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Abstract: We propose a new estimation method for the blind source separation

model of Bachoc et al. (2020). The new estimation is based on an eigenanalysis

of a positive definite matrix defined in terms of multiple normalized spatial lo-

cal covariance matrices, and, therefore, can handle moderately high-dimensional

random fields. The consistency of the estimated mixing matrix is established

with explicit error rates even when the eigen-gap decays to zero slowly. The

proposed method is illustrated via both simulation and a real data example.
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1. Introduction

Blind source separation is an effective way to reduce the complexity in mod-

elling p-variant spatial data (Nordhausen et al., 2015; Bachoc et al., 2020).
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The approach can be viewed as a version of independent component analy-

sis (Hyvärinen et al., 2001) for multivariate spatial random fields. Though

only the second moment properties are concerned, the challenge is to decor-

relate p spatial random fields at the same location as well as across different

locations. Note that the standard principal component analysis does not

capture spatial correlations, as it only diagonalizes the covariance matrix

(at the same location). Nordhausen et al. (2015) introduced a so-called

local covariance matrix (see (2.4) in Section 2.2 below) to represent the de-

pendence across different locations. Furthermore, it proposed to estimate

the mixing matrix, defined in (2.1) in Section 2.1 below, in the blind source

separation decomposition based on a generalized eigenanalysis, which can

be viewed as an extension of the principal component analysis as it diag-

onalizes a local covariance matrix in addition to the standard covariance

matrix. To overcome the drawback of using the information from only one

local covariance matrix, Bachoc et al. (2020) proposed to use multiple lo-

cal covariance matrices in the estimation (see (2.5) in Section 2.2). The

method of Bachoc et al. (2020) has a clear advantage in incorporating the

spatial dependence information over different ranges. It is in the spirit of

JADE (joint approximate diagonalization of eigenmatrices) in non-spatial

contexts. See Chapter 11 of Hyvärinen et al. (2001) and the references
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within. Its estimation is based on a nonlinear optimization with p2 pa-

rameters. Hence it is compute-intensive and cannot cope with very large

p.

Inspired by Bachoc et al. (2020), we propose a new method also based

on multiple (normalized) local covariance matrices for estimating the mixing

matrix. Different from Bachoc et al. (2020), the new method is computa-

tionally efficient as it boils down to an eigenanalysis of a positive definite

matrix which is a matrix function of multiple normalized spatial local co-

variance matrices. Therefore it can handle the cases with the dimension of

random fields in the order of a few thousands on an ordinary personal com-

puter. While the basic idea resembles that of Chang, Guo and Yao (2018)

which dealt with multiple time series, the spatial random fields concerned

are sampled irregularly and non-unilaterally, and the spatial correlations

spread in all directions. Furthermore, we incorporate the pre-whitening in

our search for the mixing matrix. This implies estimating the covariance

matrix of the process, which is assumed to be an identity matrix in Chang,

Guo and Yao (2018). The normalized spatial local covariance matrix, de-

fined in (2.10) below, is a modified version of the spatial local covariance

matrix in Nordhausen et al. (2015), and is introduced to facilitate the ef-

fect of the pre-whitening. All these entail completely different theoretical
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exploration; leading to the asymptotic results under the similar setting of

Bachoc et al. (2020) but allowing the dimension of the random field to di-

verge together with the number of the observed locations, which is assumed

to be fixed in Bachoc et al. (2020).

The efficiency gain in computing of the proposed method is due to

adding together the information from different normalized local covariance

matrices. However different from adding covariance matrices directly such

as in TDSEP (Ziehe and Müller, 1998), each term in the sum of (2.9) in

Section 2.3 below is the product of a normalized local covariance matrix and

its transpose, which, therefore, is non-negative definite matrix. This avoids

the possible cancellation of the information from different normalized local

covariance matrices. Note covariance matrices are not non-negative definite,

and adding them together directly may leads to volatile performance due to

information cancellation; see Table 1 of (Ziehe and Müller, 1998). Although

the sample fourth moments occur in (2.9) in order to avoid the information

cancellation, our goal is decorrelaton across space via diagonalizing multiple

normalized local covariance matrices. Indeed the way to use the fourth

moments and the purpose of using them are radically different from those

of FOBI (forth-order blind identification) algorithms. See Chapter 11 of

Hyvärinen et al. (2001) and the references within.
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Another new contribution of the paper concerns the eigen-gap in the

eigenanalysis for estimating the mixing matrix. In order to identify a con-

sistent estimator for the mixing matrix, the standard condition is to assume

that the minimum pairwise absolute difference among the eigenvalues re-

mains positive. See Assumptions 8 and 9 of Bachoc et al. (2020). The

similar conditions have been imposed in the literature in order to identify

factor loading spaces in factor models (Lam and Yao, 2012). However this

condition is invalid under the setting concerned in this paper when the di-

mension of random field p diverges to infinity, as the maximum order of

the eigen-gap is p−1. We show that the identification of the mixing matrix

is still possible when p → ∞ at the rate p = o(n1/3). See Theorem 2 and

Remark 2 in Section 3.

The rest of the paper is organised as follows. We present the spatial

blind source separation model and the new estimation method in Section

2. The asymptotic properties are developed in Section 3. Numerical illus-

tration with both simulated data and a real data set is presented in Section

4. All the technical proofs are given in the Appendix.

The R-package BSSoverSpace, available in the CRAN project, imple-

ments the methods proposed in this paper.
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2. Setting and Methodology

2.1 Model

We adopt the spatial blind source separation model of Bachoc et al. (2020).

More precisely, let X(s) = {X1(s), · · · , Xp(s)}⊤ be a p-variate random field

defined on s ∈ S ⊂ Rd, and X(s) admits the representation

X(s) = ΩZ(s) ≡ Ω{Z1(s), · · · , Zp(s)}⊤, (2.1)

where Z1(s), · · · , Zp(s) are p independent latent random fields, and Ω is a

p × p invertible constant matrix and is called the mixing matrix. Further-

more, Bachoc et al. (2020) assumes that for any s, u ∈ S,

EZ(s) = µ0, Var{Z(s)} = Ip, Cov{Z(s), Z(u)} = H(s− u), (2.2)

where µ0 is an unknown constant vector, Ip denotes the p × p identity

matrix, H(·) is a p× p diagonal matrix

H(s− u) = diag{K1(s− u), · · · , Kp(s− u)},

i.e. Cov{Zi(s), Zj(u)} = Ki(s− u) if i = j, and 0 otherwise. Let µ = Ωµ0.

Under (2.1) and (2.2), X(·) is a weakly stationary process as

EX(s) = µ, Var{X(s)} = ΩΩ⊤, Cov{X(s), X(u)} = ΩH(s− u)Ω⊤.

(2.3)
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2.2 The existing methods

2.2 The existing methods

Let X(s1), · · · , X(sn) be available observations. Put

X̃(si) = X(si)−
1

n

n∑
j=1

X(sj), Z̃(si) = Z(si)−
1

n

n∑
j=1

Z(sj), i = 1, · · · , n.

Then the spatial local covariance matrix of Nordhausen et al. (2015) is

defined as

M̃(f) =
1

n

n∑
i,j=1

f(si − sj)X̃(si)X̃(sj)
⊤, (2.4)

where f(·) is a kernel function such as f(s) = 1(h1 ≤ ∥s∥ ≤ h2) for some

constants 0 ≤ h1 < h2 < ∞, and 1(·) denotes the indicator function. To

recover the mixing matrix Ω, Bachoc et al. (2020) proposed to estimate

the unmixing matrix (i.e. the inverse of the mixing matrix) Γ = Ω−1 ≡

(γ1, · · · , γp)⊤ by

Γ̂ ∈ arg max
ΓM̃(f0)Γ⊤=Ip

k∑
i=1

p∑
j=1

{γ⊤
j M̃(fi)γj}2, (2.5)

where f0(s) = I(s = 0), and f1, · · · , fk are appropriately specified kernels.

This is a nonlinear optimization problems with p2 variables, which Bachoc

et al. (2020) adopted the algorithm of Clarkson (1988) to solve. When

k = 1, the objective function contains only one kernel function. Then the

above optimization can be solved based on a generalized eigenanalysis; see

Nordhausen et al. (2015) and Bachoc et al. (2020), though the estimation
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2.3 The new method

based on a single kernel requires the prior knowledge on which kernel to use

for a given problem.

2.3 The new method

We now propose a new method to estimate the mixing matrix using multiple

kernels but based on a single eigenanalysis. To this end, we define, for any

given k kernel function f1(·), · · · , fk(·),

N = E
[1
k

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}{ 1

n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}⊤

]
,

(2.6)

W = E
[1
k

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Σ
−1/2X̃(si)X̃(sj)

⊤}Σ−1

×
{ 1
n

n∑
i,j=1

fh(si − sj)X̃(si)X̃(sj)
⊤Σ−1/2

}⊤
]
,

where Σ = Var{X(s)} = ΩΩ⊤. Then N and W are p × p non-negative

definite matrices. Furthermore, N is a diagonal matrix, as its (i, j)-th

element, for i ̸= j, is

1

n2k

k∑
h=1

p∑
ℓ=1

n∑
i1,i2,j1,j2=1

fh(si1−sj1)fh(si2−sj2)E{Z̃i(si1)Z̃ℓ(sj1)Z̃j(si2)Z̃ℓ(sj2)} = 0,

which is guaranteed by the fact that the components of Z(·) are the p

independent random fields. Since Ω is a p × p full rank matrix, we can

rewrite Ω = VΩΛΩUΩ, where VΩ and UΩ are two p× p orthogonal matrices,
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2.3 The new method

and ΛΩ is a diagonal matrix. Then Σ−1/2 = VΩΛ
−1
Ω V ⊤

Ω . Combining this and

(2.1), we have

W = VΩUΩNU⊤
Ω V

⊤
Ω , (2.7)

i.e. the columns of UW ≡ VΩUΩ are the p orthonormal eigenvectors of matrix

W with the diagonal elements of N as the corresponding eigenvalues. As

Σ1/2UW = VΩΛΩV
⊤
Ω VΩUΩ = Ω, this paves the way to identifying mixing

matrix Ω. We summarize the finding in the proposition below.

Proposition 1. Under the condition (2.2), the mixing matrix Ω defined in

(2.1) is of the form Σ1/2UW , where the columns of UW are the p orthonormal

eigenvectors of matrix W . Moreover, those p eigenvectors are identifiable,

upto the sign changes, if the p diagonal elements of N are distinct from

each other.

Note that the sign changes of any columns of UW will not change the

independence of the components of Z(·) in (2.1), as Z(s) = U⊤
WΣ−1/2X(s).

By Proposition 1, we define an estimator for the mixing matrix as

Ω̂ = Σ̂1/2ÛW , (2.8)

where Σ̂ = n−1
∑

1≤j≤n X̃(sj)X̃(sj)
⊤, and the columns of ÛW are the p

orthonormal eigenvectors of matrix

Ŵ =
1

k

k∑
h=1

M̂(fh)M̂(fh)
⊤. (2.9)
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2.3 The new method

In the above expression, M̂(fh) is a normalized local covariance matrix

defined as

M̂(f) =
1

n

n∑
i,j=1

f(si − sj)Σ̂
−1/2X̃(si)X̃(sj)

⊤Σ̂−1/2. (2.10)

This estimation procedure is implemented in Algorithm 1 below. In compar-

ison to the local covariance matrix (2.4), we replace X(·) by its standardized

version Σ̂−1/2X̃(·). This effectively pre-whitens the data in our search for

the mixing matrix.

Algorithm 1: Eigenanalysis approach for BSS over space
Input: X(s1), · · · , X(sn) and f1(·), · · · , fk(·).

(i) Compute X̃(si) = X(si)− 1
n

∑n
j=1 X(sj) and

Σ̂ = n−1
∑

1≤j≤n X̃(sj)X̃(sj)
⊤.

(ii) Compute Ŵ in (2.9).

(iii) Compute eigenvalues Λ̂W and eigenvectors ÛW of matrix Ŵ .

(iv) Compute Ω̂−1 = Û⊤
W Σ̂−1/2.

Output: Ẑ(si) = Ω̂−1X(si), i = 1, · · · , n.

Remark 1. The proposed new method makes use of the normalized 4th

moments of the observations while the methods of Bachoc et al. (2020) and

Nordhausen et al. (2015) only depend on the 2nd moments. However the

4th moments occur only in the matrix products M̂(fh)M̂(fh)
⊤ in defining
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Ŵ in (2.9), and each of those products is a non-negative definite matrix.

We add together those non-negative definite matrices, instead of M̂(fh) (as

suggested in Ziehe and Müller (1998)), to avoid the information cancellation

from different M̂(fh). See also Chang, Guo and Yao (2018). Note that both

our way of using the fourth moments and our purpose of using them are

radically different from those of FOBI (Hyvärinen et al., 2001, Chapter 11).

For example W in (6) is a p× p matrix with the (l,m)-th element

E
[ 1

n2k

k∑
h=1

p∑
v=1

n∑
i,j,c,d=1

fh(si − sj)fh(sc − sd)Z̃l(si)Z̃m(sc)Z̃v(sj)Z̃v(sd)
]
,

while a FOBI algorithm would use instead a p2×p2 quadricovariance matrix

with the elements being the fourth order cumulants (Ferreol, 2005). Our

goal is to avoid information cancellation while diagonalizing different local

covariance matrices. FOBI is to diagonalize a quadricovariance matrix.

3. Asymptotic properties

We consider the asymptotic behaviour of the estimator Ω̂ when n → ∞ and

p either remaining fixed or p = o(n). Since Ω̂−1X(s) = Ω̂−1ΩZ(s), we will

focus on Γ̂Ω = Ω̂−1Ω. We introduce some regularity conditions first.

A1. In model (2.1), Z1(·), · · · , Zp(·) are p independent and strictly station-

ary random fields on Rd, and condition (2.2) holds. Furthermore,
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Z(·) is sub-Gaussian in the sense that there exists a constant C0 > 0

independent of p for which

sup
β≥1,1≤i≤p

β−1/2{E|Zi(s)|β}1/β ≤ C0. (3.1)

Moreover, for any unit vector (a1, · · · , an)⊤ ∈ Rn and 1 ≤ ℓ ≤ p,∑n
i=1 aiZℓ(si) is sub-Gaussian.

A2. There exist positive constants ∆, α and A (independent of n and p)

such that for any 1 ≤ i ̸= j ≤ n and n ≥ 2, ∥si − sj∥ ≥ ∆, and for

s, u ∈ Rd, 1 ≤ ℓ ≤ p and 1 ≤ h ≤ k (k is fixed),

|Cov{Zℓ(s+ u), Zℓ(s)}| ≤ A/(1 + ∥u∥d+α), (3.2)

|fh(s)| ≤ A/(1 + ∥s∥d+α). (3.3)

A3. Let λ1 ≥ · · · ≥ λp ≥ 0 be the diagonal elements of matrix N defined

in (2.6), arranged in the descending order. There exist integers 0 =

p0 < p1 < · · · < pm = p for which

lim sup
n→∞

max
1≤i≤m

|λpi−1+1 − λpi | = 0, and (3.4)

lim inf
n→∞

min
1≤i<m

|λpi − λpi+1| = C1 > 0, (3.5)

where m ≥ 2 is a fixed integer, and C1 is a constant independent of

p.
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Conditions A1 and A2 are essentially the same as Assumptions 1-7 of

Bachoc et al. (2020), though we impose only the sub-Gaussianality instead

of requiring Z(·) to be normally distributed. In addition, our setting allows

p to diverge together with n. Condition A3 is required for distinguishing

the columns of the mixing matrix Ω from each other. Those p columns are

completely identifiable when p is fixed and m = p. Then condition (3.4)

vanishes, and (3.5) ensures that the p diagonal elements of matrix N are

distinct from each other (see Proposition 1). The similar conditions (i.e.

with p fixed) were imposed in Bachoc et al. (2020): see Assumptions 8 and

9 therein. Note that condition (3.5) cannot hold when m = p → ∞. When

p → ∞ together with n, (3.4) and (3.5) ensure that the estimated mixing

matrix Ω̂ transforms X(·) into m independent subvectors; see Theorem 1

below. Recalling the definition of N in (2.6), we can see that the choice

of kernels should satisfy Condition A3. This is the same for Bachoc et al.

(2020).

Without the loss of generality, we assume that the p components of Z(·)

are arranged in the order such that the diagonal elements of matrix N in

(2.6) are in the descending order. This simplifies the presentation of The-

orem 1 substantially. Write Ŵ = ÛW Λ̂W Û⊤
W as its spectral decomposition,
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i.e.

Λ̂W = diag(λ̂W,1, · · · , λ̂W,p),

where λ̂W,1 ≥ · · · ≥ λ̂W,p ≥ 0 are the eigenvalues of Ŵ , and the columns

of the orthogonal matrix ÛW are the corresponding eigenvectors. Conse-

quently,

Γ̂Ω = Ω̂−1Ω = Û⊤
W Σ̂−1/2Ω. (3.6)

Corollary 1 below shows that Ω̂−1Ω = Γ̂Ω
P−→ Ip when p is finite and m = p

in Condition A3. To state a more general result first, put qi = pi − pi−1 for

i = 1, · · · ,m (see Condition A3), and

Ω̂−1Ω = Γ̂Ω =


Γ̂Ω,11 · · · Γ̂Ω,1m

· · · · · · · · ·

Γ̂Ω,m1 · · · Γ̂Ω,mm

 , (3.7)

where submatrix Γ̂Ω,ij is of the size qi × qj.

Theorem 1. Let Conditions A1-A3 hold. As n → ∞ and p = o(n), it holds

that

∥Γ̂Ω,ii∥ = 1 + Op{n−1/2p1/2}, ∥Γ̂Ω,ii∥min = 1 +Op{n−1/2p1/2} 1 ≤ i ≤ m,

(3.8)

∥Γ̂Ω,ij∥ = Op{n−1/2p1/2}, 1 ≤ i ̸= j ≤ m, and (3.9)
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∥Λ̂W − Λ∥ = Op(n
−1/2p1/2), (3.10)

where Λ = diag(λ1, · · · , λp), and λi are specified in Condition A3.

Theorem 1 implies that Γ̂Ω,ij
P−→ 0 for any i ̸= j. Hence the transformed

process Ω̂−1X(·) = Γ̂ΩZ(·) can only be divided into the m asymptotically

independent random fields of dimensions q1, · · · , qm respectively. This is

due to the lack of separation of the corresponding eigenvalues within each

of those m groups; see (3.4). On the other hand, Theorem 1 still holds,

under some additional conditions, if the components of Z(·) within each of

those m groups are not independent with each other. Then this is in the

spirit of the so-called multidimensional independent component analysis of

Cardoso (1998). In practice, one needs to identify the m latent groups

among the p components of Ω̂−1X(·), which can be carried out by adapting

the procedures in Section 2.2 of Chang, Guo and Yao (2018). By (3.10),

Λ̂W will indicate how those eigenvalues are different from each other; see

Condition A3.

Note that Theorem 1 holds when either p is fixed and finite, or p/n → 0

as n → ∞. When p is fixed and m = p in Condition A3, all Γ̂Ω,ij reduces

to a scale and qi = 1. Then Corollary 1 below follows from Theorem 1

immediately.
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Corollary 1. Let Conditions A1-A3 hold with m = p, and p be a fixed

integer. Then as n → ∞, ∥Ip − Ω̂−1Ω∥ = Op(n
−1/2).

A key condition in Corollary 1 for identifying all the columns of the

mixing matrix is that the eigengap defined as

vgap = min
1≤i ̸=j≤p

|λi − λj| (3.11)

remains bounded away from 0, which is implied by (3.5) when p = m is

fixed. This condition cannot be fulfilled when p diverges (together with n).

To appreciate the performance of the proposed procedure when p is large in

relation to n, we present Theorem 2 below which indicates that the mixing

matrix can still be estimated consistently but at much slower rates when

the eigengap vgap decays to 0 provided p diverges to ∞ not too fast; see

Remark 2 below.

A4. lim supn→∞ v−1
gapn

−1/2p1/2 = 0.

Theorem 2. Let conditions A1, A2 and A4 hold. Denote by γ̂Ω,ij the (i, j)-th

entry of matrix Γ̂Ω. Then as n, p → ∞, it holds that

γ̂Ω,ij = Op(n
−1/2p1/2v−1

gap|j − i|−1) for 1 ≤ i ̸= j ≤ p, and (3.12)

γ̂Ω,ii = 1 + Op(n
−1pv−2

gap + n−1/2p1/2) for i = 1, · · · , p. (3.13)
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Moreover, (3.10) still holds.

Remark 2. Note that λ1 − λp ≥ (p− 1)vgap, and, therefore, vgap = O(p−1).

Thus it follows from condition A4 that p = o(n1/3), i.e. in order to fully

identify the mixing matrix, p cannot be too large in the sense that p/n1/3 →

0.

4. Numerical illustration

4.1 Simulation

We illustrate the finite sample properties of the proposed method by sim-

ulation. We set the dimension of random fields at p =3 and 50, and the

sample size n (i.e. the number of locations) between 100 to 2000. The

coordinates of those n locations are drawn independently from U(0, 50)2.

Both Gaussian and non-Gaussian random fields are used. Also included in

the simulation is the method of Bachoc et al. (2020). For each setting, we

replicate the simulation 1000 times.

The p-variate random fields X(·) are generated according to (2.1) in

which Z1(·), · · · , Zp(·) are p independent random fields with either N(0, 1)

or t5 marginal distributions, and the Matern correlation function

ρ(s) = 21−κΓ(κ)−1(s/ϕ)κBκ(s/ϕ),
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4.1 Simulation

where κ > 0 is the shape parameter, ϕ > 0 is the range parameter, Γ(·) is the

Gamma function, and Bκ is the modified Bessel function of the second kind

of order κ. We set different values of (κ, ϕ) for different Zj. More precisely

κ’s are drawn independently from U(0, 6), and ϕ’s are drawn independently

from U(0, 2). The mixing matrix Ω in (2.1) is set to be the p× p identity

matrix.

To measure the accuracy of the estimation for Ω, we define

D(Ω, Ω̂) =
1

2p(
√
p− 1)

p∑
j=1

{(
∑

1≤i≤p d
2
ij)

1/2

max1≤i≤p |dij|
+

(
∑

1≤i≤p d
2
ji)

1/2

max1≤i≤p |dji|
− 2

}
,

where dij is the (i, j)-th element of matrix Ω−1Ω̂. As

p−1/2 ≤ max
1≤i≤p

|dij|
/( ∑

1≤i≤p

d2ij
)1/2 ≤ 1.

it holds that D(Ω, Ω̂) ∈ [0, 1], and D(Ω, Ω̂) = 0 if Ω̂ is a column permutation

and/or column sign changes of Ω.

We set k = 10 in (2.9), and

fh(s) = 1(ch−1 < ∥s∥ ≤ ch), h = 1, · · · , 10, (4.1)

where 0 = c0 < c1 < · · · < c10 = ∞ are specified such that for each

h = 1, · · · , 10, {(si, sj) : 1 ≤ i < j ≤ n, ch−1 < ∥si− sj∥ ≤ ch} contains the

10% of the total pairs (si, sj), 1 ≤ i < j ≤ n.

The boxplots of D(Ω, Ω̂) obtained in the 1000 replications are presented

in Figures 1–4. Estimations by the method of Bachoc et al. (2020) are
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computed using the R-function sbss, provided in R-package SpatialBSS. In

addition to the multiple kernel estimation, we also compute the estimates

with a single kernel, using each of the 10 kernels in (4.1), For computing

the multiple kernel method of Bachoc et al. (2020), we set the maximum

number of iterations at 2000. By using a single kernel, the method of

Bachoc et al. (2020) leads to almost identical estimates as those obtained

by the proposed method (with the same single kernel). Therefore we omit

the detailed results.

Figures 1 – 4 and Tables 1 – 4 indicate clearly that both the methods

with multiple kernels outperform most of those with a single kernel, and

the proposed method outperforms the multiple kernel method of Bachoc et

al. (2020) especially when p is large (i.e. p = 50). The proposed method

with multiple kernels performs about the same as that with the best single

kernel (i.e. Kernel 1 f1(·)). The accuracy of estimation improves with the

increase in the number of observations n, which can be seen as a decrease

in D(Ω, Ω̂) in Figures 1–4. Among all single kernel methods, those using

kernel f1 perform the best, as those estimations include the 10% nearest

locations. Indeed the Matern correlation is the strongest at the smallest

distance. On the other hand, the performances for the Gaussian and the

non-Gaussian random fields are about the same. See Figures 1 & 2, and
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Figures 3 & 4.

The iterative algorithm for implementing the multiple kernel method

of Bachoc et al. (2020) is to solve a nonlinear optimization problem with p2

parameters. When p = 50, it failed to converge within the 2000 iterations

in some of the 1000 simulation replications. The numbers of failures with

n =100, 500, 1000 and 2000 are, respectively, 3, 1, 2 and 1 for the Gaussian

random fields, and 6, 3, 3 and 1 for the non-Gaussian random fields. We

only include the results from the converged replications in the figures.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.0814 0.2284 0.2707 0.2584 0.2594 0.2617 0.2542 0.2688 0.2619 0.2517 0.0933 0.1298

n=500 0.0248 0.1437 0.2019 0.2051 0.2042 0.1873 0.1830 0.1926 0.2076 0.2071 0.0327 0.0444

n=1000 0.0189 0.1124 0.1992 0.1782 0.1800 0.1746 0.1862 0.1803 0.1823 0.1887 0.0233 0.0324

n=2000 0.0164 0.1194 0.1870 0.1631 0.1686 0.1746 0.1533 0.1761 0.1701 0.1845 0.0204 0.0260

Table 1: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels,

or multiple kernel(including all 10 ring kernels), and the method of Bachol et el. using

the multiple kernel (multiple original) in a simulation with 1000 replications for the

Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 , and

the dimension of random fields is p = 3.

The estimated eigengaps for the proposed method for the Gaussian

random fields are presented in Figures 5 and 6. As n increases, the eigengap

also increases. Under low-dimensional setting p = 3, the estimates based
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Figure 1: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 kernels (new) in

(4.1), or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc

et al. (2020) using the 10 kernels (original) in a simulation with 1000 replications for the

Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 (from

top to bottom), and the dimension of random fields is p = 3.

on single kernel f1 entail the largest eigengaps and the smallest estimation

errors D(Ω, Ω̂) (see also Theorem 2). However when p = 50, using the

multiple kernels leads to the largest eigengaps and the smallest estimation

errors. The patterns with the non-Gaussian random fields are similar and

not reported here to save space.
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Figure 2: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 kernels (new) in

(4.1), or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc

et al. (2020) using the 10 kernels (original) in a simulation with 1000 replications for the

non-Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000

(from top to bottom), and the dimension of random fields is p = 3.

4.2 A real data example

We apply the proposed method to the moss data from the Kola project

in the R package StatDa (See Filzmoser (2015)). The data consists of

chemical elements discovered in terrestrial moss at the 594 locations in

northern Europe; see the map in Fig.D.1 of Bachoc et al. (2020). More

information on the data is presented in Reimann et al. (2008). Following the
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Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.0837 0.2377 0.2656 0.2579 0.2676 0.2664 0.2478 0.2503 0.2440 0.2531 0.0915 0.1194

n=500 0.0244 0.1526 0.2028 0.2001 0.2052 0.1998 0.1923 0.1964 0.2028 0.2107 0.0284 0.0424

n=1000 0.0178 0.1096 0.1767 0.1943 0.1868 0.1812 0.1741 0.1627 0.1885 0.1911 0.0215 0.0326

n=2000 0.0165 0.1230 0.1907 0.1765 0.1676 0.1663 0.1652 0.1625 0.1742 0.1818 0.0194 0.0293

Table 2: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels, or

multiple kernel(including all 10 ring kernels), and the method of Bachol et el. using the

multiple kernel (multiple original) in a simulation with 1000 replications for the non-

Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 , and

the dimension of random fields is p = 3.

lead of Nordhausen et al. (2015) and Bachoc et al. (2020), we apply the so-

called isometric-log-ratio transformation to the 31 compositional chemical

elements in the data. The transformed data are used in our analysis with

n = 594 and p = 30. We standardize the data first such that the sample

mean is 0 and the sample variance is I30.

We apply the proposed estimation method with 10 kernels specified as

in (4.1). The scores of the first six independent components (IC), corre-

sponding to the six largest eigenvalues of Ŵ (see table 5), are plotted in

Figure 7; showing some interesting spatial patterns. For example, the 1st

IC can be viewed as a contrast between the locations in the west and those

in the east, and the 2nd IC is that between the north and the south. Fig-
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Figure 3: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 kernels (new) in

(4.1), or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc

et al. (2020) using the 10 kernels (original) in a simulation with 1000 replications for the

Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 (from

top to bottom), and the dimension of random fields is p = 50.

ure 8 displays the absolute correlation coefficients between the first twelve

ICs and those obtained in Nordhausen et al. (2015) which was referred as

‘gold standard’ by Bachoc et al. (2020). While the ICs derived from the

two methods differ from each other, the two sets of ICs correlate with each

other significantly. For example the correlation between the 1st IC de-

rived from our new method and the 2nd IC obtained in Nordhausen et al.
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Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.2337 0.2404 0.2433 0.2438 0.2442 0.2442 0.2418 0.2408 0.2405 0.2394 0.2308 0.2339

n=500 0.2295 0.2348 0.2375 0.2378 0.2373 0.2377 0.2356 0.2356 0.2355 0.2369 0.2153 0.2276

n=1000 0.2247 0.2300 0.2326 0.2343 0.2331 0.2323 0.2313 0.2313 0.2321 0.2346 0.2059 0.2228

n=2000 0.2207 0.2254 0.2285 0.2303 0.2293 0.2288 0.2275 0.2275 0.2286 0.2310 0.1993 0.2184

Table 3: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels,

or multiple kernel(including all 10 ring kernels), and the method of Bachol et el. using

the multiple kernel (multiple original) in a simulation with 1000 replications for the

Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 , and

the dimension of random fields is p = 50.

(2015) is 0.92. Note that the ‘gold standard’ estimation was obtained using

the kernel specified with the relevant subject knowledge. In contrast our

estimation is based on the multiple kernels defined generically in (4.1).

The six largest eigenvalues of Ŵ are listed in Table 5. The eigengaps

∆i = λ̂i−1 − λ̂i for i = 7, · · · , 30 are plotted in Figure 9. It is clear that the

eigengaps among the 13 largest eigenvalues are large. Based on Theorem

1, we have

Ω̂−1Ω = Γ̂Ω =

Γ̂Ω,aa Γ̂Ω,ab

Γ̂Ω,ba Γ̂Ω,bb

 , (4.2)

where Γ̂Ω,aa is a 12×12 matrix satisfying ∥Γ̂Ω,aa−I12∥ = Op(n
−1/2p1/2). The-

orem 1 also shows that ∥Γ̂Ω,ab∥ = Op(n
−1/2p1/2), ∥Γ̂Ω,ba∥ = Op(n

−1/2p1/2)

and ∥Γ̂Ω,bb∥ = 1 + Op(n
−1/2p1/2). Thus, we are reasonably confident that
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Figure 4: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 kernels (new) in

(4.1), or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc

et al. (2020) using the 10 kernels (original) in a simulation with 1000 replications for the

non-Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000

(from top to bottom), and the dimension of random fields is p = 50.

the estimated first 12 ICs are reliable. Moreover, we rewrite Ω̂⊤Ω̂ as

Û⊤
W Σ̂ÛW = Ω̂⊤Ω̂ =

Ω̂aa Ω̂ab

Ω̂ba Ω̂bb

 , (4.3)

where Ω̂aa is a 12× 12 matrix. We gain tr(Ω̂aa) = 6.62 and tr(Ω̂⊤Ω̂) = 8.89

by calculating. Thus, the major variation of the 30 variables are largely

reflected by the 12 largest ICs.
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Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.2332 0.2391 0.2425 0.2429 0.2425 0.2425 0.2417 0.2393 0.2390 0.2383 0.2295 0.2336

n=500 0.2292 0.2331 0.2363 0.2374 0.2369 0.2369 0.2359 0.2348 0.2352 0.2372 0.2143 0.2278

n=1000 0.2250 0.2305 0.2324 0.2338 0.2338 0.2327 0.2317 0.2312 0.2328 0.2341 0.2059 0.2228

n=2000 0.2203 0.2249 0.2281 0.2296 0.2292 0.2281 0.2269 0.2277 0.2288 0.2303 0.1990 0.2172

Table 4: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels, or

multiple kernel(including all 10 ring kernels), and the method of Bachol et el. using the

multiple kernel (multiple original) in a simulation with 1000 replications for the non-

Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 , and

the dimension of random fields is p = 50.

Table 5: The six largest eigenvalues of Ŵ (with k = 10) for the real data example.

i 1 2 3 4 5 6

λ̂i 1136.50 877.59 444.21 161.34 126.16 81.13

Supplementary Material

The online Supplementary Material presents the proofs of Theorems 1-2

and additional examples for simulations.
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