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Abstract: An important issue in many multivariate regression problems is to

eliminate candidate predictors with null predictor vectors. In large-dimensional

(LD) setting where the numbers of responses and predictors are large, model

selection encounters the scalability challenge. Knock-one-out (KOO) statistics

hold promise to meet this challenge. In this paper, the almost sure limits and

the central limit theorem of the KOO statistics are derived under the LD set-

ting and mild distributional assumptions (finite fourth moments) of the errors

by random matrix theory. These theoretical results guarantee the strong con-

sistency of a subset selection rule based on the KOO statistics with a general

threshold. For enhancing the robustness of the selection rule, we also propose

a bootstrap threshold for the KOO approach. Simulation results support our

∗ Corresponding author.
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1. INTRODUCTION

conclusions and demonstrate the selection probabilities by the KOO approach

with the bootstrap threshold outperform the methods using Akaike information

threshold, Bayesian information threshold and Mallow’s Cp threshold. We com-

pare the proposed KOO approach with those based on information threshold to a

chemometrics dataset and a yeast cell-cycle dataset, which suggests our proposed

method identifies useful models.

Key words and phrases: High-dimensional Regression, AIC, BIC, Information

criteria, Multi-response regression, KOO, Variable selection, RMT.

1. Introduction

In multivariate statistical analysis, linear regression is a basic and com-

monly used type of approach. The overall idea of regression is to examine

which variables in particular are significant predictors of the outcome vari-

ables, and in what way do they indicated by the magnitude and sign of the

outcome variables. Specifically,

Y = XΘ+ EΣ1/2, (1.1)

where the n × p response matrix Y = (yij) = (y1, . . . ,yn)
′, the n × k

predictor matrix X = (x̃1, . . . , x̃n)
′ = (x1, . . . ,xk), the k × p regression

coefficient matrix Θ = (θ1, . . . ,θk)
′, the n × p random errors matrix E =

(e1, . . . , ep) = (eij), (Σ1/2)2 = Σ, and the p × p covariance matrix Σ is

of full rank. A main goal in multivariate linear regression (MLR) is to
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1. INTRODUCTION

estimate the regression coefficients Θ. The estimates should be such that

the estimated regression plane explains the variation in the values of the

responses with great accuracy.

Model (1.1) (referred to hereinafter as the full model), however, is not

always satisfactory because some of the predictors may be uncorrelated with

the responses. We take a simple example to illustrate this fact. Let j be a

subset of [k] = {1, 2, . . . , k}, Xj = (xj, j ∈ j) and Θj = (θj, j ∈ j)′. Denote

model j by

Mj : Y = XjΘj + EΣ1/2. (1.2)

The classical linear least-squares solution is to estimate the matrix of re-

gression coefficients 󰁥Θ of the full model (1.1) by

󰁥Θ = (X′X)−1X′Y,

which minimizes the sum of the squares of errors, i.e.,

󰁥Θ = argmin
Θ

tr(Y −XΘ)(Y −XΘ)′.

If there exists a predictor vector θj = 0, then the least-squares estimator

of the regression coefficients of model M[k]\j is

󰁥Θ[k]\j = (X′
[k]\jX[k]\j)

−1X′
[k]\jY,
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It is known that in this case the mean squared error (MSE) of the predic-

tions from 󰁥Θ[k]\j is smaller than that from 󰁥Θ under some mild conditions.

Moreover, even though the elements of θj are not equal to zero but small

enough, the MSE of the predictions from 󰁥Θ[k]\j is also smaller than that

from 󰁥Θ (e.g., Fujikoshi et al. (2010)). Therefore, removing these “non-

significant” predictors from the full model improves the model. How to

determine the significance of each predictor for the response and to select

the true model from the full model are important problems in multiple re-

gression model. Here, the true model is the data-generating model and is

denoted by

Mj∗ : Y = Xj∗Θj∗ + EΣ1/2, (1.3)

where for all j ∈ [k]\j∗, θj = 0.

To measure the significance of the predictors for the response, one can

make use of the regression coefficients, the partial correlation or the multiple

correlation coefficient between each predictor and the responses. However,

these direct measures are unstable under high-dimensional regression be-

cause they all highly depend on the values of each predictor. Instead, we

consider removing one predictor vector from the full model and measuring

how much “information” we lose. Hence, we refer to this kind of statistics

KOO (knock-one-out or kick-one-out) statistics in the technical report (Bai
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et al., 2018). This KOO idea can be traced back to Nishii et al. (1988),

who investigated the discriminant analysis and canonical correlation anal-

ysis under fixed dimensions. In this paper, we study the KOO statistics

in high-dimensional responses and predictors.The KOO method was moti-

vated to address the issue of computational complexity in traditional AIC

and BIC methods. Moreover, we find that the KOO method exhibits ex-

cellent stability, particularly in high-dimensional response settings.

There has been a lot of recent interest in variable selection problems

for high-dimensional linear regression models because of the increasingly

frequent and important in diverse fields of economics, finance and machine

learning. For univariate (or single) response case (i.e., p = 1), a variety

of methods have been developed. This includes the penalty-based methods

such as the least angle and shrinkage selection operator (LASSO, Tibshirani

(1996)), the adaptive LASSO (Zou, 2006), the smoothly clipped absolute

deviation (SCAD Fan and Li (2001)), the minimax convex penalty (MCP,

Zhang (2010)); the screening-based methods such as the sure independence

screening (SIS, Fan and Lv (2008)), the covariate assisted screening esti-

mates (CASE, Ke et al. (2014)); the testing based methods such as the

multiple testing approach by the false discovery rate (FDR) (Liu and Luo,

2014; Xia et al., 2018) and many other related methods. We refer to some
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recent review papers (Shao, 1997; Fan and Lv, 2010; Huang et al., 2012;

Anzanello and Fogliatto, 2014; Heinze et al., 2018; Desboulets, 2018; Lee

et al., 2019; ?) for more details. However, there is comparatively less lit-

erature available for multiple responses (i.e. p > 1). Xia (2017) proposed

a row-wise multiple testing procedure when p is fixed; Kong et al. (2017)

suggested a screening method via the distance correlations of the responses

and each covariate for high-dimensional multi-response interaction mod-

els. For p → ∞, following Bai et al. (2014), Bai et al. (2022) investigated

the asymptotic properties of the classical AIC, BIC and Cp criteria; and

Sakurai and Fujikoshi (2020); Oda and Yanagihara (2020) established the

consistencies of the KOO methods with AIC, BIC and Cp thresholds under

normality errors.

Main contributions of this paper are: (1) We obtain the asymptotic

distributions of the KOO statistics Kj for any j = 1, . . . , k under some mild

moment conditions and 3L asymptotic framework: large-response (p → ∞),

large-model (k → ∞) and large-sample (n → ∞). These theoretical results

are applicable to many other model selection rules, such as growth curve

model, multiple discriminant analysis, principal component analysis, canon-

ical correlation analysis, and graphical model (e.g., Fujikoshi and Sakurai

(2019); Oda et al. (2020); Fujikoshi et al. (2023)). (2) A scalable model
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selection method based on the KOO statistics is proposed. In practice, we

use a multiplier bootstrap procedure to estimate the asymptotic thresholds.

Simulation studies and real data analyses suggest the proposed model se-

lection method performs favorably against the existing KOO methods with

AIC, BIC and Cp thresholds.

The remainder of this paper is organized as follows. In Section 2, we

state the main results of this paper, which include the almost sure limit

and central limit theorem (CLT) of the KOO statistics. In Section 3, we

propose a subset selection rule for the high-dimensional linear regression

model based on the KOO statistics, and the strong consistency of this rule

is presented as well. For enhancing the robustness of the selection rule, we

also propose a bootstrap threshold for the KOO approach in Section 3. In

Sections 4 and 5, we conduct some simulation studies and real data analysis,

respectively. Proofs of the main theorems under normality are given in

Section 6 since they are less technical and of independent interests. Proofs

for general error distributions using random matrix theory are provided in

the supplementary material for interested readers.
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2. KOO statistics

2.1 Notation and preliminary

We begin this section with some basic notation and definitions. In this pa-

per, matrices and vectors are denoted by boldface uppercase and lowercase

letters, respectively. Let In denote the identity matrix of order n,

󰁥Σj =
1

n
Y′QjY, Qj = In −Pj, Pj = Xj(X

′
jXj)

−1X′
j, (2.1)

|j| the cardinality of subset j, and |󰁥Σj| the determinant 󰁥Σj. Note that

Pj is an orthogonal projection of rank |j| onto the subspace spanned by

Xj, and Qj is the orthogonal projection of rank n− |j| onto the orthogonal

complement subspace spanned byXj. For brevity, we suppress the subscript

[k] for full model, and denote the true model subscript by ∗ and the subscript

of model [k]\j by j (e.g., Q := Q[k], Qj∗ := Q∗ and Qj := Q[k]\j). The

identity matrix, all-zero matrix, all-one vector and all-zero vector, whose

orders are often clear from the context and thus will not be indicated, are

denoted by I, O, 1, and 0, respectively. We call j (or variable xj) true if

j ∈ j∗, and j (or variable xj) is spurious if j /∈ j∗. We call a model j

is over-specified if j ⊃ j∗ and under-specified if jc ∩ j∗ is not empty. For

a matrix A, its spectral norm and maximum norm are denoted by 󰀂A󰀂

and 󰀂A󰀂∞, respectively. The largest and smallest eigenvalues of A are
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denoted by λA
max and λA

min, respectively. For two matrices A and B of the

same dimension, A ◦ B stands for the Hadamard product of A and B.

We denote the probability by P, the expectation by E, and the trace by

tr. Define cn := p/n and αn := k/n. Throughout this paper, we use o(1)

(respectively, op(1), oa.s.(1)) to denote (respectively, in probability, almost

surely) scalar negligible entries. And the notations O(1), Op(1) and Oa.s.(1)

are used in a similar way.

We now introduce the KOO statistics

Kj = tr(󰁥Σ
−1 󰁥Σj)− p.

It is known that for testing θj = 0 under normality, the Lawley-Hotelling

trace statistic can be expressed as (n−k)(Kj + p). Next we will investigate

the statistical properties of Kj under the 3L asymptotic framework: large-

model (k), large-sample (n) and large-dimensional response (p). Before

presenting our main theoretical results, we briefly analyze the statistic Kj.

Let

aj = Qjxj/ 󰀂Qjxj󰀂 .

By Sylvester’s determinant theorem, we have that

n󰁥Σj = n󰁥Σ+Y′aja
′
jY (2.2)
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which implies

Kj = n−1a′
jY

󰁥Σ
−1
Y′aj. (2.3)

If we plug the model (1.3) into the jth KOO statistic, we have

Kj = (a′
jX∗Θ∗Σ

−1/2 + a′
jE)(E

′QE)−1(E′aj +Σ−1/2Θ′
∗X

′
∗aj).

When j is spurious (i.e., j /∈ j∗), aj and X∗ are orthogonal. Thus, in this

case,

Kj = a′
jE(E

′QE)−1E′aj.

On the other hand, when j is true (i.e., j ∈ j∗), then

Kj ≍ a′
jE(E

′QE)−1E′aj + x′
jQjxjθ

′
jΣ

−1/2(E′QE)−1Σ−1/2θj.

We emphasize that, for spurious j, the KOO statistics Kj are independent

of the population covariance matrix Σ. This property is highly desirable

as it eliminates the involvement of unknown parameters. Furthermore,

the term x′
jQjxjθ

′
jΣ

−1/2(E′QE)−1Σ−1/2θj > 0 becomes a key indicator to

distinguish between spurious and true variables, with its value serving as

a crucial factor in the determination process. The detailed discussion is

stated in the next subsection.
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2.2 Asymptotical properties of the KOO statistics

In this subsection, we state the asymptotics of the KOO statistics and

illustrate how the KOO statistics of true variables behave differently from

that of the KOO statistics of spurious variables under some mild conditions.

Before stating these results, we collect the needed conditions below.

(C1) As min{k, p, n} → ∞, cn → c ∈ (0, 1) and αn → α ∈ [0, 1) satisfying

α + c < 1.

(C2) The true model j∗ ⊂ [k], and |j∗| is allowed to diverge as k → ∞.

(C3) The entries eij of E are independent and identically distributed (i.i.d.)

with zero means, unit variances, and finite fourth moments, i.e., τ =

Ee4ij − 3 ∈ (−∞,∞).

(C4) Matrix X′X is positive definite for all n > k + p.

Our main results of this paper are stated below. The proofs, under nor-

mality of errors, will be given in Section 6; and the general proofs without

assuming normality of errors will be given in the Appendix.

Let

δj := δnj = p−1x′
jQjxjθ

′
jΣ

−1θj. (2.4)

The following theorem identifies the strong limits of the KOO statistics Kj
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for all j ∈ [k].

Theorem 2.1. Under conditions (C1) – (C4), we have uniformly in j ∈ [k],

Kj =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

cn
1−cn−αn

+ oa.s.(1), if j /∈ j∗,

(1 + δj)
󰁫

cn
1−cn−αn

+ oa.s.(1)
󰁬
, if j ∈ j∗.

As θj and Σ are typically unknown in practice, the limits of Kj’s for

j ∈ j∗ are unknown. However, the fluctuations of the Kj’s for spurious

variables are pretty simple, which is described in the following theorem.

Theorem 2.2. Under conditions (C1) – (C4), for any fixed integer q > 0

and {j1, . . . , jq} ⊂ [k]\j∗, the random vector

√
pG−1/2

q

󰀗
(Kj1 , . . . ,Kjq)

′ − cn
1− cn − αn

1q

󰀘

converges weakly to the standard q-dimensional Gaussian random vector,

where

Gq =
c2n

(1− αn − cn)2

󰀗
2(1− αn)

(1− αn − cn)
(A′

qAq)
2 + τ(Aq ◦Aq)

′(Aq ◦Aq)

󰀘
,

and Aq = (aj1 , . . . , ajq) is an n× q non-random matrix.

Theorem 2.2 is of independent interest: As Kj’s are the basic statistics

for testing the hypothesis that θj = 0, this theorem can be used to obtain

the CLTs of these statistics under the null hypothesis. Moreover, if τ = 0

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0153



2. KOO STATISTICS

(e.g., {eij} come from a standard normal distribution), then the second

term in Gq vanishes; or if maxj∈[k]\j∗ 󰀂aj󰀂∞ = o(1), then the second term

in the covariance matrix Gq tends to 0 as n → ∞.

When τ ∕= 0, we propose an estimator of τ ,

τ̂ =
󰀋
p−1tr[(Y′QY − (n− k)I) ◦ (Y′QY − (n− k)I)]− 2(n− k)

󰀌
/tr(Q◦Q),

which is shown to be unbiased and weakly consistent in Theorem 2.3 below.

Theorem 2.3. Under the conditions (C1) – (C4), τ̂ is an unbiased and

weakly consistent estimator of τ .

Combining Theorems 2.2 and 2.3, the rejection region of the KOO

statistics for testing whether some variables are spurious can be constructed.

However, in order to know the power, we also need to know the fluctuations

for the statistics of the true variables. The following theorem states that

under some additional assumptions, the KOO statistic of the true variable

is comparable to that of the spurious variables.

Theorem 2.4. In addition to the conditions (C1) – (C4), for j ∈ j∗, we

assume that

(C5): Ee311 = 0.

(C6): As min{p, n, k} → ∞, 󰀂aj󰀂∞ = o(1), x′
jQjxj󰀂θj

′Σ−1/2󰀂2∞ = o(p).
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(C7): As min{p, n, k} → ∞, δj tends to a constant.

Then,

√
p

󰀕
Kj −

cn(1 + δj)

1− cn − αn

󰀖
/σnj

D→ N(0, 1),

where σ2
nj = 2c2n[(1− αn)(1 + 2δj) + cnδ

2
j ]/(1− αn − cn)

3.

2.3 Some remarks on the theorems

Remark 2.1. The condition, c > 0, in (C1) is due to technical reasons:

our main tools are from random matrix theory (RMT) and RMT generally

assumes the limit p/n exists and is positive. Note further that we make

no explicit use of the unknown limits α and c in all the theorems below.

Rather, we used αn and cn, which are always positive, in our results.

Remark 2.2. If the model size k is greater than the sample size n but the

true model size k∗ is fixed, one can first apply screening methods (such as

the sure independence screening method based on the distance correlation

(Li et al., 2012), and interaction pursuit via distance correlation (Kong

et al., 2017)) to ensure condition (C1) holds. For further details on the

screening methods, see (Fan and Lv, 2008, 2010).

Remark 2.3. If the entries eij of E are independent with common kurtosis,

but not necessarily identically distributed, our results in this paper continue
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to hold provided an additional Lindeberg-type condition:

1

η4n2

󰁛

i,j

E
󰀅
|eij|4

󰀋
|eij| ≥ η

√
n
󰀌󰀆

= o(1),

for any η > 0. Here, {·} stands for the indicator function. The proofs are

analogous but slightly more tedious, and we do not pursue this extension

in this paper.

Remark 2.4. From Theorems 2.2 and 2.4, we can theoretically investigate

the asymptotic power of whether a variable is spurious. However, for testing

whether a variable is true, the asymptotic distribution of the true KOO

statistic (i.e., Theorem 2.4) cannot be applied directly since δj is unknown

when j is a true variable. Variable selection problem will be discussed in

the next section in detail.

3. Selection criteria based on the KOO statistics

Theorem 2.1 highlights the crucial role of δj in differentiating the true vari-

ables from the spurious ones. For spurious variables, Kj’s should be close

to the point cn/(1− cn − αn) when n, p, k are large. Since δj is always posi-

tive for j ∈ j∗, the true variables would be separated from cn/(1− cn − αn)

and thus can be identified by the largest Kj’s. Moreover, we can deduce a
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strongly consistent estimator for the true variables from this theorem. Let

ĵϑ =

󰀝
j ∈ [k]|Kj >

cn(1 + ϑ)

1− αn − cn

󰀞
, ϑ > 0.

Then, we have the following corollary of Theorem 2.1.

Corollary 3.1. Assume that conditions (C1) – (C4) hold and lim δj > 0

for all j ∈ j∗. Then, for any fixed value ϑ ∈ (0,minj∈j∗{lim δj}),

lim
n,p→∞

ĵϑ
a.s.→ j∗.

Remark 3.1. This corollary implies the strong consistency for the KOO

methods with AIC, BIC and Cp thresholds if δj satisfies the conditions.

In practice, however, choosing a suitable ϑ is important but very chal-

lenging because (1) the largest spurious KOO statistic may converge to its

limit slowly; (2) the spurious KOO statistics are correlated; and (3) the

limits of the true KOO statistics are unknown. Hence, we propose a high-

dimensional multiplier bootstrap procedure to approximate the distribution

of the largest spurious KOO statistic Kj, from which a selection criterion

for the linear regression model (1.1) under the 3L framework is formulated.

Denote the estimator of the true model be

ĵ∗ = {j ∈ [k] : Kj > Kν},
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Algorithm 1: Estimation of Kν

Input: ν, Y, X and estimator τ̂ based on {Y,X}

Output: Estimator K̂ν

1 Compute Ak = (a1, . . . , ak).

2 Generate a random matrix Ẽ with n× p i.i.d. zero mean, unit

variance and τ̂ excess kurtosis elements.

3 Compute K = A′
kẼ(Ẽ

′QẼ)−1Ẽ′Ak.

4 Compute the largest value of the diagonal elements of K and

denote it by K̃(1).

5 Repeat N times of the above procedures 2–4, and obtain

{K̃(1), . . . , K̃(N)}.

6 Compute the 100(1− ν)th quantile of {K̃(1), . . . , K̃(N)} and denote

it by K̂ν .

where Kν is the critical value with at significance level ν, which is estimated

by Algorithm 1.

From Theorem 2.2, the critical value Kν may depend on 󰀂ai󰀂∞ or the

excess kurtosis but not on the exact distribution of the errors. The boxplots

of the spurious KOO statistics Kj’s for different distributions presented in

Fig. 1 support this claim. In this simulation, we set Θ = O, Σ = I and

generate two predictor matrices: the first one is a 2000 × 600 matrix with
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i.i.d. entries from U(1, 5); and the second one is a 2000 × 600 diagonal

matrix. As the values of the diagonal elements do not affect the result, the

diagonal entries were chosen to be 1 in our simulation. We examine six

different distributions of the errors: standard normal distribution N(0, 1),

standardized uniform distribution U(0, 1), standardized Bernoulli distribu-

tion B(1, ρ) with parameter ρ = (6−
√
6)/12, standardized chi-square distri-

bution with 12 degrees of freedom χ2(12), standardized t-distribution with

10 degrees of freedom t10, standardized Poisson distribution with parame-

ter 1 Pois(1), standardized exponential distribution with rate parameter 1

Exp(1) and standardized chi-square distribution with 2 degrees of freedom

χ2(2). Note that 󰀂ai󰀂∞ → 0 for the random predictor matrix, 󰀂ai󰀂∞ = 1

for the rectangular diagonal predictor matrix, the excess kurtosis of N(0, 1)

is 0, the excess kurtoses of Exp(1) and χ2(2) are 2, the excess kurtoses

of χ2(12), t10 and Pois(1) are 1, and the excess kurtoses of U(0, 1) and

B(1, (6 −
√
6)/12) are −6/5. Hence, in practice for convenience, we can

use standardized χ2 distribution with 12/τ̂ degrees of freedom if τ̂ > 0

and standardized Bernoulli distribution B(1, ρ) with parameter ρ satisfying

ρ(1− ρ) = 1/(6− τ̂) if τ̂ < 0. Of course, if maxi 󰀂ai󰀂∞ → 0, we can use the

standard normal distribution directly.
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(a) Random predictor matrix (b) Rectangular diagonal predictor matrix

Figure 1: Boxplots of the spurious KOO statistics {K(j), j = 1, . . . , 1000}

with six different normalized distributions and two predictor matrices. The

y-axis represents the values of K(j)’s.

4. Simulation studies

In this section, we numerically examine the properties of the proposed KOO

method in a 3L framework with different settings. For comparison, we also

report the results of KOO methods with AIC, BIC and Cp thresholds as

proposed by Nishii et al. (1988) and implemented by Fujikoshi and Sakurai

(2019); Oda et al. (2020); Nakagawa et al. (2021); Fujikoshi (2022). Specif-

ically, the KOO methods with AIC, BIC and Cp thresholds, respectively,
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choose the model

ĵA∗ = {j ∈ [k] : log(1 +Kj) > 2cn},

ĵB∗ = {j ∈ [k] : log(1 +Kj) > log(n)cn},

ĵC∗ = {j ∈ [k] : (1− αn)Kj > 2cn}.

For simplicity, we abbreviate the KOO method with our bootstrapping

threshold to KBT, the KOO method with AIC threshold as KAIC. Similar

abbreviations KBIC and KCp are used. We consider the following two

settings.

Setting I: Fix k∗ = 5, p/n = {0.2, 0.4} and k/n = {0.2, 0.4} with

n = 100, 500, 1000, 2000. The results for n = 2000 are given in the

Appendix. Set Σ = I, X = (xij)n×k, Θj∗ = 15θ∗ and Θ = (Θj∗ ,0),

where {xij} are i.i.d. generated from the continuous uniform dis-

tributions U(1, 5), 15 is a five-dimensional vector of ones and θ∗ =

((−0.5)0, . . . , (−0.5)p−1).

Setting II: Same as Setting I, except X = (Ik,Ok×(n−k))
′ and Θj∗ =

√
n15θ∗.

For Setting I, we consider three cases for the distribution of E:

(i) Standard normal distribution, eij ∼ N(0, 1);
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(ii) Standardized t distribution with three degrees of freedom, i.e., eij ∼

t3/
󰁳
5/3;

(iii) Standardized chi-square distribution with two degrees of freedom, i.e.,

eij ∼ (χ2(3)− 3)/
√
6.

Since 󰀂aj󰀂∞ → 0 in Setting I, we use Ẽ with the standard normal distribu-

tion to estimate K̂ν . We emphasize that the excess kurtosis of distribution

t3 is infinite.

For Setting II, we consider three cases for the distribution of E:

(iv) Standardized exponential distribution with rate parameter 1, i.e.,

eij ∼ Exp(1)− 1;

(v) Standardized Poisson distribution with parameter 1, i.e., eij ∼ Pois(1)−

1;

(vi) Standardized uniformly distribution, i.e., eij ∼ U(−
√
3,
√
3).

Since 󰀂aj󰀂∞ = 1 in Setting II, we use Ẽ with standardized χ2 distribution

and standardized Bernoulli distribution, respectively, to estimate K̂ν with

some suitably chosen parameter values.

In all the simulation studies, we choose two critical points in the KOO

methods:.

ĵ(0)∗ = {j ∈ [k] : Kj > K̂0} and ĵ(5)∗ = {j ∈ [k] : Kj > K̂0.05},
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where K̂0 and K̂0.05 are the largest and the 95th percentile of 1,000 boot-

strap values, respectively.

We first explain our choices of the settings and the distributions. Since

the KOO criteria depend on the values δj = p−1x′
jQjxjθ

′
jΣ

−1θj, it suffices to

setΣ = I and varyΘ∗ andX in conducting our simulation studies. Settings

I and II both ensure δj are bounded above. For the case δj → ∞, the KOO

statistics for the true variables and spurious variables are well separated,

and all the compared selection methods will not show significant differences.

The selection of distributions comprises five continuous distributions and

one discrete distribution. The distribution described in (ii) only has finite

second moment. This selection was made to investigate the implications of

not satisfying the condition of finite fourth moment. To measure in greater

detail the performance of these selection rules, the numbers of times, in 1000

repetitions, a selection rule under-specifies the true model, exactly identifies

it and over-specifies it were tabulated. When the selection rule over-specifies

the true model, we also report the average number of spurious variables

selected in the last row of each sub-table. Due to space consideration, we

present selected results, but typical, of Setting I (i) and Setting II (iv)

in Tables 1 and 2, respectively. Full set of results, including those for

n = 2000, can be found in the Appendix and the code can be accessed
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from https://github.com/huj156/KOO.git.

Based on our simulation results, the following observations are made:

(1) The proposed KBT are the most robust among the compared meth-

ods, especially when the sample size n is large. (2) If the sample size n

is small, we recommend choosing a bigger ν in order to avoid missing the

true variables. After all, admitting a small number of spurious variables

is a better tradeoff than missing some true variables. (3) Choosing a big-

ger ν may select more spurious variables, but unlike the KAIC and KCp,

the number of spurious variables selected is still under control. (4) The

simulation results are very similar across different distributions of errors,

which suggests these selection rules are rather robust against the distribu-

tions of errors. (5) When maxi 󰀂ai󰀂∞ → 0, our proposed methods also work

well even the finite fourth moment condition does not hold, suggesting that

our theorems continue to hold even under weaker conditions. Our guess is

that finite second moment of the underlying error distributions is enough.

(6) The performances of KAIC, KBIC and KCp are not acceptable under

our settings: KAIC and KCp frequently over-specify the true models quite

substantially, and KBIC frequently under-specifies the true models. Un-

der some special cases, KBIC has good selection times, however, KBT in

general outperforms KBIC.
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α = 0.2, c = 0.4

n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 938 0 640 19 0 1000 0 0 0 0 1000 0 0 0

T-S 35 62 0 360 940 2 0 0 1000 953 23 0 0 998 957

O-S 965 0 1000 0 41 998 0 1000 0 47 977 0 1000 2 43

A-S 3.69 – 7.06 – 1.05 6.86 – 46.30 – 1.04 3.92 – 95.28 1 1.05

α = 0.4, c = 0.2

n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 42 0 828 41 0 129 0 0 0 0 729 0 0 0

T-S 0 923 3 172 919 0 871 0 998 965 0 271 41 1000 954

O-S 1000 35 997 0 40 1000 0 1000 2 35 1000 0 959 0 46

A-S 16.50 1.09 6.67 – 1.12 100.87 – 8 1 1 213.52 – 3.28 – 1.02

Table 1: Selection times of the KOO methods with AIC, BIC, Cp thresholds

and bootstrap methods under Settings (I) and (i) based on 1,000 replica-

tions. Here U-S, T-S, O-S and A-S stand for number of times a selection

method under-specified the true model, number of times a selection method

identified the true model exactly, number of times a selection method over-

specified the true model, and the average number of spurious variables a

selection method identified when it over-specified the model, respectively.
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α = 0.2, c = 0.4

n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 925 0 991 622 0 1000 0 2 0 0 1000 0 0 0

T-S 2 74 0 9 361 0 0 0 997 934 0 0 0 1000 938

O-S 998 1 1000 0 17 1000 0 1000 1 66 1000 0 1000 0 62

A-S 4.74 1 7 – 1.06 16.40 – 45.88 1 1 18.74 – 95.36 – 1.03

α = 0.4, c = 0.2

n = 100 n = 500 n = 1000

ĵA∗ ĵB∗ ĵC∗ ĵ
(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗ ĵA∗ ĵB∗ ĵC∗ ĵ

(0)
∗ ĵ

(5)
∗

U-S 0 4 0 999 597 0 7 0 7 0 0 27 0 0 0

T-S 0 348 0 1 386 0 993 0 993 961 0 973 0 1000 939

O-S 1000 648 1000 0 17 1000 0 1000 0 39 1000 0 1000 0 61

A-S 15.31 1.67 9.23 – 1 94.64 – 28.61 – 1 198.92 – 31.12 – 1.03

Table 2: Selection times of the KOO methods with AIC, BIC, Cp thresholds

and bootstrap methods under Settings (II) and (iv) based on 1,000 repli-

cations. Here U-S, T-S, O-S and A-S stand for number of times a selection

method under-specified the true model, number of times a selection method

identified the true model exactly, number of times a selection method over-

specified the true model, and the average number of spurious variables a

selection method identified when it over-specified the model, respectively.
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5. Real data analysis

We apply the proposed methods to two real examples. Due to the limitation

of article length, the analysis of the other real example is postponed in the

supplementary material. The first example is a multivariate yeast cell-

cycle dataset from Spellman et al. (1998), which can be found in the R

package “spls”. This data set contains 542 cell-cycle-related genes (i.e.,

n = 542). Each gene contains 106 binding levels of transcription factors

(i.e., k = 106) and 18 time points covering two cell cycles (i.e., p = 18).

The binding levels of the transcription factors play a role in determining

which genes are expressed and help delineate the process behind eukaryotic

cell cycles. Further explanations of the dataset can be found in (Wang et al.,

2007; Chun and Keleş, 2010; Chen and Huang, 2012; Kong et al., 2017).

Our results are presented in Figure 2. The transcription factors {SWI5,

STE12, ACE2, NDD1}, corresponding to the four largest Kj-values, have

been confirmed to be related to the cell cycle regulation by experiment Wang

et al. (2007). And the other two transcription factors {RME1, HIR2} could

possibly be related to the cell cycle regulation. KBIC, however, will have

missed identifying the TFs {STE12, ACE2, NDD1} in the yeast cell-cycle.

On the other hand, KAIC and KCp will have identified more TFs, many of

which may not be related to the yeast cell-cycle.
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Figure 2: Scatterplots for the yeast cell-cycle dataset.

6. Proofs of Theorems 1, 2 and 4 under normality

If the errors follow the standard normal distribution, the KOO statistic can

be written as the quotient of two independent chi-squared random vari-

ables. As a result, the proofs of Theorems 2.1, 2.2 and 2.4 are easier to

present. The proofs may also be of independent interest. Hence, we prove

these results under normality in this section. The proofs of these theorems

for general error distributions via random matrix theory are postponed in

the Appendix for interested readers. Note that there is no need to prove

Theorem 2.3 when the errors follow the standard normal distribution.
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Recall the KOO statistic

Kj = v′
jW

−1vj,

where

vj = Σ−1/2Y′aj and W = E′QE.

When E has the standard normal distribution, it follows that

W ∼ Wp(n− k, Ip), vj ∼ Np(Σ
−1/2Θ∗X

′
∗aj, Ip), j = 1, . . . , k,

and W and {v1, . . . ,vk} are independent. Note that v1, . . . ,vk are not

necessarily independent. If j ∕∈ j∗, Σ
−1/2Θ∗X

′
∗aj = 0, on the other hand if

j ∈ j∗, Σ
−1/2Θ∗X

′
∗aj ∕= 0. Moreover, under the assumption of normality,

τ = 0 in assumption (C3). Next, we state a preliminary lemma.

Lemma 6.1. Let V = (v1, . . . ,vq) be a p×q random matrix with q ≤ p, and

let W be a p×p random matrix which is distributed as Wishart distribution

Wp(m, Ip). Assume that V and W are independent. Let H be a p × p

random orthogonal matrix such that the first q columns are V(V′V)−1/2,

that is, H = (V(V′V)−1/2, ·). Let

Z = H′WH =

󰀳

󰁅󰁅󰁃
Z11 Z12

Z21 Z22

󰀴

󰁆󰁆󰁄 , Z11·2 = Z11 − Z12Z
−1
22 Z21, (6.1)
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and Z21 is a (p− q)× q matrix. Then,

Z ∼ Wp(m, Ip), (6.2)

V′W−1V = (V′V)1/2Z−1
11·2(V

′V)1/2, (6.3)

Z11·2 ∼ Wq(m− (p− q), Iq). (6.4)

When q = 1,

v′
1W

−1v1 =
v′
1v1

Z11·2
,

where Z11·2 ∼ χ2(m−(p−1)) is a chi-square variate with m−(p−1) degrees

of freedom, and v′
1v1 and Z11·2 are independent. Further, if v1 ∼ Np(µ, Ip),

v′
1W

−1v1 =
v′
1v1

Z11·2
∼ χ2(p;µ′µ)

χ2(m− (p− 1))
.

Here, χ2(p;µ′µ) denotes a noncentral chi-square variate with p degrees of

freedom and noncetrality parameter µ′µ, and χ2(m−(p−1)) denotes a chi-

square variate with m−(p−1) degrees of freedom, and they are independent.

Proof. The result (6.2) is straightforward by considering the conditional

distribution of Z given H, and noting that the obtained result does not de-

pend on H. Next we consider the result (6.3). Noting that H is orthogonal,

we have

V′W−1V = V′H(H′WH)−1H′V

=
󰀅
(V′V)1/2, O

󰀆′
Z−1

󰀅
(V′V)1/2, O

󰀆
,
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which implies (6.3). (6.4) is a well known result on Wishart distribution

(e.g., Theorem 2.2.3 in (Fujikoshi et al., 2010)).

Next we consider the case of q = 1. Note that the (1, 1) element of Z−1

is Z−1
11·2. Then

v′
1W

−1v1 =v1H
′(H′WH)−1H′v1

=((v′
1v1)

1/2, 0, . . . , 0)Z−1((v′
1v1)

1/2, 0, . . . , 0)′

=v′
1v1Z

−1
11·2.

The required result follows from the fact that v′
1v1 ∼ χ2(p;χ2(p;µ′µ)) and

Z11·2 ∼ χ2(m− (p− 1)). Then we complete the proof of this lemma.

6.1 Proof of Theorem 2.1

By Lemma 6.1, we can express Kj as a ratio of two independent chi-square

variates as

Kj =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

χ2(p)
χ2(󰁨m)

if j /∈ j∗

χ2(p;pδj)

χ2(m̃)
if j ∈ j∗

,

where δj = p−1x′
jQjxjθ

′
jΣ

−1θj and m̃ = n− k − p+ 1. For j /∈ j∗, let

Z1 =
χ2(p)− p√

2p
and Z2 =

χ2(󰁨m)− 󰁨m√
2󰁨m

.
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Then, it is clear that

Kj =
p+

√
2pZ1

󰁨m+
√
2󰁨mZ2

=
p/n+

√
2pZ1/n

󰁨m/n+
√
2󰁨mZ2/n

=
cn

1− cn − αn

+ oa.s.(1).

For j ∈ j∗, let

󰁨Z1 =
χ2(p; pδj)− p(1 + δj)󰁳

2p(1 + 2δj)
.

Note that 󰁨Z1
D→ N(0, 1) as p → ∞ or pδj → ∞. Thus we can find that

Kj =

󰀝
p(1 + δj) +

󰁴
2p(1 + 2δj) 󰁨Z1

󰀞󰁱
󰁨m+

√
2󰁨mZ2

󰁲−1

=
p

󰁨m

󰀝
1 + δj +

󰁴
2(1 + 2δj)p−1 󰁨Z1

󰀞󰁱
1−

√
2󰁨m−1Z2

󰁲−1

,

which implies

Kj −
cn(1 + δj)

1− cn − αn

= oa.s.(1 + δj).

Then we complete the proof of Theorem 2.1.

6.2 Proof of Theorem 2.2

For simplicity, we consider the case q = 2, and assume that {1, 2} ⊂ [k]\j∗.

To prove Theorem 2.2, it is sufficient to show that for any non-null vector

h = (h1, h2)
′,
√
p[h1K1 + h2Kq − cn

1−cn−αn
(h1 + h2)] converges weakly to a

normal distribution with mean zero and variance 2c2(1−α)
(1−α−c)3

h′(A′
2A2)

2h.
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Under the normality assumption, we can express K1 and K2 as follows:

K1 = v′
1W

−1v1, K2 = v′
2W

−1v2. (6.5)

Here, vi ∼ Np(0, Ip), i = 1, 2, W ∼ Wp(m, Ip), m = n− k, {v1,v2} and W

are independent, but v1 and v2 are not independent. Let K0 = v′
1W

−1v2

and

K =

󰀳

󰁅󰁅󰁃
K1 K0

K′
0 K2

󰀴

󰁆󰁆󰁄 .

Note that

h1K1 + h2K2 = trDhK,

where Dh =

󰀳

󰁅󰁅󰁃
h1 0

0 h2

󰀴

󰁆󰁆󰁄.

Let V = (v1,v2). Using Lemma 6.1, we can write K as

K = V′W−1V

=

󰀕
1

p
V′V

󰀖1/2 󰀕
1

󰁨mZ11·2

󰀖−1 󰀕
1

p
V′V

󰀖1/2
p

󰁨m, (6.6)

where Z11·2 ∼ W2(m̃, Ip) is defined in (6.1) and 󰁨m = m− (p− 2). Note that

V′V ∼ W2(p,Λ), Λ =

󰀳

󰁅󰁅󰁃
1 λ

λ 1

󰀴

󰁆󰁆󰁄 ,
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where λ = a′
1a2. Let

F =

󰀳

󰁅󰁅󰁃
f1 f3

f3 f2

󰀴

󰁆󰁆󰁄 =
√
p

󰀕
1

p
V′V −Λ

󰀖
, (6.7)

G =

󰀳

󰁅󰁅󰁃
g1 g3

g3 g2

󰀴

󰁆󰁆󰁄 =
√
󰁨m
󰀕

1

󰁨m
Z11·2 − I2

󰀖
. (6.8)

It follows from the asymptotic distribution of a Wishart matrix (e.g., The-

orem 2.5.1 in (Fujikoshi et al., 2010)) that the limiting distribution of

(f1, f2, f3)
′ (respectively, (g1, g2, g3)

′) is a 3-variate normal distribution with

mean zero and covariance matrix
󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

2 2λ2 2λ

2λ2 2 2λ

2λ 2λ 1 + λ2

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃
respectively,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

2 0 0

0 2 0

0 0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

Consequently, it is straightforward to show that

trDhF
D→ N(0, 2tr(DhΛ)2) (6.9)

and

trΛ1/2DhΛ
1/2G

D→ N(0, 2tr(DhΛ)2). (6.10)

Then, by substituting

1

p
V′V = Λ+

1
√
p
F
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and

󰀕
1

󰁨m
Z11·2

󰀖−1

=

󰀕
I2 +

1√
󰁨m
G

󰀖−1

= I2 −
1√
󰁨m
G+

1

󰁨m

󰀕
I2 +

1√
󰁨m
G

󰀖−1

G2

into (6.6), we can expand K as

K =

󰀝
Λ+

1
√
p
F− 1√

󰁨m
(Λ+

1
√
p
F)1/2G(Λ+

1
√
p
F)1/2 +Ø

󰀞
cn

1− cn − αn

,

(6.11)

where Ø denotes the terms of order Op(n
−1). Using (6.11), we have

√
p

󰀝
h1K1 + h2K2 −

cn
1− cn − αn

(h1 + h2)

󰀞

=
cn

1− cn − αn

󰀫
trDhF−

󰀕
cn

1− cn − αn

󰀖1/2

trΛ1/2DhΛ
1/2G

󰀬
+Op(n

−1/2).

(6.12)

By (6.9) and (6.10), we can see that the limiting distribution of (6.12) is

normal with mean zero and variance

2c2

(1− c− α)2

󰀕
1 +

c

1− c− α

󰀖
tr(DhΛ)2 =

2c2(1− α)

(1− α− c)3
h′(A′

2A2)
2h.

This completes the proof of Theorem 2.2 .

6.3 Proof of Theorem 2.4

In the proof of Theorem 2.1, recall that for j ∈ j∗, Kj can be expressed as

a ratio of two independent chi-square variates:

Kj =
χ2(p; pδj)

χ2(m̃)
,
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where χ2(p; pδj) denotes a noncentral chi-square variate with p degrees of

freedom and noncentrality parameter pδj, and χ2(m̃) denotes a chi-square

variate with m̃ = n−k−p+1 degrees of freedom, and they are independent.

Let

󰁨Z1 =
χ2(p; pδj)− p− pδj󰁳

2(p+ 2pδj)
, 󰁨Z2 =

χ2(󰁨m)− 󰁨m√
2󰁨m

.

Then, it is checked that 󰁨Z1 and 󰁨Z2 converge to the standard normal distri-

bution. Note that

Kj =

󰀝
(p+ pδj) +

󰁴
2(p+ 2pδj) 󰁨Z1

󰀞󰁱
󰁨m+

√
2󰁨m 󰁨Z2

󰁲−1

=
p

󰁨m

󰀝
1 + δj +

󰁴
2p−1(1 + 2δj) 󰁨Z1

󰀞󰁱
1 +

√
2󰁨m−1 󰁨Z2

󰁲−1

.

This implies that

√
p
󰁱
Kj −

p

󰁨m(1 + δj)
󰁲

=
p

󰁨m

󰀫󰁴
2(1 + 2δj) 󰁨Z1 − (1 + δj)

󰀕
2p

󰁨m

󰀖1/2

󰁨Z2

󰀬
+Op(n

−1/2).

Theorem 2.4 follows from noting that 󰁨Z1 and 󰁨Z2 independently converge to

the standard normal distribution.

Supplementary Material

Supplementary material includes additional simulation studies, additional

real data analysis and proofs of the main theorems for general error distri-

butions using random matrix theory.
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