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Abstract: A random variable X is said to have a symmetric distribution function

(DF) about zero if X and −X have the same distribution. The estimation of

such a distribution and tests for symmetry are widely studied in the literature.

Some of the alternatives to symmetry describe some notion of skewness or one-

sided bias in terms of an ordering of the distributions of X and −X. One such

ordering is characterized by r−X(x) ≤ rX(x) for all x > 0 where r−X(x) and rX(x)

are the hazard rates of −X and X, respectively. This is equivalent to the ratio

P (X > x)/P (X < −x) being nondecreasing in x > 0. In this paper we derive the

nonparametric maximum likelihood estimator (NPMLE) of F under this constraint

and show that it is inconsistent. We then construct a new estimator and establish

its consistency and weak convergence. We also develop a test for symmetry against

this one-sided alternative and study the finite sample performance of this new

estimator. We show through simulations that it outperforms the NPMLE in terms

of mean squared error for all the distributions under consideration. We also show

how to apply this approach to compare the conditional distributions (conditional

on the risks) of two competing risks in a competing risks model.
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1. Introduction

A random variable X with DF F is said to have a symmetric distribu-

tion about zero if X and −X have the same distribution. Symmetry of

the underlying distribution is a commonly occurring assumption in many

statistical analyses and the validity of some of frequently used procedures

depends heavily on this assumption. This is particularly the case for sev-

eral nonparametric procedures such as the Wilcoxon signed rank test. It is

also the case that many statistical procedures that are based on normality

are generally robust to this assumption when the underlying distribution is

symmetric ( Chaffin and Rhiel , 1993). For these reasons, a large number of

nonparametric tests for symmetry have been developed. Many of these tests

are variations of the sign test, Wilcoxon tests, Kolmogorov-Smirnov tests

or Cramér-von Mises tests (Shorack and Wellner , 1986). The simplest, and

commonest alternatives are one-sided or two-sided shifts.

More general alternatives have been considered by introducing the or-

dering

S1(x) ≡ P (X > x) ≥ S2(x) ≡ P (X < −x), x ≥ 0, (1.1)
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or the ordering

P (0 < X ≤ x)− P (−x ≤ X < 0) is nondecreasing in x ≥ 0. (1.2)

The distribution of X is said to have a Type I positive bias under (1.1) and

is said to have a Type II bias under (1.2). If X has a density f , then (1.2)

corresponds to the density ordering, f(−x) ≤ f(x) for x > 0. For more on

this, see Yanagimoto and Sibuya (1972).

Estimation under Type I positive bias was considered in Dykstra, Kochar

and Robertson (1995), who studied the likelihood ratio test for symmetry

against this type of bias in discrete or grouped data settings. They showed

that the limiting null distribution of their test statistic is of a chi-bar square

and they provided the expression of its weights. Their test is not asymp-

totically distribution-free but they were able to obtain the least favorable

distribution. In addition, they also derived the NPMLE of F under this

constraint and demonstrated that it is uniformly strongly consistent. Dyk-

stra and Praestgaard (1996) studied its weak convergence and showed that

it is asymptotically equivalent to the empirical distribution when Type I

bias holds strictly. They also showed that, under symmetry, it is still
√
n

consistent but the limiting process is no longer Gaussian. Alfieri and El

Barmi (2005) developed a new consistent and easy-to-compute estimator

for the same situation. They also studied its weak convergence and devised
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a one-sided Kolmogorov-Smirnov type test for symmetry against this type

of bias. This test is asymptotically distribution free when the underlying

distribution is continuous. We note that the NPMLE under Type II bias

is inconsistent. For this reason, El Barmi and Mukerjee (2004) developed

a consistent estimator, established its weak convergence, and constructed a

test for symmetry against this alternative.

In this paper, we consider instead the following alternative for symme-

try:

S1(x)

S2(x)
is nondecreasing on {x, S2(x) > 0}. (1.3)

where S1 and S2 are defined in (1.1). Notice that

S(x) ≡ S1(x) + S2(x), x ≥ 0,

defines the survival function of |X|. It turns out that, by viewing S1 and

S2 as the subsurvival functions of competing risks in a two competing risks

model, the theory we develop in this paper can be used to estimate these

functions when their ratio is nondecreasing as well as compare the condi-

tional distributions, conditioning on the risks. We will show how this is

done and provide a real life example.

Our goal is to derive the NPMLE of F under (1.3) and show that it is

inconsistent except in discrete or grouped data settings. We then provide
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a consistent estimator under this constraint when F is continuous. The

estimator we propose is a projection-type estimator, similar to estimators

employed by Rojo and Samaniego (1993) and Mukerjee (1996) for esti-

mating two distribution functions under the uniform stochastic ordering

constraint and by El Barmi and Mukerjee (2004) for estimating a distri-

bution under the Type II bias. We will study the weak convergence of this

estimator and show that when (1.3) is strict, this estimator is asymptoti-

cally equivalent to the empirical distribution. Otherwise we show that it is

still
√
n consistent but, the limiting process is not Gaussian.

This article is organized as follows. In Section 2, we derive the NPMLE

under (1.3) and show that it is inconsistent. In Section 3, we introduce

our estimator, prove its strong uniform consistency and study its weak

convergence. We also provide a test for symmetry against this alternative.

In Section 4, we consider an application of our approach to the estimation of

two subsurvival functions under an ordering of the type in (1.3). We show

that parallel results to those given in Section 3 continue to hold. In Section

5 we give two examples to illustrate the applicability of our theory. We also

give simulation results to compare the finite sample performance of our

estimator and the NPMLE. In Section 6 we offer some concluding remarks.

Throughout we use
d→,

P→ and
w⇒ to denote convergence in distribution,
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convergence in probability and weak convergence, respectively. We will

also use a∨ b and a∧ b to denote the maximum and the minimum of a and

b, respectively. Because of the length of some proofs, the proof of Theorem

3.2 is relegated to the supplementary material.

2. Nonparametric maximum likelihood

Suppose that {X1, X2, . . . , Xn} is a random sample drawn from F which is

unknown but satisfies the constraint constraint (1.3). First, we note that

(1.3) is equivalent to

P (X > x|X > 0)

P (−X > x| −X > 0)
is nondecreasing on {x, P (−X > x|−X > 0) > 0}.

That is, X|X > 0 is uniformly stochastically larger than −X| − X > 0.

Because of this and the inconsistency of the NPMLE of two uniformly

stochastically ordered survival functions (Mukerjee , 1996), it has been con-

junctured that the NMPLE of F in this case is inconsistent. We show this

next.

Let t1 < t2 < . . . < tm denote the corresponding distinct absolute val-

ues. Let also t0 = 0 and tm+1 = ∞. The likelihood estimation is interpreted

here in the generalized sense given in Kiefer and Wolfowitz (1956) in which
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case the likelihood function is

L(F ) =

(
m∏
j=1

[F (tj)− F (t−j )]
n1j

)(
m∏
j=1

[F ((−tj))− F ((−tj)−]n2j

)
,(2.1)

where F (u−) is the left limit of F at u and n1j and n2j are the number of

times tj and −tj are observed, respectively. We take here 00 = 1. In terms

of S1 and S2, (2.1) is given by

L(S1, S2) =

(
m∏
j=1

[S1(t
−
j )− S1(tj)]

n1j

)(
m∏
j=1

[S2(t
−
j )− S2(tj)]

n2j

)
.(2.2)

Clearly if S1 and S2 satisfy the constraint (1.3), then the likelihood in (2.2)

is not decreased if Sis are replaced by

Si(t) =
m∑
j=0

Si(tj)I[tj ≤ t < tj+1], i = 1, 2.

Consequently it suffices to maximize

L(S1, S2) =

(
m∏
j=1

[S1(tj−1)− S1(tj)]
n1j

)(
m∏
j=1

[S2(tj−1)− S2(tj)]
n2j

)

=

(
m∏
j=1

[
1− S1(tj)

S1(tj−1)

]n1j

S1(tj−1)
n1j

)(
m∏
j=1

[
1− S2(tj)

S2(tj−1)

]n2j

S2(tj−1)
n2j

)

subject to (1.3). Let θij = Si(tj)/Si(tj−1). Then

Si(tj) = Si(t0)

j∏
ℓ=1

θiℓ, i = 1, 2,

and (1.3) is equivalent to

θ1j ≤ θ2j, j = 1, 2, . . . ,m, (2.3)
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with no constraints on S1(t0) and S2(t0). Using this new parametrization,

we get, after rearranging the terms in L(S1, S2),

L(S1, S2) = [S1(t0)]
n1+ [S2(t0)]

n2+

m∏
j=1

θ
n1j+

1j (1− θ1j)
n1jθ

n2j+

2j (1− θ2j)
n2j

where ni+ =
m∑
j=1

nij, i = 1, 2, and nij+ =
m∑

ℓ=j+1

niℓ, for all (i, j). Here we

assume that
∑

∅ = 0.

Since the constraints in (2.3) do not relate θijs for different js and do

not put any constraint on (S1(t0), S2(t0))
T , the likelihood factors into m+1

parts

L0(S1, S2) ≡ [S1(t0)]
n1+ [S2(t0)]

n2+ and Lj(θ1j, θ2j) ≡ θ
n1j+

1j (1−θ1j)n1jθ
n2j+

2j (1−θ1j)n2j ,

j = 1, 2, . . . ,m, that can be maximized independently. Since S1(t0) and

S2(t0) satisfy S1(tk) + S2(tk) = 1, L0(S1, S2) is maximized by S̃i(t0) =

ni+

n
, i = 1, 2.

Notice that, under no constraints, Lj(θ1j, θ2j) is maximized by

(θ̂1j, θ̂2j)
T ≡

(
Ŝ1(tj)

Ŝ1(tj−1)
,
Ŝ2(tj)

Ŝ2(tj−1)

)T

,

where Ŝ1 and Ŝ2 are the unrestricted empirical estimators of S1 and S2,

respectively. Specifically, it is maximized by

Ŝ1(t) =
1

n

m∑
j=1

n1jI(t,∞)(tj) =
1

n

n∑
j=1

I(t,∞)(Xj) and

Ŝ2(t) =
1

n

m∑
j=1

n2jI(−∞,−t)(−tj) =
1

n

n∑
i=j

I(−∞,−t)(Xj)
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where t ≥ 0.

Maximizing Lj(θ1j, θ2j) subject to θ1j ≤ θ2j is exactly the well known

bioassay problem which is discussed in Robertson, Wright and Dykstra

(1988). Its solution is

(θ̃1j, θ̃2j)
T = Eωj

[(θ̂1j, θ̂2j)
T |K]

where Eωj
[(θ̂1j, θ̂2j)

T |K] is the weighted least squares projection of (θ̂1j, θ̂2j)
T

onto K = {z ∈ R2 : z1 ≤ z2}, with weights ωj = (Ŝ1(tj−1), Ŝ2(tj−1))
T . This

solution can also be expressed as

θ̃1j =
Ŝ1(tj)

Ŝ1(tj−1)
∧
Ŝ1(tj−1)

Ŝ1(t1)

Ŝ1(tj−1)
+ Ŝ2(tj−1)

Ŝ2(tj)

Ŝ2(tj−1)

Ŝ1(tj−1) + Ŝ2(tj−1)
=

Ŝ1(tj)

Ŝ1(tj−1)
∧ Ŝ(tj)

Ŝ(tj−1)

and

θ̃2j =
Ŝ2(tj)

Ŝ2(tj−1)
∨
Ŝ1(tj−1)

Ŝ1(t1)

Ŝ1(tj−1)
+ Ŝ2(tj−1)

Ŝ2(tj)

Ŝ2(tj−1)

Ŝ1(tj−1) + Ŝ2(tj−1)
=

Ŝ2(tj)

Ŝ2(tj−1)
∨ Ŝ(tj)

Ŝ(tj−1)

where Ŝ(t) = Ŝ1(t) + Ŝ2(t) is the empirical estimator of S(t). The NPMLE

of F is then given by

F̃ (t) = (1− S̃1(t))I[0,∞)(t) + S̃2((−t)−)I(−∞,0)(t)

where S̃i is obtained by setting

S̃i(tj) = S̃i(t0)

j∏
ℓ=1

θ̃iℓ

and extending these estimates as right-continuous step functions.
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The NPMLEs of S1 and S2 are therefore obtained through the isotoniza-

tion of θ̂1j and θ̂2j. When F is continuous, the probability of observations

occurring at tj and −tj is 0. As a result, if θ̂1j = 1 then θ̂2j < 1 and

θ̃1j = θ̃2j and if θ̂1j < 1 then θ̂2j = 1 and (θ̃1j, θ̃2j)
T = (θ̂1j, θ̂2j)

T . Therefore,

for t ≥ 0,

(S̃1(t), S̃2(t))
T =

(
S̃1(t),

S̃1(t)Ŝ2(t)

Ŝ1(t0)

)T

.

Clearly these estimators are not consistent since if S̃1 were consistent, then

S̃2(t) will converge to S1(t)S2(t)/S1(t0) and if S̃2 were, then S̃1(t) will con-

verge to S1(t0). Hence the NPMLE F̃ of F is inconsistent. We note that this

proof is closely related to a proof in Mukerjee (1996) of the inconsistency

of NPMLEs of two DFs that are uniformly stochastically ordered. The in-

consistency results from the fact that a positive observation makes equal

contributions to both S̃1 and S̃2 whereas a negative observation affects only

S̃2.

Remark 1: In the discrete or grouped data cases, θ̃ij
as→ θij for all (i, j) and

since Ŝi(t0)
as→ Si(t0), i = 1, 2, As a result F̃ is a consistent estimator of F .
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3. New estimator, consistency, algorithm and weak convergence

3.1 New estimators and consistency

In this section we consider the estimation of a continuous DF F under

the constraint (1.3). We assume throughout that P (X < 0) > 0 and

P (X > 0) > 0 to avoid trivialities.

Let F̂ denote the empirical DF. It is clear that F̂ is not guaranteed to

satisfy (1.3). As far as we know there is no known consistent estimator of

F under this constraint in the continuous case. Next we propose one and

establish its weak convergence. Let Ŝ1, Ŝ2 and Ŝ be as defined before.

Clearly (1.3) holds if and only if

ψ1(x) ≡
S1(x)

S(x)
is nondecreasing on {x > 0, S(x) > 0}

or, equivalently,

ψ2(x) ≡
S2(x)

S(x)
is nonincreasing on {x > 0, S(x) > 0}.

This is can also be expressed as ψ1(x) = sup
0≤y≤x

ψ1(y) and ψ2(x) = inf
0≤y≤x

ψ2(y))

for all x > 0. The estimators we propose for ψ1(x) and ψ2(x) employ the

sample analog of this. Specifically, we estimate ψ1(x) and ψ2(x) by

ψ∗
1(x) = sup

0≤y≤x
ψ̂1(y) and ψ∗

2(x) = inf
0≤y≤x

ψ̂2(y),

respectively, where ψ̂1(x) = Ŝ1(x)/Ŝ(x) and ψ̂2(x) = Ŝ2(x)/Ŝ(x) are their
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corresponding unrestricted estimators.

Since S1(x) = ψ1(x)S(x) and S2(x) = ψ2(x)S(x), we estimate S1 and

S2 by

S∗
1(x) = ψ∗

1(x)Ŝ(x)I[0,τ1−Ŝ)
(x) and S∗

2(x) = ψ∗
2(x)Ŝ(x)I[0,τ1−Ŝ)

(x) (3.1)

where, for any DF G, τG = inf{x,G(x) = 1}. Our estimator of F is then

given by

F ∗(x) = S∗
2((−x)−)I(−∞,0)(x) + (1− S∗

1(x))I[0,∞)(x). (3.2)

Clearly F ∗ is right continuous. Next we show that it is nondecreasing.

Suppose x1 ≤ x2 ≤ 0 in which case ψ∗
2(−x1) ≤ ψ∗

2(−x2) and Ŝ(−x1) ≤

Ŝ(−x2). As a result

F ∗(x1) = lim
z↗−x1

ψ∗
2(z)Ŝ(z) ≤ lim

z↗−x2

ψ∗
2(z)Ŝ(z) = F ∗(x2).

Now suppose 0 ≤ x1 < x2. We have two cases to consider.

1. Case 1: ψ∗
1(x1) = ψ∗

1(x2). Then

F ∗(x1) = 1− ψ∗
1(x1)Ŝ(x1) ≤ 1− ψ∗

1(x1)Ŝ(x2) = F ∗(x2).

2. Case 2: Suppose ψ∗
1(x1) < ψ∗

1(x2). We can find 0 ≤ s1 ≤ x1 < s2 ≤ x2

such that ψ∗
1(x1) = ψ̂1(s1) and ψ

∗
1(x2) = ψ̂1(s2). Then

F ∗(x1) = 1− ψ∗
1(s1)Ŝ(x1) ≤ F̂ (x1) ≤ F̂ (s2) = F ∗(s2)
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but

F ∗(s2) = 1− ψ∗
1(s2)Ŝ(s2) ≤ 1− ψ∗

1(s2)Ŝ(x2) = F ∗(x2)

and hence the desired conclusion.

Notice that since Ŝ1(x) + Ŝ2(x) = Ŝ(x), we have Ŝ1(x)

Ŝ(x)
+ Ŝ2(x)

Ŝ(x)
= 1,

whenever Ŝ(x) > 0. As a consequence, we have ψ∗
1(x) + ψ∗

2(x) = 1 and

S∗
1 + S∗

2 = Ŝ. In addition, the following result holds.

Theorem 1. For the estimator given in (3.2), we have

P

[
lim
n→∞

sup
x

|F ∗(x)− F (x)| = 0

]
= 1.

Proof. It suffices to show pointwise convergence since both F and F ∗ are

nondecreasing and right continuous; see Chung (2005). For any x > 0

satisfying S(x) > 0, we have

|F ∗(x)− F (x)| = |ψ∗
1(x)Ŝ(x)− ψ∗

1(x)S(x)|

≤ ψ∗
1(x)|Ŝ(x)− S(x)|+ S(x)|ψ∗

1(x)− ψ1(x)|

≤ |Ŝ(x)− S(x)|+ |ψ∗
1(x)− ψ1(x)|.

Applying Lemma 1 in Rojo and Samaniego (1993), we get

|ψ∗
1(x)− ψ1(x)| ≤ sup

0≤y≤x

∣∣∣∣∣ Ŝ1(y)

Ŝ(y)
− S1(y)

Ŝ(y)

∣∣∣∣∣
≤ 1

Ŝ(x)S(x)
sup
y

{
|Ŝ1(y)− S1(y)|+ |Ŝ(y)− S(y)|

}
as→ 0,
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since Ŝ1 and Ŝ are uniformly strongly consistent estimators of S1 and S,

respectively.

3.2 Algorithm

In this section we extend an algorithm developed in El Barmi and Mukerjee

(2016) to compute the estimators they proposed for uniformly stochas-

tically ordered distributions to this case. First notice that the NPMLE

of Si is obtained sequentially by setting S̃i(t0) = Ŝi(t0) = ni+/n and

S̃i(tj) = θ̃ijS̃i(tj−1), j = 1, . . . ,m, where (θ̃1j, θ̃2j)
T is the least squares pro-

jection of (θ̂1j, θ̂2j)
T ≡ (Ŝ1(tj)/Ŝ1(tj−1), Ŝ2(tj)/Ŝ2(tj−1))

T onto K = {z ∈

R2, z1 ≤ z2} with weights (ω1j, ω2j)
T ≡ (Ŝ1(tj−1), Ŝ2(tj−1))

T and extending

these estimates as right-continuous step functions. The new estimator of

Si can also be obtained iteratively using similar steps except that, instead

of (θ̃1j, θ̃2j)
T , we use (θ∗1j, θ

∗
2j)

T , the least squares projection of (˜̃θ1j,
˜̃θ2j)

T ≡

(Ŝ1(tj)/S
∗
1(tj−1), Ŝ2(tj)/S

∗
2(tj−1))

T ontoK with weights (ω̃1j, ω̃2j)
T ≡ (S∗

1(tj−1), S
∗
2(tj−1))

T .

The new estimator updates at each step what we project and the weights

that are used in the projection to take into account the adjustments made

in the previous steps. The new estimation can be implemented using the

following algorithm:

(1) Set S∗
i (t0) = ni+/n, i = 1, 2.
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(2) Define (˜̃θ11,
˜̃θ21)

T = (Ŝ1(t1)/S
∗
1(t0), Ŝ2(t2)/S

∗
2(t0))

T .

(3) Define (θ∗11, θ
∗
21)

T as the least squares projection of (˜̃θ11,
˜̃θ21)

T onto

K = {z ∈ R2, z1 ≤ z2} with weights (S∗
1(t0), S

∗
2(t0))

T and set S∗
i (t1) =

θ∗i1S
∗
i (t0).

(4) For 2 ≤ ℓ ≤ m, define sequentially (˜̃θ1ℓ,
˜̃θ2ℓ)

T = (Ŝ1(tℓ)/S
∗
1(tℓ−1), Ŝ2(tℓ)/S

∗
2(tℓ−1))

T ,

and (θ∗1ℓ, θ
∗
2ℓ)

T as the least squares projection of (˜̃θ1ℓ,
˜̃θ2ℓ)

T onto I with

weights (S∗
1(tℓ−1), S

∗
2(tℓ−1))

T and set S∗
i (tj) = S∗

i (t0)

j∏
ℓ=1

θ∗iℓ.

(5) Extend these estimators as right continuous step functions.

The proof of the equivalence of the estimators obtained using this algorithm

and the estimators given in (3.1) is similar to a proof given in El Barmi and

Mukerjee (2016) for the equivalence of their two estimator for uniformly

stochastically ordered distributions and it is omitted.

Remark 2: Notice that

ω̃1j
˜̃θ1j + ω̃2j

˜̃θ2j = ω̃1jθ
∗
1j + ω̃2jθ

∗
2j

by the properties of isotonic regression (Robertson, Wright and Dykstra ,

1988). Since ω̃1j
˜̃θ1j + w̃2j

˜̃θ2j = Ŝ1(tj)+ Ŝ2(tj) = Ŝ(tj) and w̃1jθ
∗
1j + w̃2jθ

∗
2j =

S∗
1(tj) + S∗

2(tj) we have S∗
1(tj) + S∗

2(tj) = Ŝ(tj).
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3.3 Weak convergence

Let Zin =
√
n[Ŝi − Si], i = 1, 2, and Z3n =

√
n[Ŝ − S]. It follows from

standard weak convergence of empirical processes that

(Z1n, Z2n, Z3n)
T w
=⇒ (Z1, Z2, Z3)

T ,

on [0,∞)3 where (Z1, Z2, Z3)
T is a zero mean tri-variate Gaussian process

with the covariance function x ≤ y given by

Cov(Zi(x), Zj(y)) = Si(y)[δij − Sj(x)], i, j = 1, 2,

Cov(Zi(x), Z3(y)) = Si(y)− Si(x)S(y), i = 1, 2,

Cov(Zi(y), Z3(x)) = Si(y)S(x), i = 1, 2,

Cov(Z3(x), Z3(y)) = S(x)(1− S(y)),

where δij = I(i = j) is the Kronecker delta. In addition, Zi
d
= Bi(Si), i =

1, 2, and Z3
d
= B3(S), where B1, B2 and B3 are dependent standard Brow-

nian bridges.

Let

Z∗
in =

√
n[S∗

i − Si], i = 1, 2. (3.3)

The weak convergence of estimators similar to (3.1) for estimating two

uniformly stochastically ordered DFs on the basis of independent samples

was studied in Arcones and Samaniego (2001). Next we show that the

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0176



weak convergence of the processes defined in (3.3) is a direct consequence

of that of (Z1n, Z2n, Z3n)
T , the functional delta method and the continuous

mapping theorem. Define the functional

η(x) = inf{y ≤ x, ψ1(y) = ψ1(x)}.

The following theorem whose proof is given the supplementary material

holds.

Theorem 2. For (Z∗
1n, Z

∗
2n) defined by (3.3), we have

(Z∗
1n, Z

∗
2n)

w⇒ (Z∗
1 , Z

∗
2)

on [0, τ(1−S))
2 where

Z∗
1(x) = S(x) sup

η(x)≤y≤x

U1(y) + ψ1(x)Z3(x),

Z∗
2(x) = S(x) inf

η(x)≤y≤x
U2(y) + ψ2(x)Z3(x)

with

U1(y) =
Z1(y)− ψ1(y)Z3(y)

S(y)
=

(1− ψ1(y))Z1(y)− ψ1(y)Z2(y)

S(y)
,

U2(y) =
Z2(y)− ψ2(s)Z3(y)

S(y)
=

(1− ψ2(y))Z2(y)− ψ2(y)Z1(y)

S(y)
.

Let Z∗
n =

√
n[F ∗ − F ]. By virtue of Theorem 2 and (3.8), the following

result holds.

Theorem 3. The process

Z∗
n

w⇒ Z∗
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on (−∞,∞) where

Z∗(x) =


−Z∗

1(x), x ≥ 0,

Z∗
2(−x), x < 0.

Remark 3: Theorem 2 implies that when η(x) = x, (Z∗
1n, Z

∗
2n)

w⇒ (Z1, Z2)

where Z1 and Z2 are as defined before. The processes Z1 and Z2 have

almost sure continuous paths while the paths of Z∗
1 , Z

∗
2 are almost a.s. right

continuous with a jump at the fixed points {η(x)} where η(x) = inf{y ≤

x, ψ1(y) = ψ1(x)}.

The following theorem shows an interesting fact that, although Zi(t)

and Z∗
i (t) may not be equal in distribution for i = 1, 2, their absolute

values are.

Theorem 4. The processes Z∗
1 and Z∗

2 satisfy, for all x > 0,

P [|Z∗
i (x)| > u] = P [|Zi(x)| > u], for i = 1, 2 and u ≥ 0.

That is, |Z∗
i (x)|

d
= |Zi(x)|.

Proof. We only show that the result holds for Z∗
1 . Similar steps can be used

to show that it holds also for Z∗
2 . We have

Z∗
1(x) = S(x) sup

η(x)≤y≤x

U1(y) + ψ1(x)Z3(x)

= S(x) sup
η(x)≤y≤x

[U1(y)− U1(η(x))] + S(x)U1(η(x)) + ψ1(x)Z3(x).
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It is easy to check that the process

{U1(y)−U1(η(x)), η(x) ≤ y ≤ x} d
= {
√
ψ1(x)(1− ψ1(x))B

(
1

S(η(x))
− 1

S(y)

)
, η(x) ≤ y ≤ x},

whereB is a standard Brownian motion. In addition {U1(y)−U1(η(x)), η(x) ≤

y ≤ x}, U1(η(x)) and Z3(x) are independent. We can easily show this by

computing the relevant covariances. Now

Z3(x) ∼ σ1(x)Y1

U1(η(x)) ∼ σ2(x)Y2

sup
η(x)≤y≤x

[U1(y)− U1(η(x))]
d
= σ3(x)|Y3|

where σ1(x) =
√
S(x)(1− S(x)),

σ2(x) =

√
ψ1(x)(1− ψ1(x))

S(η(x))
, σ3(x) =

√
ψ1(x)(1− ψ1(x))

(
1

S(η(x))
− 1

S(x)

)
and Y1, Y2 and Y3 are independent standard normal variables. The last

equality follows from Billingsley (1968, p. 72). Using the fact that if X and

Y are independent mean zero normal variates, then , |X + |Y || d
= |X + Y |,

we get

P (|Z∗
1(x)| > u) = P (|ψ1(x)σ1(x)U1 + S(x)σ2(x)U2 − S(x)σ3(x)|U3|| > u)

= P (|ψ1(x)σ1(x)U1 + S(x)σ2(x)U2 − S(x)σ3(x)U3| > u)

= P (|N(0, ψ2
1(x)σ

2
1(x) + S2(x)σ2

2(x) + S2(x)σ2
3(x))| > u).
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It is easy to verify that

ψ1(x)
2σ2

1(x) + S2(x)σ2
2(x) + S2(x)σ2

3(x) = S1(x)(1− S1(x)).

Since Z1(x) ∼ N(0, S1(x)(1−S1(x)), we have P (|Z∗
1(x)| > u) = P (|Z1(x)| >

u).

As a corollary to this theorem we have the following result.

Corollary 1. The process Z∗ satisfies, for all x > 0,

P [|Z∗(x)| > u] = P [|Z(x)| > u] for allu ≥ 0.

That is, |Z∗(x)| d
= |Z(x)|.

Proof. The proof of this results follows readily from the proof of Theorem

4.

3.4 A hypothesis test

Suppose that ψ1 is nondecreasing. An interesting problem is then to test

H0 : S1 = S2 versus H1 : S1(x)/S2(x), is nondecreasing in x with strict increasing at some x.

Note that H1 holds if and only if

sup
y≥0

sup
0≤x≤y

[S1(y)S(x)− S1(x)S(y)] > 0.

A natural test criterion will then be to reject H0 if the test statistic

Tn =
√
n sup

y≥0
sup

0≤x≤y
[Ŝ1(y)Ŝ(x)− Ŝ1(x)Ŝ(y)]
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is large. Notice that

Tn =
√
n sup

y≥0
sup

0≤x≤y
[(Ŝ1(y)Zn(x)− S(y)Z1n(x))− (Ŝ1(x)Zn(y)− S(x)Z1n(y))]

+
√
n[S1(y)S(x)− S1(x)S(y)].

Since under H0, S1(y)S(x)− S1(x)S(y) = 0,

Tn
d→ sup

y≥0
sup

0≤x≤y
[(S1(y)Z(x)− S(y)Z1(x))− (S1(x)Z(y)− S(x)Z1(y))]

d→ 1

2
sup
y≥0

sup
0≤x≤y

[S(y)(Z(x)− 2Z1(x))− S(x)(Z(y)− 2Z1(y)))].

It is easy to check that, under H0,

{Z(x)− 2Z1(x), x ≥ 0} d
= {B(S(x)), x ≥ 0}

where B is a standard Brownian motion. Therefore

Tn
d→ 1

2
sup
y≥0

sup
0≤x≤y

[S(y)B(S(x))− S(x)B(S(y))]

d→ 1

2
sup

0≤u≤v≤1
[uB(v)− vB(u)].

To implement this test requires the critical values for Tn. The null distri-

bution of Tn is clearly not tractable, even asymptotically, but it is asymp-

totically distribution free. These critical values are approximated by com-

puting appropriate quantiles of {T (k), k = 1, 2, . . . , 10000} where T (k) =

max
1≤i≤j≤1000

(u(i)B(v(j))−v(j)B(u(i))) with the values {B(u(i)), u(i) = i/1000, i =

1, 2, . . . , 1000} simulated from a Brownian motion B.

21

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0176



Table 1: Selected critical points of asymptotic distribution of Tn

Significance level α

0.01 0.05 0.10

0.763 0.625 0.553

4. Applications to a competing risks model

Next we consider a competing risks model in which a unit or a subject is

exposed to two risks at the same time but the actual failure (or death) is

attributed to exactly one of them. Specifically, let X and Y denote the

notional (or latent) lifetimes of a unit under these two risks. We do not

assume that these variables are independent and we only observe (T, δ),

where T = min(X, Y ) is the time of failure and δ = 2 − I[X ≤ Y ] is the

cause of failure. Throughout we assume that P (X = Y ) = 0. The observed

data in this case (Ti, δi), i = 1, 2, . . . , n.

For such data, we are interested in knowing whether or not the two

risks are equal or one risk is greater than the other. Such comparisons are

often made on the basis of D = S1−S2 where Si is the sub-survival function

corresponding to the ith risk and is defined by

Si(t) = P [T > t, δ = i], i = 1, 2.
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Note that S(t) ≡ S1(t) + S2(t) is the survival function corresponding to T.

Clearly D is not a suitable measure if the goal is to compare the con-

ditional distribution of T given δ = 1 and its conditional distribution given

δ = 2. In this case we can consider the temporal function r(t) ≡ S1(t)/S2(t).

Notice that r(t) is proportional to P [T > t|δ = 1]/P [T > t|δ = 2] and it

is nondecreasing in t if and only if ψ1(t) ≡ S1(t)/S(t)(ψ2(t) ≡ S2(t)/S(t))

is nondecreasing (nonincreasing) in t. Note also that when P [T > t|δ =

1]/P [T > t|δ = 2] is nondecreasing in t, the conditional distribution of T

given δ = 1 is uniformly stochastically greater the conditional distribution

of T given δ = 2.

Suppose it is desired to estimate S1 and S2 under this constraint as well

as develop a test for

H0 : S1 = S2 against H1 −H0, where H1 : S1(t)/S2(t) is nondecreasing on {t, S2(t) > 0}

Define the empirical estimators of S1, S2, S and ψj, j = 1, 2, by

Ŝj(t) =
1

n

n∑
i=1

I(Ti > t, δi = j), j = 1, 2,

Ŝ(t) = Ŝ1(t) + Ŝ2(t), ψ̂j(t) =
Ŝj(t)

Ŝ(t)
, j = 1, 2.
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In addition, define their restricted estimators by

ψ∗
1(t) = sup

0≤s≤t
ψ̂1(s), ψ∗

2(t) = inf
0≤s≤t

ψ̂2(t),

S∗
1(t) = ψ∗

1(t)Ŝ(t)I[0,τ1−Ŝ)
(t) and S∗

2(t) = ψ∗
2(t)Ŝ(t)I[0,τ1−Ŝ)

(t).

(4.1)

Notice that the mathematical structure of the estimators in (3.1) and the

estimators of S1 and S2 in (4.1) are identical even though their interpreta-

tions are different. Similar arguments to those used in the proof of Theorem

1 can be used to show that the uniform strong consistency of the S∗
i s follows

from that of the ψ∗
i s and of Ŝ. Therefore we have the following theorem.

Theorem 5. For the estimators given in (4.1) we have

P

[
lim
n→∞

sup
t

|S∗
j (t)− Sj(t)| = 0, j = 1, 2

]
= 1.

If we define the processes (Z1n, Z2n, Z3n)
T and (Z∗

1n, Z
∗
2n, Z

∗
3n)

T using

the same symbols as in section 3.2, then the conclusions of Theorem 2 and

Theorem 4 continue to hold here also. Finally, we note that the test in

Section 3.4 can be used to test H0 against H1 −H0.
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5. Examples and simulations

5.1 Example 1:

In our first example we use data in Table 3 below from Moore and McCabe

(1993). This data gives the pretest and posttest scores on the MLA listening

test in Spanish for 20 high school teachers who attended an intensive course

in Spanish.
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Table 2: Pretest and Posttest Data

Subject Pretest Posttest Subject Pretest Posttest

1 30 29 11 30 32

2 28 30 12 29 28

3 31 32 13 31 34

4 26 30 14 29 32

5 20 16 15 34 32

6 30 25 16 20 27

7 34 31 17 26 28

8 15 18 18 25 29

9 28 33 19 31 32

10 20 25 20 29 32

LetXi = (posttest score - pretest score) corresponding to the ith subject

and assume that the resulting twenty random differences form a sample

from a distribution F that satisfies (1.3). The restricted estimator F ∗ of

this distribution is given in Table 3. Although the sample size is only 20, if

we use our asymptotic test in Section 3.2 to test for symmetry about zero,

which can be interpreted as a test for the efficacy of the training method,

we get a test statistic value of 0.045 with a p-value > 0.10 indicating that

the training method is not effective. On the other hand, a one sided paired
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Table 3: Estimate of F under (1.3)

-7.00 0.0313

-5.00 0.0781

-4.00 0.1250

-3.00 0.1875

-2.00 0.2500

-1.00 0.3500

1.00 0.45000

2.00 0.5875

3.00 0.7250

4.00 0.8281

5.00 0.9313

7.00 1.0000
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t-test for comparing the mean of pretestand the mean of posttest yields a

p-value of 0.029 and leads to different conclusion. Thus it appears that the

assumption of normality used in the t-test is crucial in concluding that the

training method is effective.

5.2 Example 2

In this example we analyze a set of mortality data provided by Dr. H. E.

Walburg, Jr. of the Oak Ridge National Laboratory and reported by Hoel

(1972). The data were obtained from a laboratory experiment on 99 RFM

strain male mice who had received a radiation dose of 300 rads at 5-6 weeks

of age, and were kept in a conventional laboratory environment. After

autopsy, the causes of death were classified as cancer, of which there were

two types: thymic lymphoma, reticulum cell sarcoma, and other causes, 39

of the 99 being classified in the last category. To illustrate the applicability

of our results is Section 4, we consider ”other causes” as cause 1 and cancer

as cause 2. Intuitively, one would expect that S1/S2 is nondecreasing. The

unrestricted and restricted estimators of S1 and S2 are displayed in Figure

1. We also considered the large sample test of H0 : S1 = S2 against H1−H0,

where H1 : S1/S2 nondecreasing in t, using the test described in Section

2.4. The value of the test statistic is 0.615 corresponding to a p-value less
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that 0.10 based on Table 1.

5.3 Simulations

Here we present the results of a simulation designed to compares the finite

sample performance of the NMPLE and the new estimators in terms of their

mean square errors at different quantiles of the distribution F. We take F

to be

F (x) =


1
2
eβx, x < 0

1− 1
2
e−x, x ≥ 0

where β ≥ 1. In this case, for x ≥ 0,

S1(x) =
1

2
e−x and S2(x) =

1

2
e−βx.

Clearly (1.3) is satisfied in this case.

Figure 2 and 3 show the ratio of the mean square error (MSE) of the

NPMLE to that of the new estimator of F for b = 1, 1.1, 1.2 and 1.3 when

n = 30 and n = 50, respectively, and the number of replications is 3000.

This graph shows that the new estimator outperforms the NPMLE in terms

of MSE.

Next, we view S1 and S2 as the sub-survival functions corresponding

to two competing. Tables 4 and 5 give the results for β = 1, 1.1, 1.2 and

1.3 and different sample sizes. We use again 3,000 replications to compute
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the bias and the MSE of the new estimator, S∗
i , of Si, i = 1, 2, and its

corresponding NPMLE S̃i. As expected, S
∗
1 and S̃1 exhibit a negative bias

while S∗
2 and S̃2 show positive bias, although not very much in the case of

the new estimators. The MSEs corresponding to the new estimators are

uniformly smaller than the corresponding MSEs of the NPMLEs in all the

cases that we consider. Finally we note that the gain in terms of MSE goes

up as S2 gets closer to S1 which makes sense since this corresponds to the

scenario where reversals are more likely to occur.
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Table 4: comparison of bias (B) and MSE of S∗
1 , S̃1, S

∗
2 and S̃2 of the q-

quantiles of S with n = 30 and 3,000 replications.

q B(S̃1) B(S∗
1 )

MSE(S̃1)
MSE(S∗

1 )
B(S̃2) B(S∗

2 )
MSE(S̃2)
MSE(S∗

2 )

β = 1.0 β = 1.1

0.1 -0.0618 -0.0372 1.5467 -0.0606 -0.0357 1.5369

0.2 -0.0846 -0.0445 1.7872 -0.0808 -0.0413 1.7489

0.3 -0.0824 -0.0441 1.6452 -0.0779 -0.0410 1.5853

0.4 -0.0625 -0.0387 1.3182 -0.0591 -0.0366 1.2848

0.5 -0.0219 -0.0140 1.0104 -0.0256 -0.0178 1.0153

0.6 -0.0424 -0.0167 1.1072 -0.0465 -0.0199 1.1146

0.7 -0.0829 -0.0273 1.7806 -0.0836 -0.0271 1.7305

0.8 -0.1111 -0.0293 3.0845 -0.1088 -0.0267 2.9452

0.9 -0.1169 -0.0244 5.5311 -0.1098 -0.0204 5.0060

β = 1.2 β = 1.3

0.1 -0.0594 -0.0341 1.5148 -0.0568 -0.0315 1.4856

0.2 -0.0794 -0.0406 1.7088 -0.0757 -0.0382 1.6502

0.3 -0.0772 -0.0413 1.5550 -0.0737 -0.0394 1.4953

0.4 -0.0582 -0.0369 1.2677 -0.0559 -0.0358 1.2420

0.5 -0.0260 -0.0187 1.0180 -0.0269 -0.0204 1.0204

0.6 -0.0449 -0.0179 1.1007 -0.0452 -0.0177 1.1021

0.7 -0.0805 -0.0219 1.7070 -0.0805 -0.0217 1.6975

0.8 -0.1037 -0.0209 2.8692 -0.1017 -0.0204 2.7320

0.9 -0.1034 -0.0163 4.9215 -0.0971 -0.0154 4.4617
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Table 5: Comparison of bias (B) and MSE of S∗
1 , S̃1, S

∗
2 and S̃2 at the q-

quantiles of S with n = 50 and 3,000 replications.

q B(S̃1) B(S∗
1 )

MSE(S̃1)
MSE(S∗

1 )
B(S̃2) B(S∗

2 )
MSE(S̃2)
MSE(S∗

2 )

β = 1.0 β = 1.1

0.1 -0.0607 -0.0297 2.1668 0-.0587 -0.0271 2.1765

0.2 -0.0825 -0.0357 2.4373 -0.0778 -0.0313 2.4058

0.3 -0.0792 -0.0353 2.1035 -0.0741 -0.0313 2.0263

0.4 -0.0562 -0.0297 1.4852 -0.0517 -0.0268 1.4334

0.5 -0.0161 -0.0112 1.0107 -0.0158 -0.0111 1.0161

0.6 -0.0469 -0.0179 1.3078 -0.0465 -0.0166 1.2820

0.7 -0.0854 -0.0231 2.5721 -0.0836 -0.0197 2.4538

0.8 -0.1127 -0.0232 5.0379 -0.1096 -0.0196 4.7347

0.9 -0.1188 -0.0185 9.4214 -0.1131 -0.0163 8.3859

β = 1.2 β = 1.3

0.1 -0.0561 -0.0241 2.1103 -0.0536 -0.0214 2.0886

0.2 -0.0731 -0.0276 2.3305 -0.0688 -0.0241 2.1835

0.3 -0.0687 -0.0283 1.9085 -0.0642 -0.0249 1.8251

0.4 -0.0497 -0.0259 1.3983 -0.0449 -0.0225 1.3499

0.5 -0.0149 -0.0104 1.0147 -0.0156 -0.0114 1.0084

0.6 -0.0457 -0.0149 1.2743 -0.0457 -0.0145 1.2808

0.7 -0.0836 -0.0194 2.4241 -0.0824 -0.0169 2.4042

0.8 -0.1078 -0.0188 4.4397 -0.1054 -0.0165 4.4895

0.9 -0.1064 -0.0144 7.4076 -0.1004 -0.0118 7.2727
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6. Conclusion

In this paper we showed that the NPMLE of a DF of a random variable X

that satisfies P (X > x)/P (X < −x) is nondecreasing in x > 0 is inconsis-

tent. We then proposed a projection type estimator for it that is strongly

uniformly consistent and derived its weak convergence. We also showed

that this new estimator improves in finite samples on the NPMLE in terms

of the MSE using simulations. In addition, we developed a procedure for

testing symmetry against this restriction. It turns out that the theoretical

results we developed can be used to estimate the sub-survival functions of

competing risks in a two competing risks model under the restriction that

their ratio is nondecreasing. We showed how this can be done and provided

a real life example to illustrate our procedures.

7. Supplementary material

A detailed proof of Theorem 3.2 is given in the Supplementary Material.
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Figure 1: Unrestricted and restricted estimators of S1 and S2.
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Figure 2: Ratio of the MSE of the NPMLE of F to that of its new estimator

(n = 30).
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Figure 3: Ratio of the MSE of the NPMLE of F to that of its new estimator

(n = 50).

39

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0176


	Introduction
	Nonparametric maximum likelihood
	New estimator, consistency, algorithm and weak convergence
	 New estimators and consistency
	Algorithm
	 Weak convergence
	A hypothesis test

	Applications to a competing risks model
	Examples and simulations
	Example 1:
	Example 2
	Simulations

	Conclusion
	Supplementary material
	References



