Xj2(ti2)} =

0.8|ti1−ti2 |. The possible ending point is set as N which could be much larger

than m. To mimic the real world scenario, our data generating process in-

corporates not only between-stream dependence but also temporal correlation

introduced by the noise variable. In doing so, for each stream j, we first generate

εj := (ε1j, . . . , εNj)
⊤ from a mean zero Gaussian process with autocorrelation

ρTempo ∈ {0, 0.5}. Then, we multiply the stacked noise matrix (ε1, . . . , εp)
⊤ with

a diagonal block structured correlation matrix ΣBlock of block size nBlock = 200,

and the within block correlation is set to be ρBlock ∈ {0, 0.5}. The number of

streams p = 800. The noise level σ2(t) ∈ {1, 8}. Let ti = i for i = 1, · · · , N ,
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4.1 Simulation setup

and we use the first 300 time points as warm-up period. Finally, we consider

two cases in which the time points N ∈ {2400, 4800}.

Next, for any t ∈ {t1, . . . , tN}, we generate the coefficient β(t) = (1, β(t))⊤

through

β(t) =


sin{(14s)1.5−14s} exp(7s)

20
+ 3, if s = t

N
∈ (0, 1

2
),

sin{(7−14s)1.5−7+14s} exp(7−7s)

20
+ 3, if s = t

N
∈ [1

2
, 1].

(4.1)

A pictorial illustration of β(t) is given in Figure S1. For t ≤ N
2
, we generate the

drift δj(t) = (δj(t), 0)
⊤ with the following signal lengths and patterns:

δj(t) =



10, if j ∈ {1, . . . , p/10}, t ∈ [N
6
+ 1, N

4
] ∪ [N

3
+ 1, 11N

24
],

1, if j ∈ {p/10 + 1, . . . , p/5}, t ∈ [N
6
+ 1, N

4
] ∪ [N

3
+ 1, 11N

24
],

0, otherwise.

We refer to this period with rather stable change points as “fixed signal period.”

When t ∈ [N
2
+1, N ], we consider a more realistic scenario: once a signal occurs,

both the signal strength and length change over time. For j = 1, . . . , p, assume

that the jth stream has T̃j change points τj1, · · · , τj,T̃j
, where T̃j = Tj1Tj≤5, and

Tj follows Poisson distribution with mean 3. Under this data generating process,

overall about 1/5 datastreams contain signals. Then, to well separate the signals

between two adjacent changes points, we generate random change points under

the constraint that |τjk − τj,k+1| > 200, for j = 1, . . . , p, k = 1, . . . , T̃j − 1. The

length of the signals is randomly sampled from Uniform[30, 80]. The size of the
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4.2 Simulation results for dynamic testing

signal is a nonlinear function of t

δj(t) =
1

3
sin

(
9t

2N
π

)
+ ωj, if j ∈ Ot,

where ωj is either 2 or 7 based on a random draw. The smoothing parameter

is adaptively chosen from λl = exp (−ClN
−0.3) , Cl = 0.10 + l/10, l = 1, . . . , 10.

The numerical results presented in this section are evaluated through 200 Monte

Carlo replications.

4.2 Simulation results for dynamic testing

We present simulation results for dynamic testing in this Section, while the

simulation results on dynamic estimation are provided in Appendix S2.

We compare the DTS testing procedure with three competitors. The first

one is the moving-window-based nonparametric test (MWNT) proposed by Zheng

(1996). The second approach we compare with is based on estimating the

long-run covariance matrix via Andrews (1991), where the author proposes het-

eroskedasticity and autocorrelation consistent (HAC) estimation of covariance

matrices. Lastly, we compare the performance of the DTS testing procedure

based on the naive pooled estimator β̂λ,pool(t) in (S2.1). The details of these

three methods can be found in Appendix S1.2.

In the following sections, DTS refers to the proposed testing procedure, DTS

(Pooled) refers to the DTS procedure with β̂λ,pool(tm), HAC-LFDR referes to the

testing procedure based on (S1.3) (Andrews, 1991) with the local false discovery

rate adjustment procedure (Efron, 2004), HAS-BC refers to the procedure based
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on (S1.3) with the Benjamini-Hochberg procedure to adjust for the multiple

comparison effect, and MWNT refers to the testing procedure built on Zheng

(1996). Since it is difficult to detect if the dependence between data streams

exists in reality, we implement the described decorrelation strategies even if the

simulated data streams are independent.

4.2.1 Computational efficiency comparison

Computational efficiency is a vital concern to screen out the irregular individuals

in the massive datastreams, as of which the primary goal is to find out the signals

as soon as they occur. To illustrate the benefits of our proposal, we report the

average runtime for DTS, HAC- (with LFDR) and MWNT- (with bn = 0.03N)

based procedures in Table 1. We also note that the simulations are paralleled

on 50 nodes (each node is equipped with 2.5 GHz Intel Xeon 10-core Ivy Bridge

processors) via the packages “doSNOW” (for parallelization) and “rlecuyer” (for

correct parallelization of random numbers).

Table 1: Computation time (unit: second) of the three testing procedures for depen-

dent datastreams when (N, p) = (4800, 800), ρBlock = ρTempo = 0.5 and σ2(t) = 1.

DTS HAC MWNT

N = 2400 35.46 6931.77 1893.55

N = 3600 50.12 8691.21 2817.22

N = 4800 68.49 12,724.01 3644.08
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From the results in Table 1, due to the usage of updating formulae in Sec-

tion 2.1, our DTS procedures have clear advantages over MWNT and the HAC

procedures. This advantage also suggests the need of careful designs when using

a standard model specification test in a dynamic streaming environment.

4.2.2 FDR, TPR and the length of delay comparison

In this section, we evaluate the performance of DTS in terms of FDR controls,

true positive rate (TPR), and the length of delay. The latter one is defined as the

minimum number of steps that a procedure takes to detect a signal within each

alternative period. In the literature of sequential change detection (e.g., see Zou

et al. (2015)), this detection delay corresponds to the well-known run-length. If

there is no such signal of detection, the detection delay is simply set as the length

of that specific signal period. We record the medians of detection delays and

TPRs amongst all shift periods in each replication. The nominal FDR level is set

to be 0.1. To avoid redundancy, in this part, we report the simulation results in

two extreme cases: (i) independent datastreams without temporal correlation,

(N, p) = (4800, 800) and noise level σ2(t) = 1, and (ii) dependent datastreams

with temporal correlation, (N, p) = (2400, 800) and noise level σ2(t) = 8. Figure

1 and 3 show results for independent datastreams, and Figure 2 and 4 show

results for dependent datastreams.

For the false discovery rate control, from the results in Figures 1 and 2,

we observe that both DTS and, to a lesser extent, MWNT- and HAC- based

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0195



4.2 Simulation results for dynamic testing

Figure 1: For independent streams without temporal correlation, (N, p) =

(4800, 800), σ2(t) = 1: Figure (A) is the boxplot of the empirical FDR in the fixed

signal period; Figure (B) is the boxplot of the empirical FDR in the heterogeneous

signal period.

procedures control FDR at desired levels within acceptable ranges when the

datastreams are independent. The Pooled-DTS procedure, built on the incon-

sistent estimate of β(t), fails to control the FDR at the nominal level. When

datastreams are correlated, the decorrelation-based testing procedures (HAC-

BH, HAC-LFDR and MWNT) tend to have higher FDR than the independent

case. In a sharp contrast, the new DTS procedure that utilizes the empiri-

cal distribution to approximate the number of false positives is able to deliver

very accurate FDR control irrespective of the correlation structures and signal

patterns.

In terms of signal detection comparison displayed in Figure 3-4, not surpris-
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Figure 2: For dependent streams ρBlock = 0.5 with temporal correlation ρTempo = 0.5,

(N, p) = (2400, 800), σ2(t) = 8: Figure (a) is the boxplot of the empirical FDR in the

fixed signal period; Figure (b) is the boxplot of the empirical FDR in the heterogeneous

signal period.

ingly, since the pooled-DTS does not take the outliers into account and β(t) is

poorly estimated, it yields low detection power. Our DTS method outperforms

the other competitors by a significant margin in both scenarios from the view-

point of detection delay. It also delivers satisfactory performance in terms of

TPR. Compared to DTS, MWNT- and HAC-based procedures show compar-

ative detection power due to the signal accumulation, but the long detection

delay seems to be unavoidable. Based on the same reasoning, MWNT shows

higher detection power with bn = 0.05N , although longer bandwidth yields

longer detection delay. In sum, the DTS addresses the need to dynamically

detect the streaming pattern and provides more robust performance than the
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Figure 3: For independent streams without temporal correlation, (N, p) =

(4800, 800), σ2(t) = 1: the boxplots of the medians of TPRs and detection delays

in the fixed signal and the heterogeneous periods.

existing methods from the viewpoints of detection delay and power.

5. Analysis of Intern Health Study Data

The Intern Health Study (IHS) is an on-going mobile health cohort study that

enrolls more than 3,000 interns annually. The long-term goal of the IHS is to

elucidate the pathophysiological architecture underlying depression to facilitate
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Figure 4: The boxplots of the medians of TPRs and detection delays in the fixed

signal and the heterogeneous periods for dependent streams ρBlock = 0.5 with temporal

correlation ρTempo = 0.5, (N, p) = (2400, 800), σ2(t) = 8.

the development of improved treatments. One important goal of IHS is to iden-

tify subjects with short-term risks for mood changes whenever new data from

the mobile app “MyDataHelps” are updated on a daily basis.

In this case study, for illustration purposes, we have restricted our atten-

tion to the 2018 IHS cohort with 1, 565 subjects enrolled from July to December.

During the study period, the study tracks medical interns using phones and wear-
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ables. The outcomes are daily self-reported mood valence (measured through a

one-question survey; one of two cardinal symptoms of depression, Löwe et al.

(2005)). Participants are prompted to enter their daily mood rated from 1-10

every day at a user-specified time between 5 pm and 10 pm. The time-varying

covariates are daily steps prior to the survey (as a proxy for activity) and daily

sleep duration that ended in the same day. Both covariates are important po-

tential predictors of mood (Kalmbach et al., 2018). Our data set thus consists

of data from p = 1, 565 subjects over m = 182 days. We treat the first 40 days

as the warm-up phase where data are used to initialize the varying coefficient

β(·) estimate. This warm-up phase can be viewed as study baseline, because

during this period work and life routines are being established and subjects are

usually not suffered from sustained stress.

The upper panels of Figure 5 show the online time-varying effect estimates

of daily step counts (cubic root transformed; left) and daily sleep hours (square

root transformed; right) upon the mood score along with 95% pointwise confi-

dence bands. In other words, in each time point, we only use the data point

collected prior to this time point. Although the actual magnitudes of the two

estimated effect curves depend on the scale of the predictors, we obtain promi-

nent positive effect over time for both the step and sleep predictors indicating

their dynamic and positive effects upon daily mood uniformly over time. The

proposed DTS method also detects periods when an individual’s mood trajec-

tory as a function of time, sleep hours and step counts cannot be described by a
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Figure 5: Upper panels: the estimated main time-varying effects for (left) step counts (cubic

root scale) and (right) sleep hours (square root scale; Lower panels: the estimated X⊤
ijδj(ti)

for two random subjects. The red horizontal pluses indicate the days with detected deviation

from the population model; both are online estimates/decisions.

null population model. In the lower panels of Figure 5, we illustrate for two ran-

domly chosen subjects the time points when we detected such deviations from

a population dynamic model (red pluses at the top). Relative to the subject

on the right with mood scores oscillating around values predicted by a popu-

lation mean model, the subject on the left has mood scores that are too high

to be well characterized by the population model. The estimated coefficients
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indicate longer periods of extra effects of sleep and activity. Our results show

that individuals have distinct timings and duration when the joint effect of sleep

hours and step counts changes the mood to a different degree than others in the

population, highlighting the timings to intervene upon sleep and activities, for

example, through push notifications via their mobile phones.

6. Concluding remarks

We conclude this article with several remarks. Firstly, although the local linear

kernel estimator has certain advantages over the local constant kernel estimator,

as shown in the literature (Fan and Zhang, 1999), our simulation results show

that these two estimators yield similar performance in the dynamic screening.

Thus, the local constant kernel procedure (2.1) is chosen for simplicity. System-

atic study of local polynomial smoothers in the present problem warrants future

research.

Secondly, one important issue with varying coefficient models is how to in-

corporate the within-subject correlation structure into the estimation or testing

procedure. This issue has been investigated, and the methodology has been well

established, especially for longitudinal data analysis; e.g., see Sun et al. (2007).

For estimation, Theorem 2 shows that the consistency of the proposed estima-

tors is valid under quite general correlation assumptions. Though it has been

shown that an estimator can be improved by incorporating the within-subject

correlation into the estimation procedure (Fan et al., 2007), such an improved
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procedure would generally require iterative steps (at least two steps) and the

corresponding estimators do not permit recursive calculation. Although it may

be computationally feasible to perform a complicated estimation for fixed lon-

gitudinal data, fast implementation is likely to be our first priority in massive

streaming cases. Certainly, it is of interest to see how the correlation structure

can be accommodated into our dynamic tracking procedure.

Finally, the variance function σ2(t) may experience change after some time

point for some datastreams and we could use the similar quantile-based esti-

mator to estimate the common variance function across streams. However, the

difference of the proportions of positive and negative shift from the common

variance function may not be well estimated due to the fact that the sampling

distribution of the variance-type estimator is chi-squared distributed. We leave

this interesting question for future research.

Supplementary Materials

The supplementary file contains practical implementations and three competing

methods used in the simulation studies, additional simulation results, several

key lemmas, and the proofs of Theorems 1–4.
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