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Abstract: In recent years, with the deep integration of big data and medical

technology, hybrid data with or without block-wise missing arise more commonly

in medical care. Efficient dimensionality reduction and extraction of important

predictive information for such data have also become a popular research topic.

In this article, for hybrid data without missing and with block-wise missing, we

proposed a kind of new component-based model based on the unified approach

to multi-source principal component analysis and multi-set canonical correlation

analysis. After obtaining scores by using the unified framework, component-based

regression models are established. Asymptotic properties are established under

some mild conditions. Simulations and real data analysis show the proposed

method works well.
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1. Introduction

In recent years, with the rapid development of big data and medical tech-

nology, hybrid data has become increasingly common in the medical field.

For example, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data

include information from multiple sources such as magnetic resonance imag-

ing (MRI), positron emission tomography (PET), cerebrospinal fluid (CSF),

microarray gene expression profile data (GENE) and demographic informa-

tion. PET and MRI are three-dimensional images, GENE data contain

49,386 gene features, and CSF data have several biomarkers, therefore,

ADNI data are typical hybrid data.

Since different data sources can provide complementary information,

hybrid data has better predictive performance. However, the high dimen-

sionality of hybrid data can lead to much difficulty in modelling, therefore,

it is necessary to reduce the dimensionality of hybrid data.

In recent years, many scholars have proposed component-based regres-

sion models based on multi-source principal component analysis (MPCA)

for multi-source high-dimensional data (Bai and Ng (2002); Bair et al.

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators

within the ADNI contributed to the design and implementation of ADNI and/or provided

data but did not participate in analysis or writing of this report.
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(2006); Bai and Li (2012); Fan et al. (2017)) and multi-source functional

data (Ramsay and Silverman (2005); Berrendero et al. (2011); Chiou et al.

(2014); Happ and Greven (2018)) respectively to achieve dimensionality re-

duction. Another strategy is based on multi-set canonical correlation anal-

ysis (MCCA). Correa et al. (2010), Takane et al. (2008) and Tenenhaus et

al. (2017) discussed the theory and methods of MCCA for high-dimensional

data. Hwang et al. (2012) applied the idea to functional data.

However, MPCA focuses mainly on explaining the variance of the data,

whereas MCCA focuses on maximizing the association among different data

sources. Hwang et al. (2013) provided a unified framework that combines

MCCA and MPCA. Choi et al. (2017) proposed a functional version of

the method of Hwang et al. (2013). So far, there is no unified approach

to MPCA and MCCA for hybrid data containing functional and high-

dimensional data.

Component-based regression is, however, limited in that the compo-

nents may not be optimal in explaining the variance of the outcome vari-

ables because they are extracted only to account for the maximum vari-

ance or association of the predictors, without considering their associations

with the outcome variables (Choi et al. (2020)). To addressed the issue,

extended redundancy analysis (ERA) is proposed to carry out dimension-
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ality reduction and regression as well. Takane and Hwang (2005) first gen-

eralized redundancy analysis to ERA that allows analyzing a variety of

directional relationships among multiple sets of variables. Hwang et al.

(2012) and Tan et al. (2015) proposed a functional version of ERA. Hwang

et al. (2015) extended functional ERA into the framework of generalized

linear models. Choi et al. (2020) and Park et al. (2020) extended ERA

into the Bayesian framework. Kim and Hwang (2021) combined ERA with

model-based recursive partitioning in a single framework. Vijayakumar et

al. (2022) proposed an NN-ERA model that integrates neural networks algo-

rithms into the framework of ERA. Kim and Hwang (2022) proposed several

new model evaluation metrics for ERA that can compute a model’s perfor-

mance on out-of-sample data. Yamashita (2023) proposed an exploratory

ERA, which used the dataset directly for estimation and did not require a

group structure.

On the other hand, there often exist block-wise missing cases for hybrid

data due to a variety of reasons. In recent years, some methods have been

proposed to predict the response for multi-source block-wise missing data.

A common strategy is to use the Lasso or some other penalized regression

methods to implement the regression analysis without imputation (Yuan et

al. (2012); Xiang et al. (2014) and Yu et al. (2020)). Another strategy is to
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impute the missing data firstly by some existing imputation methods, and

then implement the regression analysis and variable selection (Wan et al.

(2015)). Campos et al. (2015) trained support vector machine and random

forest classifiers using all the imputed data for the task of discriminating

among different stages of the Alzheimer’s disease. For multi-source high-

dimensional block-wise missing data, Zhang et al. (2020) proposed a new

factor imputed regression model by combining the factor model with block-

wise missing data imputation. Xue and Qu (2021) proposed a multiple

block-wise imputation (MBI) method to improve the SI method. For a given

missing pattern group, MBI uses information from other missing pattern

groups in addition to the samples from the complete observed group. For

multi-source functional block-wise missing data, Du et al. (2023) proposed

the multinomial imputed-component-based Logistic regression model.

In this paper, motivated by Hwang et al. (2013) and Choi et al. (2017),

we propose a new component-based regression modelling method for hybrid

data containing functional data sources, high-dimensional data sources and

multivariate data sources, where components are constructed by the unified

approach to MCCA and MPCA. And we also impute the block-wise missing

components by the block-wise conditional mean imputation and multiple

block-wise imputation methods.
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The main contributions of our methods are as follows. Firstly, we ex-

tended the unified approach to MCCA and MPCA proposed by Hwang

et al. (2013) and Choi et al. (2017) to hybrid data containing functional

data and high-dimensional data. Secondly, we proposed to use the prin-

cipal component basis of the corresponding univariate functional data as

the basis functions to converting functional optimization problem to an

approximately equivalent matrix eigen-analysis problem. Besides, the pro-

posed method is suitable not only for hybrid data without missing but also

for the data with block-wise missing.

The rest of the article is organized as follows. Section 2 introduces the

component model for hybrid data based on the unified approach to MCCA

and MPCA. Section 3 discusses the component-based regression model and

the idea of component imputation. Section 4 gives some theoretical proper-

ties. Numerical simulations are conducted in Section 5. A real data analysis

on ADNI data is given in Section 6. Section 7 gives a brief discussion of our

method. Imputation methods and proofs can be found in Supplementary

Material.
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2. Component Model for Hybrid Data

In the following, we assume hybrid data contain multi-source functional

data consisting of functions X(1), · · · , X(P ) (P ≥ 1) and multi-source high-

dimensional data consisting of vectors Z(1), · · · , Z(Q) (Q ≥ 1).

2.1 The Unified Approach to MPCA and MCCA

Both MPCA and MCCA can extract the information of original data, where

MPCA focuses mainly on explaining the variance of the data and MCCA on

maximizing the associations across different data sources. In Hwang et al.

(2013) and Choi et al. (2017), they discussed the unified approach to MPCA

and MCCA for high-dimensional data and functional data, respectively, by

introducing a weight parameter α such that PCA and CCA are integrated

into a unified framework. By applying the unified approach, they obtained

highly correlated components while also effectively explaining the variance

of the data. Inspired by them, we propose a unified approach to MPCA

and MCCA for hybrid data. The proposed approach will seek to minimize
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2.1 The Unified Approach to MPCA and MCCA

the following objective function

ϕ =
α
∑N

i=1

∑P
j=1 ||x

(j)
i −

∑M
m=1 fi,ma

(j)
m ||2

NT
+

αλ
∑P

j=1

∑M
m=1 ||D2a

(j)
m ||2

MT

+
(1− α)

∑N
i=1

∑P
j=1

∣∣∣∣∣∣Fi −
∫
Tj x

(j)
i (tj)w

(j)(tj)dtj

∣∣∣∣∣∣2
NT

+
(1− α)ρ

∑P
j=1

∑M
m=1 ||D2w

(j)
m ||2

MT

+
α
∑N

i=1

∑Q
j=1 ||z

(j)
i − h(j)Fi||2

NT
+

(1− α)
∑N

i=1

∑Q
j=1

∣∣∣∣∣∣Fi − v(j)′z
(j)
i

∣∣∣∣∣∣2
NT

(2.1)

to obtain the component scores. In (2.1), x
(j)
i (tj) denotes the ith re-

alization of the jth functional data source X(j)(tj); a
(j)
m (tj) denotes the

jth component of the loading function corresponding to the mth compo-

nent, ||x(j)
i −

∑M
m=1 fi,ma

(j)
m ||2 =

∫
Tj

(
x
(j)
i (tj) −

∑M
m=1 fi,ma

(j)
m (tj)

)2
dtj de-

notes the squared norm of function x
(j)
i (tj) −

∑M
m=1 fi,ma

(j)
m (tj); fi,m de-

notes the mth component score of subject i, Fi = (fi,1, · · · , fi,M)′; D2 in

||D2a
(j)
m || denotes the second-order derivative of function a

(j)
m (tj); w

(j)(tj) =

(w
(j)
1 (tj), · · · , w(j)

M (tj))
′ and

∫
Tj x

(j)
i (tj)w

(j)(tj)dtj denote the first M canon-

ical weight functions and canonical variates assigned to the jth functional

data source, respectively; z
(j)
i = (z

(j)
i,1 , · · · , z

(j)
i,Tj

)′ denotes the Tj-dimensional

vector which is the ith realization of the jth high-dimensional data source;

h(j) = (h
(j)
1 , · · · , h(j)

M ) with h
(j)
m = (h

(j)
m,1, · · · , h

(j)
m,Tj

)′, v(j) = (v
(j)
1 , · · · , v(j)M )

with v
(j)
m = (v

(j)
m,1, · · · , v

(j)
m,Tj

)′ and v(j)′z
(j)
i denote the first M component

loading, canonical weights and canonical variates for the jth high-dimensional
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2.1 The Unified Approach to MPCA and MCCA

data source, respectively. ||v|| denotes the 2-norm of vector v. λ and ρ are

the smooth parameters. α is the weight parameter. N is the number of

subjects. T = P +
∑Q

j=1 Tj +(P +Q)M is the number of squared residuals

for each subject. As pointed out by Ramsay and Silverman (2005), the

variations in the functional and vector parts of a hybrid observation are

almost inevitably not comparable, adding T to each term of the objective

function is to make them comparable.

In (2.1), the first 4 terms involve the computation of inner product of

functions. One way of reducing the integral to discrete form is to express

each function as a linear combination of known basis functions. This paper

proposes to using the principal component basis of each univariate func-

tional data source as basis functions. The Karhunen-Loève expansion of

univariate functional data {x(j)
i (tj), tj ∈ Tj} is described as follows:

x
(j)
i (tj) =

∞∑
m=1

ζ
(j)
i,mϕ

(j)
m (tj),

where j = 1, · · · , P . The univariate principal component score ζ
(j)
i,m =<

x
(j)
i , ϕ

(j)
m > with Cov(ζ

(j)
i,m, ζ

(j)
i,n ) = λ

(j)
m δmn, and the univariate eigenfunction

ϕ
(j)
m (tj) ∈ R with < ϕ

(j)
m , ϕ

(j)
n >= δmn. In the paper, < ·, · > represents the

inner product operation.

The set of univariate eigenfunctions {ϕ(j)
m (tj), tj ∈ Tj,m = 1, 2, · · · } is

called the principal component basis. However, in practice, there is no way
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2.1 The Unified Approach to MPCA and MCCA

to obtain all principal components based on finite observation, we can only

truncate it to take the first Mj terms as basis functions, then expanding

a
(j)
m (tj) and w

(j)
m (tj) by which can obtain a

(j)
m (tj) =

∑Mj

n=1 s
(j)
m,nϕ

(j)
n (tj) and

w
(j)
m (tj) =

∑Mj

n=1 b
(j)
m,nϕ

(j)
n (tj).

Let ϕ(j)(tj) =
(
ϕ
(j)
1 (tj), · · · , ϕ(j)

Mj
(tj)
)′
,R(j) =

∫
Tj D

2ϕ(j)(tj)D
2ϕ(j)′(tj)dtj;

ζ(j) = (ζ
(j)
1 , · · · , ζ(j)

N )′ with ζ
(j)
i = (ζ

(j)
i,1 , · · · , ζ

(j)
i,Mj

)′; x(j)(tj) = (x
(j)
1 (tj), · · · , x(j)

N (tj))
′;

s(j) = (s
(j)
1 , · · · , s(j)M ) with s

(j)
m = (s

(j)
m,1, · · · , s

(j)
m,Mj

)′; b(j) = (b
(j)
1 , · · · , b(j)

M )

with b
(j)
m = (b

(j)
m,1, · · · , b

(j)
m,Mj

)′; Z(j) = (z
(j)
1 , · · · , z(j)N )′; H = (h(1)′, · · · ,h(Q)′)′;

F = (F1, · · · ,FN)
′. (2.1) can be rewritten as follows:

ϕ = α(NT )−1

P∑
j=1

tr

(∫
Tj
x(j)(tj)x

(j)′(tj)dtj − 2s(j)F′ζ(j) + s(j)F′Fs(j)
′
)

+ α(NT )−1

Q∑
j=1

tr
(
Z(j)′Z(j) − 2h(j)F′Z(j) + h(j)F′Fh(j)′

)
+ α(MT )−1λ

P∑
j=1

tr
(
s(j)

′
R(j)s(j)

)
+ (1− α)(NT )−1

P∑
j=1

tr
(
F′F− 2b(j)′ζ(j)′F+ b(j)′ζ(j)′ζ(j)b(j)

)

+ (1− α)(NT )−1

Q∑
j=1

tr
(
F′F− 2v(j)′Z(j)′F+ v(j)′Z(j)′Z(j)v(j)

)
+ (1− α)(MT )−1ρ

P∑
j=1

tr
(
b(j)′R(j)b(j)

)
. (2.2)

To obtain the component scores fi,m’s, we use the profile least squared

algorithm below.
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2.1 The Unified Approach to MPCA and MCCA

Step 1. Obtain the estimation of s(j), h(j), b(j) and v(j).

By solving the equations ∂ϕ
∂s(j)

= 0, ∂ϕ

∂h(j) = 0, ∂ϕ

∂b(j) = 0, ∂ϕ
∂v(j) = 0, and

under the condition that F′F/N = I which ensures the identifiability of the

component model, we can obtain the estimation below:

s(j) = N−1
(
I+ λM−1R(j)

)−1

ζ(j)′F, j = 1, · · · , P ;

h(j) = Z(j)′F(F′F)−1 = N−1Z(j)′F, j = 1, · · · , Q;

b(j) = N−1
(
ζ(j)′ζ(j)/N + ρM−1R(j)

)−1

ζ(j)′F, j = 1, · · · , P ;

v(j) =
(
Z(j)′Z(j)

)−1

Z(j)′F, j = 1, · · · , Q.

Step 2. Obtain the estimation of fi,m’s.

Substituting the estimation of s(j), h(j), b(j) and v(j) above into (2.2)

can obtain the expression as follows:

ϕ = (NT )−1α
P∑

j=1

tr

(∫
Tj
x(j)(tj)x

(j)′(tj)dtj

)
+ (NT )−1α

Q∑
j=1

Z(j)′Z(j)

+ T−1(1− α)(P +Q)M

− (NT )−1tr

{
N−1F′

(
P∑

j=1

ζ(j)D
(j)
f ζ(j)′ +

Q∑
j=1

Z(j)D
(j)
h Z(j)′

)
F

}
,

(2.3)

where D
(j)
f = α(I+ λM−1R(j))−1 + (1− α)(ζ(j)′ζ(j)/N + ρM−1R(j))−1 and

D
(j)
h = αI+ (1− α)(Z(j)′Z(j)/N)−1.

Minimizing (2.3) with respect to F (F′F/N = I) thus reduces to max-
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2.2 Choice of the Number of Components for Each Data Source

imizing tr

{
N−1F′

(∑P
j=1 ζ

(j)D
(j)
f ζ(j)′ +

∑Q
j=1 Z

(j)D
(j)
h Z(j)′

)
F

}
, which is

further equivalent to consider the eigenvalue decomposition problem below:

P∑
j=1

ζ(j)D
(j)
f ζ(j)′ +

Q∑
j=1

Z(j)D
(j)
h Z(j)′ = Γ∆Γ′, (2.4)

where Γ′Γ = I, and ∆ is a diagonal matrix consisting of eigenvalues as

elements. Therefore, F is obtained by
√
N times the first M eigenvectors

of Γ.

2.2 Choice of the Number of Components for Each Data Source

We can see from the analysis above that the number Mj of univariate prin-

cipal components for each data source needs to be selected, in this paper,

we compared six information criteria below to select them.

IC1(M) = ln(MSE) +M
N + TU

NTU

ln(
NTU

N + TU

),

AIC1(M) = ln(MSE) +M
2

NTU

,

AIC2(M) = ln(MSE) +M
2

TU

,

BIC1(M) = ln(MSE) +M
ln(NTU)

NTU

,

BIC2(M) = ln(MSE) +M
(N + TU −M) ln(NTU)

NTU

,

BIC3(M) = ln(MSE) +M
(N + TU −M) ln(ln(NTU))

NTU

,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0186



2.3 Choice of the Smooth Parameters and Weight Parameter

where MSE denotes the mean squared error, N denotes the size of subjects

and TU denotes the number of time points for each subject. IC1 and AIC2

come from Li et al. (2013), AIC1 and BIC1 from Yao et al. (2005), and

BIC2 and BIC3 from Bai and Ng (2002).

2.3 Choice of the Smooth Parameters and Weight Parameter

Step 1. Choice of smooth parameters λ and ρ given α.

The multiple-fold cross-validation criterion is used to select the smooth

parameters given weight parameter α. We divide the entire data set into S

sub-samples. The cross-validation function (Ramsay and Silverman (2005))

is defined as follows:

CV (λ, ρ) =
∞∑

m=1

S∑
s=1

CV (s)
m (λ, ρ), (2.5)

where

CV (s)
m (λ, ρ) =(NsT )

−1

{
α

P∑
j=1

∑
i∈Is

∫
Tj

(
x
(j)(s)

i (tj)− Fi
(s)′â(j)

[s]

(tj)
)2

dtj

+ α

Q∑
j=1

∑
i∈Is

(
z
(j)(s)

i

′
− Fi

(s)′ĥ
(j)[s] ′

)(
z
(j)(s)

i − ĥ
(j)[s]

Fi
(s)

)

+ (1− α)
P∑

j=1

∑
i∈Is

||Fi
(s) −

∫
Tj
x
(j)(s)

i (tj)ŵ
(j)[s](tj)dtj||2

+ (1− α)

Q∑
j=1

∑
i∈Is

(
Fi

(s)′ − z
(j)(s)

i

′
v̂(j)[s]

)(
Fi

(s) − v̂(j)[s] ′z
(j)(s)

i

)}
,
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2.3 Choice of the Smooth Parameters and Weight Parameter

where x
(j)(s)

i , z
(j)(s)

i and F
(s)
i denote the ith sample observation of the jth

functional data source, the jth high-dimensional data source, and the object

score in the sth test set, respectively; Is is the index set of subjects in the sth

test set, Ns is the number of subjects in the sth test set; â(j)
[s]
(tj), ŵ

(j)[s](tj)

and ĥ
(j)[s]

, v̂(j)[s] denote the estimates which are obtained in Section 2.1 on

the corresponding training set consisting of the remaining N − Ns sample

observations.

Components Fi’s in the sth test set are unknown, this is because they

changes with the subjects, while a(j)(tj),w
(j)(tj),h

(j) and v(j) are irrelevant

to the subjects. a(j)
[s]
(tj),w

(j)[s](tj),h
(j)[s] and v(j)[s] and those Fi’s of train-

ing set can be estimated via the method in Section 2.1, but those Fi’s in

the test set cannot be obtained directly. Therefore, components F
(s)
i ’s in

the sth test set can be computed by minimizing CV
(s)
m (λ, ρ) with respect

to F
(s)
i . Based on the estimated F

(s)
i , CV

(s)
m (λ, ρ) can be obtained.

Hence, for given weight parameter α, the smooth parameters λ and ρ

can be estimated by minimizing the cross-validation function CV (λ, ρ).

Step 2. Choice of the weight parameter α.

First, let α = 1, the model is equivalent to the case where only MPCA

is considered. The minimum value of the cross-validation criterion function,

denoted as CVPCA, is obtained using the method described in Step 1.
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Secondly, let α = 0, the model is equivalent to the case where only

MCCA is considered. Using the above method, the minimal value of the

cross-validation criterion function, denoted as CVCCA, can be obtained.

Finally, since α and 1−α represent the contribution ratio of MPCA and

MCCA techniques to the unified compromise solution, respectively, there-

fore, the weight parameter α can be estimated by the ratio CVPCA

CVPCA+CVCCA
.

Step 3. Choice of the smooth parameters λ and ρ.

Once the weight parameter α is estimated, repeating Step 1 can obtain

the estimator of the smooth parameters λ and ρ.

3. Component-based Regression Model for Hybrid Data and

Component Score Imputation

We consider the following component-based regression model:
yi ∼ EF (θMi , φ),

θMi =
M∑

m=1

fi,mβm,

(3.1)

where EF (θMi , φ) means yi follows the exponential family distribution with

parameters θMi and φ.

In the paper, the two-stage procedure is used to estimate the pa-

rameters {βm,m = 1, · · · ,M}. The first stage is to extract components

{fi,m} based on the method in Section 2. After then maximum likeli-
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hood estimation method is used to obtain the estimators of the parameters

{βm,m = 1, · · · ,M}.

In the component-based regression model (3.1), the number of com-

ponents M needs to be chosen. As mentioned in Yao et al. (2005), AIC

criterion is computationally more efficient while the results are similar to

those obtained by cross-validation. Therefore, in the paper, we will deter-

mine the number of components by minimizing the AIC function below:

AIC(k) = −2 lnL+ 2k,

where L denotes the Log-likelihood function of the component-based re-

gression model.

The modelling of component-based regression model above is based on

the assumption there is no missing in hybrid data. For block-wise missing

hybrid data, in order to extract component scores, we first need to impute

the missing blocks. However it is obviously not feasible to impute them

directly due to their high dimensionality.

Fortunately, from (2.4) we can see that the component scores of block-

wise missing hybrid data can be extracted if both the imputation of univari-

ate principal component scores for functional data and high-dimensional

data can be achieved, namely, we need to impute univariate principal

component scores for both functional and high-dimensional data sources.
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In this paper, we consider two imputation methods: block-wise condi-

tional mean imputation method (CMI) and multiple block-wise imputation

method (MBI, Xue and Qu (2021)), the details are included in Supplemen-

tary Material.

4. Theoretical Properties

Assumptions A1-A6 used in Theorems 1 and 2 are concluded in the Supple-

mental Material. Theorem 1 below gives the convergence rate of estimated

components when there is no missing in hybrid data.

Theorem 1. Under assumptions A1-A6, we have

F̃i −H′Fi = Op

(
max

{
1

N
,

1√
T

})
, i = 1, · · · , N,

where F̃i denotes the estimator of Fi, H can be found in Lemma 2 of Sup-

plementary Material.

Theorem 1 indicates that there exists a rotation matrix H such that F̃i

is an estimator of H′Fi. In regression analysis, using F̃i’s as the regressor

gives the same predicted value as using H′Fi’s.

Theorem 2. When there are data sources with missing blocks, under the
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assumptions A1-A6 and N >
(

p
1−p

)2
(p is the missing rate), we have

F̂k−Ĥ
′
Fk =


Op

(
max

{
1

N
,

1√
T
,
N −N(1)

N

T
(mis)
max√
NT

})
, k ∈ G(1),

Op

(
max

{
1

N
,

1√
T
,
T (mis,k)

√
NT

,
N −N(1)

N

T
(mis)
max√
NT

})
, k /∈ G(1),

where T (mis,k) denotes the number of missing variables for the kth subject,

T
(mis)
max = maxk=1,··· ,N{T (mis,k)}, ’mis’ in T (mis,k) and T

(mis)
max means ’miss-

ing’. F̂k denotes the estimator of Fk, G(1) denotes the index set of subjects

included in the complete data group, N(1) = |G(1)|.

Theorem 2 implies that the convergence rate of the estimator of Fk

when there are data sources with missing blocks becomes a little slow com-

paring with that without missing in hybrid data as described in Theorem

1, which mainly is due to imputed data rather than the original data used.

Furthermore, the convergence rate of the estimator of Fk for the complete-

data group is faster than that of the missing pattern groups, this is also

consistent with general cognition.

5. Numerical Simulations

To evaluate the performance of our proposed methods: CR-COM (component-

based regression without missing), CR-CMI and CR-MBI (component-based

regression for block-wise missing data corresponding to CMI and MBI im-
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5.1 Results of Linear Component-based Regression Model

putation methods), we perform numerical simulations based on 3-source

hybrid data, where the details of generating 3-source hybrid data can be

found in Supplementary Material. All the simulations and the following

real data analysis were conducted in R. Assuming that the number of prin-

cipal components for each data source is 25 and the number of multi-source

principal components is 10, and the sample size N = 300 and 600. When

coefficients in (3.1) are taken as β =(0.934, 0.903, 0.815, 0.604, 0.517,

0.447, 0.392, 0.370, 0.345, 0.3)′, and the random errors follow N(0, 0.22),

the response of linear component-based regression model can be generated.

When coefficients in (3.1) are taken as 0β, 2β and 4β, the 3-classification

response of Logistic component-based regression model can be generated.

For each simulation, we choose 80%/90% of the samples as training data

and the remaining 20%/10% of the samples as testing data. We perform

100 simulation runs for each method.

5.1 Results of Linear Component-based Regression Model

For the case that there are block-wise missing, we first construct the block-

wise missing data with missing completely at random (MCAR) such that

80% and 40% of the entire samples are completely observed, and the re-

maining samples are split into 6 different missing patterns with an equal
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5.1 Results of Linear Component-based Regression Model

probability. Furthermore, we consider the missing not at random (MNAR)

case and construct missing data by a variable δi to indicate the missing

pattern of the ith sample. The variable δi is generated from a multino-

mial distribution with P (xi) = (P1(xi), P2(xi), · · · , P7(xi)), where Pj(xi) =

|gj(xi)|∑7
l=1 |gl(xi)|

and gj(xi) =< γj, xi > for j = 1, · · · , 7. Let γ1 = (1, · · · , 1) and

γ2 = · · · = γ7 = ( 1
24
, · · · , 1

24
), then the overall missing rate can be guaran-

teed to be 20%. Let γ1 = (1, · · · , 1) and γ2 = · · · = γ7 = (1
4
, · · · , 1

4
), then

the overall missing rate can be 60%.

Based on the method in Sections 2 and 3, we obtained the estimated

values of the weight parameter, the smooth parameters and the number

of components. For all cases, the estimated weight parameter is close to

0.5 (the true weight); the estimated number of components is close to the

true value 10; the estimated smooth parameters are both 10. Mean and

standard deviation (SD, in parentheses) of mean squared errors (MSE) of

estimated component score F̂, estimated regression coefficient β̂, and esti-

mated outcome Ŷ for different sample sizes, missingness mechanisms and

missing rates are shown in Table 1, respectively. We compare also the per-

formance of our proposed CR-COM method with the ERA model. In the

ERA model, we performed functional PCA and multivariate PCA for two

functional data sources and one high-dimensional data source, respectively,
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5.1 Results of Linear Component-based Regression Model

Table 1: Results of linear component-based regression model.

Missing Estimation N=300 N=600

Mechenism Method MSE(F̂) MSE(β̂) MSE(Ŷ) AFIT MSE(F̂) MSE(β̂) MSE(Ŷ) AFIT

No missing

CR-COM 0.00207 0.00025 0.03858 0.98613 0.00209 0.00021 0.03920 0.98604

(0.00029) (0.00009) (0.00345) (0.00117) (0.00015) (0.00006) (0.00191) (0.00077)

ERA 0.03683 0.98344 0.03874 0.98497

(0.00329) (0.00145) (0.00229) (0.00095)

Missing rate= 20%

MCAR

CR-ZERO 0.57678 0.13296 0.19738 0.33517 0.05698 0.19727

(0.17920) (0.07617) (0.03263) (0.13699) (0.04069) (0.02176)

CR-KNN 0.11163 0.01468 0.07283 0.05185 0.00476 0.06487

(0.06890) (0.01478) (0.00942) (0.02001) (0.00356) (0.00639)

CR-CMI 0.00217 0.00027 0.03834 0.00216 0.00021 0.03940

(0.00031) (0.00009) (0.00350) (0.00013) (0.00007) (0.00232)

CR-MBI 0.00217 0.00026 0.03836 0.00215 0.00021 0.03941

(0.00031) (0.00009) (0.00349) (0.00013) (0.00007) (0.00231)

MNAR

CR-ZERO 0.54895 0.11893 0.20475 0.36109 0.06011 0.21707

(0.17440) (0.06540) (0.03038) (0.13521) (0.03660) (0.02213)

CR-KNN 0.13012 0.01400 0.07966 0.04949 0.00374 0.06639

(0.07833) (0.01060) (0.01110) (0.01266) (0.00253) (0.00529)

CR-CMI 0.00214 0.00027 0.03866 0.00213 0.00020 0.03954

(0.00030) (0.00009) (0.00358) (0.00015) (0.00007) (0.00228)

CR-MBI 0.00213 0.00027 0.03866 0.00213 0.00020 0.03954

(0.00030) (0.00009) (0.00358) (0.00016) (0.00007) (0.00228)

Missing rate=60%

MCAR

CR-ZERO 0.80148 0.23586 0.45651 0.57705 0.16677 0.43895

(0.15864) (0.15154) (0.03714) (0.16101) (0.09783) (0.02798)

CR-KNN 0.17257 0.02229 0.14578 0.10852 0.00703 0.12385

(0.04805) (0.02339) (0.01795) (0.01627) (0.00422) (0.01289)

CR-CMI 0.00229 0.00028 0.03841 0.00223 0.00022 0.03976

(0.00041) (0.00010) (0.00379) (0.00025) (0.00007) (0.00232)

CR-MBI 0.00228 0.00028 0.03840 0.00223 0.00022 0.03976

(0.00042) (0.00010) (0.00379) (0.00025) (0.00007) (0.00232)

MNAR

CR-ZERO 0.84743 0.29347 0.46054 0.60803 0.17866 0.44514

(0.16459) (0.18065) (0.03698) (0.17960) (0.12613) (0.02786)

CR-KNN 0.18305 0.02316 0.14228 0.10576 0.00642 0.12283

(0.07389) (0.01840) (0.01810) (0.01509) (0.00358) (0.00943)

CR-CMI 0.00225 0.00029 0.03879 0.00217 0.00022 0.03975

(0.00044) (0.00009) (0.00361) (0.00024) (0.00007) (0.00234)

CR-MBI 0.00225 0.00029 0.03883 0.00217 0.00022 0.03975

(0.00044) (0.00008) (0.00355) (0.00024) (0.00007) (0.00234)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0186



5.1 Results of Linear Component-based Regression Model

and each extracted 25 principal components, so that a total of 75+3 param-

eters were included in the model. The results can also be found in Table 1,

where AFIT denotes the adjusted goodness-of-fit.

For the case without missing data, as the sample size increases, the

mean of MSE(F̂) slightly increases, but the standard deviation significantly

decreases; the mean and SD of MSE(β̂) slightly decrease; the mean of

MSE(Ŷ) slightly increases, but SD significantly decreases. All these indi-

cate that the estimators are consistent. From Table 1 we can also see that

the MSE (Ŷ) of the ERA model is generally smaller than that of the CR-

COM method, which implies that the ERA model is slightly superior to the

CR (component-based regression) model from a prediction point of view.

However, the AFIT indicator values of the ERA model are lower than those

of the CR model, the reason is perhaps that the ERA model is much more

complex than the CR model (ERA model: 78 parameters; CR model: 10

parameters), which will make it less capable of generalisation.

Next we consider the case with block-wise missing in the data. For fixed

sample size, as the missing rate increases, both means and SDs of MSE(F̂)

and MSE(Ŷ) increase; means of MSE(β̂) slightly increase, while SDs remain

almost unchanged. All these indicates that as the missing rate increases,

the estimation will slightly become worse. For fixed missing rate, as the
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5.2 Results of Logistic Component-based Regression Model

sample size increases, means and SDs of both MSE(F̂) and MSE(β̂) de-

crease; means of MSE(Ŷ) slightly increase, but SDs significantly decreases,

these results indicates that the estimates are consistent. In addition, for

different missingness mechanisms, there was no significant difference in the

performance of all methods. We also consider the zero mean imputation

method and the K-nearest neighbors imputation method for comparison,

and denote them as CR-ZERO and CR-KNN, respectively. It is clear that

in all cases the CR-ZERO method performs the worst, the CR-KNN is

slightly better, and the CR-CMI and CR-MBI methods perform the best

with the smallest means and standard deviations. This result is in perfect

agreement with our perception, as the CMI and MBI imputation methods

are essentially regression-based methods that can extract information much

more from the data than the zero mean and KNN imputation methods.

5.2 Results of Logistic Component-based Regression Model

We first construct the block-wise missing data with MCAR as in Section 5.1.

And, we also consider the MNAR case by a variable δi which is generated

from a multinomial distribution with P (xi|yi) = (P1(xi|yi), · · · , P7(xi|yi)),

where Pj(xi|yi) = |gj(xi|yi)|∑7
l=1 |gl(xi|yi)|

and gj(xi|yi) =< γj|yi, xi > for j = 1, 2, · · · , 7.

For N = 300 or 600, because the ratio of the three categories of the de-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0186



5.2 Results of Logistic Component-based Regression Model

Table 2: Results of Logistic component-based regression model.

MCAR MNAR

Method Accuracy Precision Recall F1-score MSE(β̂2) MSE(β̂3) Accuracy Precision Recall F1-score MSE(β̂2) MSE(β̂3)

(N, Missing rate)=(300, 0%)

CR-COM 0.8481 0.7501 0.6909 0.6949 0.1503 0.2927

(0.0212) (0.0494) (0.0292) (0.0371) (0.1606) (0.2882)

(N, Missing rate)=(300, 20%)

CR-ZERO 0.8495 0.7496 0.6995 0.7044 1.0163 3.8588 0.8495 0.7531 0.7011 0.7081 1.0308 3.6242

(0.0211) (0.0479) (0.0344) (0.0431) (0.5950) (2.2864) (0.0211) (0.0485) (0.0300) (0.0361) (0.7204) (2.4708)

CR-KNN 0.8415 0.7389 0.6870 0.6897 0.2115 0.5037 0.8460 0.7414 0.6921 0.6959 0.2132 0.5413

(0.0234) (0.0576) (0.0337) (0.0427) (0.1631) (0.3840) (0.0220) (0.0514) (0.0327) (0.0410) (0.1780) (0.4600)

CR-CMI 0.8480 0.7493 0.6954 0.7009 0.1597 0.3351 0.8479 0.7521 0.6940 0.6975 0.1567 0.3427

(0.0212) (0.0484) (0.0312) (0.0387) (0.1682) (0.3836) (0.0212) (0.0454) (0.0308) (0.0394) (0.1610) (0.3913)

CR-MBI 0.8478 0.7486 0.6950 0.7004 0.1593 0.3307 0.8477 0.7512 0.6927 0.6957 0.1557 0.3401

(0.0215) (0.0497) (0.0328) (0.0401) (0.1687) (0.3831) (0.0214) (0.0466) (0.0308) (0.0395) (0.1593) (0.3915)

(N, Missing rate)=(300, 60%)

CR-ZERO 0.8404 0.7336 0.6877 0.6925 2.0598 7.6143 0.8403 0.7326 0.6911 0.6961 1.9421 7.5053

(0.0220) (0.0531) (0.0322) (0.0388) (1.2799) (4.8052) (0.0227) (0.0467) (0.0321) (0.0387) (1.3166) (4.8080)

CR-KNN 0.8347 0.7228 0.6782 0.6834 0.2527 0.6659 0.8354 0.7366 0.6827 0.6876 0.2457 0.6922

(0.0213) (0.0526) (0.0316) (0.0372) (0.2564) (0.4882) (0.0226) (0.0555) (0.0305) (0.0391) (0.1838) (0.5188)

CR-CMI 0.8474 0.7416 0.6897 0.6927 0.1804 0.3525 0.8472 0.7490 0.6923 0.6961 0.1725 0.3706

(0.0227) (0.0479) (0.0308) (0.0397) (0.2434) (0.5611) (0.0226) (0.0551) (0.0340) (0.0434) (0.2377) (0.5882)

CR-MBI 0.8479 0.7411 0.6892 0.6921 0.1742 0.3770 0.8476 0.7475 0.6928 0.6969 0.1680 0.3693

(0.0229) (0.0529) (0.0312) (0.0407) (0.2314) (0.5781) (0.0222) (0.0541) (0.0332) (0.0431) (0.2319) (0.5846)

(N, Missing rate)=(600, 0%)

CR-COM 0.8454 0.7170 0.6676 0.6638 0.0564 0.0973

(0.0149) (0.0350) (0.0193) (0.0275) (0.0432) (0.0819)

(N, Missing rate)=(600, 20%)

CR-ZERO 0.8407 0.7151 0.6664 0.6618 0.4170 1.5898 0.8406 0.7166 0.6681 0.6648 0.3856 1.4192

(0.0146) (0.0448) (0.0188) (0.0264) (0.2806) (1.0777) (0.0167) (0.0384) (0.0191) (0.0269) (0.2574) (0.8597)

CR-KNN 0.8350 0.7050 0.6595 0.6535 0.0697 0.1642 0.8378 0.7178 0.6656 0.6621 0.0712 0.1749

(0.0147) (0.0401) (0.0176) (0.0250) (0.0616) (0.1022) (0.0150) (0.0351) (0.0184) (0.0259) (0.0483) (0.1140)

CR-CMI 0.8439 0.7212 0.6690 0.6662 0.0584 0.1050 0.8436 0.7217 0.6694 0.6662 0.0613 0.1081

(0.0154) (0.0394) (0.0188) (0.0270) (0.0539) (0.0954) (0.0155) (0.0416) (0.0193) (0.0271) (0.0505) (0.0957)

CR-MBI 0.8436 0.7213 0.6691 0.6663 0.0588 0.1059 0.8435 0.7218 0.6698 0.6669 0.0614 0.1098

(0.0156) (0.0397) (0.0188) (0.0272) (0.0557) (0.0974) (0.0156) (0.0422) (0.0199) (0.0280) (0.0504) (0.0981)

(N, Missing rate)=(600, 60%)

CR-ZERO 0.8394 0.7174 0.6679 0.6665 1.0168 4.0761 0.8332 0.7049 0.6648 0.6635 1.0606 4.1531

(0.0152) (0.0407) (0.0205) (0.0285) (0.6785) (2.7304) (0.0164) (0.0395) (0.0200) (0.0268) (0.6729) (2.5781)

CR-KNN 0.8275 0.7021 0.6551 0.6506 0.0868 0.2265 0.8262 0.7050 0.6582 0.6553 0.0881 0.2415

(0.0146) (0.0398) (0.0180) (0.0258) (0.0561) (0.1173) (0.0160) (0.0377) (0.0186) (0.0263) (0.0426) (0.1253)

CR-CMI 0.8433 0.7186 0.6667 0.6621 0.0728 0.1266 0.8430 0.7195 0.6723 0.6700 0.0692 0.1299

(0.0159) (0.0346) (0.0175) (0.0256) (0.0689) (0.1178) (0.0157) (0.0447) (0.0232) (0.0317) (0.0695) (0.1191)

CR-MBI 0.8430 0.7177 0.6660 0.6610 0.0710 0.1269 0.8432 0.7237 0.6727 0.6703 0.0686 0.1331

(0.0158) (0.0358) (0.0179) (0.0260) (0.0677) (0.1199) (0.0159) (0.0412) (0.0220) (0.0302) (0.0691) (0.1189)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0186



5.2 Results of Logistic Component-based Regression Model

pendent variable is 13:4:13, we can generate the block-wise missing data in

each category by using the method of MCAR. Assume that m1, m2 and

m3 are the missing rates for each category, respectively. When m1 = m3 =

2.8
13
,m2 = 0.1, for the first and the third categories, let γ1 = (1, · · · , 1), γ2 =

· · · = γ7 = ( 7
153

, · · · , 7
153

); for the second category, let γ1 = (1, · · · , 1), γ2 =

· · · = γ7 = ( 1
54
, · · · , 1

54
), then the overall missing rate can arrive 20%.

When m1 = m3 = 8.4
13
,m2 = 0.3, for the first and the third categories, let

γ1 = (1, · · · , 1), γ2 = · · · = γ7 = ( 7
23
, · · · , 7

23
); for the second category, let

γ1 = (1, · · · , 1), γ2 = · · · = γ7 = ( 1
14
, · · · , 1

14
), then the overall missing rate

can arrive 60%.

Several metrics for evaluating the performance of classification together

with the MSEs of β̂2 and β̂3 (the estimator of regression coefficients) are

shown in Table 2.

From Table 2, we can see that for the case without missing data, as the

sample size increases, means of various indicators used to evaluate classi-

fication performance in 100 simulations decrease slightly, but the SDs (in

parentheses) decrease significantly, resulting in a shorter confidence inter-

val; means and SDs of MSE(β̂2) and MSE(β̂3) decrease significantly. These

results mean that the classification performance becomes better for larger

sample size. Overall, the CR-KNN method performed the worst, CR-ZERO
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slightly better, while the CR-CMI and CR-MBI methods performed the

best, which is consistent with the results in Section 5.1.

We next consider the case with block-wise missing data. For fixed sam-

ple size, as the missing rate increases, although means and SDs of MSE(β̂2)

and MSE(β̂3) have slightly increased, but the classification indicators have

remained basically unchanged. It can be found that the prediction per-

formance of the imputation methods is almost the same as that of without

missing data, which is an advantage of our methods. For fixed missing rate,

means of various classification indicators increase slightly as the sample size

increases, but SDs decrease significantly. Therefore, the larger the sample

size, the better the results. Means and SDs of MSE(β̂2) and MSE(β̂3) are

significantly smaller as the sample size increases. In addition, for different

missingness mechanisms, there is no significant difference in the perfor-

mance of all methods.

6. Application to ADNI Study

The detailed description of ADNI Data is contained in Supplementary Ma-

terial. The data in this paper with four data sources (PET, MRI, GENE

and CSF) and ten missing patterns consisted of 687 subjects. The com-

plete data group consisting of 190 subjects accounted for 27.7% of the total
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sample. The total missing rate is approximately 72.3%. The specific data

structure is shown in Table 3.

Table 3: Data aggregation. ”o”: the observed data, ”-”: the missing data.

Missing pattern PET MRI GENE CSF # of subjects

I o o o o 190

II o o o - 22

III o o - o 104

IV o - o o 147

V - o o o 60

VI o o - - 11

VII o - o - 25

VIII - o o - 5

IX o - - o 117

X - o - o 6

# of subjects 616 398 449 624 687

Missing rate 10.3% 42.1% 34.6% 9.2% 72.3%

In order to establish the component-based regression models, we firstly

need to implement univariate fPCA on PET images and MRI images, and

univariate PCA on GENE data, respectively. We can choose univariate

principal component scores by comparing the six information criteria in
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6.1 Prediction and Classification Results

Section 2.2. We finally choose the optimal number of univariate principle

component scores (235 for MRI, 100 for PET and 295 for GENE) by the

BIC3 criterion.

6.1 Prediction and Classification Results

To evaluate the performance of our method, 80% or 90% of the data is lay-

ered into a training set, and the remaining data is used as a verification set.

The random sampling was repeated 100 times. By applying the methods

in Section 2, the estimated weight parameter is 0.41, and the estimated

smooth parameters are both 0.01.

We first established linear component-based regression models. The

number of components of the model we choose based on AIC is 88. We

also compared our proposed methods with the FR-FI method in Zhang

et al. (2020). In Zhang et al. (2020), they used features from four high-

dimensional data sources: 3 CSF features, 243 PET features, 317 MRI

features, and 49,386 gene features. The mean and standard deviation (SD)

of MSE of predicted MMSE are shown in Table 4. It can be seen from Table

4 that, for each method, means of MSE at two training rates are relatively

close, but SDs become larger as the training rate increases. The mean and

SD of MSE by FR-FI method are larger than those proposed by us. The
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performance of the CR-CMI and CR-MBI methods is similar, while the

CR-KNN and CR-ZERO methods are slightly worse, which is consistent

with the simulation study.

Table 4: Mean and standard deviation of MSE for ADNI data.

80% training rate 90% training rate

Method Mean SD Mean SD

CR-ZERO 4.9944 1.1072 4.8462 1.6378

CR-KNN 5.0084 1.0740 4.7440 1.4339

CR-CMI 4.7885 0.6814 4.6671 0.9385

CR-MBI 4.8141 0.6364 4.8008 1.0826

FR-FI 5.5765 1.0511 5.4931 1.6009

We also established Logistic component-based regression models for 3-

classification and 4-classification cases, results are shown in Table 5. From

Table 5, we can see that the performance of the CMI method and MBI

method is similar, while the CR-KNN and CR-ZERO methods are slightly

worse. In addition, regardless of the training rate, the classification perfor-

mance of 3-classification case is generally better than that of 4-classification

case. This may be because it is difficult to distinguish the subjects of the

early mild cognitive impairment group (EMCI) and the late mild cognitive
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impairment group (LMCI), so combining the two groups into a single cate-

gory of mild cognitive impairment group (MCI) can improve the accuracy

of classification. In the actual classification process, we neither want normal

Table 5: 4-classification and 3-classification results of proposed methods.

80% training rate 90% training rate

Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

AD/LMCI/EMCI/CN 4-classification results

CR-ZERO 0.8590 0.8512 0.8601 0.8534 0.9188 0.9170 0.9208 0.9166

CR-KNN 0.8648 0.8582 0.8664 0.8597 0.9261 0.9251 0.9262 0.9234

CR-CMI 0.8700 0.8638 0.8683 0.8640 0.9362 0.9340 0.9359 0.9330

CR-MBI 0.8679 0.8603 0.8641 0.8603 0.9350 0.9347 0.9326 0.9315

AD/MCI/CN 3-classification results

CR-ZERO 0.8528 0.8314 0.8547 0.8398 0.8929 0.8880 0.8963 0.8895

CR-KNN 0.8877 0.8643 0.8849 0.8722 0.9388 0.9254 0.9388 0.9303

CR-CMI 0.8905 0.8664 0.8828 0.8724 0.9469 0.9349 0.9459 0.9382

CR-MBI 0.8958 0.8712 0.8900 0.8784 0.9473 0.9373 0.9446 0.9389

people to be classified into patient categories, nor do we want any patient to

be missed, so we pay more attention to the F1-score which comprehensively

considers the precision and the recall. We noticed that the precision and

recall of the two methods are very close regardless of the training rate, so

the F1-score is relatively stable and close to the accuracy.

We compare further the classification performance of our proposed CR-

CMI method with the iMSF method proposed in Yuan et al. (2012) which

considered high-dimensional feature including MRI, PET, proteomics and

CSF for distinguishing ADNI subjects into 3 diagnostic groups (AD, MCI

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0186



6.1 Prediction and Classification Results

and CN). We turn the 3-classification task into three pairwise classification

problems, namely AD/CN, MCI/AD and CN/MCI, classification results

are shown in Table 6. However, the PET data and MRI data we used are

infinite-dimensional, so there is no way to directly apply the iMSF method

to our data. Therefore, the results of iMSF method in Table 6 are directly

extracted from Yuan et al. (2012).

Table 6: 2-classification comparison of CR-CMI method and the iMSF method.

Metrics Training rate CR-CMI iMSF CR-CMI iMSF CR-CMI iMSF

AD/CN task MCI/AD task CN/MCI task

Accuracy

50.0% 0.8965 0.8658 0.9151 0.8278 0.8828 0.8872

66.7% 0.9580 0.8890 0.9629 0.8335 0.9494 0.9033

75.0% 0.9752 0.8848 0.9777 0.8401 0.9671 0.8927

Sensitivity

50.0% 0.8568 0.8552 0.8474 0.4339 0.8596 0.6228

66.7% 0.9390 0.8706 0.9330 0.4424 0.9372 0.6922

75.0% 0.9692 0.8667 0.9648 0.4514 0.9547 0.7162

Specificity

50.0% 0.9163 0.879 0.9333 0.9628 0.8952 0.9907

66.7% 0.9673 0.9142 0.9708 0.9643 0.9560 0.9934

75.0% 0.9782 0.9102 0.9813 0.9670 0.9738 0.9949

For AD/CN classification task, the performance of the CR-CMI method

is overall better slightly than of the iMSF method. In addition, under this

classification task, the sensitivity and specificity of the two methods are

relatively balanced. Generally speaking, as the training rate increases, there

will be some improvement in classification performance.

For the MCI/AD classification task, CR-CMI method performs better

than the iMSF method in classifying and predicting MCI patients and AD
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patients with similar disease courses. It is also worth noting that under

this classification task, although the iMSF method has a high specificity, its

sensitivity is particularly low. However, in the field of medicine, sensitivity

is more important because the consequence of diagnosing a patient as a

healthy person is more serious than that of diagnosing a healthy person as

a patient. Therefore, compared to the highly unbalanced sensitivity and

specificity of the iMSF method, our method has the advantage of greatly

improving sensitivity at the expense of a small portion of specificity.

For CN/MCI task, we can see that when the training rate is 1/2, the

accuracy of the CR-CMI method is close to that of the iMSF method; when

the training rate increases to 2/3 and 3/4, the accuracy of the CR-CMI

method will exceed that of the iMSF method. The sensitivity of the CR-

CMI method is superior to that of the iMSF method, while the specificity

is slightly inferior to that of the iMSF method.

7. Conclusions

In this paper, we propose a new component-based regression model for

hybrid data containing functional data and high-dimensional data, where

components are constructed by the unified approach to MCCA and MPCA.

We also propose two component imputation methods (CMI and MBI) to
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impute the block-wise missing univariate principal component scores. The-

oretical properties, numerical simulations and real data analysis show that

the prediction and classification performance of the new method work well.

The main contributions of our methods are as follows:

(i) Hwang et al. (2013) proposed a unified approach to MCCA and

MPCA for multi-source high-dimensional data, Choi et al. (2017) extended

it to the case of multi-source functional data. In the paper, we extended

further the unified approach to hybrid data.

(ii) Since functional data are contained in hybrid data, the objective

function which is used to extract the components involves the integral oper-

ation of original functional data, the loading functions and canonical weight

functions. In our paper, we proposed to use the principal component ba-

sis of the corresponding univariate functional data as the basis functions,

thereby converting functional optimization problem to an approximately

equivalent matrix eigen-analysis problem.

(iii) Since the new component model is established by univariate prin-

cipal component scores of each functional data source and high-dimensional

data source, and the calculation of univariate principal component scores

is not affected by whether the data are balanced or not, sparse or dense,

therefore the applicability of our proposed method is very broad.
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(iv) The proposed method is suitable not only for hybrid data without

missing but also for the data with block-wise missing. Instead of directly

imputing the original data, we first imputed the corresponding univariate

principal component scores by block-wise conditional mean imputation and

multiple block-wise imputation methods, thereby achieving imputation of

components, which reduces the computational complexity greatly.

However, the method we proposed still needs further research. Firstly,

our method is theoretically applicable to multiple data sources, but only

three or four data sources are considered in simulation research and empir-

ical analysis. In the future, we can introduce more influencing factors, such

as clinical data, plasma data, protein data, etc., which may improve the

accuracy of prediction further. Secondly, when we select image data, we

only select those with the same size, for example, in MRI images, we only

select those with a size of 176×240×256, but in fact there are various other

sizes of MRI images. In subsequent research, we can also use registration

techniques to obtain more data, thereby improving utilization efficiency.

Finally, our approach considers the factor model and regression model sep-

arately, which can be seen as a two-stage approach. Since some information

may be lost by discussing them separately, the accuracy of the models may

be affected to some extent, so we may further consider combining the fac-
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tor and regression models together to achieve dimensionality reduction and

regression as well, thus improving the accuracy of the estimation. In the

future, we are going to further investigate the Bayesian estimation method

and the method in the ERA model for hybrid data.

Supplementary Material

Supplementary materials available in the attached file include generating

hybrid data, imputation methods, technical conditions and proofs.
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