

Statistica Sinica Preprint No: SS-2023-0159
Title VALISE: A Robust Vertex Hunting Algorithm

Manuscript ID SS-2023-0159
URL http://www.stat.sinica.edu.tw/statistica/
DOI 10.5705/ss.202023.0159

Complete List of Authors Dieyi Chen,
Tracy Ke and
Shuyi Zhang

Corresponding Authors Shuyi Zhang
E-mails syzhang@fem.ecnu.edu.cn

Statistica Sinica

VALISE: A Robust Vertex Hunting Algorithm

Dieyi Chen*, Tracy Zheng Ke* and Shuyi Zhang†

*Department of Statistics, Harvard University, Cambridge, MA 02138, USA

KLATASDS-MOE, School of Statistics,

Academy of Statistics and Interdisciplinary Sciences,

East China Normal University, Shanghai 200062, China

Abstract: Given data vectors X1, . . . Xn ∈ Rr, where Xi is a noisy observation of X∗i , and

X∗1 , . . . X
∗
n are contained in an unknown simplex with K vertices, vertex hunting (VH) is the

problem of estimating the vertices of the true simplex. VH is a building block of several al-

gorithms in hyperspectral remote sensing, soft clustering, topic modeling, and network mixed

membership estimation. The popular VH algorithms are susceptible to outliers, whose estima-

tion errors are governed by maxi ‖Xi −X∗i ‖. We propose a robust VH algorithm that properly

shrinks estimated vertices towards the interior of data cloud, so as to mitigate the effect of

outliers. The level of shrinkage is determined by maximizing a pseudo likelihood and has no

tuning parameter. We show that, when the barycentric coordinates of X∗1 , . . . , X
∗
n come from a

Dirichlet distribution, the proposed method has a faster rate of convergence than several popular

VH algorithms.

Key words and phrases: Archetypal analysis, admixture, Dirichlet distribution, endmember

extraction, gradient descent, linear unmixing, mixed membership estimation, nonnegative matrix

factorization, pseudo likelihood, topic modeling.

1

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

1. INTRODUCTION

1. Introduction

Let S ⊂ Rr be a K-vertex simplex, whose vertices are denoted by V1, V2, . . ., VK .

Suppose X∗1 , X
∗
2 , . . . , X

∗
n are non-stochastic vectors in this simplex. Equivalently, each

X∗i is a convex combination of the vertices:

X∗i =
K∑
k=1

πi(k)Vk, 1 ≤ i ≤ n. (1.1)

Here πi = (πi(1), . . . , πi(K))′ ∈ RK
+ is a vector in the standard simplex such that

0 ≤ πi(k) ≤ 1 for 0 ≤ k ≤ K and
∑K

k=1 πi(k) = 1. The entries of πi are called the

barycentric coordinates of X∗i . We call an algorithm a Vertex Hunting (VH) algorithm

if it does the following job: Given input X1, X2, . . . Xn ∈ Rr, where each Xi is a noisy

observation of X∗i , the algorithm outputs the estimated vertices V̂1, V̂2, . . . , V̂K .

Vertex hunting has a lot of applications in hyperspectral unmixing (Bioucas-Dias

et al., 2012). A hyperspectral image is a mixture of signals from different pure materials,

and vertex hunting algorithms are used to find the spectral signature of each pure

material. Another application of vertex hunting is archetypal analysis (Cutler and

Breiman, 1994), which targets to represent each data vector as a mixture of archetypes

and is a popular tool for learning the admixture structure on biological data (Van Dijk

et al., 2018). Vertex hunting is also a building block of algorithms for network mixed

membership estimation (Jin et al., 2023), topic modeling (Arora et al., 2012; Ke and

Wang, 2022), and nonnegative matrix factorization (Javadi and Montanari, 2019).

Some popular vertex hunting algorithms include the minimum volume transform

(MVT) (Craig, 1994), N-FINDER (Winter, 1999), successive projection (SP) (Araújo

et al., 2001), and archetypal analysis (AA) (Cutler and Breiman, 1994). SP is a greedy

2

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

1. INTRODUCTION

algorithm that finds one vertex at a time; at each iteration, it projects data vectors

using previously found vertices and finds the next vertex by maximizing the Euclidean

norm. The other three methods solve constrained optimizations. N-FINDER restricts

the vertices of the simplex to be placed on data points and maximizes the volume of the

simplex. MVT restricts that the simplex contains all the data points in the interior and

minimizes the volume of the simplex. AA restricts that the vertices are in the convex

hull of the data cloud and minimizes the sum of squared Euclidean distances from data

vectors to the simplex.

However, these methods are unsatisfactory with the presence of strong noise or

outliers. Take SP for example. If there is one Xi located far away from X∗i such that

‖Xi−X∗i ‖ is large, this Xi is likely to be picked by the algorithm as a vertex, resulting in

a large error. This is also confirmed by theory. The estimation errors of these methods

are at the same order as max1≤i≤n ‖Xi −X∗i ‖ (Jin et al., 2023). Consider an example

where Xi−X∗i are generated independently fromN (0, σ2). The error is OP
{
σ
√

log(n)
}

.

There is even no consistency.

Jin et al. (2023) observed empirically that using the k-means clustering to “sketch”

the data cloud can significantly improve the performance of vertex hunting. They

first applied k-means assuming L clusters for some L > K and then conducted vertex

hunting using the L cluster centers. Since each cluster center is an average of a large

number of data vectors, they conjectured that the error can be reduced to O(1/
√
n)

when the noise vectors Xi − X∗i are independent. However, they did not prove this

conjecture. Furthermore, their method requires a tuning integer L. How to choose L

in practice is unclear.

3

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

1. INTRODUCTION

In this paper, we prove the conjecture by Jin et al. (2023) and show that the error of

vertex hunting can indeed be reduced to O(1/
√
n), under some additional assumptions.

We also propose a new vertex hunting algorithm that attains this error rate and does

not need any tuning parameter.

In (1.1), write Zi = Xi −X∗i , Z = (Z1, Z2, . . . , Zn) ∈ Rr×n, Π = (π1, π2, . . . , πn) ∈

RK×n and V = (V1, V2, . . . , VK) ∈ Rr×K . Then Xi = V πi + Zi. For ease of read-

ing, we provide a summary of major notations used in the paper in Table S1 in the

supplementary material. We consider a running model where

πi
iid∼ Dirichlet(α), Zi

iid∼ Nr(0, σ2Ir), Π and Z are independent. (1.2)

The pseudo likelihood is defined by

L(V, σ2, α) =
n∏
i=1

∫
f(Xi|πi;V, σ2)f(πi;α)dπi, (1.3)

where f(Xi|πi;V, σ2) is the density of Nr(V πi, σ2Ir) and f(πi;α) is the density of a

Dirichlet distribution (supported on the standard simplex of RK) with parameters α =

(α1, α2, . . . , αK)′. Let

(V̂ , σ̂2, α̂) ∈ argmax(V,σ2,α)

{
L(V, σ2, α)

}
. (1.4)

We use V̂ = (V̂1, V̂2, . . . , V̂K) as the estimates of vertices. The optimization (1.4) is

solved by an alternating gradient ascent algorithm, which updates V̂ , σ̂2, and α̂ succes-

sively, each via a gradient ascent step, until the pseudo-likelihood converges. We call

the method the Vertex Analysis via LIkelihood-assisted ShrinkagE (VALISE). Details

will be given in Section 2. A simulated model is illustrated in Figure 1.

There are two main differences between VALISE and popular vertex hunting algo-

rithms. First, our method encourages a shrinkage of the simplex towards the interior of

4

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

1. INTRODUCTION

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60
1
2
5

1
3
0

1
3
5

1
4
0

Likelihood

Figure 1: A simulation example. Left: SP (green) and VALISE (blue); right: Likeli-

hood. The true simplex is marked in black but highly overlapped with the blue VALISE

simplex. In this example, the data are generated from Models (1.1)-(1.2). VALISE is

initialized by SP. All three vertices are outside the true simplex at the beginning, and

they move towards the true ones during the iterations. When the likelihood L(V, σ2, α)

converges, the vertices stop moving and stay close to the true ones.

data cloud. The level of shrinkage is determined by σ̂2. In contrast, other algorithms

heavily penalize any data point outside the simplex; as a result, when the data are

noisy or there are outliers, the estimated simplex can be much larger than the true one.

Second, our method efficiently uses those data points in the interior. For most other

methods, data deep into the interior have little effect on the output, and these data

vectors are wasted. While the interior data points carry little information of the ver-

tices, they do carry information of the noise level and can be used to decide the proper

level of shrinkage of the simplex (e.g., for estimating σ2). This is why our method can

be tuning free and achieve a faster error rate.

We investigate the theoretical properties of VALISE under the correctly specified

model. In a correctly specified model, (1.2) is the true data generating process, and the

5

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

2. THE METHOD

pseudo likelihood becomes the true likelihood. We measure the performance of vertex

hunting by D(V̂ , V) ≡ minτ max1≤k≤K ‖V̂k − Vτ(k)‖, where the first minimum is taken

over all permutations of {1, 2, . . . , K}. We show that D(V̂ , V) = OP(σ/
√
n) and derive

the asymptotic normality of V̂ .

The running model (1.2) is reminiscent of the latent Dirichlet allocation (Blei et al.,

2003; Airoldi et al., 2008) and variational EM algorithms for topic modeling and network

mixed membership estimation. However, they are restricted to particular applications,

but our method is suitable for any application that uses vertex hunting as a module. For

example, in Section 5, we show that our method can be combined with various spectral

methods for different applications. We maximize (1.3) by gradient ascent instead of

variational EM. One reason is that the Dirichelt distribution is not a conjugate prior of

the Gaussian distribution, and it remains unclear how to choose the variational family.

The remaining of this paper is organized as follows. In Section 2, we describe the

VALISE algorithm and explain its rationale. Section 3 contains the main theoreti-

cal results. Section 4 contains simulations and Section 5 contains real data results.

Discussions can be found in Section 6.

2. The Method

2.1 The pseudo likelihood and its interpretation

Let φr(x;µ,Σ) be the density of an r-variate normal distribution Nr(µ,Σ), and let

Eπ∼Dir(α) denote the expectation with respect to π that has a Dirichlet distribution.

Let `(V, σ2, α) = − logL(V, σ2, α) be the minus pseudo log-likelihood. Then, (1.3) can

6

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

2. THE METHOD

be re-written as

`(V, σ2, α) = −
n∑
i=1

logEπi∼Dir(α){φr(Xi;V πi, σ
2Ir)}. (2.1)

We treat (2.1) as an empirical loss function to minimize. Here is an illustrating example.

Proposition 1. Suppose V1, V2, . . . , VK are affinely independent. When r = K−1 and

α = (1, 1, . . . , 1)′,

`(V, σ2, α) =
n∑
i=1

− log

{∫
x∈S

exp
(
− 1

2σ2
‖Xi − x‖2

)
dx

}
+ n log Vol(S) +

nr

2
log(σ2) + C,

where S is the simplex spanned by V and C does not depend on (V, σ2, α).

In `(V, σ2, α), the first term is a measure of goodness-of-fit. If the simplex is too

small so that some Xi are far outside, then ‖Xi − x‖ is uniformly large for x ∈ S,

yielding a large value in this term. The second term is a penalty on the volume of S,

preventing the simplex to be too large. The trade-off between the first two terms is

controlled by σ2, and the third term is a penalty on σ2.

In the above example, α = (1, 1, . . . , 1)′, and the Dirichlet density reduces to a

uniform density on the simplex. We consider a modification of the empirical loss by

changing
∫
x∈S exp

(
− 1

2σ2‖Xi−x‖2
)
dx to Vol(S) · supx∈S

{
exp

(
− 1

2σ2‖Xi−x‖2
)}

. The

latter becomes Vol(S) for any Xi in the interior of the simplex, i.e., the locations of

the interior data vectors do not matter, and the loss is only determined by those data

vectors outside the simplex. Specifically, for a outlier Xi and an interior Xj, ‖Xi − x‖

is much larger than ‖Xj − x‖ at any x ∈ S, which makes the i-th summation term

dominate the value of the first summation. The further the outlier is from the simplex,

the greater its effect on empirical loss is. Such an empirical loss will be sensitive to

7

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

2. THE METHOD

outliers.

In the general scenario, the empirical loss is described in (2.5), and the Dirichlet

density plays a key role in utilizing interior data. By choosing α, we adjust the weight

of data in the empirical loss by its distance to each vertex. For example, if outliers

occur more around the k-th vertex than other vertices, αk could be chosen larger than

αk′ , k
′ 6= k. A data-driven strategy to choose α is provided in VALISE+ as shown in

the following. Overall, the current form takes advantage of the large number of interior

data vectors, thus more robust to outliers.

2.2 VALISE: an alternating gradient descent algorithm

We propose an algorithm for minimizing `(V, σ2, α). First, we update σ2 given (V, α).

Note that

∇σ2`(V, σ2, α) = −
n∑
i=1

Eπi∼Dir(α){φr(Xi;V πi, σ
2Ir)‖Xi − V πi‖2}

2(σ2)2 Eπi∼Dir(α){φr(Xi;V πi, σ2Ir)}
+

nr

2σ2
.

By letting ∇σ2`(V, σ2) = 0, we obtain an explicit formula:

σ2
update(V, σ

2) =
1

nr

n∑
i=1

Eπi∼Dir(α){φr(Xi;V πi, σ
2Ir)‖Xi − V πi‖2}

Eπi∼Dir(α){φr(Xi;V πi, σ2Ir)}
. (2.2)

Next, we update V = (V1, V2, . . . , VK) using the gradient descent. By direct calculations,

∇V `(V, σ
2) = −

n∑
i=1

Eπi∼Dir(α){φr(Xi;V πi, σ
2Ir)(Xi − V π)π′}

σ2 Eπi∼Dir(α){φr(Xi;V πi, σ2Ir)}
. (2.3)

Note that in (2.3) we have arranged the gradient as an r × K matrix. We apply

Nadam (Dozat, 2016) for the update of V , which is an improvement of the gradient

descent algorithm by combining the adaptive learning rate, momentum and Nesterov

acceleration. At iteration t, it first updates mt and vt, where mt is a convex combination

of mt−1 and ∇V `, and vt is a convex combination of vt−1 and (∇V `)
2. It then updates

8

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

2. THE METHOD

V by Vt = Vt−1 − η · m̂t/(
√
v̂t + ε), where m̂t and v̂t are the rescaled version of mt

and vt. In the above, all the operations on matrices are element-wise. Details are in

Algorithm 1. We set the algorithm parameters as the default ones in Dozat (2016).

This algorithm needs to calculate (2.2) and (2.3) at each iteration. To estimate the

integrals in both expressions, we use the Monte Carlo (MC) approximation. For any π

in the standard simplex of RK , define

ŵi(π) = ŵi(π;V, σ2, α) ≡ φr(Xi;V π, σ
2Ir) · fDir(α)(π), 1 ≤ i ≤ n.

Let {πj}Nj=1 be independent and identically generated samples of size N from a density

q(·) on the standard simplex. We approximate (2.2) and (2.3) by

σ̂2
update(V, σ

2) =
1

nr

n∑
i=1

∑N
j=1 ŵi(πj)/q(πj) · ‖Xi − V πj‖2∑N

j=1 ŵi(πj)/q(πj)
and

∇̂V `(V, σ
2) = −

n∑
i=1

∑N
j=1 ŵi(πj)/q(πj) · (Xi − V πj)π′j∑N

j=1 ŵi(πj)/q(πj)
,

respectively. The MC sample {πj}Nj=1 is shared across 1 ≤ i ≤ n to reduce the running

time. It is possible to use different MC samples for different i, or even more advanced

MC methods such as importance sampling, but we do not see a significant numerical

advantage. We usually set q(·) as the uniform distribution on the standard simplex as

an informative prior unless additional information is known.

We now have an algorithm for computing (V̂ , σ̂2) for a given α. Then we optimize α

by the grid search. Optimizing (V, σ2, α) together is also tried in the Nadam algorithm,

but the grid search has a better numerical performance.

9

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

Algorithm 1: A likelihood based vertex hunting algorithm, maximum likelihood
estimation using Nadam. Good default settings for the tested machine learning
problems are η = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. All operations on
matrices are element-wise. With βt1 and βt2 we denote β1 and β2 to the power of t

1 Input: η: Step size
2 Input: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
3 Input: l∗(V, σ2): Stochastic objective function with parameter V
4 Input: V0, σ

2
0: Initial parameter

5 Initialize: m0 ← 0(1st moment), v0 ← 0 (2nd moment), t← 0 (time step),
m̂0 ← 0, v̂0 ← 0.

6 while Vt not converge do
7 t← t+ 1

8 gt ← ∇V l
∗
t (Vt−1 − η · m̂t−1/(

√
v̂t−1 + ε), σ2

t−1)
9 mt ← β1 ·mt−1 + (1− β1) · gt

10 vt ← β2 · vt−1 + (1− β2) · g2t
11 m̂t ← mt/(1− βt1)
12 v̂t ← vt/(1− βt2)
13 Vt ← Vt−1 − η · m̂t/(

√
v̂t + ε) (Update V)

14 σ2
t ← σ2

update(Vt, σ
2
t−1) (Update σ2)

15 return (Vt, σ
2
t)

3. Theoretical Properties

In this section, we minimize the minus pseudo log-likelihood in (2.1) over (V, σ2, α) and

show the root-n consistency of the maximum likelihood estimator (MLE). The model

that our algorithm implements is a special case where α is given. To simplify the

notation, below, we assume r = K − 1.

Remark 1. To form a valid simplex in the r-dimensional sample space, the true K

vertices should be affinely independent, which is allowable only when r ≥ K − 1. If

r < K − 1, the affine dependence between vertex vectors leads to non-identifiability in

theory and non-convergence in optimization. In practice, a r-dimensional sample might

10

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

be from a simplex spanned by K − 1, K − 2 or less vertices, among which the simplex

spanned by K − 1 vertices is largest, most complicated and most informative. This is

the reason why we assume r = K − 1 throughout the paper.

3.1 The case of a correctly-specified model

In this section, we study the theoretical properties of the estimators when the model

is correctly-specified. Let θ = (vec(V)′, σ2, α)′ ∈ H be the parameter vector where

vec(V) = (V ′1 , V
′
2 , . . . , V

′
K)′ represents the vectorization of the matrix V and H is the

parameter space. Let {f(·, θ), θ ∈ H} be a family of distributions such that

f(x; θ) = Eπ∼Dir(α){φr(x;V π, σ2Ir)}.

Then the minus pseudo log-likelihood function in (2.1) can be written as `(θ) =

−
∑n

i=1 log f(Xi; θ). Let `∗(θ) = −EX∼f(x;θ∗){log f(X; θ)} where f(x; θ∗) is the un-

known underlying model that Xi follows. Let θ̂n be the value which minimizes 1
n
`(θ).

Then θ̂n is the MLE that maximizes the log-likelihood. To derive the theoretical prop-

erties, we introduce the following assumptions on parameters.

Assumption 1. The parameter space H is compact. There exist positive constants

εσ0 , ε
α
0 ,M

σ such that εσ0 ≤ σ2,∗ ≤Mσ and min1≤k≤K α
∗
k ≥ εα0 .

Assumption 2. Let V = (111′K , (V
∗)′)′ and λmin(V) be its minimum absolute eigenvalue.

There exists εv0 > 0 such that λmin(V) > εv0.

Assumption 1 requires positive lower bounds of σ2 and αk. This is essentially re-

quired by model identifiability. The small σ2 makes it difficult to estimate the variance

of the noise. If some αk is close to zero, the induced Dirichlet distribution is degenerate

11

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

and we could hardly identify the corresponding vertex. Under Assumption 2, the matrix

V is invertible so that V ∗1 , V
∗
2 , . . . , V

∗
K can be served as vertices of a simplex. Assumption-

s 1 and 2 imply that the Fisher information matrix Iθ = −EX∼f(x;θ){∇θθ log f(X; θ)} is

invertible at the true parameter value θ∗. In fact, when r = 1, K = 2 and α1 = α2 = 1,

it can be derived that Ivec(V),σ2 = diag{(1112)
⊗2/(4σ2), 1/(2σ4)} if λmin(V) = 0. When

λmin(V) is close to zero, the true simplex tends to degenerate in the high-dimensional s-

pace. Thus we should reduce the dimension to observe the data. Assumption 2 actually

implies that the true simplex should be large enough to be recognized in the observed

space. Assumptions 1 and 2 can be easily checked and are mild technical conditions for

deriving the consistency and asymptotic normality of the proposed estimators.

Let W = (V ′, α′)′. Then f(x; θ) is invariant under permutations of the columns

of W . Let d(θ̂n, θ
∗) = minτ max1≤k≤K ‖Ŵn,k − W ∗

τ(k)‖ + |σ̂2
n − σ2,∗|, where the first

minimum is taken over all permutations of {1, 2, . . . , K}. Then we use d(·, ·) to measure

the performance of vertex hunting. The following theorem shows the estimation error.

Theorem 1. Assume θ∗ is an inner point of H. Suppose Assumptions 1 and 2 hold.

Then d(θ̂n, θ
∗) = OP(n−1/2). In particular, there exists a sequence of permutations τn

of {1, 2, . . . , K} such that ‖θ̂n,τn − θ∗‖ = OP(n−1/2).

Remark 2. The traditional consistency theorem typically handles the L2 distance over

the real-valued parameter space. In our model, we consider the continuity of the density

function f(x; θ) with respect to the equivalence class θ under the new distance d(·, ·).

The resultant consistency theorem provides a sequence of representatives θ̂n,τn that

converges in probability to θ∗ under the L2 distance.

12

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

Theorem 1 can be used to derive the asymptotic normality. Before that, we pro-

vide the form of the Fisher information matrix. Let ψ(·) and ψ(1)(·) be the digam-

ma and trigamma functions, respectively. Let G1(α) = (ψ(α1), . . . , ψ(αK))′, G2(π) =

(log π1, . . . , log πK)′, G3(α) = diag{ψ(1)(α1), ψ
(1)(α2), . . . , ψ

(1)(αK)} be a diagonal ma-

trix, G4(α) = Eπ∼Dir(α){G2(π)G′2(π)} with the (k1, k2)-th coordinate being G4,k1k2(α) =

ψ(1)(αk1)δk1k2−ψ(1)(‖α‖1) +{ψ(αk1)−ψ(‖α‖1)}{ψ(αk2)−ψ(‖α‖1)} and δk1k2 = I(k1 =

k2). Let M(x; θ) = (M ′
1(x; θ),M ′

2(x; θ),M ′
3(x; θ))′ where

M1(x; θ) = (σ2)−1Eπ∼Dir(α){π ⊗ (x− V π)φr(x;V π, σ2Ir)},

M2(x; θ) = 2−1(σ2)−2Eπ∼Dir(α){‖x− V π‖2φr(x;V π, σ2Ir)} and

M3(x; θ) = Eπ∼Dir(α){G2(π)φr(x;V π, σ2Ir)}.

Furthermore, define J(θ) = diag{0, J0(θ)} where

J0(θ) =

(
−r2(2σ2)−2 r(2σ2)−1{ψ(‖α‖1)−G′1(α)}

r(2σ2)−1{ψ(‖α‖1)−G1(α)} G3(α)−G4(α)− ψ(1)(‖α‖1)

)
,

Then the Fisher information matrix can be formulated as

Iθ = J(θ) +

∫
f(x; θ)−1M(x; θ)M ′(x; θ)dx.

Now we provide the asymptotic normality of θ̂n,τn as follows.

Theorem 2. Assume θ∗ is an inner point of H. Suppose Assumptions 1 and 2 hold.

Let τn be the sequence of permutations as in Theorem 1. Then
√
n(θ̂n,τn − θ∗) is

asymptotically normal with mean zero and covariance matrix I−1θ∗ .

Remark 3. Theorem 2 shows that the error of the proposed vertex hunting algorithm

can be reduced to OP(n−1/2) under mild conditions. The root-n consistency is an ap-

pealing property by using the likelihood-based approach, which is unavailable for the SP

13

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

and AA approaches. By efficiently using the interior data points, our proposed method

can achieve a faster convergence rate of all parameters of interests, and the asymp-

totic variance-covariance matrix attains the Cramér-Rao lower bound. This shows the

significant theoretical advantages of VALISE.

Remark 4. For our model, the likelihood is a Gaussian density taken expectation with

respect to the barycentric coordinates π, which follows a Dirichlet distribution. We

can regard the Dirichlet distribution as a prior to the mean vector of the Gaussian

distribution, but it is not a conjugate prior. Thus the resultant density has an integral

form that hardly obtains an analytic expression and is hard to analyze. Therefore,

many straightforward properties such as continuity, bounded score function and Fisher

information matrix need to be carefully examined.

Remark 5. The computations of the first and second derivatives of the log-likelihood

are rather tedious due to the integral form of f(x; θ) and the high parameter dimen-

sionality. The asymptotic variance-covariance matrix of the MLE can be derived by the

formula of the inverse of the partitioned matrix, but the form is very complicated and

we will not present in the main paper.

In this following, we propose a proposition of the effect of α on the Fisher informa-

tion matrix Iθ and hence the asymptotic variance-covariance matrix I−1θ∗ .

Corollary 1. Suppose the conditions in Theorem 2 hold. Consider the case when

α1 = α2 = · · · = αK . If ‖α‖1 →∞, the Fisher information matrix Iθ satisfies

−EX∼f(x;θ){∇vec(V),vec(V) log f(X; θ)} → 1

K2σ2,∗ (111K111′K)⊗ Ir,

−EX∼f(x;θ){∇σ2,σ2 log f(X; θ)} → r

2(σ2,∗)2
,

14

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

and all the other elements of Iθ converge to zero. The asymptotic Fisher information

matrix has rank r + 1 and hence is not invertible, which makes the elements of the

asymptotic variance-covariance matrix I−1θ∗ go to infinity.

Remark 6. Corollary 1 shows that as α goes to infinity, the inverse of the asymptotic

variance-covariance matrix of the MLE for V goes to (σ2,∗)−1K−2(111K111′K) ⊗ Ir which

is not invertible. Thus the variance goes to infinity and hence the vertices are not

estimable. In fact, when α1 = α2 = · · · = αK and ‖α‖1 → ∞, f(π;α) goes to a point

mass concentrating at 111K/K. The rate of convergence is very fast. For example, when

r = 1 and K = 2, if α1 = α2 = m ∈ Z+, the rates of f(1112/2;α)→∞ and f(π;α)→ 0

for π 6= 1112/2 are faster than O(m1/2) and O(m−1/2), respectively. For large α, the

variance can be extremely large, leading to instability of the vertex estimation. This is

concordant with the intuition. When α is large, most of the observed data are in the

interior of the simplex and there are few data points around each vertex, which makes

the vertices hard to estimate.

Thus in the simulation and real data application, we only consider the case when

αk ≤ 1 for k = 1, 2, . . . , K. If αk < 1, there are more observed data points concentrating

around the vertex Vk than in the interior. If α1 = α2 = · · · = αK = 1, the Dirichlet

distribution is uniform over the simplex which can be regarded as an informative prior.

3.2 The case of a misspecified model

In this section, we study the effect of misspecification of α. In (1.2), we assume πi’s are

iid generated from a Dirichlet distribution with parameter α. However, in practice, the

true α is unknown and even πi’s do not follow a Dirichlet distribution. In particular,

15

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

we consider the case when α = 111K is used to estimate V and σ2. Below, we generalize

the definition of efficient vertex hunting in Jin et al. (2023) and show our proposed

estimators are still efficient under the misspecification of α.

Definition 1. (Stochastically efficient vertex hunting). A Vertex Hunting algorithm is

stochastically efficient if for any ε > 0, there exists C > 0 such that P(maxk ‖V̂k−V ∗k ‖ ≤

C maxi ‖Xi −X∗i ‖) ≥ 1− ε.

The theoretical analysis under the misspecified model is tough and complicated,

since the objective function as given in Proposition 1 has an integral form. The key of

the analysis is to derive a sharp bound of the log-likelihood function by using the pure

nodes, whose definition is provided as follows.

Definition 2. (Pure nodes and mixed nodes). A node i is called a pure node of

community k if πi(k) = 1 and πi(k
′) = 0, k′ 6= k, and is called a mixed node if

max1≤k≤K πi(k) < 1.

Enlightened by the work of Jin et al. (2023), two settings are considered:

• Setting 1: The true πi’s are fixed and each vertex corresponds to sufficient pure

nodes which form some clusters.

• Setting 2: The true πi’s are random and have no clustering structure.

First, we discuss Setting 1. Let M = {1 ≤ i ≤ n : max1≤k≤K πi(k) < 1} be the set

of all mixed nodes and |M| be its cardinality. We make the following assumptions.

16

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

Assumption 3. Let Nk(η) = {1 ≤ i ≤ n : ‖X∗i − Vk‖ ≤ η} be the set of “nearly” pure

nodes and |Nk(η)| be its cardinality. There exists c1 > 0 such that min1≤k≤K |Nk(ηn)| ≥

c1rn where ηn = o(maxk 6=l ‖V ∗k − V ∗l ‖) and r−1n = o(1).

Assumption 4. Define (Ṽ , σ̃2) ∈ argmax(V,σ2)

{
L(V, σ2,111K)

}
. There exists c2 > 0 such

that σ̃2/σ2,∗ P→ c2 as n→∞.

It is noticeable that rn in Assumption 3 is allowed to be at a smaller order of n, and

c2 in Assumption 4 is unnecessarily equal to one, so as to allow over-estimates (c2 > 1)

or under-estimates (c2 < 1) of σ2,∗.

Theorem 3. (Stochastic efficiency under misspecification, Setting 1). Assume r =

K − 1 is fixed. Suppose the true vertices V ∗1 , V
∗
2 , . . . , V

∗
K and the estimated vertices

Ṽ1, Ṽ2, . . . , ṼK are affinely independent. Let S∗ and S̃ be the simplex spanned by V ∗ and

Ṽ respectively. Consider the case where S∗ ⊂ S̃. Additionally, suppose Assumptions

3 and 4 hold. Then for any ε > 0, there exists a positive constant C0 satisfying

log−1C0 = o(rn/n) such that

P

(
max
k
‖Ṽk − V ∗k ‖2 ≤ C0

n∑
i=1

‖Xi −X∗i ‖2/n

)
≥ 1− ε.

Next, we consider Setting 2. Let S0 be the simplex spanned by standard basis vec-

tors of RK . Under the misspecification case, Assumption 3 is replaced by the following

Assumption 5.

Assumption 5. Assume πi’s are iid sampled from a mixture

fn(π) =
K∑
k=1

ρn,k · δ{π;B(Vk, ηn)}+

(
1−

K∑
k=1

ρn,k

)
· gn(π),

17

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

3. THEORETICAL PROPERTIES

where ρn,k are positive constants such that min1≤k≤K ρn,k > 0,
∑K

k=1 ρn,k < 1 and

max ρ−1n,k = o(n), ηn = o(maxk 6=l ‖V ∗k − V ∗l ‖), δ{π;B(Vk, ηn)} is the density function of

the uniform distribution over B(Vk, ηn) = {x : ‖Vk − x‖ ≤ ηn} for k = 1, 2, . . . , K, and

gn(π) is some probability density function over S0/ ∪Kk=1 B(Vk, ηn).

Theorem 4. (Stochastic efficiency under misspecification, Setting 2). Under conditions

of Theorem 3 except that Assumption 3 is replaced by Assumption 5, for any ε > 0,

there exists a positive constant C0 satisfying log−1C0 = o(maxk ρn,k) such that

P

(
max
k
‖Ṽk − V ∗k ‖2 ≤ C0

n∑
i=1

‖Xi −X∗i ‖2/n

)
≥ 1− ε.

Remark 7. Theorems 3 and 4 provide stronger conclusions than stochastic efficiency

that the maximum error bound of the estimated vertex can be chosen as the root mean

squared error of observed data, say n−1
∑n

i=1 ‖Zi‖2. In fact, the large deviation bound

of the `2-error is at the order of the maximum error bound divided by
√

log(n). Thus if

considering the `2-error, we could obtain a sharper bound and faster convergence rate.

Remark 8. Theorems 3 and 4 both consider the most difficult case when S∗ ⊂ S̃.

It can be seen that our proposed approach can still shrinkage the estimated simplex

towards the interior of the data cloud in this case. Since the error is O
{
σ
√

log(n)
}

,

the estimated simplex obtained by all the other existing methods could explode when

we use the wrong distribution of α. Theorems 3 and 4 show our proposed algorithm

could control the error bound at least as good as SP and AA even when the model is

misspecified. Thus our proposed method has considerably nice performances against

model misspecification.

18

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

4. Simulations

To assess the numerical performance of VALISE, we study the behavior of the algorithm

when n and K grows. We also compare VALISE with other vertex hunting methods:

sketched vertex search (SVS) (Jin et al., 2023), archetypal analysis (AA) (Cutler and

Breiman, 1994), successive projection (SP) (Araújo et al., 2001) and K-means. We

compare these methods under the setting when α is given, α is jointly optimized with

(V, σ2) and when the model is misspecified. For all the experiments below, we denote

VALISE the version with given α and VALISE+ the version that jointly optimizes

(V, σ2, α).

To implement SVS and AA, we use the R packages ScorePlus and archetypes (Eug-

ster and Leisch, 2009) with the default algorithm parameters. For each parameter set-

ting, the πis are iid drawn from Dirichlet(α), the simulated data pointsX∗i s are iid drawn

from Nr
(∑K

k=1 πi(k)Vk, σ
2Ir
)
, we report the estimation error minτ max1≤k≤K ‖V̂k −

Vτ(k)‖ for 50 repetitions.

4.1 Comparison with other methods

In this experiment, we compare the performance of VALISE and VALISE+ with SVS,

AA, SP and K-means.

First we consider VALISE, where α is given. Consider the simple case when K =

3, r = 2. Let n = 500, fix V , (α′, σ2) = (1′K , 1). We simulate n data points according

to this setting, and run VALISE with given α = 1K , set η = 0.02 and let the initial

parameters V0 be the result of SVS and σ2
0 = 1. The results are presented in Figure 2.

19

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4 6 8 1 0 1 2

5
10

15
2

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True
VALISE
SVS
AA
SP

4 66 8 1 0 1 2

10
5

15
20

True
VALISE
SVS
AA
SP

●●

●

●

●

●
●

1
2

3
4

Es
tim

at
io

n
er

ro
r

Es
tim

at
io

n
er

ro
r

4
3

2
1

 VALISE SVS AA SP

Figure 2: Comparison of VALISE (given α = 1K) to other methods. Left: true

vertices (black), VALISE (blue) and other methods. Right: boxplot of estimation

errors for different methods. Results are based on 50 repetitions.

It suggests that VALISE outperforms other methods in terms of the estimation error.

VALISE is initialized by SP, where all three vertices are inside of the true simplex,

then they gradually move outside towards the true vertices during the iterations, thus

achieving a better performance in estimating the true vertices.

Next, we consider VALISE+, which is the case when α is jointly optimized with

(V, σ2). Let (K, r) = (3, 2), fix V , σ2 = 1 and α = (0.5, 0.6, 0.7)′, simulate n = 1000 data

points according to this setting and run VALISE+ that optimizes (V, σ2, α) together.

Let the initial vertices V0 be SVS, σ2
0 = 1 and η = 0.02. The results are shown in Figure

3. We see that when the data points are not uniformly distributed within the simplex,

VALISE+ still gives a better estimation of the true vertices than other methods and

can report an estimated α.

To further measure the performance of VALISE+ under different distributions of

the data points, we conduct simulation settings with various α. Let (K, r) = (3, 2), fix

20

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

4 6 8 1 0 1 2

5
10

15
20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True
VALISE
SVS
AA
SP

4 66 8 1 0 1 2

10
5

15
20

True
VALISE
SVS
AA
SP

●
●

●
●

●

●

●

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Es
tim

at
io

n
er

ro
r

Es
tim

at
io

n
er

ro
r

4

.0
3

.0
2.

0
1

.0
3

.5
2

.5
1.

5
0.

5

 VALISE SVS AA SP

Figure 3: Comparison of VALISE+ (true α = (0.5, 0.6, 0.7)′) to other methods. Left:

true vertices (black), VALISE+ (blue) and other methods. Right: boxplot of estimation

errors for different methods. Results are based on 50 repetitions.

V , σ2 = 0.1 and n = 1000, let α takes on value of (0.1, 0.2, 0.3)′, (0.5, 1, 1.5)′ and (1, 2, 3)′

respectively. For each setting, we run VALISE+ that jointly optimizes (V, σ2, α). Set

η = 0.06, let the initial parameters V0 be SVS for α = (0.1, 0.2, 0.3)′ and SP for

the others; let σ2
0 = 0.1. The estimation errors of VALISE+ and other methods are

displayed in Figure 4.

It suggests that VALISE+ outperforms other methods in all of the three settings.

We find that the performance of VALISE+ improves as α decreases; the reason is

that, when α is small (αi < 1), the simulated data points tend to cluster around the

vertices of the simplex, making it easy for VALISE+ to identify the different vertices,

we could even have a rough guess by eyes; however, when α is large, the simulated data

points all cluster around the center of the simplex, thus the performance of VALISE+

deteriorates.

21

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

●
● ●

●

●●

●

●

●

●

●

 VALISE S VS A A S P K- means

Es
tim

at
io

n
er

ro
r

0

 1

2

 3

 4

 5

 6

●●
●

●

 VALISE S VS A A S P K- means

Es
tim

at
io

n
er

ro
r

0

1

2

3

4

●

●

 VALISE S VS A A S P K- means

Es
tim

at
io

n
er

ro
r

1

2

3

4

5

Figure 4: Estimation error of VALISE+ and other methods. The data is generated

with three different α’s. Left: α = (0.1, 0.2, 0.3)′. Middle: α = (0.5, 1, 1.5)′. Right:

α = (1, 2, 3)′. Results are based on 50 repetitions.

4.2 VALISE under different settings

In this section, we study the behavior of VALISE when n, K, σ2 and α change. We

design 9 different settings to see how the estimation error changes when one of the

parameters in (n,K, σ2, α) changes. Let Setting 1: (n,K, σ2, α) = (1000, 3, 1,1K) be

the baseline. In Setting 2 and 3, we let n to be smaller and larger. In Setting 4 and

5, we let K grow, and the dimensionality r = K − 1 grows accordingly. In Setting

6 and 7, we choose smaller and larger σ2. In Setting 8 and 9, we generate data with

smaller and larger α and run VALISE given the same α. For all of the settings above,

let η = 0.06, and the initial parameters V0 be the result of SP, σ2
0 = 1. The results

are presented in Table 1. It suggests that fixing the rest of the parameters, as n grows,

the estimation error decreases; as K grows, the estimation error increases; smaller σ2

and α in the data generating process give a better vertex estimation for VALISE, this

is because when the data points tend to cluster around the vertices of the simplex that

they are generated from, and they don’t have too much variation, then it’s easier for

22

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

Table 1: Estimation error of VALISE under different settings. Results are averaged

over 50 repetitions.

Setting n K σ2 α Error

1 1000 3 1 1K 0.4399231

2 500 3 1 1K 0.5461461

3 3000 3 1 1K 0.3237662

4 1000 4 1 1K 2.3565339

5 1000 5 1 1K 4.0654453

6 1000 3 0.1 1K 0.2800923

7 1000 3 2 1K 0.5030107

8 1000 3 1 0.1 · 1K 0.1523620

9 1000 3 1 2 · 1K 0.9163023

VALISE to correctly identify the vertices.

To further study the behavior of VALISE when n grows. Fix V , let (K, r) = (3, 2),

(α, σ2) = (1K , 1) and let n range in {500, 1000, 1500, 2000, 3000, 5000}. For each setting,

we run VALISE given α = 1K , let η = 0.06 and let the initial parameters V0 be the

result of SVS and σ2
0 = 1. The result is presented in left panel of Figure 5. It suggests

that as n increases, the estimation of VALISE is more accurate, and VALISE can have

a perfect performance when n is large enough.

To further study the behavior of VALISE when K grows. Let n = 1000, (α, σ2) =

(1K , 1) and let K range in {3, 4, 5, 6, 7, 8}, fix V for a given K. For each setting,

we run VALISE with given α = 1K , set η = 0.02 and let the initial parameters V0

be the result of SP and σ2
0 = 1, we also run archetypal analysis (AA) and successive

projection (SP) for comparison. The result is displayed in right panel of Figure 5, where

23

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

●

●

●

●
●

●

500 1000 1500 2000 3000 5000

n

E
st

im
at

io
n

er
ro

r

0.
2

 0
.4

 0
.6

 0
.8

 1
.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

3 4 5 6 7 8

K

VALISE
AA
SP

E
st

im
at

io
n

er
ro

r

0.
0

0.

5

1.
0

 1
.5

 2

.0

 2
.5

 3

.0

 3
.5

●

●

●

●

● ●

●

● ●

● ●

●

●

● ●

●

●

●

3 4 5 6 7 8

K

VALISE
AA
SP

E
st

im
at

io
n

er
ro

r

0.
0

 0
.1

 0

.2

 0
.3

0.

4

0.
5

0.

6
 0

.7

Figure 5: Estimation error of VALISE as n grows (left) and K grows (middle and

right). Results are based on 50 repetitions.

the estimation error is scaled by 1√
K

(middle) and 1
K
√
K

(right). It shows that VALISE

performs reasonably well when K is large, and it outperforms AA and SP in all settings,

especially when K is small.

Finally, we numerically demonstrate the robustness of VALISE to outliers. We first

generate clean data with n = 1000, K = 3, σ2 = 1, α = 1K , then we construct three

contaminated scenarios with different percentage and magnitude of outliers: (1) 0.1%

of samples is generated with σ2 = 100; (2) 1% of samples is generated with σ2 = 10;

and (3) 1% of samples is generated with σ2 = 20. We run VALISE on the clean data

and three contaminated data. Comparison of estimation errors is presented in Table 2.

It shows that VALISE is robust under different portions and magnitudes of outliers.

4.3 Misspecified model

In this experiment, we compare the performance of VALISE with other methods when

the model is misspecified. We aims to find the situation when VALISE still outperforms

other methods under a misspecified setting. Let (K, r) = (3, 2), fix V , σ2 = 0.1 and

24

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

Table 2: Estimation error of VALISE under contaminated settings. Results are based

on averages over 50 repetitions.

Setting n K σ2 α Error

Clean 1000 3 1 1K 0.4399231

Contaminate(1) 1000 3 1 1K 0.5318753

Contaminate(2) 1000 3 1 1K 0.7238348

Contaminate(3) 1000 3 1 1K 1.1277980

n = 1000, let α takes on value of (0.6, 0.8, 1)′, (0.8, 1, 1.2)′ and (1, 1.2, 1.4)′ respectively.

For each setting, we generate simulated data and run VALISE with given α = 111K . Set

η = 0.06, let the initial parameters V0 be SP and σ2
0 = 0.1. We also run VALISE+ with

η = 0.06, σ2
0 = 0.1 and the initial vertices be SP for comparison. The estimation errors

are displayed in Figure 6.

Note that VALISE with given α is based on a misspecified model as the given

α = 111K is different from that in the data generating process. The results reveal that

VALISE with given α outperforms other methods in all three misspecified settings

above. We notice that under the misspecified setting, VALISE+ always achieves better

performance than VALISE with given α; the reason is obvious, VALISE+ is actually

based on a well-specified model. We also observe as the given α in VALISE be further

from the true value in the data generating process, the performance deteriorates; when α

is far enough, the performance can be worse than other methods. Remove this sentence:

Thus, the given α in VALISE should be carefully chosen before we run the algorithm.

Remark 9 (Computational cost). To compare the computational cost of VALISE to

other methods, we present runtime of VALISE under different settings in Table 3, all let

25

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

4. SIMULATIONS

●
●

●●

●

●

●

●

●

E
st

im
at

io
n

er
ro

r

 0

 1

 2

 3

 4

5

VALISE VALISE+ SVS AA SP K-means

●

●

●

●

E
st

im
at

io
n

er
ro

r
0

1

2

3

4

 5

 6

VALISE VALISE+ SVS AA SP K-means

● ●

●

●E
st

im
at

io
n

er
ro

r

0

 1

 2

3

4

 5

 6

VALISE VALISE+ SVS AA SP K-means

Figure 6: Misspecified case: estimation error of VALISE (given α = 1K), VALISE+

and other methods. The data is generated with three different α’s. Left: α =

(0.6, 0.8, 1)′. Middle: α = (0.8, 1, 1.2)′. Right: α = (1, 1.2, 1.4)′. Results are based

on 50 repetitions.

the initial parameters V0 be the result of SVS. Table 3 shows that runtime of VALISE

is moderate under large n and K. Compared with other vertex hunting methods,

VALISE has comparable runtime with nonnegative matrix factorization (NMF) (Javadi

and Montanari, 2019) as they both require iterative updates. Runtime for SVS, AA,

SP and K-means is within a few seconds as they don’t rely on iterative updates.

Table 3: Runtime of VALISE under different settings. Results are based on averages

over 50 repetitions.

Setting n K σ2 α Runtime(sec)

1 500 3 1 1K 15.4

2 1000 3 1 1K 20.2

3 2000 3 1 1K 48.0

4 1000 4 1 1K 23.6

5 1000 5 1 1K 30.9

26

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

5. REAL DATA APPLICATIONS

Remark 10 (Initial values of VALISE). A good initial value would reduce the conver-

gence time of VALISE. We provide a rule of thumb to select initial values of V, σ2 and α.

For initial values of V , we recommend using the result of sketched vertex search (SVS)

(Jin et al., 2023) or archetypal analysis (AA) (Cutler and Breiman, 1994). Section 4

shows that SVS and AA generate moderately good estimation with less runtime. For

initial values of σ2, we recommend taking σ0 = max1≤i≤n ‖Xi − X̄‖ × 0.01. For initial

values of α, we recommend first running VALISE+ to obtain an estimate of α, denoted

as α̂, then run VALISE with the initial value α̂.

5. Real Data Applications

We evaluate the performance of our algorithm on a wide range of real-world applications.

5.1 Citee network

In Ji and Jin (2016)’s paper, they have collected a network data set for statisticians,

based on all published papers in Annals of Statistics, Biometrika, JASA, and JRSS-B,

from 2003 to the first half of 2012. The data set allows us to construct many networks.

We focus our study on a citee network, where each node is an author, and there is an

edge between two authors if they have been cited at least once by the same author

(other than themselves). We focus on the giant component (n = 1790) for our study.

Ji and Jin (2016) suggested that the network has three meaningful communities:

‘Large Scale Multiple Testing’(MulTest), ‘Spatial and Nonparametric Statistics’ (Spat-

Non) and ‘Variable Selection’ (VarSelect). In light of this, we use a DCMM model with

K = 3, and apply the SCORE method to get the data matrix R ∈ Rn×2. We aim to

27

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

5. REAL DATA APPLICATIONS

identify three vertices among the data cloud formed by rows of R. Thus we run VALISE

given α = (0.75, 0.3, 0.75)′, let η = 0.01, σ2
0 = 0.7 and let the initial parameters V0 be

the result of SVS. Initial α value (0.75, 0.3, 0.75)′ is the estimated α from VALISE+.

The estimated σ̂2 of VALISE is 0.67. Figure 7 presents the rows of R, where a 2-simplex

(i.e., triangle) identified by VALISE and other methods are clearly visible in the cloud.

It suggests that comparing with other methods, VALISE more precisely estimate the

underlying vertices of the data.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

-4 -2 0 2 4 6

-6
-4

-2
0

2
4

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

VALISE
SVS
AA
SP
Kmeans

SVS
VALISE

SP
AA

K-means

Figure 7: Citee network: Comparison of VALISE (blue) to other methods.

5.2 Topic model

Vertex hunting is a crucial step in topic model estimation. We consider the data set

consisting of the abstract of 56500 papers published in 36 statistical journals, from

28

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

5. REAL DATA APPLICATIONS

1990 to 2015. After text stemming, removing stop words and low-frequency words, the

vocabulary contains n = 2106 words.

We first properly scale the word-document matrix and obtain the corresponding

first K left singular vectors Ξ̂ ∈ Rn×K . In order to recover the word-topic matrix, it is

desirable to further normalize Ξ̂ to a entry-wise ratio matrix R̂ ∈ Rn×(K−1), where rows

of R̂ generate a point cloud with the silhouette of a simplex. We aim to use rows of R̂

and the simplex structure to locate all vertices v1, v2, . . . , vK .

We find that K = 11 yields the most meaningful results, so 11 topics are picked out

in our study. We run VALISE given α = (0.58, 0.24, 0.61, 1.35, 0.50, 0.68, 0.68, 1.47, 0.86,

0.94, 1.51)′, this α value is the estimated α from VALISE+. Let η = 0.01, σ2
0 = 0.3

and V0 be the result of SVS. Black dots in Figure 8 shows the projection of the rows

of R̂ ∈ Rn×10 into the first four principal components, and the estimated 11 vertices

marked in different colors. We can see that the estimated vertices roughly capture all

the corners of the data cloud in the projection plots, suggesting satisfactory performance

of VALISE in identifying the vertices. Table 4 shows the top 10 representative words

in each of the 11 estimated topics. These topics can be interpreted as ‘Inference’,

‘Exp.Design’, Time Series’, ‘Machi.Learn’, ‘Bayes’, ‘Latent.Var’, ‘Clinic’, ‘Math.Stats’,

‘Regression’, ‘Hypo.Test’ and ‘Bio/Med’.

5.3 Single cell RNA-seq data

The single cell RNA-sequence data set (Deng et al., 2014) contains RNA-sequence read

counts for single cells at different stages of mouse embryo development, from zygote to

blastocyst. The data set consists of n = 259 stages. A single cell at certain stage belongs

29

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

5. REAL DATA APPLICATIONS

●

● ●
●
●

●
●

●
●

●

●

●
●

●●●
●●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●●
●●

●
●

●

●●●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●●
●● ●●

●

●
●●
●

●●

●

●

●

●

●

●●
●

●

●

●
●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●●
●

● ●
●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●●

●

● ●

●

●

●

●●●

●

●●●

●

●

●
●● ●

●

●

●●

●
●

●

●

●●

●●●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●●

●

●● ●
●

● ●

●
●

●
●

●

●
●

●

●●

●

●
●
●

●

●● ●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●● ●
●

●
●

●
●
●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●●

●
● ●

●

●
●

●

●
● ●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

● ●

●
●
●
●

●
●

●
●●

●

●

●

●

●

●
●●

●
●

●

●

●
●●●

●

●

●
●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●
●

●

●
●●

●●
●

●

●

●●
●

● ●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●●

●

●
●

● ●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●
● ●

●● ●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●●

●●
●

●
●

●
●

●

● ●

●
●

●

●

●

●●

●

●

●

●
●

●

● ●

●
●●

●

●

●

●

● ●

●

●

● ●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●● ●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●●
●

●
●● ●●

●

●
●

●

●

●

●

●
●● ●

●

●

●

● ●
● ●

●

●
●

●
●

●

●

●

●

●

●
●● ●

●●
●

●

●
●

●

●
●

●
●
●

●

●
●

●

●

●

●

●
●●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●●

●●
●●

●

● ● ●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

● ●

●

●
●

●

● ●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●●
●
●

●
●

●
●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

● ●●
●●

●

●

●
●

●
●
●

●

●

● ●

●

●
●●

●
●

●

● ●

●
●

●

●●

●

●

●

●●

●

●

●

●●●●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

● ●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●●

●

●
●

●

●
●

●
●

●
●●

●

●●●
● ●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●●●

●

● ●

●●

●

● ●● ●
● ●

●●

●
●

●

●

●

●

●
●

● ●

●

● ●
●
●

●

●●

●

●

●

●

● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

● ●●

●●

●

●

●

●

●

●

●●●

●

● ●

●

●

●●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●
● ●

●
●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●

●
●

●
● ●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●●

●

● ●

●●

●

●

●
●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

● ●
●
● ●

●

● ●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●

●●●
●

● ●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●
●

●

●

●

●
●

●

●
● ●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●●

●
●

●

●
●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●
●

● ●

●●

●

●

●

●●

●

●

●
●

●

●●

●
●●

●

●

●

●
●

●
●

● ●

●
●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●
●

● ●
●

● ●

●

●

●

●

●
●

●

-

 -2 0 2 4

-4
2 0

2

2

co
l

●

●

●

●

●

●
●

●
●

●

●

V 1

V 2

V 3

V 4

V 5

V 6V 7

V 8V 9

V 10
V 11

●

● ●
●● ●

●

●

●

● ●●
●●

●

●

●●●

●

●
● ●

●
●

●

●
●

●●●
● ● ●

●

●
●

●●

●

●

●
●

●
●

●
●●

●

●●

●

●●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

●
● ●●

●●
●

●●●

● ●

●
●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●● ●●
●

● ●
●
●

●●
●● ●●

●

●

●

●

●
●

● ●
●

●

●
●
●

●
●●● ●

●
●● ●

●● ●
●

● ●

●

●

●●

●

●●

●

●
●

●

●

●
● ●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●
●● ●● ●●

●
●

●
●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
● ●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●
●

●
●●

●

●
●●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●●●● ●●●
●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●● ●●●

●
●

●

● ●●
●

●

● ●
●●

●
●● ●●

●

●

●

●●
●●

●

●●

●●
●

●

● ● ●
●

●

●

●
●

● ●
●

● ●

●
●

●

●
●

●

● ●
●

●

●

●●
●

●

●●
●

●

●

●

●●
●

●

●●
●

●● ●
●

●

●
●
●

●

●

●

●

●●●●● ●
●

●
●
● ●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●
●
● ●

●

●
●●

●
●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

● ●
●●

●
●

●
●

●

● ●

●

●●●

●

● ●

●● ●

●
●● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●●
●

●

●
●

●
● ●

●
●

●●●

●●

●
●

●

●

● ●
●●

●

●
●●

●
●

●
●

●●
●

●

●

●

● ●

● ● ●
●

●
●●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●
●

●

●

●
●

●
●

●
● ●

●
●

●

●

● ●
●

●

●
●

●
● ●

●●
●

●●
●●●●

●

●

●

●
●●

●

● ●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●
●

●
● ●

●

●

●

●

●

●
●● ●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●●
●

●

●
●

● ●

●

●

●●
●

●

●

●
● ●●●●● ●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●● ●●

●
●

●

●●

●

●

●
●

●
● ●

●

●
●●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

● ●

●
●●

●

●
●
●

●

●

●

●
●

●

●● ●●●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●
● ●

●
●

●
●

●●●●

●

●
●

●●

●

●
●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●
●● ●

● ●
●

● ●

●●
●

●

●

●

●
●●

●

● ●● ●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

● ●

●

●
●●

●
●

●

●●●

●

●

●
●

●

●
●

●
●

●

●
●●

●●
● ●

●●
●●

●
●

●

●

●●
●

●●●
●

●

●

● ●

●
●

●
●

●
●●

●

●

●●

●

●

●

●●●

●
●

●

● ●
●

●
●● ●

●
●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

● ●

●

●

●●

●
●

●●●
●

●

●
●●

●

●●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

● ●●●
●

●

●

●

●
●

●●
●

●

●

●
●
●

●●

●

●

●●
●

●

●
●

●

●

● ●●
●

●
●●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●
●

●
●
●●

●

●

●●
●

●●● ●
● ●

●

●
●

●

●

●
●

●
●

●
● ●

●
●

●●
●

●

●

●●

●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●● ●

● ●

●

●

●

●

●

●

●●

●
●●

●

●
●●

●

●● ●●
●

●●

●
●

●

●

●
●

● ●●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

● ●●
●

●
●
● ●

●● ●
●●●

●
●●

●
●

●
●● ●

●

●

●
● ●

●●● ●●●

●

●

●

●

●

●●
●

●
●

● ●

●
●●

●● ●

●

●
●

●

●
●●

●
●

●

●

●

●
●

● ● ●
●

●
●

●
●

●
●●

●

●

● ●●
●

●

●
●

● ●

● ●●●
● ●

●

●

●

●

●

●●
●
●

●

●

●●
●

●

●

●
●

●

●
●

●

●
●
●

●

●
●●

●

●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●
● ●●

●
●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
● ●● ●

●

●
●

●

●

●● ●

●

●
●● ●

●
●

●●●
● ●

● ●

●

●●
●

● ●

●

●● ●

●

●

●
●

●●

●

●
●

●
●

●● ●●

●

●
●

●

●

●

●

●

●
●

● ●●●

●
●●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●● ●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●
●●

●
●● ●

●
●

●

● ●
●

●
●●●

●●

●

●
●

●

●●● ●
●

●
●

●●●
●

●

●

●● ●●
●

●
●●●●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

● ●
●

● ●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

● ●
●

●

●

●●

●

●
●●

● ●●●
●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●●● ●●
●

●●
●

●

●●

●

●
●

●

●

●
●

●●

●

●
● ●
●
●

●●

●

●

●

●
●

●
●

●
●●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●
●

●● ●

●

●●
●●

●

●

●

●●

●

●

●

●●

●

●

●
●●●
●●

●
●

●
●

●
●

●

●●● ● ●

●

●● ●

●
●

●●
●

●
●

●
●

●●●

●

●
●

●
● ●●

●
●

●

● ●

●

●

●●

●

●

● ●
●●

●

●●

●

●●
●
●

● ●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

● ●

●

●● ●●

●

●●●

●
●● ●

●
●

● ●

●

●

●●

●●●
●

●

●●
●

●

● ●

●

●

●

●●
●
●

●

●

●

●
●

●●
●

●

●●

●
●

● ● ●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●●
●

●

● ●●
●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●
●● ●

●

●

●
●●

●

●●
●

●
●●

● ●

●
●●

●
●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●● ●

●
●

●

●

●●
●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●
●

● ● ●● ●
●

●

● ● ●

●
●●

●●
●●

●
● ●●

●

●●
●

●
●●

●
●

●
●

●●
●

●

●●

●
●

●●
● ●

●
●

●●●

●

●
●

●
●

●

●
● ●●

●

●
●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●●●●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

-2 0 2 4

-2
0

4

6

8

co
l3

●

●

●

●

●

●

●

●

●

●●V 1

V 2

V 3

V 4

V 5
V 6

V 7

V 8

V 9

V 10V 11
●

●
●●●

● ●●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●● ●
● ●

● ●

●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
● ●

●●

●
● ●

●
●

●
●

●

●

● ●●

●

●

●

●

●
●●

●

●
●

●

●●●

●

● ●

●●

●
●

●
●

●
●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●●

●
●

●
●

●

● ●
●

●

●●

●

●

●

●●

●

●

●

●
●● ●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●
● ●

●●

●●
● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●

●
●●
●

●
●

●

●

●
●

●
●

●

●
●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
● ●●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●
●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●
●

●
●

●

●

●
● ●●

●

●●
●

●

●
●

●

●
●●

●

●

●●

●
●

●●

●

●

●

●●
●

●

●

●
●

●

●
●

●●●

●
●

●

●

●
●

● ●

●
●

●
●

●●

●
●

●
●● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●
●

●

●

●
● ●●●●
●

●

●●

●

●

●●●
● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●●

●

● ●

●

●●
●●

●

●

●

●

●●

●●●

●

●

●
●

● ●●

●

●

●

●

●●
●●

●

●

●

●●

●

●●
●

●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●●
●●

●

●

●
● ●

●

●

●● ●

●

●

●
●

●

●●
●

●●

●

●

●
●

●

●●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●
●

●●
● ●

●
●

●
● ●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●●
●

●
● ●●

●
●●

●
●

●
●

●

●

●

●

●

●● ●
●

●

●

●●

●

●

●●

● ●

●
●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●●
●

● ●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●
●●

●●

●
●

●
●

●

●

●

● ●
●

●
●

●●

●●
●

●●
●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●●

●

●

●
●

●● ●
●●

●

●●

● ●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●
●

●● ●●

●
●

●
●

●

●

●

●

●

● ●
●●

●

●

●●●
●

●

●● ●
●

●
●

●
●

●
●

●●
●●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●
●

●
●

●● ●
●
●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●
●

● ●

●● ●
●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●
● ●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●●

●

●

●

●

●

●
●●

●

●

●●
●

● ●●
●●

●

●
●

●

●

●
●

●
●

● ●

●●●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●● ●

●
●

● ●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●● ●●

●

●

●●

●

●

●
● ●

●
●

●

●

● ●
●

●

●
●

●
● ● ●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●● ●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●

●●

●

●
●

●
●

●
●●

●
●

● ●
●

●

●

●
●● ●

●

●● ●
●

●
●

●

●
●

● ●
● ●●

●

●

●

●
●

●

●

●

● ●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●
● ●
●

●
●

●●●

●
●

●●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●
●●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●
● ●

● ●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●
●●

●

●

●●

●

●
●●

●● ●●●
●●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●
●

●

●●
●

● ●●● ●●
●

●
●

● ●

●

●

●
●

●
●

●

●●●
●

●

● ●
●

●
●●

●

●
●

●

●
●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
● ●●

●

●●

●

●

●

● ●●● ●●●

●

●
●
●

●
●● ●

●●●

●
●

●●

●
●●

●

●

●

●

●●

●

●

● ●
●●

●

●

● ●
●

●

●●
●

●●●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●
●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●
●

●

●

●

●
●● ●

● ●

●
●

●

●

●●
●

●

●
●

●●

●

●●●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●●
● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●●
●

●

● ● ●

●

●●● ●●

●

●

●

●

● ●●●

●

●

●

●●

●

●

●
●

●

●●
● ●●

●

●

●

-2 0 4

-4
-

2
2

co
l4

● ●

●

●●
●

●

●

●

●

●

V 1 V 2

V 3
V 4V 5

V 6

V 7

V 8

V 9

V 10

V 11

●

●●
●● ●

●

●

●

●● ●
●●

●

●

●● ●

●

●
●●

●
●

●

●
●

● ●●
● ●●

●

●
●

●●

●

●

●
●

●
●
●

●●

●

●●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●
● ●●

●●
●

●●●

● ●

●
●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●●
●

● ●
●

●

●●
●● ●●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●●● ●
●

●● ●
● ●●
●

●●

●

●

● ●

●

●●

●

●
●

●

●

●
● ●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●
● ●● ● ●●

●
●

●
●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●●●

●
●
●

●

●●

●

●●

●

●

●

●

●

●
●
●●
●

●
●●

●

●
●●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

● ●●●● ●●●
●

●

●
●

●●
●

●

●
●
●

●
●

●

●

●● ●●●

●
●

●

● ●● ●
●

● ●
●●

●
●●● ●

●

●

●

●●
●●

●

● ●

●●
●

●

●● ●
●
●

●

●
●

●●
●

●●

●
●

●

●
●

●

● ●
●

●

●

● ●
●

●

●●
●

●

●

●

●●
●

●

●●
●

● ●●
●

●

●
●

●

●

●

●

●

●●● ●●●
●

●
●

● ●

●

●

●
●●

●

●

●

●

●
●

●
●●
●

●
●

●●

●

●
● ●

●
●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

● ●
●●

●
●

●
●

●

●●

●

●●●

●

●●

●● ●

●
●● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●●
●

●

●
●

●
● ●

●
●

● ●●

●●

●
●

●

●

●●
●●

●

●
●●

●
●

●
●

● ●
●

●

●

●

● ●

● ● ●
●

●
●●

●

●

●

●

●
●● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●
●

●

●

●
●

●
●

●
●●

●
●

●

●

●●
●

●

●
●

●
● ●

●●
●

●● ●● ●●
●

●

●

●
●●

●

● ●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●
●

●
● ●

●

●

●

●

●

●
●●●

●

●●

●
●

●
●

●

●

●

●
●

●
●

● ●
●

●

●
●

●●

●

●

●●
●

●

●

●
●● ●●●●●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●
● ●

●●●●

●
●

●

● ●

●

●

●
●

●
● ●

●

●
● ●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●● ●●

●

●

●●

●
●●

●

●
●

●

●

●

●

●
●

●

●●
●● ●

●
●

● ●

●
●

●
●

●

●

●

●
●

●

●
●●

●
●

●
●

●●● ●

●

●
●

●●

●

●
●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●
● ● ●

● ●
●

● ●

●●
●

●

●

●

●
● ●

●

● ●●●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

● ●

●

●
●●

●
●

●

●● ●

●

●

●
●

●

●
●

●
●

●

●
●●

●●
●●●●
●●

●
●

●

●

●●
●
● ●●

●

●

●

●●

●
●

●
●

●
●●

●

●

●●

●

●

●

●● ●

●
●

●

●●
●

●
● ● ●

●
●

●

● ●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●
●●

●

●

●●

●
●

●● ●
●

●

●
●●

●

●●

●

●●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●●●
●

●

●

●

●
●

●●
●

●

●

●
●

●
●●

●

●

●●
●

●

●
●

●

●

● ●●
●

●
●●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●
●
●●●●

●●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●●
●

●

●

●●

●

●
●

●

●

●
●
●

●●
●

●

●

●
●

●
●

●●●

●●

●

●

●

●

●

●

● ●

●
●●

●

●
●●

●

● ●●●
●

●●

●
●

●

●

●
●

●● ●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●●●
●

●
●

● ●
●●●

●●●
●

● ●
●

●
●

●●●
●

●

●
●●

●● ●●
●●

●

●

●

●

●

●●
●

●
●

● ●

●
●●

●●●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●●●
●
●

●

●
●

●
●●
●

●

●● ●
●

●

●
●

●●

● ● ●●
●●

●

●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●
● ●

●

●

●
●

●

●

●●
●

●

●

●
●● ●

●
●

●
● ●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●●● ●

●

●
●

●

●

●●●

●

●
●●●

●
●

● ●●
● ●

●●

●

●●
●

● ●

●

●●●

●

●

●
●

●●

●

●
●

●
●

● ●●●

●

●
●

●

●

●

●

●

●
●

●●●●

●
●●●
●

●

●
●

●

●
●
●●

●

●

●

●
●
● ●●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●
●●

●
●● ●

●
●

●

● ●
●

●
●● ●

●●

●

●
●

●

● ●●●
●

●
●

● ●●
●

●

●

● ●●●
●

●
● ●●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●● ●

●

●
●
●

●
●
●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●●
●

●●

●
●

●
●

●
●

●
●

●
●

●

● ●
●

●●
●

●

●

● ●

●

●
● ●

●●●●
●

●
●

●
●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●●
●

●

●
●

●●● ●●
●

●●
●

●

●●

●

●
●

●

●

●
●

●●

●

●
● ●

●
●

● ●

●

●

●

●
●

●
●

●
● ●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●
●

●●●

●

●●
● ●

●

●

●

●●

●

●

●

● ●

●

●

●
● ●●

●●
●

●
●

●
●

●

●

●● ●●●

●

● ●●

●
●

●●
●

●
●

●
●

●●●

●

●
●

●
● ●●

●
●

●

● ●

●

●

● ●

●

●

● ●
● ●

●

●●

●

● ●
●

●

●●

●

●
●●

●
●●

●

●

●

●

●

●

●

● ●

●

●●● ●

●

●●●

●
● ●●

●
●
●●

●

●

●●

● ●●
●

●

●●
●

●

● ●

●

●

●

● ● ●
●

●

●

●

●
●

●●
●

●

●●

●
●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●●
●

●

●● ●
●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●
●● ●

●

●

●
●●
●

● ●
●

●
● ●
● ●

●
●●

●
●

●

● ●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●
●

●

●●●

●
●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●● ● ●●
●

●

●●●

●
●●

●●
●●

●
●●●

●

●●
●

●
●●

●
●

●
●

● ●
●

●

●●

●
●
●●

●●

●
●

● ●●

●

●
●

●
●

●

●
●●●

●

●
● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●●●●●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●

 -4 -2 0 2

-2
0

4

6

8

col2

2

0

2

0

 0

co
l3

●

●

●

●

●

●

●

●

●

●● V 1

V 2

V 3

V 4

V 5
V 6
V 7

V 8

V 9

V 10V 11
●

●
●●●

● ●●

●

●

●

●

●●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●
●

●●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●●
●●

●●

●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●●

● ●

●
●●

●
●

●
●

●

●

● ●●

●

●

●

●

●
● ●

●

●
●

●

●●●

●

● ●

●●

●
●

●
●

●
●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●

●
●

●
●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●
●● ●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●
● ●

●●

●●
● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●
●

●
●

●
● ●

●
●

●
●

●

●
●

●
●

●

●
●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●
● ●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●
●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●●

●

●

●

●

●●

●
●
●

●

●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●

●
●● ●

●

●●
●

●

●
●

●

●
●●

●

●

●●

●
●

● ●

●

●

●

●●
●

●

●

●
●

●

●
●

●●●

●
●
●

●

●
●

● ●

●
●

●
●

●●

●
●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●
●

●

●

●
●●● ●

●
●

●

●●

●

●

●●●
● ●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●
●●

●

●●

●

● ●
● ●
●

●

●

●

● ●

●● ●

●

●

●
●

● ● ●

●

●

●

●

●●
●●

●

●

●

●●

●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●

●
●

●

●

● ●

●

●
●

●

●●
●●

●

●

●
● ●

●

●

●●●

●

●

●
●

●

●●
●

●●

●

●

●
●

●

● ●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●●
●●

●
●

●
● ●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●
● ●

●

●
●● ●

●
●●

●
●

●
●

●

●

●

●

●

●●●
●
●

●

●●

●

●

●●

●●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

● ●
●

● ●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●
●
●

● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●●

●
●

●
●

●

●

●

● ●
●

●
●

●●

●●
●

●●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●●

●

●

●
●

●●●
●●

●

●●

●● ●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●
●

● ●●●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●●●
●

●

●● ●
●

●
●

●
●

●
●

● ●
●●

●

●

●

●

● ● ●

●

●
●

●

●

●
●
●

●

●
●

●● ●
●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

● ●●
●

●

● ●
●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●●

●

●

●

●

●

●
● ●

●

●

● ●
●

●●●
●●

●

●
●

●

●

●
●

●
●

●●

●●●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
● ●●●

●
●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●● ●●

●

●

●●

●

●

●
●●

●
●

●

●

●●
●

●

●
●

●
●● ●
●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●●●

●

●●

●●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●

● ●

●

●
●

●
●

●
●●

●
●

● ●
●

●

●

●
●●●

●

●●●
●

●
●

●

●
●
●●
●●●

●

●

●

●
●

●

●

●

● ●

● ●

●

●
●

●
●
●

●
●

●
●
●

●

●
● ●
●

●
●

●●●

●
●

●●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●●

●
●

●

●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●

●

●

●
●●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●●

● ●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

● ●
●
●

●

●
●●

●

●

●●

●

●
●●

●●● ●●
●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●
●

●

●●
●

●●● ● ●●
●

●
●
● ●

●

●

●
●

●
●

●

●● ●
●

●

●●
●

●
● ●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●
●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●
● ●●
●

●●

●

●

●

● ●● ● ●●●

●

●
●

●

●
● ●●

●●●

●
●

● ●

●
●●

●

●

●

●

●●

●

●

●●
● ●

●

●

● ●
●

●

● ●
●

●●●●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●
●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●

● ●●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●● ●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●●●

●●

●
●

●

●

●●
●

●

●
●

● ●

●

●●●

●

●

●
●

●

●

●
●●

●

●

● ●

●

●

●

●●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●●
●

●

●●●

●

●●● ●●

●

●

●

●

● ●●●

●

●

●

● ●

●

●

●
●

●

● ●
● ●●

●

●

●

-4
-

2
2

col2

co
l4

●●

●

● ●
●

●

●

●

●

●

V 1V 2

V 3
V 4 V 5

V 6

V 7

V 8

V 9

V 10

V 11

●

●
●●●

● ●●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

● ●

●
●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●●
●●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●●

●
● ●

●
●

●
●

●

●

● ● ●

●

●

●

●

●
●●

●

●
●

●

●●●

●

● ●

●●

●
●

●
●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●●

●
●

●
●

●

● ●
●

●

● ●

●

●

●

●●

●

●

●

●
●● ●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●●

●●

● ●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

● ●
●●

●
●
●

●

●

●

●

● ●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●

●
●●●

●

●●
●

●

●
●

●

●
●●

●

●

●●

●
●

●●

●

●

●

● ●
●

●

●

●
●
●

●
●

●●●

●
●

●

●

●
●

● ●

●
●

●
●

● ●

●
●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●
●
●

●

●
●●●●
●
●

●

● ●

●

●

●● ●
●●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●

●
●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●●

●

●●

●

● ●
● ●

●

●

●

●

● ●

●●●

●

●

●
●
● ●●

●

●

●

●

●●
●●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●●

●
●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●

●
●

●

●

● ●

●

●
●

●

●●
●●
●

●

●
●●

●

●

●●●

●

●

●
●

●

●●
●

●●

●

●

●
●

●

●●

●

●
●●
●

●

●
●

●
●
●

●

●

●

●

●●

●●
●
● ●
●●

●
●

●
●●

●
●

●
●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●●
●

●
● ●●

●
●●

●
●

●
●

●

●

●

●

●

● ●●
●
●

●

●●

●

●

●●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●
●
●

●

●

●

●

●●

●

● ●
●

●●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●
●

●

●●

●

●
● ●
●

●
●

●

●

●

●

●

●

● ●

●

●
●●

● ●

●
●
●

●

●

●

●

●●
●
●

●

●●

● ●
●

●●
●

●

●
●
●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●
●●

●

●

●
●

●●●
●●

●

●●

●●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●
●

●●●
●

●
●
●

●

●

●

●

●

●

●●
●●

●

●

●●●
●

●

● ● ●
●

●
●

●
●

●
●

●●
●●

●

●

●

●

● ●●

●

●
●

●

●

●
●
●
●

●
●

●●●
●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

● ●

●●●
●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●
● ●

●

●
●

●

●
●●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●●
●

●●●
●●

●

●
●

●

●

●
●

●
●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●
●●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●●●●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●● ●●

●

●

● ●

●

●

●
● ●

●
●

●

●

●●
●

●

●
●

●
● ●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●●●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●

●●

●

●
●

●
●
●

●●

●
●

● ●
●

●

●

●
●●●

●

● ●●
●

●
●

●

●
●

●●
●● ●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●
●
●

●
●

●
●

●

●

●
● ●

●

●
●

●● ●

●
●

● ●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●
●

●
● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●
●●

●●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●●

●

●

●●

●

●
●●

●●●●●
●●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

● ●●
●
●
●

●

●

●
●

●

●●
●

●●●●●●
●

●
●

●●

●

●

●
●

●
●

●

●●●
●

●

●●
●

●
●●

●

●
●

●

●
●

●

●

●
● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●●

●
●

● ●

●

●

●

● ●● ●●●●

●

●
●
●

●
● ●●

●● ●

●
●

●●

●
●●

●

●

●

●

● ●

●

●

●●
●●

●

●

● ●
●

●

● ●
●

● ●●●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●
●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

● ●

●● ●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

● ●●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●
●
●
●

●
●

●

●●

●

●
●

●

●

●

●
●●●

● ●

●
●

●

●

●●
●
●

●
●

●●

●

●●●

●

●

●
●

●

●

●
●●

●

●

● ●

●

●

●

●●
●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●●
●

●

●●●

●

●●● ●●

●

●

●

●

● ●● ●

●

●

●

● ●

●

●

●
●

●

●●
●● ●

●

●

●

-2 0 2 4 6 8

-4
-

2
2

co
l4

●●

●

● ●
●

●

●

●

●

●

V 1V 2

V 3
V 4 V 5

V 6

V 7

V 8

V 9

V 10

V 11

-

2

 -4 -2 0 2

col3

col1 c ol1 c ol1

Figure 8: Topic model: Projection of the rows of R̂ into the first four principal

components with the estimated 11 vertices marked in different colors.

to a mixture of cell types with different probabilities. We aim to identify K different

cell types across different stages of mouse development and estimate the membership

probability for this cell at each stage.

We applied our methods with K = 3, 6. For K = 3, we run VALISE given α =

(0.07, 0.04, 0.11)′, this α value is the estimated α from VALISE+. Let η = 0.1, σ = 1000

and the result from K-means as V0. For K = 6, we run VALISE given α = 1K , η = 0.5,

30

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

6. DISCUSSION

Table 4: Topic Model: top 10 representative words for each estimated topic (K = 11).

‘Inference’ confid, coverag, width, interv, twosid, pivot, bootstrap, stepdown, onesid, edgeworth

‘Exp.Design’ aoptim, doptim, latin, aberr, factori, twofactor, twolevel, design, nonregular, block

‘Time Series’ wait, time, semimarkov, seri, hit, failur, queue, intervalcensor, event, repair

‘Machi.Learn’ kmean, metropoli, algorithm, learn, scalabl, stateoftheart, svm, supervis, machin, text

‘Bayes’ jeffrey, improp, nuisanc, prior, conjug, paramet, noninform, posterior, default, hyperparamet

‘Latent.Var’ variabl, manifest, explanatori, categor, select, latent, forest, proxi, ordin, exogen

‘Clinic’ placebo, treatment, noncompli, complianc, clinician, trial, arm, therapi, clinic, therapeut

‘Math.Stats’ probab, corollari, levi, walk, ergod, ddimension, theorem, infin, epsilon, convolut

‘Regression’ ridg, regress, regressor, cook, singleindex, backfit, varyingcoeffici, spline, smoother, isoton

‘Hypo.Test’ fals, regulatori, discoveri, bonferroni, decisionmak, fdr, familywis, agenc, prespecifi, control

‘Bio/Med’ casecontrol, genomewid, populationbas, polymorph, alzheim, epidemiolog, phenotyp, exposur,

genotyp, ascertain

σ = 1000 and the result from K-means as V0.

The results are shown in Figure 9, the first row for K = 3 and the second row for

K = 6. For each setting, the left panel is the structure bar plot indicating cell-type

membership for each development stage. Each row represents a stage containing bars

of different colors, each color represents a cell type, the lengths of the bar measure the

probability of the stage belonging to different cell types. All lengths sum up to 1. In

the right panel, we visualize the clustering result of the data in the first two principal

components. For both setting, we see that VALISE gives reasonable estimation of the

vertices in the sense that the resulting clustering of the development stages roughly

follows the chronological order.

6. Discussion

This paper introduces a new vertex hunting algorithm based on the maximum likelihood

estimation. In the real data application, we make two approximations: (i) Clustering

31

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

6. DISCUSSION

zy
early2cell

mid2cell
late2cell

4cell

8cell

16cell

earlyblast

midblast

lateblast

0 0.2 0.4 0.6 0.8 1

Clusters
1
2
3de

ve
lo

pm
ee

nt
 p

ha
se

−400 −300 −200 −100 0 100 200

PCA1

c2
c3

PC
A

2

−2
00

 −
10

0

0

 1
00

 2

00

c1

STRUCTURE K=3 PIE on PCA

zy
early2cell
mid2cell
late2cell

4cell

8cell

16cell

earlyblast

midblast

lateblast

0 0.2 0.4 0.6 0.8 1

Clusters
1
2
3
4
5
6

de
ve

lo
pm

en
t p

ha
se

−400 −300 −200 −100 0 100 200

PCA1

STRUCTURE K=6 PIE on PCA

c1
c2

c3

c6
c5
c4

PC
A

2
−2

00

−1

00

 0

 1
00

20
0

Figure 9: RNA-Seq: plots of cell type membership (left) and PCA projection (right)

for K = 3 (first row) and K = 6 (second row).

32

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

6. DISCUSSION

membership follows a Dirichlet distribution π ∼ Dir(α). This is a common practice

and has been widely used when we model a discrete probability density; (ii) Noises are

independently and identically generated from a normal distribution Zi
i.i.d∼ N(0, σ2I).

As the nodes are usually correlated with each other (rows of R̂ are not independent), we

are actually maximizing a quasi-likelihood function where the model is mis-specified.

However, our algorithm does offer an appropriate way to shrink parameters and it’s

completely tuning free.

We could further improve our model by assuming Zi ∼ N(0, σ2wiI), where wi

represent the weight of node i and is a function of the degree of this node. As a node

with higher degree obtains less noise in our setting, we could give this node a smaller

weight and thus a smaller variance before run our algorithm. By doing this, our model

accommodates more information and explains more variance among the data, thus leads

to a better model performance.

Supplementary Materials

Supplementary Materials are available in the attached file which contains a summary of

major notations, useful lemmas, proofs of Proposition 1, Theorems 1 – 4 and Corollary

1.

Acknowledgements

The authors are grateful to the anonymous referees, the associate editor and the editor

for their helpful comments and suggestions. Zhang’s research is partially supported

by National Natural Science Foundation of China Grant 92358303, National Key R&D

33

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

REFERENCES

Program of China Grants 2021YFA1000100, 2021YFA1000101 and 2021YFA1000104,

Science and Technology Commission of Shanghai Municipality Grant 23JS1400500,

and National Natural Science Foundation of China Grants 72331005, 72571102 and

72201101. Ke’s research is partially supported by Sloan Research Grant FG-2023-19970.

References

Airoldi, E. M., D. M. Blei, S. E. Fienberg, and E. P. Xing (2008). Mixed membership stochastic blockmodels.

Journal of Machine Learning Research 9, 1981–2014.

Araújo, M. C. U., T. C. B. Saldanha, R. K. H. Galvao, T. Yoneyama, H. C. Chame, and V. Visani (2001). The

successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemo-

metrics and Intelligent Laboratory Systems 57 (2), 65–73.

Arora, S., R. Ge, and A. Moitra (2012). Learning topic models – going beyond SVD. In 2012 IEEE 53rd

Annual Symposium on Foundations of Computer Science, pp. 1–10.

Bioucas-Dias, J. M., A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot (2012). Hy-

perspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (2), 354–379.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent dirichlet allocation. Journal of Machine Learning

Research 3, 993–1022.

Craig, M. D. (1994). Minimum-volume transforms for remotely sensed data. IEEE Transactions on Geoscience

and Remote Sensing 32 (3), 542–552.

Cutler, A. and L. Breiman (1994). Archetypal analysis. Technometrics 36 (4), 338–347.

Deng, Q., D. Ramsköld, B. Reinius, and R. Sandberg (2014). Single-cell rna-seq reveals dynamic, random

34

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

REFERENCES

monoallelic gene expression in mammalian cells. Science 343 (6167), 193–196.

Dozat, T. (2016). Incorporating nesterov momentum into Adam. In Proceedings of the 4th International

Conference on Learning Representations, pp. 1–4.

Eugster, M. J. A. and F. Leisch (2009). From spider-man to hero — archetypal analysis in R. Journal of

Statistical Software 30 (8), 1–23.

Javadi, H. and A. Montanari (2019). Nonnegative matrix factorization via archetypal analysis. Journal of the

American Statistical Association, 1–22.

Ji, P. and J. Jin (2016). Coauthorship and citation networks for statisticians (with discussion). The Annals of

Applied Statistics 10, 1779–1812.

Jin, J., Z. T. Ke, and S. Luo (2023). Mixed membership estimation for social networks. Journal of Econometrics.

Ke, Z. T. and M. Wang (2022). Using svd for topic modeling. Journal of the American Statistical Association,

1–16.

Van Dijk, D., R. Sharma, J. Nainys, K. Yim, P. Kathail, A. J. Carr, C. Burdziak, K. R. Moon, C. L. Chaffer,

D. Pattabiraman, et al. (2018). Recovering gene interactions from single-cell data using data diffusion.

Cell 174 (3), 716–729.

Winter, M. E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member determination in

hyperspectral data. In SPIE’s International Symposium on Optical Science, Engineering, and Instrumen-

tation, pp. 266–275.

Harvard University

E-mail: dieyi.chen@g.harvard.edu

Harvard University

35

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

REFERENCES

E-mail: zke@fas.harvard.edu

East China Normal University

E-mail: syzhang@fem.ecnu.edu.cn

36

Statistica Sinica: Preprint
doi:10.5705/ss.202023.0159

	Introduction
	The Method
	The pseudo likelihood and its interpretation
	VALISE: an alternating gradient descent algorithm

	Theoretical Properties
	The case of a correctly-specified model
	The case of a misspecified model

	Simulations
	Comparison with other methods
	VALISE under different settings
	Misspecified model

	Real Data Applications
	Citee network
	Topic model
	Single cell RNA-seq data

	Discussion

