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Abstract: Various metrics have been developed to test for statistical independence

and measure the degree of nonlinear dependence between two random objects.

Most of these metrics achieve their lower bound if and only if the two random ob-

jects are independent. However, it is often unclear how the two random objects

are dependent if they attain their upper bound. Moreover, how to implement

these metrics when one of the objects is matrix-valued is rarely touched in the

literature. To address these issues, we introduce a new metric called trace cor-

relation, which ranges from zero to one. It equals zero only if the two random

objects are independent and attains one only if one random object is functionally

dependent on the other. In addition, trace correlation allows one of the ran-

dom objects to be matrix-valued. We estimate trace correlation using standard

U-statistic theory and thoroughly study the asymptotic properties of resultant

estimates. Furthermore, we adapt trace correlation in the reproducing kernel

Hilbert space. Extensive simulations and an application to the MNIST dataset

demonstrate the effectiveness and usefulness of trace correlation.
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1. Introduction

Testing for statistical independence and measuring the degree of nonlinear

dependence are fundamental issues in both statistics and machine learning

communities. In classification problems, to what extent the features are

predictive can be evaluated by quantifying the degree of nonlinear depen-

dence between the features and the class labels. Let us use the MNIST

dataset accessible at http://yann.lecun.com/exdb/mnist/ as an exam-

ple to illustrate this phenomenon. It comprises of 60, 000 training images

and 10, 000 test images, each labeled with an integer between 0 and 9. The

images have a resolution of 28 × 28 pixels and their values are scaled to

the range of [0, 1]. We hide parts of the image each time and contaminate

each image with standard Gaussian white noise. The contaminated pixels

are subsequently replaced with 1 if they exceed 1, and set to 0 if they are

negative, ensuring that pixel values fall within [0, 1]. Our objective is to

accurately classify images of handwritten digits that are contaminated and

partially unseen into one of the 10 classes. To achieve this, we apply LeNet-

5 (Lecun et al., 1998), an efficient convolutional neural network specifically
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designed for handwritten and machine-printed character recognition. We

train the LeNet-5 model on the training set and evaluate its prediction per-

formance on the test set. We use the misclassification rate, the proportion of

misclassified observations, to evaluate the prediction power. Additionally,

we define the image occlusion ratio as follows:

The occlusion ratio =
The number of hidden pixels

The total number of pixels
× 100%.

In Figure 1 (a), we demonstrate how misclassification rate varies with the

image occlusion ratio, which takes values from {0, 1/14, . . . , 1} × 100%.

As expected, misclassification rate increases with the occlusion ratio. To

measure the degree of nonlinear dependence between features and class la-

bels, we introduce trace correlation in this article. Figure 1 (b) shows that

the normalized trace correlation decreases as the image occlusion ratio in-

creases. Remarkably, Figure 1 (c) indicates a strong agreement between the

normalized trace correlations and the misclassification rates as the image

occlusion ratio increases from 0 to 1. This phenomenon suggests that the

normalized trace correlation between the features and the class labels is

perhaps sufficient to characterize the prediction power without the need to

fit complicated nonlinear models.

Many commonly used correlations are designed to test for statistical

independence. They achieve the minimum value 0 only if the two random
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Figure 1: (a) Misclassification rates on the vertical axis against occlu-

sion ratios on the horizontal axis; (b) normalized trace correlations against

occlusion ratios; and (c) misclassification rates against normalized trace

correlations, with a dashed best fitting straight line superimposed.

objects are independent. Examples include distance correlation (Székely

et al., 2007; Székely and Rizzo, 2009), Hilbert-Schmidt independence cri-

terion (Gretton et al., 2005, 2007; Sejdinovic et al., 2013), projection cor-

relation (Zhu et al., 2017), ball correlation (Pan et al., 2020), multi-scale

graph correlation (Shen et al., 2020), and angle-based correlation (Zhang

and Yang, 2024). Székely et al. (2007, Theorem 3) showed that, when the

sample distance correlation attains 1, the two random vectors are similar.

However, it is unclear that in general situations, if the population distance

correlation is 1, how these two random objects are associated. Indeed, for

most correlations, it remains unknown how the two random objects are

dependent when the correlations reach their maximum value. In contrast,
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Pearson’s correlation (Pearson, 1895), Spearman’s ρ (Spearman, 1904), and

Kendall’s τ (Kendall, 1938) are able to measure the strength of linear or

monotone relationships. Specifically, the absolute values of these measures

are equal to 0 when there is no linear or monotonic dependency between

the two objects, and they approach 1 only when one random object appears

to be a noiseless linear or monotone function of the other.

Trace correlation possesses a distinctive property: it reaches its upper

bound only when one random object is completely dependent on the other

(Lancaster, 1963; Kimeldorf and Sampson, 1978). In simpler terms, trace

correlation characterizes functional dependence. Most existing correlations

quantify deviation from independence based on the discrepancy between

joint and marginal distributions. By contrast, trace correlation formulates

deviation by comparing conditional and unconditional distributions. It at-

tains the maximum value under functional dependence. Similar idea has

been used by Dette et al. (2013), Gamboa et al. (2018), Kong et al. (2019),

and Chatterjee (2021) for univariate random variables, and by Yin and

Yuan (2020), Ke and Yin (2020), and Deb et al. (2020) for multivariate

random vectors. This property makes trace correlation a very useful indi-

cator of prediction performance without the need to fit a nonlinear model,

as has been demonstrated in the illustrative example. We further extend
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the concept of trace correlation into the reproducing kernel Hilbert space,

which enables us to characterize nonfunctional dependence.

Another advantage of trace correlation is its ability to handle matrix-

valued random objects, which are frequently encountered in the real world

but rarely touched in the literature. Matrix-valued random objects arise

from the combination of two underlying random variables, such as images

constructed from matrices of pixels. Trace correlation allows one random

object to be matrix-valued while the other can be either categorical, discrete

or continuous, serving as the conditioning variable in trace correlation.

To estimate trace correlation, we use the standard U -statistic theory

when the conditioning random object is categorical or discrete, taking a

fixed or divergent number of possible values. When the conditioning ran-

dom object is continuous, we introduce a slicing estimation technique (Li,

1991; Hsing and Carroll, 1992; Zhu and Ng, 1995). In all cases, the resultant

asymptotic null distributions do not depend upon the parent distribution of

the conditioning variable. In particular, if the conditioning random object

takes a divergent number of possible values, the asymptotic null distribution

is standard normal. Consequently, there is no need to use bootstrap or ran-

dom permutations to approximate the asymptotic null distributions, mak-

ing the implementation of the trace correlation test numerically efficient.
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The asymptotic normality is typically favored by practitioners, particularly

by those who are not experts in statistics. We further derive an explicit

expression for the asymptotic power against arbitrary fixed alternatives.

This paper is organized as follows. In Section 2, we introduce trace

correlation for detecting functional dependence in the presence of matrix-

valued random objects. We present comprehensive numerical studies in

Section 3 to examine the theoretical properties of trace correlation, followed

by a generalization of the concept into the reproducing kernel Hilbert space

in Section 4. We conclude this paper with a brief discussion in Section 5.

All technical proofs are relegated to an online Supplementary Material.

2. The Trace Correlation

2.1 The rationale

We introduce the rationale of trace correlation first. Define ⟨A,B⟩ =

tr(ATB) and ∥A∥2 = ⟨A,A⟩, for two generic matrices A and B. Let

I(E) be an indicator function, which equals 1 if the event E is true and

0 otherwise. Let X = (Xk,l) ∈ Rp×q be a matrix-valued random ob-

ject and Y ∈ R1 be a univariate one. We allow the conditioning ran-

dom variable Y to be either categorical, discrete or continuous. We no-

tice that, X and Y are independent if and only if, for an arbitrary ma-
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2.1 The rationale

trix B ∈ Rp×q, E{exp(i⟨B,X⟩) | Y } = E{exp(i⟨B,X⟩)} almost surely, or

equivalently, ⟨B,X⟩ and Y are independent. It implies immediately that

E {I(⟨B,X⟩ ≤ x) | Y } = E {I(⟨B,X⟩ ≤ x)} for all x ∈ R1 and B ∈ Rp×q.

This is equivalent to saying that

var
[
E {I(⟨B,X⟩ ≤ x) | Y }

]
= 0, for all x ∈ R1 and B ∈ Rp×q.

Unlike most existing correlations that assess deviations from independence

through the differences between joint and marginal distributions, the left

hand side of the above display quantifies the differences between conditional

and unconditional distributions. We advocate using this idea because it

simultaneously characterizes statistical independence and complete depen-

dence, on which we shall elaborate shortly. Following Lancaster (1963) and

Kimeldorf and Sampson (1978), we define X to be completely dependent on

Y , if there exists a matrix of functions G = (Gk,l) ∈ Rp×q such that pr{X =

G(Y )} = pr{Xk,l = Gk,l(Y ), for k = 1, . . . , p, l = 1, . . . , q} = 1. If X is

completely dependent upon Y , E {I(⟨B,X⟩ ≤ x) | Y } = E{I(⟨B,G(Y )⟩ ≤

x) | Y } = I(⟨B,G(Y )⟩ ≤ x). Accordingly,

var
[
E {I(⟨B,X⟩ ≤ x) | Y }

]
= var

{
I(⟨B,X⟩ ≤ x)

}
,
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2.1 The rationale

for all x ∈ R1 and B ∈ Rp×q. We introduce two positive weight functions,

ω1(x) and ω2(B). The trace correlation is defined as

Tweight(X | Y ) =

∫
x∈R1

∫
B∈Rp×q

var
[
E {I(⟨B,X⟩ ≤ x) | Y }

]
(2.1)

ω1(x)ω2(B)(dB)(dx)

/
∫
x∈R1

∫
B∈Rp×q

var
{
I(⟨B,X⟩ ≤ x)

}
ω1(x)ω2(B)(dB)(dx).

It follows immediately that 0 ≤ Tweight(X | Y ) ≤ 1, Tweight(X | Y ) = 0 if

and only if X and Y are independent because the numerator is zero, and

Tweight(X | Y ) = 1 if and only if X is completely dependent upon Y .

To simplify the expression of Tweight(X | Y ) in (2.1), we introduce the

following notations. Let (X1, Y1) and (X2, Y2) be two independent copies

of (X, Y ). We define

dweight(X1,X2) =

∫
x

∫
B

{
I(⟨B,X1⟩ ≤ x)− I(⟨B,X2⟩ ≤ x)

}2

ω1(x)ω2(B)(dB)(dx).

If we specify both ω1(x) and ω2(B) to be standard normal densities (Gupta,

1963; Li and Zhang, 2020; Zhang and Zhu, 2023b), where the standard

matrix normal density (Gupta and Nagar, 1999, chapter 2) is defined as

ω2(B) = (2π)−pq/2 exp(−∥B∥2/2),
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2.1 The rationale

the above display reduces to

dnormal(X1,X2) = arccos
{
(1 + ⟨X1,X2⟩)(1 + ∥X1∥2)−1/2(1 + ∥X2∥2)−1/2

}
.

We further define d̃weight(y) = E{dweight(X1,X2) | Y1 = y, Y2 = y}, and

d̃normal(y) = E{dnormal(X1,X2) | Y1 = y, Y2 = y}. With these notations,

Tweight(X | Y ) = 1 − E
{
d̃weight(Y )

}/
E
{
dweight(X1,X2)

}
and Tnormal(X |

Y ) = 1 − E
{
d̃normal(Y )

}/
E
{
dnormal(X1,X2)

}
. We summarize the above

results in Proposition 1.

Proposition 1. In general, 0 ≤ Tweight(X | Y ) ≤ 1, Tweight(X | Y ) = 0

if and only if X and Y are independent, and Tweight(X | Y ) = 1 if and

only if X is completely dependent upon Y . In addition, Tweight(X | Y ) =

1 − E
{
d̃weight(Y )

}/
E
{
dweight(X1,X2)

}
. In particular, if we choose both

ω1(x) and ω2(B) to be standard normal densities, then Tnormal(X | Y ) =

1− E
{
d̃normal(Y )

}/
E
{
dnormal(X1,X2)

}
.

We choose both ω1(x) and ω2(B) to be standard normal densities

to yield a closed expression Tnormal(X | Y ). An additional advantage

is that the resultant trace correlation is robust to the presence of out-

liers or extreme values because it does not impose any moment condi-

tions on X or Y . Indeed as long as both ω1(x) and ω2(B) are prob-

ability density functions, dweight(X1,X2), and hence E
{
dweight(X1,X2)

}
,
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2.2 The estimation

are always bounded, regardless of the distribution of X. While there are

many other choices of probability densities that yield a closed form of

Tweight(X | Y ), we choose standard normal densities for simplicity. By

contrast, if we choose ω1(x) = ω2(B) = 1, dweight(X1,X2) = ∥X1 − X2∥,

and if q = 1, Tweight(X | Y ) boils down to the squared expectation of con-

ditional difference (Yin and Yuan, 2020; Xu and Zhu, 2022). To ensure

E
{
dweight(X1,X2)

}
= E(∥X1 −X2∥) to be finite, it is often assumed that

E∥X∥ < ∞, which imposes a stringent moment condition on X. In Ta-

ble 3 we shall show that, if this moment condition is violated, the squared

expectation of conditional difference is less efficient in detecting nonlinear

dependence.

Subsequently, we work with Tnormal(X | Y ), which use dnormal(X1,X2)

and d̃normal(Y ) and does not have to use integral in high-dimensional space.

For the sake of notational clarity, we suppress the subscript “normal” and

refer to as T(X | Y ), d(X1,X2) and d̃(Y ) henceforth.

2.2 The estimation

Estimating T(X | Y ) amounts to estimating the denominator, E
{
d(X1,X2)

}
,

and the numerator, E
{
d̃(Y )

}
, respectively. Suppose a random sample of

size n, {(Xi, Yi), i = 1, . . . , n}, is available. We propose to estimate the
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2.2 The estimation

denominator, T1 = E
{
d(X1,X2)

}
, with the standard U -statistic theory.

Specifically, we estimate T1 with

T̂1 = {n(n− 1)/2}−1
∑

1≤i<j≤n

d(Xi,Xj).

Estimating the numerator, T2 = E
{
d̃(Y )

}
, is nontrivial, especially when Y

is continuous. We first consider the easier case where Y is categorical or

discrete, then extend the method to continuous Y by introducing a slicing

estimation procedure.

Let us begin by assuming Y is categorical with class labels {1, . . . , H},

without loss of generality. We denote the number of observations in the h-th

class by nh, and define ph = pr(Y = h) and p̂h = nh/n. To facilitate subse-

quent illustration, we sort the observations {(Xi, Yi), i = 1, . . . , n} accord-

ing to their class labels, such that the sorted observations {(X(i), Y(i)), i =

1, . . . , n} satisfy Y(i) = h if n1 + · · ·nh−1 < i ≤ n1 + · · ·nh, and X(i) is the

respective concomitant of Y(i). We further introduce the double-subscript

notation system (h, i), where the first subscript h represents the class label,

and the second subscript i stands for the order number of an observation

in the h-th class. It follows that X(h,i) = X(n1+···+nh−1+i) for i = 1, . . . , nh

and h = 1, . . . , H. By definition,

T2 = E
{
d̃(Y )

}
=

H∑
h=1

d̃(h)ph.
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2.2 The estimation

This motivates us to define the estimator

T̂2 =
H∑

h=1

d̂(h)p̂h, where d̂(h) = {nh(nh − 1)/2}−1
∑

1≤i<j≤nh

d(X(h,i),X(h,j)) is

a U -statistic within each class. Accordingly, T̂(X | Y ) = 1− T̂2 / T̂1.

When Y is discrete and takes values in {1, . . . , H}, estimating T(X | Y )

follows the same process as in the categorical case. When Y is continuous,

we divide the sorted observations {(X(i), Y(i)), i = 1, . . . , n} into H slices

based on the values of {Y(1), . . . , Y(n)}, such that the h-th slice contains nh

observations. To be specific, we partition the entire range of the condition-

ing variable Y into H disjoint intervals, I1, . . . , IH , and assign (X(i), Y(i))

satisfying Y(i) ∈ Ih into the h-th slice. This allocation scheme ensures that

all n observations fall into one of the H slices. The idea of slicing was orig-

inated from Li (1991), Hsing and Carroll (1992) and Zhu and Ng (1995).

Each slice in the continuous case corresponds to a category in the categor-

ical case, making subsequent estimation after slicing similar in spirit. We

omit details on estimation for both discrete and continuous cases.

The computational complexity of the sorting algorithm is O(n log n),

and that of calculating d(Xi,Xj) is O(pq). This leads to complexities of

O
{
n(n− 1)pq

}
and O

{
H∑

h=1

nh(nh − 1)pq + n log n

}

for calculating T̂1 and T̂2, respectively. If all nhs are approximately the
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2.3 The asymptotic behaviors

same order, say, nh = O(n/H), then the complexity of calculating T̂2 is

O

{
H∑

h=1

(n/H)(n/H − 1)pq + n log n

}
= O(n2pq/H + n log n),

and the total complexity of calculating T̂(X | Y ) is dominated by computing

T̂1, which has the order of O(n2pq). In the massive data scenario where

the computational efficiency is a primary concern, we follow Zhang and

Zhu (2023a) and propose a block-wise estimation procedure to alleviate the

complexity of calculating T̂1. To be precise, we divide the whole sample of

size n into B blocks, each of size nB
b = O(n/B). We define the block-wise

estimation of T1 by

T̂1,B = B−1

B∑
b=1

{nB
b (n

B
b − 1)/2}−1

∑
1≤i<j≤nB

b

d(Xb,i,Xb,j)

 ,

where Xb,i represents the i-th observation in the b-th block. We define the

block-wise estimation of T(X | Y ) as T̂B(X | Y ) = 1− T̂2/T̂1,B, which has

the complexity of O{n2pq(1/B+1/H)}. This is a substantial improvement

over calculating T̂(X | Y ) when both B and H are divergent.

2.3 The asymptotic behaviors

Before stating the asymptotic properties of the above estimates, we in-

troduce the following notations. We assume for now that the condition-

ing variable Y is categorical with class labels {1, 2, . . . , H} or discrete
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2.3 The asymptotic behaviors

taking the same values, where H can be either fixed or divergent. We

assume i ̸= j, i ̸= k and j ̸= k unless stated otherwise. By defini-

tion, T1 = E
{
d(Xi,Xj)

}
and d̃(h) = E {d(Xi,Xj) | Yi = Yj = h}. Define

σ2 = var{d(Xi,Xj) − d1(Xi) − d1(Xj)} for d1(Xi) = E {d(Xi,Xj) | Xi}.

Let εi,j,h = d(Xi,Xj) − d̃(h), ri,h = d1(Xi) − E{d1(Xi) | Yi = h}, V1(h) =

cov(εi,j,h, ri,h | Yi = Yj = h) and V2(h) = cov(εi,j,h, εi,k,h | Yi = Yj =

Yk = h). Let τ1 = var
[
d̃(Y ) − 2{1 − T(X | Y )}E{d1(X) | Y }

]
and τ2 =

E{V2(Y )}−2{1−T(X | Y )}E{V1(Y )}+{1−T(X | Y )}2E[var{d1(X) | Y }].

In addition, τ 2 = τ1 + 4τ2. We remark here that, σ2 depends on the distri-

bution of X only, while τ 2 depends on the joint distribution of (X, Y ).

Theorem 1. Suppose Y is categorical with class labels {1, 2, . . . , H} or

discrete taking the same values. The following convergence results assume

implicitly that n → ∞.

1. T̂(X | Y ) converges in probability to T(X | Y ).

2. Assume X is independent of Y . If H remains fixed as n → ∞, then

var
{
n
(
T̂1 − T̂2

)}
→ 2(H − 1)σ2, and

nT̂(X | Y )
d−→ (H − 1)

∞∑
k=1

λk(X
2
k − 1),

where all Xks are independent standard normal, and all λks are posi-

tive constants depending on the distribution of X only. The summa-
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2.3 The asymptotic behaviors

tion of all λks is one.

If H → ∞ as n → ∞, allowing for H = O(n), then var
{
(ncn)

1/2
(
T̂1−

T̂2

)}
→ 2σ2, and (ncn)

1/2T̂(X | Y )
d−→ N (0, 2σ2/T 2

1 ), where

c−1
n =

H∑
h=1

nh/{n(nh − 1)}.

3. Assume X is dependent but not completely dependent upon Y , H is

either fixed, or divergent with H = o(n) and max
h

ph = O (n−α) for

some 0 < α < 1. Then n1/2{T̂(X | Y ) − T(X | Y )}
/
(τ/T1)

d−→

N (0, 1).

4. Assume X is completely dependent upon Y . Then pr{T̂(X | Y ) =

1} = 1.

Next we describe the asymptotic properties when the conditioning vari-

able Y is continuous. We shall use the following notations. Definem(Yi, Yj) =

E{d(Xi,Xj) | Yi, Yj}, εi,j = d(Xi,Xj)−m(Yi, Yj), ri = d1(Xi)−E{d1(Xi) |

Yi}, V3(Yi, Yj) = cov(εi,j, ri | Yi, Yj), V4(Yi, Yj, Yk) = cov(εi,j, εi,k | Yi, Yj, Yk).

We further define τ3 = var
[
m(Y, Y ) − 2{1 − T(X | Y )}E{d1(X) | Y }

]
and τ4 = E{V4(Y, Y, Y )} − 2{1 − T(X | Y )}E{V3(Y, Y )} + {1 − T(X |

Y )}2E[var{d1(X) | Y }]. We remark here that m(Y, Y ), V3(Y, Y ) and

V4(Y, Y, Y ) correspond to d̃(Y ), V1(Y ) and V2(Y ), respectively. In addi-

tion, we define τ 2s = τ3 + 4τ4.
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2.3 The asymptotic behaviors

We define a family of functions {f(x, ·)} to be uniformly non-expansive

in the metric of M(·) if, for any two points yj and yk,

sup
x

|f(x,yj)− f(x,yk)| ≤ |M(yj)−M(yk)| .

We assume the following conditions on the smoothness.

(A1) The family of functions, {m(yi, ·)} is uniformly non-expansive in the

metric of M(·), where M(·) has a total variation of order γ and is non-

decreasing over (−∞,−B0] and [B0,∞). In addition, max{|M(yi)|1/γ,

|M(−yi)|1/γ} pr(|Yi| > yi) → 0 as yi → ∞.

(A2) The families of functions, {V3(yi, ·)} and {V4(yi, yj, ·)} are uniformly

non-expansive in the metric of V (·), where V (·) has a total variation

of order ξ and is non-decreasing over (−∞,−B′
0] and [B′

0,∞); In

addition, max{|V (yi)|1/ξ, |V (−yi)|1/ξ} pr(|Yi| > yi) → 0 as yi → ∞.

(A3) max
h

nh = O (nα), where α = min(1/2− γ, 1− ξ) > 0.

The conditions of total variation and non-expansiveness are widely used

in the literature. See, for example, Hsing and Carroll (1992), Zhu and Ng

(1995), Zhu et al. (2006), Li and Zhu (2007) and Lin et al. (2018). We

extend the concept of non-expansiveness to uniform non-expansiveness to

accommodate multivariate functions.
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2.3 The asymptotic behaviors

Theorem 2. Suppose Y is continuous. The following convergence results

assume implicitly that H → ∞ as n → ∞.

1. Assume X is independent of Y . We allow for H = O(n), then

(ncn)
1/2T̂(X | Y )

d−→ N (0, 2σ2/T 2
1 ).

2. Assume X is dependent but not completely dependent upon Y , and

H = o(n). Under Conditions (A1)–(A3),

n1/2{T̂(X | Y )− T(X | Y )}
/
(τs/T1)

d−→ N (0, 1).

3. Assume X is completely dependent upon Y . Under Condition (A1),

T̂(X | Y )− 1 = op

(
max

h
nh

/
n1−γ

)
.

The number of slices, H, is a crucial factor that affects the asymptotic

properties discussed above. Theorem 2 implies that, as long as H is not too

small, the slicing procedure always provides a consistent estimation when

the conditioning variable Y is continuous. If X and Y are dependent but

not completely dependent, the asymptotic variance of slicing estimation re-

mains unaffected by H, which appears to be a very surprising phenomenon.

However, if X completely dependent upon Y , H does affect the convergence

rate of T̂(X | Y ) indirectly through the quantity max
h

nh. It is worth noting
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that H affects the power performance of the trace correlation test. Suppose

we aim to test whether X and Y are independent. By Theorem 2, we reject

the null hypothesis H0 if (ncn/2)
1/2T̂(X | Y ) ≥ z1−α(σ/T1), where z1−α

represents the (1− α)× 100%-th quantile of standard normal distribution.

Let Φ(·) stand for the cumulative function of standard normal. The power

of the trace correlation test is

Φ
[
τ−1
s {n1/2(T1 − T2)− (cn/2)

−1/2(σz1−α)}
]
,

which decreases as H increases. It is thus recommended to use a relatively

small H to enhance power of the trace correlation test.

To implement the trace correlation test in practice, we let σ̂2 be a

consistent estimate of σ2, and define the normalized trace correlation by

T̂N(X | Y ) = (ncn)
1/2T̂(X | Y )

/(
2σ̂2/T̂ 2

1

)1/2
, which serves as the test

statistic. By Theorems 1 and 2, T̂N(X | Y ) is asymptotically standard

normal under the null hypothesis H0 when H is divergent. We reject H0 if

T̂N(X | Y ) ≥ z1−α at the significance level α.

3. Numerical Studies

We demonstrate the theoretical properties and the usefulness of trace cor-

relation through three synthetic examples.

Example 1. Let Y be a univariate categorical variable with H categories,
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where each category has a probability of occurrence pr(Y = h) = 1/H, for

h = 1, . . . , H. We set H to {2, 4, 8, 16} and fix the dimensions of matrices

to p = q = 10. The centering matrices, Ch ∈ Rp×q, for h = 1, . . . , H,

are generated from a matrix normal distribution Np,q(M,U,V) with mean

M = 0p×q, row covariances U = (Uk,l)p×p, where Uk,l = 0.5|k−l|, for k, l =

1, . . . , p and column covariancesV = Iq×q. We draw the error matrix E from

a matrix t-distributionMp,q(ν,M,U,V) using ν = 1 degree of freedom, the

same mean, row and column covariances as the matrix normal distribution.

We consider two scenarios for generating X ∈ Rp×q:

(1) Let pr(X = Ch + 5E) = 1/H, for h = 1, . . . , H.

(2) Let X = Ch + 5E if Y = h, for h = 1, . . . , H.

We remark here that X and Y are independent in the first scenario and

dependent in the second. We set the sample size n = 256 and repeat this

data generating process for 10, 000 times. The normalized trace correlations

are shown in Figure 2. We observe that if X and Y are independent, the

normalized trace correlations are normally distributed, as long as H is not

too small, say, H ≥ 8. If X and Y are dependent, the normalized trace

correlations are asymptotically normal for a wide range of H. Such findings

are exactly in line with our observations in Theorem 1.
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Figure 2: The dashed lines stand for the kernel densities of normalized

trace correlations obtained from 10,000 repetitions, and the solid lines stand

for the normal densities, which serve as reference curves. X and Y are

independent in (a)–(d) and dependent in (e)–(h). Therefore, the normal

densities have mean zero only in (a)–(d).

Next we let Y be a continuous random variable drawn from the uniform

distribution on [−1, 1]. We generate E = (Ek,l)p×q from the matrix normal

distribution Np,q(M,U,V). Let X = (Xk,l)p×q, where Xk,l = Ek,l for k =

1, . . . , p and l = m+ 1, . . . , q. Moreover, for the first m columns of X, i.e.,

Xk,l for k = 1, . . . , p and l = 1, . . . ,m, we generate from one of the following

three models:

(3) Xk,l = 0.5Y 2 + δEk,l.
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(4) Xk,l = 1.2
{
|Y + 0.5|I(Y < 0) + |Y − 0.5|I(Y ≥ 0)

}
+ δEk,l.

(5) Xk,l = 0.25 cos(4πY ) + δEk,l.

The above models have also been used by Heller et al. (2013), Kong et al.

(2019) and Chatterjee (2021). We fix p = q = 10 and vary m from 0 to 10.

Specifically, when m = 0, X and Y are independent, whereas when m = 10

and δ = 0, X is functionally dependent on Y .

We set n = 256, and divide Y uniformly into H slices with H =

{8, 16, 32, 64}. The normalized trace correlations of Model (3) with δ = 1

are depicted in Figure 3. The results indicate that the normalized trace

correlations follow normal distribution for all choices of H, regardless of

how X and Y are dependent. These findings align with Theorem 2.

To investigate the relationship between the power of the trace correla-

tion test and H, we consider Models (3)–(5) with δ = 1. We vary m over

{1, 2, 5, 10} to increase the strength of dependence between X and Y . Let

H = {16, 32, 64} in the trace correlation test. The empirical powers of the

trace correlation test based on 10, 000 repetitions are summarized in Table

1. It can be seen that the power of the trace correlation test increases as H

decreases. This is in line with our theoretical observations in Theorem 2.

Finally we demonstrate trace correlation’s ability to measure the strength

of nonlinear dependence. In Models (3)–(5) with m = 10, we vary δ in
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Figure 3: The dashed lines stand for the kernel densities of normalized

trace correlations obtained from 10,000 repetitions when H varies over

{8, 16, 32, 64}, and the solid lines stand for the normal densities. All re-

sults are based on Model (3) only. In addition, X and Y are independent

in (a)–(d) and dependent in (e)–(h).

{1.00, 0.50, 0.25, 0.00} to increase the degree of functional dependence. For

trace correlation, we vary H over {16, 32, 64}. The averages (and standard

deviations) of trace correlations based on 10,000 repetitions for Models (3)–

(5) are displayed in Table 2. The results show that decreasing δ leads to

an increase in the trace correlation. Moreover, when δ is close to zero, the

trace correlations are almost equal to one with very small variability. We

also note that when δ = 0, increasing H reduces the gap between trace
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Table 1: The empirical powers of the trace correlation test based on 10,000

repetitions for Models (3)–(5) with m = {1, 2, 5, 10} and H = {16, 32, 64}.

Model H m = 1 m = 2 m = 5 m = 10

(3)

16 19.0 42.8 94.7 100.0

32 13.5 26.3 76.0 99.4

64 10.1 16.9 47.1 89.2

(4)

16 25.2 56.9 98.7 100.0

32 17.0 37.6 90.9 100.0

64 12.4 23.1 65.2 97.5

(5)

16 21.5 49.9 97.8 100.0

32 17.5 38.2 93.0 100.0

64 12.5 24.3 71.9 99.5

correlations and one, which echoes Theorem 2.

Example 2. In this example, we compare the power performance of several

independence tests. We refer to the trace correlation test as TC. In addition,

we include the following popular competitors into comparison:

1. The distance correlation test (Székely et al., 2007; Székely and Rizzo,

2009, DC for short), implemented with the dcor.test function in the
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Table 2: The averages (and standard deviations) of trace correlations based

on 10,000 repetitions for Models (3)–(5) with δ = {1.00, 0.50, 0.25, 0.00} and

H = {16, 32, 64}.

Model H δ = 1.00 δ = 0.50 δ = 0.25 δ = 0.00

(3)

16 0.012(0.002) 0.036(0.004) 0.086(0.005) 0.888(0.005)

32 0.012(0.003) 0.037(0.004) 0.087(0.006) 0.941(0.003)

64 0.012(0.004) 0.037(0.005) 0.087(0.006) 0.967(0.002)

(4)

16 0.014(0.003) 0.039(0.004) 0.080(0.006) 0.691(0.026)

32 0.015(0.003) 0.041(0.004) 0.086(0.006) 0.825(0.013)

64 0.015(0.004) 0.041(0.005) 0.087(0.007) 0.899(0.008)

(5)

16 0.015(0.003) 0.052(0.004) 0.147(0.008) 0.619(0.024)

32 0.017(0.003) 0.062(0.005) 0.176(0.008) 0.794(0.010)

64 0.018(0.005) 0.065(0.006) 0.185(0.008) 0.885(0.006)

energy package.

2. The Hilbert–Schmidt independence criterion test (Gretton et al., 2005,

2007, HSIC for short), implemented with the dhsic.test function in

the dHSIC package.

3. The Heller-Heller-Gorfine test (Heller et al., 2013, HHG for short)
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based on ranks of distances, implemented with the hhg.test function

in the HHG package.

4. The expectation of the conditional difference test (Yin and Yuan,

2020, ECD for short).

5. The expected conditional characteristic function-based independence

criterion test (Ke and Yin, 2020, ECCFIC for short).

To implement these tests for Models (1)–(2) in Example 1, we vectorize

the matrix X ∈ Rp×q into a vector x ∈ Rpq×1. When Y falls into the h-th

category, for h = 1, . . . , H, we define y ∈ RH×1 as a standard unit vector

with its h-th element being 1 and all other elements being 0 for the first

three tests. We follow Gretton et al. (2007) and Ke and Yin (2020) and

implement the HSIC and ECCFIC tests using the Gaussian kernel. We set

the sample size n = 256, the row dimension p = 10, and the significance level

α = 0.05. We repeat each scenario 1,000 times, and conduct all comparisons

in the R language. We run 500 random permutations to approximate the

asymptotic null distributions. The sizes of all tests for Model (1) are close

to 0.05; hence, we report only the powers for Model (2) in what follows.

We vary the column dimension of X, q, in {1, 2, 5, 10, 20, 50}, and the

number of categories, H, in {8, 16}. The empirical powers are summarized
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Table 3: The empirical powers of all six independence tests based on

Model (2) in Example 1, where the number of categories H = {8, 16} and

the column dimension q = {1, 2, 5, 10, 20, 50}.

H Test q = 1 q = 2 q = 5 q = 10 q = 20 q = 50

8

TC 85.7 91.7 99.1 100.0 100.0 100.0

DC 12.3 9.6 9.4 9.9 9.2 10.0

HSIC 34.3 26.0 23.2 20.1 20.1 23.7

HHG 21.7 17.1 15.5 13.6 13.2 13.9

ECD 11.1 8.4 8.8 8.9 8.7 9.0

ECCFIC 33.8 26.6 22.6 21.0 19.3 22.7

16

TC 68.4 78.9 94.7 99.1 100.0 100.0

DC 9.7 10.3 10.0 9.2 8.2 8.2

HSIC 23.1 18.6 17.2 16.9 14.5 15.5

HHG 12.6 12.1 9.7 8.9 8.5 9.9

ECD 7.6 6.5 6.4 7.3 7.0 6.4

ECCFIC 21.9 17.5 17.2 16.1 13.9 15.1

in Table 3. The DC and HSIC tests are known to lose power as the di-

mension increases (Zhu et al., 2020; Zhang and Zhu, 2023b). It is thus not
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surprising to see that these tests are not very powerful when the matrix-

valued object X is vectorized. The power performances of the ECD and

ECCFIC tests are similar to those of the DC and HSIC tests, respectively.

The trace correlation test outperforms these competitors across all scenar-

ios, and its superiority is particularly evident when the number of categories

is relatively smaller.

Example 3. We demonstrate the utility of trace correlation between X =

(Xk,l) ∈ Rp×q and Y in quantifying the prediction power of X on Y . We

consider two models of trace regression that link Y to X through Z =

(Zk,l) ∈ Rp×q:

(6) Poisson trace regression: (Y | Z) follows Poisson distribution with

mean function exp(1 + ⟨B,Z⟩).

(7) Normal trace regression: (Y | Z) follows normal distribution with

mean function (1 + ⟨B,Z⟩) and unit variance.

In both models, B = BT
1B2, where the rank of B is r, B1 ∈ Rr×p and B2 ∈

Rr×q. All entries ofB1 andB2 are independent and uniformly distributed on

[−1, 1]. Let E = (Ek,l) ∈ Rp×q and Z = (Zk,l) ∈ Rp×q. All entries of E and

Z are independent standard normal. For k = 1, . . . , p, we define Xk,l = Zk,l,

if l = 1, . . . ,m, and Xk,l = Ek,l, if l = m + 1, . . . , q. In other words, we
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Figure 4: The root mean square errors and trace correlations are abbrevi-

ated to RMSE and TC. The best fitting straight lines (dashed) are super-

imposed in (c) and (f).

contaminate the last (p−m) columns of Z to form X = (Xk,l) ∈ Rp×q. We

set p = q = 32 and r = 2, and vary m = {0, 2, 4, . . . , 32}. The size of both

the training and test sets is n = 1024.

Because the observations are generated from low-rank structures, we fit

trace regressions penalized by nuclear norms (Zhou and Li, 2014) on the

training set. We evaluate the prediction power of X on Y through the root
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mean square errors. We calculate both the root mean square errors and the

trace correlation between X and Y on the test set. For Model (7), we fix

H = 64 and set all nhs equal to 16 to calculate the trace correlation. The

relationships between the normalized trace correlations and the root mean

square errors are presented in Figure 4.

The results of Model (6) and (7) are summarized in Figure 4 (a)–(c)

and (d)–(f), respectively. In both models, as m varies from 0 to 32, the root

mean square errors decrease in Figure 4 (a) and (d), and the normalized

trace correlations increase in Figure 4 (b) and (e). Figures 4 (c) and (f) are

particularly noteworthy as they demonstrate a strong agreement between

the normalized trace correlations and root mean square errors. This, once

again, echoes the observation we have made through the illustrative exam-

ple in Section 1. In Figure 1 (c), Figure 4 (c) and (f), the trace correlations

match the prediction powers pretty well. This interesting observation indi-

cates that we can evaluate the prediction power through trace correlation.

To be precise, if the trace correlation is large enough, we can conclude

that X is very predictive for Y without fitting a complex predictive model.

However, if the trace correlation is relatively small, we may have to collect

additional covariates to enhance the prediction power.
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Table 4: The averages (and standard deviations) of trace correlations based

on 10,000 repetitions for Example 4 with δ = {1.00, 0.50, 0.25, 0.00}.

TC δ = 1.00 δ = 0.50 δ = 0.25 δ = 0.00

T̂(X | Y ) 0.002(0.015) 0.016(0.016) 0.040(0.019) 0.089(0.021)

T̂(X2 | Y ) 0.012(0.018) 0.079(0.028) 0.247(0.035) 0.859(0.008)

4. Detecting Nonfunctional Dependence

Trace correlation is designed to detect functional dependence. In this sec-

tion, we adapt trace correlation in the reproducing kernel Hilbert space to

detect nonfunctional dependence. Let us start from an illustrative example.

Example 4. We generate the random variables (X, Y ) through an in-

termediate variables Z. Specifically, we generate (Z, Y ) from a uniform

distribution on the unit circle, such that Z2 + Y 2 = 1. In addition, we set

X = Z + δε, where ε is standard normal and δ = {0.00, 0.25, 0.50, 1.00}.

We remark here that, X is not functionally dependent upon Y even when

δ = 0, but the transformed random variable, Ψ(X) = X2, is.

We set n = 256 and H = 16, and calculate T̂(X | Y ) and T̂(X2 | Y ) at

different values of δ. The resultant averages (and standard deviations) of

trace correlations based on 10,000 repetitions are displayed in Table 4.
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These results indicate that T̂(X | Y ) remains very small, with a value

of just 0.089, even when δ decreases to 0.00. However, by replacing X

with X2, the resulting value of T̂(X2 | Y ) increases significantly to 0.859.

This example motivates us to generalize the concept of trace correlation by

introducing some transformations of the random object X.

Let us define the trace correlation in the reproducing kernel Hilbert

space. To be precise, let Ψ(X) denote the feature maps, which are poten-

tially infinite-dimensional transformations of the random object X. Instead

of working with X, we use Ψ(X) and define the trace correlation by

T{Ψ(X) | Y } = 1− E
{
d̃Ψ(Y )

}/
E
[
d{Ψ(X1),Ψ(X2)}

]
,

where d̃Ψ(y) = E
[
d{Ψ(X1),Ψ(X2)}

∣∣∣ Y1 = y, Y2 = y
]
and

d{Ψ(X1),Ψ(X2)} = arccos
(
{1 + ⟨Ψ(X1),Ψ(X2)⟩}[

{1 + ⟨Ψ(X1),Ψ(X1)⟩}{1 + ⟨Ψ(X2),Ψ(X2)⟩}
]−1/2)

.

These quantities merely involve inner products of the form ⟨Ψ(X1),Ψ(X2)⟩.

Suppose that there exists a reproducing kernel such that K(X1,X2) =

⟨Ψ(X1),Ψ(X2)⟩, it follows that

d{Ψ(X1),Ψ(X2)} = arccos
(
{1 +K(X1,X2)}[

{1 +K(X1,X1)}{1 +K(X2,X2)}
]−1/2)

.
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The kernel trace correlation allows us to work with K, instead of Ψ.

We remark that, even when T{Ψ(X) | Y } = 0, X and Y are not

necessarily independent. To ensure T{Ψ(X) | Y } inherits this desirable

property from trace correlation, we must restrict Ψ(X) into the family of

continuous and invertible mappings. This is rigorously formulated in the

following proposition.

Proposition 2. In general, 0 ≤ T{Ψ(X) | Y } ≤ 1. In particular, suppose

the feature mappings Ψ are continuous and injective, or alternatively, the

continuous positive definite kernel function K is universal, T{Ψ(X) | Y } =

0 if and only if X and Y are independent, and T{Ψ(X) | Y } = 1 if and

only if X is completely dependent upon Y .

The family of universal kernels (Micchelli et al., 2006) includes the

most popular choices in the machine learning literature, such as the inverse

multiquadric kernelK(X1, X2) = {1+γ(X1−X2)
2}−1/2, the Gaussian kernel

K(X1, X2) = exp{−γ(X1 − X2)
2} and the Laplacian kernel K(X1, X2) =

exp(−γ|X1 −X2|).

We demonstrate the effectiveness of kernel trace correlation in Ex-

ample 4, by applying the aforementioned universal kernels. We set δ =

{0, 0.1, . . . , 1} and H = 16. The results are summarized in Figure 5.

The kernel trick is observed to significantly increase trace correlations
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Figure 5: The horizontal axis stands for δ ∈ {0, 0.1, . . . , 1}, and the vertical

axes correspond to the normalized trace correlations in (a) and the empirical

powers in (b), respectively. We compare T̂(X | Y ) (◦) with T̂{Ψ(X) | Y }

using Gaussian kernel (△), Laplacian kernel (+), and inverse multiquadric

kernel (×).

and the empirical powers in tests for independence. One possible explana-

tion for this phenomenon is that the feature maps underlying these kernels

contain components that are functionally dependent upon Y , which assists

in the detection of nonfunctional dependence. For instance, Gaussian kernel

has an infinite-dimensional feature mapΨ(X) = exp(−X2/2)
(
1, X,X2/21/2,

X3/61/2, . . .
)T

by Taylor expansion. In Example 4, all Xd, for even d, are

functionally dependent upon Y .
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5. Discussion

This paper introduces trace correlation, a novel method for testing inde-

pendence and measuring the strength of association. The trace correlation

characterizes both independence and complete dependence. This distinc-

tive property makes trace correlation an efficient tool for evaluating the

prediction performance before fitting any complicated nonlinear models.

Trace correlation allows one random object to be matrix-valued. In the

present context, we assume the conditioning random object to be univari-

ate. If it is multivariate, we can simply divide the observations into several

blocks using clustering methods like K-means. If it is also matrix-valued,

specific data-driven approaches for clustering may be required. We also

extend trace correlation for general complete dependence by adapting it in

the reproducing kernel Hilbert space.

By definition, trace correlation is asymmetric. If symmetry is desired,

an alternative approach is to introduce another trace correlation by switch-

ing the roles of the two random objects and taking the maximum. The

concept of trace correlation has the potential to be generalized for testing

conditional independence, which deserves further investigation.
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