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Abstract: We propose a functional joint modeling (FJM) framework for correlating imaging re-

sponses with genetic markers and clinical variables. Our FJM consists of a nonlinear multivariate

functional principal component analysis (NMFPCA) and a functional multiple-index varying coeffi-

cient model (FMVCM). The NMFPCA, with unknown link functions, is used to extract meaningful

functional principal component (FPC) scores of genetic markers, while the FMVCM identifies the

varying association of the extracted FPC scores and clinical variables with imaging data. We

propose an efficient estimation procedure to estimate unknown functions in our FJM and a regu-

larization approach to simultaneously select relevant features from infinite-dimensional functional

data and learn the model structure. The asymptotic convergence rate of estimators and model se-

lection consistency are investigated. The proposed method is evaluated through simulation studies

and applied to an imaging genetic data set extracted from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) study.
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1. Introduction

This study aims to integrate multimodal data to clarify the biological pathways that con-

nect genetic factors to brain and, ultimately, to clinical outcomes (e.g., cognition, disease

stage, and progression status) (Elliott et al., 2018; Zhu et al., 2023). By exploring these

connections, we hope to gain valuable insights into brain development, healthy aging,

and disease progression. One such pathway is reflected in Jack’s hypothetical models for

Alzheimer’s disease (AD) (Jack Jr et al., 2013). This information could offer a comprehen-

sive view of how behavioral outcomes relate to the genetic pathways of AD, as mediated

by brain structure and function. Additionally, it could deepen our understanding of the

interplay between genetic and environmental risk factors, and how modifying environ-

mental influences might benefit individuals with genetic predispositions. Ultimately, this

approach aims to inform more effective interventions and treatments (Veitch et al., 2022).

The hippocampus is particularly vulnerable to AD pathology and is among the first

brain regions affected in early AD stages. The degree of hippocampal atrophy can vary

between healthy individuals and those with neurological conditions, showing differences

across age, gender, genotype, and APOE-ϵ4 status. APOE-ϵ4, a variant of the apolipopro-

tein E gene, is a major genetic risk factor for AD. Thus, understanding the relationship

between hippocampal atrophy and genetic and behavioral factors is crucial. Due to the
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vast number of single-nucleotide polymorphisms (SNPs) compared to sample sizes, and

the categorical nature of SNP allele codes (0, 1, 2), associations between hippocampal

morphometry and clinical or genetic data are likely nonlinear. As shown in Web Figure 3

and Tables 3 and 4 in Section 6, SNPs exhibit highly nonlinear patterns. Modeling these

nonlinear relationships could improve the accuracy of predicting hippocampal atrophy.

However, traditional linear regression cannot capture these complex associations between

hippocampal measures and genetic/clinical predictors. To address this, we propose a novel

FJM framework incorporating NMFPCA and FMVCM, offering a concise, informative,

and interpretable approach for predicting hippocampal atrophy.

Several primary challenges arise in image response regression with genetic and clin-

ical covariates. First, genetic markers are ultra-high dimensional and present a strong

blockwise correlation (Wall and Pritchard, 2003). If all the SNPs within a specific linkage

disequilibrium (LD) block are important but exhibit relatively weak signals, individually

analyzing them may miss these SNPs. The second challenge arises from the infinite-

dimensional nature of the image response, which complicates the characterization of the

effects of genetic and clinical covariates with spatial structure. Conventional pixel- or

voxel-wise approaches independently fit a model at each pixel or voxel and ignore their

spatial structure, resulting in low power for identifying significant spatial patterns (Stein

et al., 2010; Hibar et al., 2015). The third one is to smooth data over an irregular domain

with complex boundaries in imaging data analysis.

Most existing regression methods with genetically measured covariates ignore the com-
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bined significance of SNPs (Kang et al., 2019; Li et al., 2021, 2024). To appropriately

utilize the LD block’s structure information, we treat all the SNP values of each LD block

as a functional variable and perform dimension reduction to deal with the ultra-high di-

mensionality of genetic markers. Popular linear and nonlinear unsupervised dimension

reduction models (DRMs) such as multidimensional scaling, Laplacian eigenmaps, princi-

pal component analysis (PCA), kernel PCA, and functional PCA (FPCA) (Anowar et al.,

2021; Zhu et al., 2023). Standard FPCA, which uses linear projection to find major

sources of variation in functional data, has received much attention in the literature due

to its computational simplicity and appealing theoretical properties (Ramsay and Silver-

man, 2005; Zhu et al., 2014, 2023). However, it requires FPCs to be linear combinations

of original variables. When functional variables are nonlinearly correlated, FPCA fails

to extract their nonlinear features and cannot satisfactorily represent the original func-

tional data through leading FPCs, resulting in substantial bias or erroneous conclusions

in estimation or classification.

Functional data analysis (FDA) methods treat pixels or voxels as discrete grids of

a function, integrating information across and within functions to capture the spatial

structure of imaging responses. However, existing FDA approaches for imaging responses

primarily model linear relationships and low-dimensional covariates (Yu et al., 2021; Li

et al., 2021; Zhu et al., 2023). While recent nonlinear variants of the functional varying

coefficient model (FVCM) have emerged, they are limited to fixed-dimension covariates

(Luo et al., 2016; Yu et al., 2019; Kim and Wang, 2021). This study extends these methods
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to accommodate functional or high-dimensional latent covariates.

Furthermore, for many biomedical images, the regions of interest on images are usually

irregularly shaped with complex domains and interior holes; the image contains only

signals inside the region boundary. However, several popular smoothing methods, such

as wavelet smoothing (Morris and Carroll, 2006), tensor product smoothing (Reiss and

Ogden, 2010), and kernel smoothing (Zhu et al., 2023), suffer from the so-called “leakage”

problem and perform poorly over complex domains (Sangalli et al., 2013). Therefore,

developing reliable techniques to smooth data over an irregular domain with complex

boundaries is particularly relevant in the current image response regression.

This paper aims to address the challenges of understanding the association between

clinical and genetic variables and hippocampal atrophy in patients with Alzheimer’s dis-

ease. Suppose we observe a data set from n independent subjects consisting of im-

age responses Yi, a vector of functional covariates Xi, and a vector of real-valued

covariates Zi for i = 1, . . . , n. All images Yi =
{
Yi(s) : s = (s1, s2)

T ∈ D
}

are reg-

istered and measured at the same set of points s1, . . . , sNs in a compact domain D,

Xi(ti) = {Xi1(ti1), . . . , Xip(tip)}T ∈ Rp with tij ∈ T , Xij(tij) is a functional variable

observed at discrete points tij1, . . . , tij,nij
, and Zi ∈ Rqz is a qz × 1 covariate vector for the

ith subject. Without loss of generality, D and T are assumed to be compact sets in R2

and R, respectively. In our ADNI data set, Yi is the left (or right) hippocampus surface,

Xij(tj) is the function of SNPs in a specific LD block, and Zi is the vector of covariates

(e.g., age, gender, and education). To model Yi(s) given (Xi,Zi), we consider an FJM
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framework consisting of a DRM and an FVCM given by

Xi = F(ζi) + Eix and Yi(s) = m(s, ζi,Zi) + ϵi(s), (1.1)

respectively, where ζi is a relatively low-dimensional vector of latent variables, F(·) is the

conditional mean function of Xi given ζi, m(·, ·, ·) is the conditional mean function of

Yi(s) given (Xi,Zi), Eix is a zero mean measurement error process independent of ζi, and

ϵi(s) is a zero mean measurement error independent of (Xi,Zi). Such FJM is a powerful

tool for handling functional covariates Xi and functional response data Yi(s).

Our proposal contributes to the existing literature in several aspects. First, for DRM,

we propose to apply NMFPCA on functional covariates Xi for nonlinear dimension reduc-

tion while allowing the number of latent variables to diverge to infinity. In contrast, many

existing FJMs consider linear DRMs and truncate the first few FPCs with large eigenval-

ues (Müller and Yao, 2008; Zhu et al., 2023). Despite its simplicity, such a naive truncation

procedure may encounter difficulties because the effect of latent scores on imaging mea-

sures may not coincide with the proportion of variation explained by functional variables

(Bair et al., 2006). Second, for FVCM, we propose an FMVCM to delineate complex asso-

ciations between imaging responses and covariates. When the FPC scores are observable,

FMVCM reduces to the existing FVCMs. We adopt bivariate splines over triangulations

(Li et al., 2021) to approximate coefficient images defined over a complex domain. We

develop a two-step estimation procedure to integrate the advantages of B-spline, kernel,
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and bivariate spline smoothing techniques. Third, we establish the theoretical proper-

ties of our proposed estimators, including model identifiability, the truncated nonlinear

Karhunen–Loève approximation for Xi(t), estimation and selection consistency, and the

convergence rates of estimation and selection.

The rest of this paper is organized as follows. Section 2 describes the key components

of our FJM. Section 3 presents the estimation procedure, and Section 4 establishes the

asymptotic properties of the proposed estimators. Sections 5 and 6 illustrate the empirical

performance of the proposed methods through simulation studies and an application to

the ADNI data set, respectively. Section 7 concludes the paper. The technical proofs are

deferred to Web Appendices.

2. Model Setup

We introduce the two components of FJM, including NMFPCA and FMVCM, as follows.

2.1 NMFPCA

We jointly model multiple functional curves from the realization of multiple correlated

random functions with mean function µ(t) = {µ1(t), . . . , µp(t)}T = E {Xi(t)} and matrix-

valued covariance function C(s, t) = cov{Xi(s),Xi(t)} ∈ Rp ×Rp. Conventional MFPCA

methods assume an orthogonal expansion C(s, t) =
∑∞

k=1 λkφk(s)φk(t)
T and develop

DRM for Xi(·) using the truncated Karhunen-Loève representation (Happ and Greven,
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2.1 NMFPCA8

2018) given by

Xi(t) = µ(t) +
Kn∑
k=1

ξikφk(t) + εi(t), t ∈ T , (2.1)

where Kn is a positive integer, φk(t) is the kth orthonormal eigenfunction of C(s, t), λk is

the eigenvalue corresponding toφk, ξik =
∫
T {Xi(t)− µ(t)}T φk(t)dt are uncorrelated over

i and k, and εi(t) is measurement error independent of ξik. Model (2.1) has received much

attention in the literature (Müller and Yao, 2008; Happ and Greven, 2018). Moreover,

multivariate functional data are projected into the linear space spanned by multivariate

FPCs (φ1,φ2, . . .) and represented as a linear function of the multivariate FPC scores

(ξi1, ξi2, . . .). The FPC scores are typically used to characterize the functional curve Xi(·)

for downstream regression or clustering analysis. Although using µ(t) +
∑Kn

k=1 ξikφk(t)

to approximate functional curves in model (2.1) implies that the functional variables are

linearly dependent, such a linearity assumption may be too restrictive to reflect various

realistic scenarios. Therefore, it is of scientific interest and practical value to identify the

complex dependence structure of functional variables and construct a highly informative

vectorized representation for functional data with minimal loss.

We propose an NMFPCA procedure with unknown link functions to flexibly model

the data dependence and extract nonlinear information from functional data. Suppose

functional variables are correlated by sharing latent scores. The relationships between

8
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2.1 NMFPCA9

functional variables and projection spaces are modeled through unknown link functions:

Xij(t) = µj(t) + fj

{
∞∑
k=1

ξikϕjk(t)

}
+ εij(t), t ∈ T , (2.2)

where µj(t) = E {Xij(t)} is the mean function, ϕjk(t) is the kth nonlinear FPC for the jth

functional variable, ξik is the kth nonlinear FPC score with mean zero and cov(ξik′ , ξik) =

0 if k′ ̸= k, and λk otherwise, where λ1 ≥ λ2 ≥ . . . > 0,
∑

k λk < ∞, and εij(t) is

measurement error independent of ξik. Moreover, fj(·) is a curve-specific link function that

characterizes a possible nonlinear relationship between Xij(t) and
∑∞

k=1 ξikϕjk(t). If fj(·)

is a nonlinear function, thenXij(·) is projected into a nonlinear space of {ϕj1(t), ϕj2(t), . . .}

and characterized by a nonlinear score vector (ξi1, ξi2, . . .). Such nonlinear projection

allows functional variables to be nonlinearly dependent. If fj(·) is linear, model (2.2)

reduces to the classical MFPCA. The link function fj(·) is selected based on the observed

data; thus, its choice is flexible and data-driven.

The interpretation of the NMFPCA is different from that of the conventional FPCA.

First, the variance λk represents the degree of variability of Xij(t) in the kth direc-

tion, while its magnitude is not specified by the covariance operator of Xi(t). Sec-

ond, when fj(·) is a nonlinear function, the nonlinear FPCs are the basis functions

of the nonlinear dimension reduction space of Xi(t) instead of the eigenfunctions of

the covariance operator of Xi(t). Third, FPC score ξik is the weight of ϕjk(t) in the

nonlinear dimension reduction representation of Xi(t). It does not necessarily satisfy

9
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2.2 FMVCM for Imaging Response10

ξik =
∑p

j=1

∫
T {Xij(t)− µj(t)− εij(t)}ϕjk(t)dt. Model (2.2) is unidentifiable without

imposing appropriate identifiability constraints. The following proposition presents con-

ditions for identifying model (2.2) while not restricting model flexibility.

Proposition 1. Under Conditions (I1) and (I2) stated in Web Appendix B, for all i, j

and k, µj(·), fj(·), ϕjk(·), and ξik are unique.

Even though there is an infinite number of FPCs, the number of FPCs estimated

consistently from the sample is much fewer, as shown in our theory in Section 4. Therefore,

as the variance λk decreases toward 0, a truncated approximation to Xij(t) is often used

in functional data analysis.

Proposition 2. Suppose supt ϕjk(t)
2 < ∞ and fj(·) has bounded first derivative for all

j, k. Then, as Kn → ∞, we have

p∑
j=1

sup
t∈T

E

[
Xij(t)− µj(t)− fj

{
Kn∑
k=1

ξikϕjk(t)

}
− εij(t)

]2
→ 0. (2.3)

2.2 FMVCM for Imaging Response

We propose FMVCM to delineate the relationship between the imaging response and

scalar and functional predictors. We consider the latent variable ζi related to the imaging

response in a multiple-index varying coefficient form and the scalar vector Zi in a spatially

10
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2.2 FMVCM for Imaging Response11

varying coefficient form as follows:

Yi(s) = m(s, ζi,Zi) + ϵi(s) = ψ

{
Kn∑
k=1

gk(s)ζik

}
+ θ(s)TZi + ϵi(s), (2.4)

where
∑Kn

k=1 gk(s)ζik =
{∑Kn

k=1 gk1(s)ζik, . . . ,
∑Kn

k=1 gkq(s)ζik

}T

, ψ : Rq → R is an unknown

link function and q < Kn, ζi = (ζi1, . . . , ζiKn)
T with ζik being a transformation of ξik

defined below, θ(·) = {θ1(·), . . . , θqz(·)}
T is the spatial varying coefficient vector, and ϵi(s)

is a measurement error with mean zero and independent of ζi,Zi, and εij(t). Model

(2.4) describes the effect of functional variables via the nonlinear multivariate FPC scores

extracted in Section 2.1. We use the standard normal CDF and the transformed variable

ζik = Φ
(
λ
−1/2
k ξik

)
−0.5 in what follows, leading to a uniformly distributed ζik on [−0.5, 0.5]

when ξik ∼ N(0, 1). The FPC score ξik is then transformed to take values in a compact

and bounded subset of the real line to avoid scale issues.

The multiple-index model is powerful for modeling high-dimensional predictors. Un-

der model (2.4), the imaging measures relate to latent variables in ζi only through q spatial

indices, thereby reducing the model dimension from diverging Kn to fixed q and signifi-

cantly alleviating the curse of dimensionality. Furthermore, the imaging response depends

on scalar covariates through functional linear regression, which provides a straightforward

interpretation of the covariate effects. Therefore, model (2.4) not only retains the ad-

vantages of the standard multiple-index model (Xia, 2008), such as sufficient dimension

reduction, flexible modeling, and easy interpretation, but also extends it in the following

11
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2.2 FMVCM for Imaging Response12

directions. First, the proposed FMVCM replaces constant coefficients with varying coeffi-

cients to allow for the dynamic association among variables. Second, by introducing latent

variables, the model accommodates unobserved covariates. Third, model (2.4) allows the

number of latent covariates ζi to diverge to infinity with the sample size. Notably, SVCM

and the single-index varying coefficient model are exceptional cases of model (2.4). How-

ever, all the covariates in these models are observable. In contrast, our model includes

the estimated NMFPCA scores extracted from Xi(t) as predictors, which are not directly

observable. Moreover, Xi(t) is collected discretely at irregular sample points with mea-

surement errors. The impact of unobservable FPC scores and measurement errors on the

resulting estimator elicits additional challenges for estimation and theoretical exploration.

To sufficiently capture the relationship between imaging responses and functional co-

variates by the first Kn latent scores, the truncation point Kn should be chosen as a large

number. However, simply truncating FPCs to explain most of the variation in Xi(t) is

inappropriate while retaining more than needed predictors causes overfitting. Therefore,

we use a sparse penalized method to identify important FPCs. The relationship between

imaging responses and functional covariates guides the penalization procedure. The re-

sulting parsimonious model enables improvement of estimation efficiency and accuracy.

Model (2.4) is unidentifiable without imposing some conditions. One possible ap-

proach is to adopt the identification methods in Xia (2008) since for each location s,

model (2.4) reduces to a standard multiple-index model. However, these methods ignore

the inherent spatial correlation in neuroimaging data (Zhu et al., 2023). Moreover, the

12

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0152



13

restrictions on ψ(·) and G(s) = {g1(s), . . . ,gKn(s)} are stringent, leading to difficulties

in finding such a link function and varying coefficients for all s. Instead of extending

these methods to imaging data, we propose an alternative approach to address the model

identification problem. We state this approach in the following proposition.

Proposition 3. Under Condition (I3) stated in Web Appendix B, ψ(·), G(·), and θ(·)

are unique.

3. Estimation Procedure

The estimation procedure for our FJM is very challenging since it involves estimating non-

linear link functions, fj(·) and ψ(·), latent scores ξi = (ξi1, . . . , ξiKn)
T , high dimensional

nonlinear FPCs, ϕj(·) = {ϕj1(·), . . . , ϕjKn(·)}
T , and the spatial varying coefficient func-

tions over irregular domains. Its associated computational burden is much heavier than

the standard FPCA, SVCM, and multiple-index model. We use univariate and bivariate

spline and local polynomial smoothing to implement the estimation procedure and ease

the computational burden. We fit the proposed NMFPCA by minimizing the residual

sum of squares,

n∑
i=1

p∑
j=1

nij∑
d=1

[
Xij(tijd)− µj(tijd)− fj

{
ξTi ϕj(tijd)

}]2
. (3.1)

For ease of presentation, suppose all the mean functions and nonlinear FPCs have common

compact support. We approximate µj(t) and ϕj(t) by µnj(t) = uT
j Bn(t) and ϕnj(t) =

ΓjBn(t), respectively, and use local linear smoother to approximate fj(·), where Bn(·) =

13
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{b1(·), . . . , bkn(·)}
T is a set of B-spline basis functions of order l + 1 with knots 0 =

d0 < d1 < . . . < dMn < dMn+1 = 1, satisfying max1≤j≤Mn |dj − dj+1| = O(n−ν1) with

kn = Mn + l + 1 and ν1 ∈ (0, 0.5). The formula for estimating NMFPCA is presented in

Web Appendix A.

To implement NMFPCA, we must select the number of FPCs Kn and B-spline basis

kn, and bandwidths h1. Under a high-dimensional setting, Li et al. (2011) proposed the

cross-validated BIC based on penalized eigenvalues to consistently estimate the dimension

of the central subspace for sufficient dimension reduction. We modify the cross-validated

BIC rule to estimate the divergent number of FPCs, Kn, as follows:

K̂n = arg max
K≤Kmax

(
K∑
k=1

λ̂k −
Kλ̂1
4n1/4

)
, (3.2)

where λ̂k = var(ξ̂ik), ξ̂ik is the estimator of ξik defined in Section 3, and Kmax is the upper

bound for the number of FPCs. Proposition 4 shows that (3.2) can consistently select

the number of FPCs. In the simulation studies and real data analysis, we set Kmax = 50

and estimate λk by λ̂k =
∑n

i=1 ξ̂
2
ik/n, which is confirmed to work well in all the cases

considered. Compared to the traditional FPCA, the proposed estimation is less sensitive

to the choice ofKn since we further choose the FPC scores by sparse penalty in subsequent

FMVCM.

We use the cubic B-spline basis functions, then, kn =Mn+4, whereMn is the number

of interior knots. A smallMn (e.g., 2 to 6) is usually good enough for smooth, monotonic,

or unimodal functions.

14
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Given kn, we adopt the Epanechnikov kernel function and minimize BIC to select h1:

BIC(h1) = log

 1∑n
i=1

∑p
j=1 nij

n∑
i=1

p∑
j=1

nij∑
d=1

Xij(tijd)− µ̂j(tijd)− f̂j


K̂n∑
k=1

ξ̂ikϕ̂jk(tijd)


2

+ df(h1)
log
(∑n

i=1

∑p
j=1 nij

)
∑n

i=1

∑p
j=1 nij

, (3.3)

where µ̂j(·), f̂j(·), ξ̂ik, and ϕ̂jk(·) are estimators, and df(h1) is the number of estimated

parameters for each observation point. The minimization of (3.3) can be solved through

grid search.

Next, we develop estimation for FMVCM. Let ζ̂i =
(
ζ̂i1, . . . , ζ̂iKn

)T
be the estimator

of ζi obtained from the NMFPCA. To fit the proposed FMVCM and select relevant latent

variables, we propose to minimize

1

nNs

n∑
i=1

Ns∑
j=1

[
Yi(sj)− ψ

{
Kn∑
k=1

gk(sj)ζ̂ik

}
− θ(sj)

TZi

]2
+

Kn∑
k=1

λ
∥gk∥2
∥g̃k∥2

, (3.4)

where ∥ · ∥2 is the L2 norm, g̃k is a known adaptive weight such as the last iterative

estimator, and λ is a regularization parameter. We use local linear and bivariate splines

over triangulation (Li et al., 2021) to approximate ψ(·) with bandwidth h2, θ(·), and gk(·)

for all k.

The bivariate splines over triangulations are piecewise polynomial bivariate functions

over a 2D triangulated domain. They can efficiently handle the data distributed in ir-

regular regions with complicated boundaries. Let △ =
{
τ1, . . . , τN△

}
be a triangle of D,

15
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which can be constructed by Delaunay triangulation (Li et al., 2021). Given τ ∈ △, let |τ |

be its longest edge length, and Rτ be the radius of the largest disk that can be inscribed

in τ . Define βτ = |τ |/Rτ as the shape parameter of τ , and |△| := max {|τ |, τ ∈ △} is

the size of △. Furthermore, define Gv
ϖ(△) = {g ∈ Cv(D) : g|τ ∈ Pϖ(τ), τ ∈ △} as the

spline space of degree ϖ and smoothness v over triangulation △, where Cv(D) is the

collection of all vth continuously differentiable functions over D, g|τ is the polynomial in

Pϖ(τ), and Pϖ(τ) is the space of all polynomials of degree less than or equal to ϖ on τ .

Let S∗
n(·) =

{
S∗
1(·), . . . , S∗

Jn
(·)
}T

be the set of bivariate Bernstein basis polynomials for

Gv
ϖ(△), where Jn = N△(ϖ + 1)(ϖ + 2)/2. Then, gk(s) and θ(s) can approximated by

gnk(s) = α∗
kS

∗
n(s) and θn(s) = β∗S∗

n(s), respectively. We develop an estimation procedure

for FMVCM with the sparse penalty stated in Web Appendix A, which is equivalent to

solving a series of linear equations that each update has a close form or is easy to implement

through the existing package. For the index dimension, we do not use the cross-validation

(CV) criterion proposed by Xia (2008) since this criterion is computationally burdensome,

especially in image regression. We instead select q and h2 by minimizing BIC, which has

been widely used in high-dimensional settings (Wang et al., 2007) and defined as follows:

BIC(q, h2) = log

 1

nNs

n∑
i=1

Ns∑
j=1

Yi(sj)− ψ̂


K̂n∑
k=1

ĝk(sj)ζ̂ik

− θ̂(sj)
TZi

2
+df(q, h2)

log (nNs)

nNs

, (3.5)

where df(q, h2) is the number of estimated non-zero parameters at each observation point.
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The minimization of (3.5) can be solved through a two-dimensional grid search. The sim-

ulation studies in Section 5.2 show that this selection procedures performs satisfactorily.

4. Asymptotic Properties

In this section, we establish the asymptotic properties for the proposed estimators, but we

defer their proofs to Web Appendix B. We put a subscript 0 on a parameter/function to

denote its true value, e.g., gk0 is the true value of gk. We first introduce some notations and

definitions. Denote the supremum norm by ∥·∥∞. LetA = {k, ∥gk0∥2 ̸= 0, k = 1, . . . , Kn},

and |A| denotes the number of elements inA. The adaptive weight satisfies maxk/∈A ∥g̃k∥2 =

Op

(
n−δ
)
for δ > 0, and there exists a constant M > 0, such that for any ϵ > 0,

P (mink∈A ∥g̃k∥2 > Mϱ) > 1− ϵ, where ϱ = mink∈A ∥gk0∥2.

Theorem 1. (Convergent rate on NMFPCA)

Let δk = mink′≤k (λk′−1,0 − λk′0, λk′0 − λk′+1,0), and ηi(t) = {ηi1(t), . . . , ηip(t)}T with

ηij(t) = ξTi ϕj(t). Denote r the order of the Hölder space, which µj0(·) and ϕjk,0(·) belong

to. Under Conditions (C1)−(C7) stated in Web Appendix B, if kn → ∞, kn/nij → 0, and

h1 → 0,
∑n

i=1 h1nij → ∞ as nij → ∞, n→ ∞, we have

(a) ∥η̂i(t)− ηi0(t)∥2 = Op (rη,i);

(b) ∥n−1
∑n

i=1 η̂i(s)η̂i(t)
T − E

{
ηi0(s)ηi0(t)

T
}
∥2 = Op (rG);

(c) ξ̂ik − ξik,0 = Op

{
max

(
rη,i, δ

−1
k rG

)}
,

where nij is the number of observation points for Xij(·), ∥ηi(t)∥2 =
√∑p

j=1

∫
T η

2
ij(t)dt,
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∥ηi(t)ηi(t)
T∥2 =

√∑p
j=1

∑p
j′=1

∫
T η

2
ij(t)η

2
ij′(t)dt,

rη,i ≡

(
p∑

j=1

knnij
−1

)1/2

+ k−r
n + h21 +


p∑

j=1

(
n∑

i=1

h1nij

)−1


1/2

+ n−1/2, and

rG ≡

{
n∑

i=1

p∑
j=1

kn (nnij)
−1

}1/2

+ k−r
n + h21 +


p∑

j=1

(
n∑

i=1

h1nij

)−1


1/2

+ n−1/2.

Theorem 1 incorporates the results developed by Bosq (2000), Zhu et al. (2014), and

many other works on nonparametric estimators. Theorem 1 (a) and (b) present the L2

convergence rate of η̂ij(t) = ξ̂
T

i ϕ̂j(t) and its sample autocovariance function, respectively.

The uniform convergence rate of Luo et al. (2016) and Li et al. (2017) is slightly stronger

since we consider a different estimation approach, and their method cannot be extended

to nonlinearly related functional data. Our results are more appealing to functional data

analysis, where acquiring a proper relationship estimation is critical to the subsequent

regression analysis.

In Theorem 1, the terms k−r
n and h21 represent the approximation errors incurred by

employing spline and local linear approximations for (µj, ϕjk) and fj, respectively. The

expressions
(∑p

j=1 knnij
−1
)1/2

and
{∑n

i=1

∑p
j=1 kn (nnij)

−1
}1/2

denote the estimation er-

rors arising from the spline expansion for nonparametric functions, where nij acts as the

effective sample size in the estimation process. Similarly,
{∑p

j=1 (
∑n

i=1 h1nij)
−1
}1/2

cap-

tures the estimation error stemming from local linear estimation of (fj,= 1, . . . , p), while

n−1/2 accounts for the measurement error. The convergence rates of the estimated scores
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are contingent upon the decay rate of λk0, implying that a rapid decay of λk0 hastens the

convergence of ξ̂ik.

We consider two notable scenarios to delve deep into the asymptotic results. For

ease of discussion, we assume that nij ≡ ν. In this case, the convergence rate of η̂i(t)

and n−1
∑n

i=1 η̂i(s)η̂i(t)
T reduces to

√
kn/ν + k−r

n + h21 + 1/
√
nh1ν + n−1/2, while the

convergence rate of ξ̂ik reduces to δ−1
k

(√
kn/ν + k−r

n + h21 + 1/
√
nh1ν + n−1/2

)
.

1. When h21 + 1/
√
nh1ν + n−1/2 = o

(√
kn/ν + k−r

n

)
and ν = n, the convergence rate

of η̂i(t) and n
−1
∑n

i=1 η̂i(s)η̂i(t)
T reduces to the well-known rate Op

(√
kn
n
+ k−r

n

)
for estimating a one-dimensional function. Additionally, it achieves the optimal

convergence rate Op

{
n−r/(2r+1)

}
(Stone, 1980) when further setting kn = n1/(2r+1).

In this scenario, the convergence rate of ξ̂ik reduces to Op

{
δ−1
k n−r/(2r+1)

}
, where the

influence of estimating fj can be deemed negligible.

2. When the number of observation points is sufficiently large, and the bandwidth is

adequately small, linear FPCA methods establish
√
n-consistency for the estimators

of ηi(t) and its covariance function (Hall et al., 2006; Zhu et al., 2014). Furthermore,

Zhu et al. (2014) derived that ξ̂ik−ξik,0 = Op

(
δ−1
k n−1/2

)
for linear FPC scores. These

results can be attained in our nonlinear framework if ν and kn are sufficiently large,

and h1 is adequately small, ensuring h21 + 1/
√
nh1ν +

√
kn/ν + k−r

n = O
(
n−1/2

)
.

Proposition 4. Under Conditions (C1)–(C7) stated in Web Appendix B, ifKn ≤ Kmax =

o(n1/4) and rG = o(n−1/4), we have K̂n → Kn with probability tending to 1.
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Theorem 2. (Convergent rate on transformed FPC scores) Suppose that the trans-

formation function Φ(·) has a bounded derivative, and the conditions in Theorem 1 hold,

we have ζ̂ik − ζik,0 = λ
−1/2
k0 Op

{
max

(
rη,i, δ

−1
k rG

)}
.

Theorem 2 shows the estimation accuracy of FPC scores decreases as the order of

principal components gets high. Combining the results of Theorem 2 and Proposition 2,

we conclude that a high value of the truncation point Kn can reduce the approximation

error but increase the estimation error. These results may provide theoretical guidance

on choosing an appropriate Kn for downstream data analysis. Nevertheless, the prob-

lem is relatively insensitive to the selection of Kn because our subsequent FMVCM will

automatically select important principal components and rule out unimportant ones.

Theorem 3. (Convergent rate on FMVCM) Under the conditions in Theorem 2 and

Condition (C8) stated in Web Appendix B, if h2 → 0, nNsh
q
2 → ∞, and h42 +

1
nNsh

q
2
+

λ |A|1/2
ϱ

+Kc0+1
n max

(
n−1

∑n
i=1 r

2
η,i, K

2c0+2
n r2G

)
= o

{
Kn

nNs|△|2 +Kn|△|2(ϖ+1)
}
, with c0 being

the polynomial decay rate of λk0, we have ∥Ĝ(s)−G0(s)∥22 = Op

{
Kn(nNs|△|2)−1 +Kn|△|2(ϖ+1)

}
and ∥θ̂(s)− θ0(s)∥22 = Op

{
Kn (nNs|△|2)−1

+Kn|△|2(ϖ+1)
}
.

In the penalized FMVCM, the convergence rate of
(
Ĝ(s), θ̂(s)

)
depends not only

on the spline estimation error Kn (nNs|△|2)−1
and the approximation error Kn|△|2(ϖ+1)

but is also affected by the selection and estimation of transformed scores ζi and the

estimation of the link function ψ(·). These uncertainties are reflected in terms λ |A|1/2
ϱ

,

Kc0+1
n max

(
n−1

∑n
i=1 r

2
η,i, K

2c0+2
n r2G

)
and h42+

1
nNsh

q
2
. When the bandwidths h1 and h2 and

the penalized parameter λ are sufficiently small, and nij, kn, and nNs are sufficiently large,
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the expression h42+
1

nNsh
q
2
+λ |A|1/2

ϱ
+Kc0+1

n max
(
n−1

∑n
i=1 r

2
η,i, K

2c0+2
n r2G

)
becomes negligible

compared to Kn

nNs|△|2 +Kn|△|2(ϖ+1). This implies that the uncertainties introduced by ζ̂i

and ψ̂(·) can be disregarded. Furthermore, if Kn is finite, Theorem 3 simplifies to the well-

known convergence rate of bivariate spline over triangulation (Li et al., 2021): ∥Ĝ(s) −

G0(s)∥22 = Op

{
1

nNs|△|2 + |△|2(ϖ+1)
}
and ∥θ̂(s)− θ0(s)∥22 = Op

{
1

nNs|△|2 + |△|2(ϖ+1)
}
.

Theorem 4. (Selection consistency) Under the conditions in Theorem 3, if Kn

nNs|△|2 +

Kn|△|2(ϖ+1) → 0 and
{

Kn

nNs|△|2 +Kn|△|2(ϖ+1)
}(

λnδ
)−1 → 0, then we have

lim
n→∞

P (∥ĝk∥2 ̸= 0 for k ∈ A and ∥ĝk∥2 = 0 for k /∈ A) = 1.

The condition
{

Kn

nNs|△|2 +Kn|△|2(ϖ+1)
}(

λnδ
)−1 → 0 requires that λ converges to 0

not too fast to ensure the consistency of variable selection. This lower bound, together

with the upper bound in Theorem 3 for λ, yields n−δ
{

Kn

nNs|△|2 +Kn|△|2(ϖ+1)
}

≪ λ ≪

ϱ
|A|1/2

{
Kn

nNs|△|2 +Kn|△|2(ϖ+1)
}
, where an ≪ bn stands for an

bn
→ 0. The existence of such

λ can be guaranteed by n−δ ≪ ϱ
|A|1/2 . As a result, we can simultaneously obtain the

consistency of estimation and selection for the parameters.

5. Numerical Studies

In this section, we examine the finite sample performance of FJM. We compare the NMF-

PCA with classical MFPCA proposed by Happ and Greven (2018) and compare the

proposed FMVCM with the SVCM offered by Yu et al. (2021). The MFPCA and SVCM

are obtained from MFPCA and SVCMimage packages in R, respectively. We evaluate
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5.1 Performance of NMFPCA22

the accuracy of reconstructed curves and extracted scores in FPCA and the accuracy of

estimated coefficient functions in the image regression. Specifically, we compute the mean

squared errors (MSEs) of estimators, including MSE(ĝk) = Ns
−1∑Ns

j=1 {ĝk(sj)− gk(sj)}2,

MSE(X̂j) = (
∑n

i=1 nij)
−1
∑n

i=1

∑nij

d=1

{
X̂ij(tijd)−Xij(tijd)

}2

, and MSE(ξ̂k) = n−1
∑n

i=1(ξ̂ik−

ξik)
2 for j = 1, . . . , p and k = 1, . . . , Kn.

5.1 Performance of NMFPCA

Xmodel. We set p = 2 and generate the multivariate functional variable from Xij(t) =

µj(t)+fj
{∑4

k=1 ξikϕjk(t)
}
+εij,t, where µ1(t) = t+sin(πt), µ2(t) = exp(t), ξik ∼ N(0, λk)

with λk = exp{−(k+1)/2}∑4
k=1 exp{−(k+1)/2} , and εij,t ∼ N(0, σ2). The construction of eigenfunctions

ϕjk(t) refers to the online appendix of Happ and Greven (2018). We consider link func-

tions: Case I with f1(u) = u3/2 + 2.5u and f2(u) = sin(πu/5); Case II with fj(u) = u

for j = 1, 2. We take sample size n = 50, 100, and 150, and the number of observations

nij = 10, 40, and 80, with the observation points randomly sampled from U(0, 1).

To implement NMFPCA, we select bandwidth h1 = 1 and the number of splines

kn = 8 by the approach in Section 3. Web Figure 1 shows the values of BIC(h1)

for Case I with n = 50, 100, and 150, nij = 80, and σ2 = 0.1. Table 1 presents the

MSEs of the kth score ξk and the jth functional variable Xj(·) based on 100 Monte Carlo

simulations under Case I of Xmodel. The MSEs of NMFPCA are consistently smaller

than those of MFPCA. The improvement becomes increasingly remarkable as the noise

level increases, indicating that modeling the nonlinear relationship between Xij(t) and

ξTi ϕj(t) leads to better-extracted information and a more accurate recovery curve. We
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5.2 Performance of FMVCM24

also compare NMFPCA and MFPCA when the link function is linear for fairness. Web

Table 1 summarizes the results. The NMFPCA outperforms MFPCA in most cases except

for the case without measurement errors. This is due to the fact that directly performing

MFPCA on the contaminated observations is sensitive to measurement errors, thereby

leading to the poor performance of MFPCA in the presence of measurement errors. In

contrast, NMFPCA avoids this issue by directly estimating FPC scores. Notably, the

nonparametric estimation of the link function leads to a slightly worse performance of

the proposed procedure than MFPCA in the absence of measurement errors. However,

increasing the number of observations can compensate for this slight deficiency. Therefore,

we conclude that the gains obtained from NMFPCA are substantial regardless of linearly

or nonlinearly correlated functional data. In addition, as shown in Table 1 and Web Table

1, the estimation accuracy of NMFPCA improves with the sample size or the number of

observation points and reduces as the noise level increases.

We also investigate the performance of (3.2) in selecting the number of FPCs. Web

Table 2 reports the bias and standard deviation (SD) of K̂n. Most of the bias and SD

values are reasonably small, demonstrating the effectiveness of our approach.

5.2 Performance of FMVCM

We conduct two simulation studies for correlating image with scalar and functional co-

variates. The imaging response is generated with multiple-index and linear link functions,

as described below.

Ymodel I. Let q = 2, qz = 2 and D = [−1, 4] × [−1, 1]. Xi(t) are obtained according
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5.2 Performance of FMVCM25

to the setting similar to Case I of Xmodel, except that σ2 = 0.25 and nij is generated

from a discrete uniform distribution on {70, . . . , 80}. The imaging responses are simulated

from Yi(sj) = ψ
{∑4

k=1 gk1(sj)ζik,
∑4

k=1 gk2(sj)ζik
}
+ θ1(sj)Zi1 + θ2(sj)Zi2 + ϵi(sj), where

θ1(s) is generated by function fs.test in R package mgcv, θ2(s) = θ1(s)+ sin(5s1), g31(s) =

θ1(s)+sin(5s1)+cos(5s2), g41(s) = θ1(s)+5s2, g32(s) = θ1(s)+5s1, g42(s) = θ1(s)+cos(5s2),

ψ
{∑4

k=1 gk1(s)ζik ,
∑4

k=1 gk2(s)ζik
}
= sin

{∑4
k=1 gk1(s)ζik

}
+2 cos

{∑4
k=1 gk2(s)ζik

}
, gkj(s)

≡ 0 for k = 1, 2, Zi1 and Zi2 are independently generated from U [−1, 1], and ϵi(sj) is gener-

ated from a Gaussian process with zero mean and covariance function Cov{ϵi(sj), ϵi(sj′)} =

σ2
ϵ × 0.3∥sj−sj′∥. For each image, we consider the horseshoe domain (Sangalli et al., 2013)

and generate data at a grid of Ns = 101 × 41 pixels with 2611 pixels fall within the

horseshoe domain.

Ymodel II. The setting is similar to Ymodel I, except that q = 1, and Yi(sj) =

ψ
{∑4

k=1 gk1(sj)ζik
}
+θ1(sj)Zi1+θ2(sj)Zi2+ϵi(sj), where ψ

{∑4
k=1 gk1(sj)ζik

}
=
∑4

k=1 gk1(sj)ζik.

To apply the bivariate spline smoothing, we consider a triangulation with 109 triangles

and 95 vertices and bivariate spline basis functions with degree ϖ = 2 and smoothness

v = 1. We select {h2, q} = {0.6, 2} for Ymodel I and {h2, q} = {0.1, 1} for Ymodel

II by the approach in Section 3. Table 2 and Web Table 3 present the MSEs of nonzero

coefficient functions for the FMVCM and SVCM methods based on 100 Monte Carlo simu-

lations under different combinations of n = (50, 100, 150) and noise levels σ2
ϵ = (0.1, 0.25).

When the link function is nonlinear, the proposed FMVCM outperforms SVCM in all

the settings considered. This result implies that SVCM is restrictive and cannot ade-
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5.2 Performance of FMVCM26

Table 2: MSEs of nonzero coefficient functions and prediction errors using FMVCM (the
proposed) and SVCM for Ymodel I (nonlinear ψ(·)).

FMVCM SVCM

σ2
ϵ n MSPE(Y )MSE(θ̂1)MSE(θ̂2)MSE(ĝ31)MSE(ĝ41)MSE(ĝ32)MSE(ĝ42) MSPE(Y )MSE(θ̂1)MSE(θ̂2)

0.1 50 1.57 0.02 0.03 0.18 0.45 0.62 0.46 4.47 0.40 0.30
100 1.44 0.01 0.03 0.13 0.40 0.60 0.39 3.89 0.22 0.18
150 1.44 0.01 0.02 0.11 0.32 0.47 0.33 3.55 0.14 0.16

0.25 50 1.83 0.03 0.04 0.26 0.48 0.69 0.48 4.61 0.40 0.31
100 1.69 0.01 0.03 0.15 0.46 0.67 0.46 4.02 0.22 0.18
150 1.61 0.01 0.02 0.12 0.32 0.61 0.44 3.66 0.14 0.16

quately reveal the nonlinear association between imaging responses and covariates. In

contrast, FMVCM adapts the image-on-scalar regression to a multiple-index framework,

thereby capturing the nonlinear features and being highly flexible for general situations.

When the link function is linear, FMVCM performs similarly to or slightly worse than

SVCM due to the estimated link function and group penalty. Moreover, FMVCM can

account for the influence of the estimation and selection of NMFPCA scores contami-

nated with measurement errors and thus significantly outperforms SVCM. Likewise, the

estimation performance improves as n increases. We also compare the prediction errors,

MSPE(Y ) = (100× 2611)−1
∑100

i=1

∑2611
j=1 {Ŷi(sj) − Yi(sj)}2, on a test data set. We first

estimate the transformed NMFPCA scores from the test set based on the trained NMF-

PCA, then plug these estimated scores and scalar predictors from the test data set into

the trained FMVCM and compute the predicted values Ŷi(sj). Table 2 and Web Table 3

show that putting a sparsity penalty on the imaging regression model reduces prediction

errors.

Figure 1 and Web Figure 2 depict the true surfaces and their estimated bivariate

functions for Ymodels I and II. For an easy comparison of FMVCM and SVCM, we only
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5.2 Performance of FMVCM27

true θ1 our method: θ1        SVCM: θ1

true θ2 our method: θ2   SVCM: θ2

Figure 1: The true coefficient functions and average estimators of linear part for Ymodel
I (nonlinear ψ(·)) with n = 100 and σ2

ϵ = 0.25.

present the bivariate functions of the linear parts. The estimated coefficient functions

based on FMVCM are close to the truth and can capture the main features of the true bi-

variate functions in Ymodels I and II, whereas SVCM fails to capture the spatial pattern

in Ymodel I. Web Table 4 presents the model selection results, including the selection

percentages of each gk, the number of nonzero coefficient functions correctly identified

as nonzero functions (#correct nonzero), and the number of zero coefficient functions

correctly identified as zero functions (#correct zero). For each group of nonzero coef-

ficient functions, the selection percentage is high and increases to 100% as the sample
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5.2 Performance of FMVCM28

size increases or the noise level decreases. Hence, our procedure can effectively identify

important FPCs and rule out unimportant ones.

We examine the performance of BIC for selecting the number of index q. We calculate

the frequency of q selected by BIC based on 100 repetitions in Ymodel I and Ymodel II.

Web Table 5 reports the results under (n, σ2
ϵ ) = (100, 0.25). It appears that the approach

in Section 3 works well in identifying the true q = 2 in Ymodel I and q = 1 in Ymodel II.

To investigate our method’s robustness and efficiency, we compare FJMs with MFPCA

+ FMVCM, FMVCM with true ζi (FMVCM+T), and FMVCM with true and important

ζi (FMVCM+TI). Results in Web Table 6 show that MFPCA + FMVCM produces

large MSE and SD for ĝ31, ĝ41, ĝ32, and ĝ42. Thus, inadequate information extraction

in the dimension reduction leads to severe estimation errors and unstable estimates. In

contrast, the MSE and SD of FJM are close to those of the FMVCM+T and FMVCM+TI

estimators, indicating that our method is robust with negligible loss of efficiency.

We also investigate the performance of the proposed estimators with misspecified

Kn = 2, 7, and 12. Web Table 7 presents the MSE and SD of the estimators for Ymodel

I with n = 100 and σ2
ϵ = 0.1, and the true value of Kn is 4. The results show that the

estimation accuracy is worse when Kn is under-specified but similar to that under true

Kn when the number of FPCs is over-specified. This finding implies that the proposed

FJMs are insensitive to misspecified Kn when the extracted information in the dimension

reduction procedure is sufficient.

Additionally, based on an anonymous referee’s suggestion, we designed a setting to
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mimic the ADNI dataset. We set n = 606, p = 100, and Kn = 20 with µj(t) = t+ sin(πt)

and fj(u) = u3/2 + 2.5u for j ≤ 50, and µj(t) = exp(t) and fj(u) = sin(πu/5) for

50 < j ≤ 100, with σ2 values of 0.1 and 0.5. The nij values were drawn from a discrete

uniform distribution over {1632, . . . , 7787}. We also set q = 2, qz = 6, and σ2
ϵ = 0.1,

using the estimated coefficient functions from the ADNI analysis for the left hippocampus

without APOE-ϵ4 and disease status, denoted as g11, . . . , g20,2 and θ1, . . . , θ6, respectively.

Further, Zi1 = 1, while Zi2 and Zi3 were generated from U [1, 10], and Zi4, Zi5, and Zi6

from Bernoulli(0.5). Other settings for generating Xi(t) and Yi(s) follow Ymodel I. Web

Tables 8 and 9 show that our proposed method outperforms competitors and accurately

identifies key covariates.

6. ADNI Data Analysis

6.1 Data Description and Preprocessing Pipeline

We applied the proposed FJM to the ADNI data set with imaging, genetic, and clinical

variables collected by the ADNI study (adni.loni.usc.edu). The ADNI study started in

2004 with the primary objective of identifying biomarkers for accurate AD diagnosis in an

early stage. In this data analysis, our ADNI data set includes hippocampal surface data,

SNPs data, and clinical variables from n = 606 subjects in ADNI1, including 113 AD, 316

mild cognitive impairment (MCI), and 177 cognitive-normal (CN). There are 361 males

(mean age, 76.03 ± 6.65 years old) and 245 females (mean age, 75.04 ± 6.57 years old).

We extracted hippocampal surface data from raw MRI data. These MRIs were collected
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6.1 Data Description and Preprocessing Pipeline30

from 1.5 Tesla MRI scanners with individualized protocols, and MRI protocol repetition

time = 2400 ms, inversion time = 1000 ms, field of view = 24 cm, flip angle = 8◦, and

256× 256× 170 acquisition matrix, yielding 1.25× 1.26× 1.2 mm3 voxel size.

The processing pipeline for the MRI data includes standard steps and automatic re-

gional labeling. Then, we adopted a hippocampal subregional analysis package (Shi et al.,

2013) based on surface fluid registration. In the surface fluid registration, two cuts were

introduced at the front and back of the hippocampal surface so that it could be converted

into a genus zero surface with two open boundaries. The use of conformal parameteriza-

tion can convert a 3D surface registration problem into a 2D image registration problem,

and then the flow induced in the parameter domain establishes high-order correspondences

among 3D surfaces. Hence, the radial distance map on the registered surface was gener-

ated for each subject, generating a Ns = 100 × 150 image response. Such hippocampus

surface measures retain information on the deformation along the surface normal direction

(Wang et al., 2011).

We aimed to examine the effects of clinical, genetic, and demographic variables on

the left and right hippocampi. There are 6,087,025 genotyped and imputed SNPs on

all of the 22 chromosomes and clinical covariates, including age, gender (1 = Female),

education length, retirement (1 = Yes), and handedness (1 = Left). Since the number of

SNPs is significantly larger than the sample size and the genetic variants present a strong

blockwise correlation structure, we adopted a blockwise screening approach to reduce the

number of candidate SNPs. Specifically, after using the default method (Gabriel et al.,
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2002), Haploview (Barrett et al., 2005), and PLINK (Purcell et al., 2007) to form LD

blocks, we screened the LD blocks while controlling for the clinical variables and the top

five principal components of the whole genome data. We kept the top 100 Bonferroni

significant LD blocks for the left and right hippocampi. As the left and right hippocampi

are asymmetric (Pedraza et al., 2004), we apply FJM to each of them separately.

6.2 Analysis and Results

We performed NMFPCA on the top p = 100 LD blocks from either the left or right

hippocampus, controlling for covariates excluding the number of APOE-ϵ4 alleles and

baseline diagnosis status. Individuals inheriting one or two copies of the APOE-ϵ4 allele

face an elevated risk of developing Alzheimer’s disease compared to non-carriers. Web

Figure 3 presents the estimates of f̂j(·), revealing that the f̂j(·) has a clear nonlinear

pattern and justifying the necessity of delineating the nonlinear relationships of the top

100 LD blocks. To apply the proposed FMVCM and SVCM to analyze the hippocampus

surface data, we first fitted the left or right top 100 LD blocks using the conventional

MFPCA and the proposed NMFPCA. The functional covariate Xij(tijd) was the SNP

values at the dth genomic location on the jth LD block for the ith individual, with

i = 1, . . . , 606, j = 1, . . . , 100, and d = 1, . . . , nij. nij is the number of genomic locations

on the jth LD block for the ith individual, ranging from 1632 to 7787. We used the

maxima and minima of locations in each LD block as 0 and 1 and scaled the locations

into [0, 1] before analysis. Then, we selected (Kn, h1, kn) = (20, 0.07, 20) based on the

proposed criterion in Section 3.
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Next, we treated the extracted FPC scores as known covariates with the clinical

covariates detailed in Section 6.1, and applied FMVCM and SVCM to the left and right

hippocampal surface data separately. Yi(sj) was the left or right hippocampus surface

measure at point sj for the ith individual, with j = 1, . . . , 15000. ζi was the transformed

20-dimensional latent score vector. Zi was 6-dimensional real-valued covariates including

five clinical variables and an intercept term. In addition, we chose the number of indices

q = 2 by BIC (3.5) and used triangulation with 30 triangles and 24 vertices. Based

on this triangulation, we generated the bivariate spline basis functions with (ϖ, v, h2) =

(2, 1, 0.16) and (ϖ, v, h2) = (2, 1, 0.11) for the left and right hippocampi, respectively.

We performed the computation on a single 14-core machine with 98GB of RAM. Web

Table 10 reports the computation time, and Web Table 11 presents the selected FPCs for

FMVCM with MFPCAs and NMFPCAs. The NMFPCA+FMVCM (FJM) selects fewer

FPC scores than MFPCA+FMVCM.

We randomly split the data into two equal parts, the training and test sets, and

evaluate the performance of MFPCA and NMFPCA in terms of the prediction error of

100 LD blocks (functional covariates). Table 3 presents the prediction errors and SDs for

the functional covariates under Kn = 4, 20, 30, and 40. The results show that NMFPCA

consistently yields smaller prediction errors than MFPCA. Similarly, we compared the

performance of SVCM and FMVCM in predicting the radial distance of both hippocampi

(image response). We considered four settings with different combinations of {MFPCA,

NMFPCA} and {SVCM, FMVCM}. Table 4 presents the prediction errors and SDs for
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the image response with large Kn = 20, 30, and 40. We summarize our findings as fol-

lows. First, MFPCA+FMVCM and NMFPCA+FMVCM outperform MFPCA+SVCM

and NMFPCA+SVCM, respectively. When the dimensional reduction procedure is fixed

to MFPCA or NMFPCA, FMVCM exhibits better prediction performance than SVCM,

implying that SVCM cannot adequately uncover the complex associations between the

imaging responses and scalar covariates. Second, NMFPCA+FMVCM significantly out-

performs MFPCA+FMVCM. When the scalar covariate model is fixed to FMVCM, NMF-

PCA is superior to MFPCA. These findings indicate that the nonlinear dependence of

functional variables and the nonlinearly varying association between images and covari-

ates in this application are essential. Hence, the proposed FJM (NMFPCA+FMVCM)

model produces the smallest prediction errors among all the competing models. Further-

more, FJM demonstrates insensitivity to the increased number of FPCs, indicating that

the BIC rule selects an appropriate number of FPCs that extract sufficient information

about the functional covariates.

Table 3: Prediction errors (PE) and SD of the left and right top 100 LD blocks.

left LD blocks right LD blocks
Kn = 4Kn = 20Kn = 30Kn = 40 Kn = 4Kn = 20Kn = 30Kn = 40

MFPCA PE 0.8552 0.5359 0.5366 0.5354 0.8593 0.5353 0.5368 0.5418
SD 0.0028 0.0002 0.0013 0.0001 0.0019 0.0002 0.0038 0.0035

NMFPCA PE 0.5289 0.3331 0.3047 0.3487 0.5332 0.3476 0.3203 0.3435
SD 0.0021 0.0007 0.0001 0.0012 0.0015 0.0007 0.0009 0.0003

Next, we provide explanations for the estimated coefficient functions. Web Figures 4

and 5 show the estimated coefficient functions using FJM for the left and right hippocampi.

33
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Let “Intercept” represent the image parameter of the intercept term, “FPC score k” denote

the regression coefficient function of the kth FPC score, and “Age” indicate the coefficient

function corresponding to scalar covariate age. We observe an asymmetric clinical and

genetic effect on the left and right hippocampi. Web Figure 4 presents four hippocampal

subfields. The subfields Cornu Ammonis region 1 (CA1) and subiculum (Sub) show higher

sensitivity than Cornu Ammonis region 2 (CA2) and Cornu Ammonis region 3 (CA3).

The AD progression initially affects CA1 and subiculum and then spreads to CA2 and

CA3 subfields (De Flores et al., 2015).

Web Table 12 presents the number of negative entries for the estimated coefficient

functions of clinical variables. Web Figure 4 shows more than 13,800 pixels (over 15000

pixels) of the estimated coefficient function for age are negative, implying that hippocam-

pus atrophy with age. On the other hand, more than 14,000 pixels of the estimated

gender image are positive, indicating that hippocampus atrophy is more severe for men

than women. Published medical reports (e.g., Mielke et al., 2014) found that men have

a greater risk of MCI, and more than half of the individuals in this data are MCI, par-

tially explaining why gender positively affects the radial distance of both hippocampi.

The effect of retirement is negative in the CA1 and subiculum subregions, suggesting an

excess risk of cognition deficit among retired individuals. Education produces a negative

impact on the radial distance of both hippocampi. Existing literature (Olazarán et al.,

2010) has found that as AD progresses, high educational attainment helps individuals

maintain more efficient cognitive function over a short period, afterward leading to faster
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dementia progression. A total of 13,429 and 5,079 entries of the estimated handedness

image corresponding to the left and right hippocampi are negative, suggesting handed-

ness is negatively (positively) associated with most pixels of the radial distances of the left

(right) hippocampi. The cross-distributed control of the human brain partially explains

this result.

We also analyzed the ADNI data set, including covariates such as the number of

APOE-ϵ4 alleles and baseline disease status. The details of the analysis and results are

provided in Web Appendix C.

7. Concluding Remarks

In this paper, we considered the images on scalar and functional variables regression.

We proposed an NMFPCA to accommodate the nonlinear relationships among functional

variables. Then, we modeled the effects of functional covariates via the extracted non-

linear FPC scores. Moreover, we proposed FMVCM to investigate the spatially varying

association between the imaging response and the FPC scores, as well as multiple covari-

ates, allowing for highly flexible and complex association relationships. To our knowledge,

little has been done in the joint analysis of complex associations among imaging measures,

functional covariates, and multivariate scalar variables. In addition, we developed an esti-

mation algorithm that combines the advantages of B-spline, bivariate splines, and kernel

smoothing. Our method allows the number of principal components to diverge to infinity

and performs the selection and estimation of nonlinear multivariate FPC scores through

the penalized least square approach. These features enable our method to become a widely
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applicable and flexible framework for image data analysis in high-dimensional settings.

This study can be extended in the following aspects. We may consider estimating the

bivariate coefficient functions without estimating the link function. That is, treating the

link function as a nuisance parameter, the interest is to find sufficient dimension reduction

space. Furthermore, we will derive the optimal convergence rates and inference procedure

for FJM. Whether the rates are optimal is worth further investigating.

Supplementary Material

The Supplementary Material contains the theoretical proofs in Section 4, the estimation

procedure in Section 3, ADNI analysis given APOE-ϵ4 and disease status in Section 6,

and Web Tables 1–11 and Figures 1–7 in Sections 5 and 6.
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