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Abstract: We develop a framework of canonical correlation analysis for distribution-valued

functional data within the geometry of Wasserstein spaces. Specifically, we formulate an

intrinsic concept of correlation between random distributions, propose estimation meth-

ods based on functional principal component analysis and Tikhonov regularization, re-

spectively, for the correlation and its corresponding weight functions, and establish the

minimax convergence rates of the estimators. In order to overcome the challenge raised

by nonlinearity of Wasserstein spaces, the key idea is to adopt tensor Hilbert spaces to

distribution-valued functional data. The finite-sample performance of the proposed esti-

mators is illustrated via simulation studies, and the practical merit is demonstrated via a

study on the association of distributions of brain activities between brain regions.
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Hilbert space.

1. Introduction

Thanks to rapid evolution of modern data collection technologies, functional data

emerge ubiquitously and the challenges of analyzing such data lead to a major line

of research. For instance, various methodologies for multivariate data have been

successfully extended to functional data, including functional principal components

analysis (FPCA) (Yao et al., 2005a; Hall and Hosseini-Nasab, 2006), linear regres-

sion (Yao et al., 2005b; Hall and Horowitz, 2007; Yuan and Cai, 2010; Dou et al.,

2012), classification (Delaigle and Hall, 2012) and clustering (James and Sugar,

2003). For a comprehensive treatment on functional data, we recommend the

monographs Ramsay and Silverman (2006), Ferraty and Vieu (2006), Horváth and

Kokoszka (2012), Hsing and Eubank (2015) and Kokoszka and Reimherr (2017).

In addition, statistical analysis of functional data taking values in a nonlinear Rie-

mannian manifold has gained increasing attention and been investigated by Dai

and Müller (2018); Lin and Yao (2019); Dai et al. (2021) and Shao et al. (2022).

In addition to manifold-valued data, probability distributions are nowadays

commonly seen in practice, for example, arising from studies on mortality rates

(Lin and Müller, 2021), economics/housing (Chen et al., 2023), healthcare (Lin

et al., 2023), fingerprints and metagenomics (Sommerfeld and Munk, 2018), flow
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cytometry (Freulon et al., 2023), wearable device (Zhang et al., 2022) and COVID-

19 cases and deaths (Gajardo and Müller, 2023). The space of probability distri-

butions defined in a common domain, referred to as Wasserstein space, is clearly

not a linear space as a linear combination of two probability measures may not be

a probability measure. In order to tackle the nonlinear structure of the Wasser-

stein space, Petersen and Müller (2016) proposed a log quantile density (LQD)

transformation to turn probability density functions to unconstrained functions.

Dai (2022) adopted a square root transformation to map density functions into

the positive orthant of a unit Hilbert sphere S∞. However, none of these con-

sider the more natural geometry that is compatible with optimal transport on the

Wasserstein space. Since the Wasserstein space comes with a formal Riemannian

structure (Ambrosio et al., 2008), it is natural to transform probability distribu-

tions via Riemannian logarithmic maps that have been well utilized (Lin and Yao,

2019; Shao et al., 2022). For instance, based on this idea, Bigot et al. (2017) pro-

posed a geodesic principal component analysis for data sampled from a Wasserstein

space, Petersen and Müller (2019) studied Wasserstein covariance for multiple ran-

dom densities, and Chen et al. (2023) developed a class of regression models on

Wasserstein space.

In this paper, we push further the frontier of statistical analysis into Wasser-

stein functional data that refer to functions taking values in a Wasserstein space.
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Such data, for example, could naturally arise from functional magnetic resonance

imaging (fMRI) studies, where the distribution of brain signals in a region is lon-

gitudinally available for a period; see Figure 1 for an illustration. For statistical

analysis of such data, in addition to the challenging issue of infinite dimensional-

ity shared by the ordinary functional data analysis, a major obstacle comes from

the nonlinear nature of the Wasserstein space that creates difficulties especially in

modeling the covariance structure. Such nonlinearity is also presented in the Rie-

mannian functional data analysis and is addressed by the intrinsic device of tensor

Hilbert spaces proposed in Lin and Yao (2019). However, although Wasserstein

spaces have a geometric construction that is similar to the Riemannian structure,

they are not Riemannian manifolds. On one hand, when considering the measures

defined on the real line, the Wasserstein space can be regarded as the convex closed

subset of L2(0, 1) formed by equivalence classes of quantile functions. Therefore,

the Fréchet mean can be expressed by the quantile functions and some regularity

conditions on the Fréchet functional are no longer needed to ensure the existence

and uniqueness of the empirical and population Fréchet mean. In addition, the

McCann’s interpolation defines a constant-speed geodesic on the Wasserstein space

and the flatness property facilitates the theoretical analysis and asymptotic behav-

ior of our proposed estimators. On the other hand, since the tangent space at each

point of Wasserstein space is an infinite-dimensional linear space, it is non-trivial
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Figure 1: The observed longitudinal densities of signal strength in Caudate nucleus

(left) and Putamen area (right) from resting-state fMRI examinations.

to extend the framework in Lin and Yao (2019) developed for (finite-dimensional)

Riemannian manifolds to Wasserstein spaces. Given the aforementioned formal

Riemannian structure of the Wasserstein space, we propose to circumvent the

challenge by extending the device to Wasserstein functional data.

Specifically, we investigate correlation analysis for Wasserstein space valued

functional data. Canonical correlation is one of the key tools for statistical anal-

ysis, and has been extensively studied for multivariate data and Euclidean func-

tional data (He et al., 2003; Eubank and Hsing, 2008; Yang et al., 2011; Lian, 2014;

Zhou and Chen, 2020), but is yet to be explored for Wasserstein functional data.

Our main contribution is to formulate an intrinsic concept of correlation between

random distributions, to propose an FPCA-based estimator and a Tikhonov reg-
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ularized estimator, respectively, for the correlation and its corresponding weight

functions, to establish the minimax convergence rates of the estimators, and to

extend the framework of tensor Hilbert spaces to Wasserstein functional data. In

addition, our arguments for the minimax rate can be straightforwardly extended

to the setting of Euclidean functional data, while existing works seem to lack of

rigorous arguments; see Remark 1 in supplementary for details.

The rest of the paper is organized as follows. We develop the foundational

framework for Wasserstein space valued functional data in Section 2. Intrinsic

Wasserstein correlation analysis is presented in Section 3. The simulation studies

are offered in Section 4 and an application to fMRI dataset can be found in Sec-

tion 5. The proofs of the main and ancillary results are collected together in the

supplementary material.

2. Wasserstein Functional Data

In this section, we shall give a synopsis of the functional data valued in Wasserstein

space. We first introduce the Wasserstein metric and geometry on a density class,

which has similar structures to a Riemannian manifold. Based on the concept of

tensor Hilbert space, we propose a new framework for functional data on Wasser-

stein space and discuss its properties. Then the random elements perspective in

tensor Hilbert space are investigated, including an estimation procedure for the
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2.1 Wasserstein Metric and Geometry

mean surface and covariance operator. Finally, the asymptotic properties of the

proposed estimators are studied.

2.1 Wasserstein Metric and Geometry

Let W2(R) be the collection of probability measures on the real line R with finite

second-order moments, that is,

W2(R) =
{
µ ∈ P(R) :

∫
R
|x|2dµ(x) < ∞

}
,

where P(R) is the set of probability measures on R. For µ ∈ W2(R) and a µ-

measurable map T : R → R, the push-forward measure of µ through T is defined

by (T#µ)(A) = µ{x ∈ R | T (x) ∈ A}, for A ∈ B(R), where B(R) denotes the Borel

space of R. In the sequel, we use Fµ and F−1
µ to denote the distribution function

and the right-continuous quantile function of µ, respectively. If µ is absolutely

continuous to the Lebesgue measure, its density function is denoted by fµ. The

Wasserstein distance between two measures µ, ν ∈ W2(R) is defined by

d(µ, ν) := inf

{∫
R2

|x1 − x2|2dγ(x1, x2) : γ ∈ Γ(µ, ν)

}
, (2.1)

where Γ(µ, ν) is the class of joint probability measures with marginal measures µ

and ν. The W2(R) space endowed with the Wasserstein distance, denoted by the

Wasserstein space (W2, d), is a separable and complete metric space (Ambrosio

et al., 2008).
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2.1 Wasserstein Metric and Geometry

The minimization problem (2.1) is known as the Kantorovich’s formulation

(Kantorovich, 2006) that is a relaxation of the Monge problem

inf

{∫
R
{T (u)− u}2dµ(u), such that T#µ = ν

}
. (2.2)

Unlike the Kantorovich’s formulation, the Monge problem (2.2) can be ill-posed

when µ is a Dirac mass and ν has no atom, under which there is no transport map

T such that T#µ = ν. If µ is absolutely continuous to Lebesgue measure, which

implies µ has no atom and Fµ is continuous, the Monge problem (2.2) is equivalent

to (2.1) and has a unique solution T = F−1
ν ◦ Fµ := T ν

µ (Major, 1978; Cuesta and

Matran, 1989; Brenier, 1991; Gangbo and McCann, 1996; Petersen and Müller,

2019). This solution, called the optimal transport map from µ to ν, also induces

a geodesic between µ and ν; here, a curve η(t) : I → W2(R) parameterized by

an interval I ⊂ R is a geodesic if d{η(t), η(t + ϵ)} = aϵ for some constant a > 0,

all t ∈ I and sufficiently small ϵ > 0. Specifically, the McCann’s interpolation

(McCann, 1997)

µt =
{
id+ t

(
T ν
µ − id

)}
#µ : [0, 1] → W2(R)

is a geodesic connecting µ to ν (Ambrosio et al., 2008), where id denotes the

identity map.

Although (W2, d) is not a Riemannian manifold, it can be endowed with a

formal Riemannian structure, in which geometric concepts essential to statistical
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2.1 Wasserstein Metric and Geometry

analysis, such as tangent spaces, Riemannian exponential maps and logarithmic

maps can be defined (Bigot et al., 2017; Chen et al., 2023). This motivates us to

extend the framework of Lin and Yao (2019) to the Wasserstein space, as follows.

Define

L2(µ;R) :=
{
T : R → R µ-measurable :

∫
R
|T (x)|2dµ(x) < +∞

}
,

which is a separable Hilbert space for any probability measure µ, where the inner

product is given by ⟨T1, T2⟩µ =
∫
R T1(u)T2(u)dµ(u) for T1, T2 ∈ L2(µ;R). The

tangent space at µ is defined as the closure of

Tan◦
µ =

{
τ
(
F−1
ν ◦ Fµ − id

)
: τ > 0, ν ∈ W2(R)

}
within L2(µ;R), i.e., Tanµ = Tan◦

µ

L2(µ;R)
. The term F−1

ν ◦Fµ−id can be interpreted

as a “direction”, just as in the Euclidean case where x+t(y−x) has direction y−x.

It follows from the definition that Tanµ is a complete and separable subspace of

L2(µ,R). Tanµ is also a linear space (Chapter 2.3, Panaretos and Zemel, 2020),

and thus a separable Hilbert space endowed with the inner product ⟨·, ·⟩µ. The

exponential map Expµ : Tanµ → W2(R) and the corresponding logarithmic map

Logµ : W2(R) → Tanµ at µ are defined by

Expµ(T) = (T + id)#µ and Logµ(ν) = F−1
ν ◦ Fµ − id, (2.3)

respectively, for T ∈ Tanµ and µ, ν ∈ W2(R). Unlike ordinary Riemannian expo-

nential maps, the exponential map at µ defined above may not be a local homeo-
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2.2 Distribution-valued Functional Data

morphism between a neighborhood of µ and a neighborhood of the origin of Tanµ,

which shows thatW2(R) is not a genuine Riemannian manifold. Nevertheless, The-

orem 2.2 in Bigot et al. (2017) shows that the exponential map Expµ restricted to

the image of the logarithmic map Logµ is an isometric homeomorphism with Logµ

being its inverse, and this is sufficient for our statistical analysis.

As in most Wasserstein data the observed distributions have density functions

supported in a compact domain S, in this paper we restrict our attention to W2(S)

that contains all probability measures supported in S.

2.2 Distribution-valued Functional Data

Let X(t) be a random process indexed by t ∈ T and taking values in W2(S), where

T is a compact subset of R, that is, for each t ∈ T , X(t) is a random measure on

S; in the statistical analysis, the random process X serves as a prototype of the

observed distribution-valued functional data. To quantify the first-order behaviors

of X, as in Dai and Müller (2018); Lin and Yao (2019), we utilize the concept of

the Fréchet mean (Fréchet, 1948; Agueh and Carlier, 2011), which in our context

is defined by

µ(t) = argmin
p∈W2(S)

F (p, t) with F (p, t) = Ed2{X(t), p} , t ∈ T .

According to Lemma S2 of Lin et al. (2023), the Fréchet mean function exists and

is unique for each t ∈ T .
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2.2 Distribution-valued Functional Data

To characterize the second-order structure of X, we exploit the formal Rie-

mannian structure of W2(S) to consider the process Logµ(t)X(t) indexed by t and

taking values in the vector space Tanµ(t) for each t ∈ T . Like Lin and Yao (2019),

we treat the process Logµ(·)X(·), that is also denoted by LogµX in the sequel for

simplicity, as a vector field along the mean curve µ, and then further view it as a

random element in the space of vector fields along µ,

T (µ) :=

{
Z : Z(·) ∈ Tanµ(·),

∫
⟨Z(t), Z(t)⟩µ(t) dt < ∞

}
.

For Riemannian functional data, i.e., data of functions taking value in a (finite-

dimensional) Riemannian manifold, the space T (µ), termed a tensor Hilbert space

and shown by Lin and Yao (2019), is a separable Hilbert space. Now we extend this

result to the Wasserstein space W2(S) by endowing T (µ) with the inner product

⟪Z1, Z2⟫µ :=
∫
⟨Z1(t), Z2(t)⟩µ(t)dt and the induced norm |||·|||µ, where we recall that

⟨·, ·⟩µ(t) denotes the inner product in Tanµ(t).

Proposition 1. T (µ) is a separable Hilbert space with the inner product ⟪·, ·⟫µ.

Since S is compact, then W2(S) is compact and thus E
∣∣∣∣∣∣LogµX∣∣∣∣∣∣2

µ
< ∞,

according to Theorem 7.4.2 in Hsing and Eubank (2015), LogµX can be viewed as

a random element in T (µ). The auto-covariance operator C : T (µ) → T (µ) for

X can be defined by

⟪CU, V ⟫µ := E
(
⟪LogµX,U⟫

µ
⟪LogµX, V ⟫

µ

)
, for U, V ∈ T (µ).
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2.2 Distribution-valued Functional Data

This operator is a nonnegative–definite trace–class operator with the following

eigendecomposition (Theorem 7.2.6, Hsing and Eubank, 2015)

C =
∞∑
k=1

λkΦk ⊗ Φk

with eigenvalues λ1 > λ2 > · · · > 0, that are assumed of multiplicity 1 without loss

of generality, and orthonormal eigenelements Φk that form a complete orthonormal

system for T (µ). In addition, the process LogµX admits the following Karhunen–

Loève expansion

LogµX =
∞∑
k=1

ξkΦk

with ξk := ⟪LogµX,Φk⟫µ being uncorrelated and centered random variables.

Given a sample of independently and identically distributed (i.i.d.) copies

X1, · · · , Xn of X, the Fréchet mean function µ is estimated by its sample version

µ̂(t) = argmin
p∈W2

Fn(p, t) with Fn(p, t) =
1

n

n∑
i=1

d2{Xi(t), p}, p ∈ W2, t ∈ T .

According to Chen et al. (2023) and Lemma S2 of Lin et al. (2023),

F−1
µ(t) = EF−1

X(t) and F−1
µ̂(t) =

1

n

n∑
i=1

F−1
Xi(t)

for each t ∈ T . (2.4)

Similarly, the auto-covariance operator is estimated by its sample version

Ĉ =
1

n

n∑
i=1

(Logµ̂Xi)⊗ (Logµ̂Xi),

which admits the eigendecomposion Ĉ =
∑∞

k=1 λ̂kΦ̂k ⊗ Φ̂k for λ̂1 > λ̂2 > · · · ≥ 0

with the estimated eigenvalues λ̂k and eigenfunctions Φ̂k.
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2.2 Distribution-valued Functional Data

To assess the estimation quality, for the Fréchet mean function, one may use

the integrated squared error
∫
d2{µ̂(t), µ(t)}dt. It turns out to be challenging to

quantify the discrepancy between Ĉ and C, as when µ̂ and µ are not identical,

the spaces T (µ̂) and T (µ) are distinct Hilbert spaces. For Riemannian functional

data, Lin and Yao (2019) addressed this problem by the parallel transport induced

by the Levi–Civita connection that is intrinsic to the Riemannian manifold under

consideration. Fortunately, as shown in Ambrosio et al. (2008), the Wasserstein

space also has also a similar geometric structure that is defined via the Benamou–

Brenier formula (Benamou and Brenier, 2000), which can be adopted to W2(S) as

follows.

First, we begin with the parallel transport of tangent vectors at an element

of W2(S) to another element. To this end, let ν and ν ′ be elements in W2(S),

a parallel transport operator can be defined between the entire Hilbert spaces

L2(ν;S) and L2(ν ′;S) (Chen et al., 2023), that is, Pν′
ν u := u ◦ F−1

ν ◦ Fν′ for

u ∈ L2(ν;S), where F−1
ν and Fν′ are the quantile function of ν and distribution

function of ν ′. Assuming that ν is atomless, the parallel transport Pν′
ν from tangent

space Tanν to Tanν′ is defined by Pν′
ν restricted to Tanν , i.e., Pν′

ν = Pν′
ν |Tanν .

To extend the concept of parallel transport defined in Chen et al. (2023) to

tensor Hilbert spaces, let µ(·), µ′(·), ν(·) and ν ′(·) be measurable curves on W2(S).

For U ∈ T (µ), the parallel transport of U from T (µ) to T (µ′) is defined by
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2.2 Distribution-valued Functional Data

(Pµ′
µ U)(·) = Pµ′(·)

µ(·) ◦U(·). LetB(µ, ν) denotes the set of all bounded linear operators

on T (µ) mapping to T (ν), which is a Banach space with the norm |||A|||B(µ,ν) =

supU∈T (µ),∥U∥µ=1 ∥AU∥ν (Hsing and Eubank, 2015, Theorem 3.1.3). The operator

Pν
µ also gives rise to a mapping PB(µ′,ν′)

B(µ,ν) from B(µ, ν) to B(µ′, ν ′), defined by{
PB(µ′,ν′)

B(µ,ν) A
}
V = Pν′

ν A(Pµ
µ′V ) for A ∈ B(µ, ν) and V ∈ T (µ′).

Proposition 2. Let µ, µ′, ν, ν ′ be measurable curves on W2(S) and assume for each

t ∈ T , µ(t), µ′(t), ν(t), ν ′(t) are atomless; U,U ′ ∈ T (µ), V ∈ T (ν), A ∈ B(µ, ν),

and B ∈ B(µ′, ν ′).

(a) Pν(t)
µ(t) is a unitary transportation form Tanµ(t) to Tanν(t) and the adjoint op-

erator of Pν(t)
µ(t) is Pµ(t)

ν(t) .

(b)
〈
Pν(t)

µ(t)u, v
〉
ν(t)

=
〈
u,Pµ(t)

ν(t) v
〉
µ(t)

and
∥∥∥Pν(t)

µ(t)u− v
∥∥∥
ν(t)

=
∥∥∥u− Pµ(t)

ν(t) v
∥∥∥
µ(t)

for

u ∈ Tanµ(t) and v ∈ Tanν(t).

(c) ⟪U,U ′⟫µ = ⟪Pν
µU,Pν

µU
′⟫

ν
, ⟪Pν

µU, V ⟫ν = ⟪U,Pµ
ν V ⟫µ and

∥∥Pν
µU − V

∥∥
ν
=

|||U − Pµ
ν V |||µ.

(d) Pν′
ν (AU) =

{
PB(µ′,ν′)

B(µ,ν) A
}
(Pµ′

µ U).

(e)
∣∣∣∣∣∣∣∣∣PB(µ′,ν′)

B(µ,ν) A−B
∣∣∣∣∣∣∣∣∣

B(µ′,ν′)
=

∣∣∣∣∣∣∣∣∣A− PB(µ,ν)
B(µ′,ν′)B

∣∣∣∣∣∣∣∣∣
B(µ,ν)

.

(f) PB(µ′,ν′)
B(µ,ν)

∑
k ckΦµ,k⊗Φν,k =

∑
k ck

(
Pµ′

µ Φµ,k

)
⊗
(
Pν′

ν Φν,k

)
, where ck are scalar

constants, Φµ,k ∈ T (µ), and Φν,k ∈ T (ν).
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2.2 Distribution-valued Functional Data

In the above we exploit the geometry of the Wasserstein space to develop the

parallel transport of elements and linear operators on tensor Hilbert spaces. This

contrasts with the mechanism adopted in Lin and Yao (2019) for Riemannian

manifolds in which the Levi–Civita connection exists and can be leveraged. Now

we are ready to quantify the discrepancy between objects of the same kind in T (µ)

and T (µ̂) by utilizing the above parallel transport.

Theorem 1. Assume for each t ∈ T , µ(t) ∈ W2 is atomless.

(a)
√
nLogµµ̂ converges in distribution to a Gaussian measure on the tensor

Hilbert space T (µ).

(b) supt∈T d2{µ(t), µ̂(t)} = Op(n
−1) and

∫
T d2{µ(t), µ̂(t)}dt = Op(n

−1).

(c)
∣∣∣∣∣∣∣∣∣PB(µ,µ)

B(µ̂,µ̂) Ĉ−C
∣∣∣∣∣∣∣∣∣2

B(µ,µ)
= Op(n

−1) and supk⩾1 |λ̂k − λk|2 = Op(n
−1).

(d) Let ηj = (1/2) infk ̸=j |λk − λj| and ∆ = PB(µ,µ)
B(µ̂,µ̂) Ĉ − C. If λj ∼ j−a and

ηj ∼ j−(a+1), then for all j such that |||∆|||B(µ,µ) < ηj/2 and a constant C

that does not depend on j and n, we have

E
∥∥∥Pµ

µ̂ Φ̂j − Φj

∥∥∥2

T (µ)
⩽ C

j2

n
.

Part (a), (b) and (c) in Theorem 1 show that the convergence rates for the mean

and covariance estimators are root-n, which is consistent with the classic results

for fully observed Euclidean (Hall and Hosseini-Nasab, 2006; Hall and Horowitz,
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2007) and Riemannian manifold functional data (Lin and Yao, 2019). In view of the

properties for W2(S), some regularity conditions for the Fréchet functional are no

longer needed to ensure the existence of the population and empirical Fréchet mean.

Furthermore, due to the flatness of the Wasserstein space, the high order terms in

the Taylor expansion of the logarithm process are vanished, which facilitates the

theoretical derivation. The last statement of Theorem 1 extends the classic result

in eigenfunctions for fully observed Euclidean functional data, which is essential

in most FPCA-based methods, especially related to regression problems (Hall and

Hosseini-Nasab, 2006; Hall and Horowitz, 2007; Dou et al., 2012). We stress that

the component number j is not fixed and could diverge slowly with n, and this

rate is optimal in the minimax sense (Wahl, 2022).

3. Intrinsic Wasserstein Correlation Analysis

With the preparation of the groundwork for Wasserstein functional data, we are

ready to discuss the correlation analysis between two sets of Wasserstein functional

data.

3.1 Wasserstein Correlation

Let X and Y be two W2(S)-valued random processes with mean functions µX , µY

and auto-covariance operatorsCX ,CY , respectively. The cross-covariance operator
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3.1 Wasserstein Correlation

CXY : T (µY ) 7−→ T (µX) for X and Y is defined as

⟪CXY V, U⟫µX
:= E

(
⟪LogµY

Y, V ⟫
µY
⟪LogµX

X,U⟫
µX

)
for V ∈ T (µY ), U ∈ T (µX),

and CY X is defined analogously. We then define the intrinsic Wasserstein correla-

tion between X and Y as

ρ = max
U∈T (µX ):⟨U,CXU⟩µX

=1

V ∈T (µY ):⟨V,CY V ⟩µY =1

⟪U,CXY V ⟫µX
, (3.1)

which generalizes the canonical correlation for classic multivariate data and Eu-

clidean functional data (He et al., 2003; Lian, 2014). Unlike the latter two types

of data, functions valued in Wasserstein space are nonlinear, and such nonlinearity

is overcome by the device of tensor Hilbert space introduced in Section 2. Note

that the maximization problem (3.1) is equivalent to finding U in T (µX) and V in

T (µY ) to maximize the correlation between ⟪U,LogµX
X⟫µX

and ⟪V,LogµY
Y ⟫µY

.

By similar arguments as Theorem 10.1.2 of Hsing and Eubank (2015), the kth cor-

relation can be defined by optimizing (3.1) within the subspace that is orthogonal

to the first (k − 1)th weight functions.

In the case of multivariate data, the solution to canonical correlation analysis

is reduced to singular value decomposition of C
−1/2
X CXYC

−1/2
Y , which could not be

applied to functional data because both CX and CY are infinite-dimensional com-

pact operators and thus have an invertibility issue. By Theorem 7.2.10 in Hsing and

Eubank (2015), there exists an operatorRXY ∈ B(µY , µX) with |||RXY |||B(µY ,µX) ⩽
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3.1 Wasserstein Correlation

1 such thatCXY = C
1/2
X RXYC

1/2
Y . This suggests that the operatorC

−1/2
X CXYC

−1/2
Y

is definable on the range of C
1/2
Y . To formulate this idea and link it to the opti-

mization problem (3.1), we first recall the Karhunen–Loève expansions for X and

Y , given by

LogµX
X =

∞∑
k=1

ξkΦX,k, LogµY
Y =

∞∑
k=1

ηkΦY,k,

where {ΦX,k}∞k=1 and {ΦY,k}∞k=1 are respectively the eigenbases of CX and CY , and

ξj, ηj are principal component scores respectively with variance λX,j and λY,j. It

is then seen that CY X and CXY can be expressed as

CY X =
∞∑

j1=1

∞∑
j2=1

γj1j2ΦX,j1 ⊗ ΦY,j2 , CXY =
∞∑

j1=1

∞∑
j2=1

γj1j2ΦY,j2 ⊗ ΦX,j1

with γj1j2 = E{ξj1ηj2}. Now we impose the following assumption on the interplay

among γj1j2 , λX,j1 and λY,j2 .

Assumption (B.0).
∑∞

j1,j2

γ2
j1j2

λ2
X,j1

λY,j2
< ∞ and

∑∞
j1,j2

γ2
j1j2

λX,j1
λ2
Y,j2

< ∞.

The above assumption is the same as Condition 4.5 in He et al. (2003) and re-

quires that cross-covariance operator ofX and Y be aligned with the eigenfunctions

of LogµX
X and LogµY

Y ; such a requirement is commonly adopted in FPCA-based

functional regression models (Hall and Horowitz, 2007; Dou et al., 2012). Under

this assumption, the following proposition, inspiring estimators that are proposed

in the next section, asserts the boundedness of the operator C
−1/2
X CXYC

−1/2
Y and

provides a solution to the maximization problem (3.1).
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3.2 Estimation and Theoretical Properties

Proposition 3. Under Assumption B.0, C
−1/2
X CXYC

−1/2
Y and C−1

X CXYC
−1/2
Y are

Hilbert Schmidt operators defined on T (µY ). The maximum in (3.1) is achieved for

the weight functions U ∈ T (µX) and V ∈ T (µY ) with maximum ρ =
√
α, where

(α, U) is the first eigenpair of C−1
X CXYC

−1
Y CY X , and V = C−1

Y CY XU/∥C−1/2
Y CY XU∥µY

.

3.2 Estimation and Theoretical Properties

Given a random sample of functions {(Xi, Yi)}ni=1 of (X, Y ), the mean functions

for X and Y are estimated by µ̂X and µ̂Y that are respectively represented by

F−1
µ̂X(t) =

1

n

n∑
i=1

F−1
Xi(t)

and F−1
µ̂Y (t) =

1

n

n∑
i=1

F−1
Yi(t)

for each t ∈ T .

The estimators for autocovariance operators of X and Y are

ĈX =
1

n

n∑
i=1

(Logµ̂X
Xi)⊗ (Logµ̂X

Xi) and ĈY =
1

n

n∑
i=1

(Logµ̂Y
Yi)⊗ (Logµ̂Y

Yi),

respectively. In addition, they admit the following decompositions,

ĈX =
∞∑
k=1

λ̂X,kΦ̂X,k ⊗ Φ̂X,k and ĈY =
∞∑
k=1

λ̂Y,kΦ̂Y,k ⊗ Φ̂Y,k,

where (λ̂X,kΦ̂X,k) and (λ̂Y,k, Φ̂Y,k) serve as estimators for (λX,k,ΦX,k) and (λY,k,ΦY,k),

respectively. Similarly, the cross covariance operators between X and Y are esti-

mated by

ĈY X =
1

n

n∑
i=1

(Logµ̂X
Xi)⊗ (Logµ̂Y

Yi) and ĈXY =
1

n

n∑
i=1

(Logµ̂Y
Yi)⊗ (Logµ̂X

Xi).
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3.2 Estimation and Theoretical Properties

Based on the above estimators, the estimator of C−1
X CXYC

−1
Y CY X is denoted

by Ĉ−1
X,kX

ĈXY Ĉ−1
Y,kY

ĈY X , where Ĉ−1
X,kX

=
∑kX

j=1 λ̂
−1
X,jΦ̂X,j, Ĉ

−1
Y,kY

=
∑kY

j=1 λ̂
−1
Y,jΦ̂Y,j,

and kX , kY ∈ N+ are two tuning parameters. The truncation of Ĉ−1
X,kX

and Ĉ−1
X,kX

at respectively finite levels kX and kY serves as a way of regularization that is

needed to address the invertibility issue of infinite-dimensional compact operators

(Yao et al., 2005b; Hall and Horowitz, 2007; Dou et al., 2012). Then, the estimator

of U , denoted by Û , is the eigenfunction of Ĉ−1
X,kX

ĈXY Ĉ
−1
Y,kY

ĈY X associated with

its largest eigenvalue α̂, and the estimators for V, ρ are defined by

V̂ = Ĉ−1
Y,kY

ĈY XÛ/∥Ĉ−1/2
Y,kY

ĈY XÛ∥µ̂Y
and ρ̂ =

√
α̂,

respectively. In the subsequent analyses, we focus on the first correlation pairs.

The kth canonical correlation with its associated weight functions can be obtained

from the kth eigenfunction of Ĉ−1
X,kX

ĈXY Ĉ
−1
Y,kY

ĈY X and our theoretical results hold

for all fixed k.

Alternatively, we may utilize Tikhonov regularization (Hall and Horowitz,

2007) to estimate C−1
X CXY C−1

Y CY X by (ĈX+ϵX îdX)
−1ĈXY (ĈY +ϵY îdY )

−1ĈY X ,

where ϵX , ϵY are positive tuning parameters and îdX , îdY are the identity opera-

tors, respectively, on T (µ̂X) and T (µ̂Y ). Then U is estimated by the eigenfunction

Ũ of (ĈX + ϵX îdX)
−1ĈXY (ĈY + ϵY îdY )

−1ĈY X associated with the largest eigen-

value α̃, V is estimated by Ṽ = (ĈY+ϵY îdY )
−1ĈY XŨ/∥(ĈY+ϵY îdY )

−1/2ĈY XŨ∥µ̂Y
,

and ρ is estimated by ρ̃ =
√
α̃.
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3.2 Estimation and Theoretical Properties

To study the theoretical properties of the estimators Û and V̂ , we require

the following assumption to utilize the parallel transportation operators defined in

Section 2.

Assumption (A.1). For each t ∈ T , µX(t) and µY (t) are atomless.

In addition, we assume the eigenspace for the largest eigenvalue ofC−1
X CXYC

−1
Y CY X

has multiplicity one to ensure the uniqueness of the solution to (3.1). We also make

the following assumptions, where in the sequel C denotes some positive constant

which may vary cross places.

Assumption (A.2). Eξ4j ⩽ Cλ2
X,j and Eη4j ⩽ Cη2Y,j.

Assumption (B.1). Cj−aX ⩾ λX,j ⩾ λX,j+1 + C−1j−aX−1, and Cj−aY ⩾

λY,j ⩾ λY,j+1 + C−1j−aY −1 for some aX , aY > 1 and each j ⩾ 1.

Assumption (B.2).
∑

j2
γ2
j1j2

⩽ Cj−2aX−2bX
1 ,

∑
j1
γ2
j1j2

⩽ Cj−2aY −2bY
2 , kX ≍

n1/(aX+2bX) and kY ≍ n1/(aY +2bY ), for some constants bX > aX/2+1, bY > aY /2+1.

Assumption A.2 is common in the FPCA literature (Hall and Horowitz, 2007).

Assumptions B.1 and B.2 define a class of random processes X and Y for which

we are able to establish the minimax rate for the proposed estimators; similar

conditions have been adopted in the literature of functional linear regression (Hall

and Horowitz, 2007; Dou et al., 2012). The following theorem presents an upper

bound on the convergence rate of estimated weight functions Û and V̂ .
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3.2 Estimation and Theoretical Properties

Theorem 2. Under assumptions A.1, A.2, B.1 and B.2, we have

∥PµX

µ̂X
Û − U∥2µX

= Op

(
max

{
n−(2bX−1)/(aX+2bX), n−(2bY −1)/(aY +2bY )

})
;

∥PµY

µ̂Y
V̂ − V ∥2µY

= Op

(
max

{
n−(2bX−1)/(aX+2bX), n−(2bY −1)/(aY +2bY )

})
;

|ρ̂− ρ|2 = Op

(
max

{
n−(2bX−1)/(aX+2bX), n−(2bY −1)/(aY +2bY )

})
.

The convergence rate in Theorem 2 is in accordance to the rate in classic

functional regression problems (Hall and Horowitz, 2007; Yuan and Cai, 2010;

Dou et al., 2012), as well as the rate for non-functional Wasserstein regression

(Chen et al., 2023). This is not surprising, since canonical correlation analysis is

intimately related to two regression problems, in our context, one in which LogµX
X

is regressed on LogµY
Y and the other in which LogµY

Y is regressed on LogµX
X.

This is slightly different from the attained rate of the functional linear regression

involving the Riemannian manifold (Lin and Yao, 2019, 2021), as the nonlinear

structure does not affect the convergence rate due to the flatness of the geodesic

in Wasserstein spaces.

To study the asymptotic properties of the Tikhonov estimators Ũ and Ṽ , we

require the following assumptions.

Assumption (B.1∗ ). λX,j ⩽ Cj−aX and λY,j ⩽ Cj−aY for some aX , aY >

1 and each j ⩾ 1.

Assumption (B.2∗ ).
∑

j2
γ2
j1j2

⩽ Cj−2aX−2bX
1 ,

∑
j1
γ2
j1j2

⩽ Cj−2aY −2bY
2 ,
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3.2 Estimation and Theoretical Properties

ϵX ≍ n−aX/(aX+2bX), ϵY ≍ n−aY /(aY +2bY ) for some constants bX > aX − 1/2, bY >

aY − 1/2,.

The following theorem provides an upper bound on the convergence rate of

both Ũ and Ṽ .

Theorem 3. Under assumptions A.1, A.2, B.1∗ and B.2∗, we have

∥PµX

µ̂X
Ũ − U∥2µX

= Op

(
max

{
n−(2bX−1)/(aX+2bX), n−(2bY −1)/(aY +2bY )

})
;

∥PµY

µ̂Y
Ṽ − V ∥2µY

= Op

(
max

{
n−(2bX−1)/(aX+2bX), n−(2bY −1)/(aY +2bY )

})
;

|ρ̃− ρ|2 = Op

(
max

{
n−(2bX−1)/(aX+2bX), n−(2bY −1)/(aY +2bY )

})
.

Now we show that the bounds in Theorems 2 and 3 are tight. To this end,

for two mean surfaces µX and µY , recall that LogµX
X and LogµY

Y admit the

expansions LogµX
X =

∑
j ξjΦX,j and LogµY

Y =
∑

j ηjΦY,j for the orthogonal

bases {ΦX,j}∞j=1 ⊂ T (µX) and {ΦY,j}∞j=1 ⊂ T (µY ). Let PXY be the distribution

of (LogµX
X,LogµY

Y ) and define the family

F(C, a, b) :=

{
PXY :

∞∑
i,j=1

γ2
ij

λ2
X,j1

λY,j2

⩽ C,

∞∑
i,j=1

γ2
ij

λX,j1λ
2
Y,j2

⩽ C,C−1j−a ⩽ λX,j ⩽ Cj−a,

C−1j−a ⩽ λY,j ⩽ Cj−a,
∑
j

γ2
ij ⩽ Ci−2a−2b,

∑
i

γ2
ij ⩽ Cj−2a−2b

}
.

The following result establishes a lower bound on the convergence rate of an esti-

mator of (U, V ). The bound matches the upper bound in Theorems 2 and 3 and
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thus implies the optimality of the estimators (Û , V̂ ) and (Ũ , Ṽ ) in the minimax

sense.

Proposition 4. Suppose (X1, Y1), . . . (Xn, Yn) form a random sample of (X, Y )

with (LogµX
X, LogµY

Y ) following the distribution PXY ∈ F(C, a, b, µ), and that

(U, V ) maximizes (3.1). Then

lim
c→0

lim inf
n→∞

inf
(Ǔ ,V̌ )

sup
PXY ∈F(C,a,b)

PXY

(
∥Ǔ − U∥2µX

+ ∥V̌ − V ∥2µY
⩾ Cn− 2b−1

a+2b

)
= 1,

where (Ǔ , V̌ ) denotes an estimator of (U, V ) based on the data (X1, Y1), . . . (Xn, Yn).

4. Simulation Studies

To illustrate the numerical behavior of the proposed methods, we set µX(t) to the

Beta distribution with parameters (2 + t, 3 − (t2 + t)/2) and µY (t) to the Beta

distribution with parameters (3− t, 2 + (t2 + t)/2) for each t ∈ [0, 1] as the mean

surfaces. We consider the set of orthonormal functions

ϕj(x) =
√
2 sin(πjx), for x ∈ [0, 1], and j ∈ N+.

Then ΦX,j(x, t) = ϕj ◦ FX,t(x) and ΦY,j(x, t) = ϕj ◦ FY,t(x), j = 1, 2, . . ., form

orthonormal bases for T (µX) and T (µY ), where FX,t and FY,t denote the distri-

bution function of µX(t) and µY (t), respectively.

Write LogµX
Xi(t) =

∑∞
j=1 ξijΦX,j =

∑∞
j=1 ξijϕj ◦ FX,t(x), where ξij are uncor-

related random variables with zero mean such that
∑∞

j=1 ξ
2
ij < ∞ almost surely.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0147



To guarantee
∑∞

j=1 ξijϕj ◦ FX,t(x) ∈ LogµX
Wac

2 ([0, 1]), where Wac
2 ([0, 1]) denotes

the set of absolutely continuous measures on [0, 1], it suffices to require

∞∑
j=1

ξijϕ
′
j{FX,t(x)}fX,t + 1 ⩾ 0 for all x ∈ [0, 1] and t ∈ T , (4.1)

where fX,t is the density function of FX,t. Condition (4.1) is satisfied, e.g., when

ξij ⩽
vj

supx∈[0,1] |ϕ′
j(x)| supt,x∈[0,1] fX,t(x)

∑∞
j=1 vj

,

where {vj}∞j=1 is a non-negative sequence of constants such that
∑∞

j=1 vj < ∞,

e.g., vj = a−j for a given a > 1.

Taking K = 20, vj = 2−j, Vj := supx∈[0,1] |ϕ′
j(x)| =

√
2πj and M = 1.78 >

supx,t∈[0,1] fX,t(x) = supx,t∈[0,1] fY,t(x), we set Xi(t) = ExpµX
(
∑K

k=1 ξikΦX,k) and

Yi(t) = ExpµY
(
∑K

k=1 ηikΦY,k). We first consider the following two types of scores

that are widely used in functional data analysis.

• Case 1 (Truncated normal): We sample ξik ∼ vk(VkM)−1θik with θik ∼

TN[−1,1](0, 1) independently for i = 1, 2, · · · , n and k = 1, 2, · · · , K, and

ηik ∼ vk(VkM)−1ϑik with ϑik ∼ TN[−1,1](0, 1), except that ηi2 = 0.5(ξi1 +

ξi2)+σE(ξ2i1+ ξ2i2)ϑi2, where TN[−1,1](0, 1) denotes the Gaussian distribution

N(0, 1) truncated on [−1, 1], and σ is a constant representing the noise level.

• Case 2 (Uniform): We sample ξik ∼ Unif[−vk(VkM)−1, vk(VkM)−1] indepen-

dently for i = 1, · · · , n and k = 1, · · · , K, and ηik ∼ Unif[−vk(VkM)−1, vk(VkM)−1],

except that ηi2 = 0.5(ξi1 + ξi2) + σE(ξ2i1 + ξ2i2)ϑi2 with ϑi2 ∼ Unif[−1, 1].

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0147



Figure 2: The absolute error |ρ̂− ρ| (|ρ̃− ρ|, respectively) and IMSE for Û and V̂

(Ũ and Ṽ , respectively)on different tuning parameters for the FPCA (left column)

and Tikhonov (right column) methods by the average of 200 Monte Carlo replicates

with noise level σ = 0.05 in Case 1.

In this construction we have U ∝ ΦX,1+ΦX,2, V ∝ ΦY,2 and ρ2 = 0.52/(0.52+σ2).

We first inspect how the estimation error responds to the tuning parameters for

FPCA and Tikhonov methods, where we set the same tuning parameters for X

and Y for simplicity, i.e., kX = kY = k and ϵX = ϵY = ϵ, respectively. Four

sample sizes from 50 to 500 are considered, and each simulation is repeated 200

times independently. We use the absolute error |ρ̂− ρ| to quantify the estimation
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error of ρ̂ and integrated mean squared error IMSE(Û) = (E∥Û − U∥2µ)1/2 of Û ;

estimation errors for V̂ , ρ̃, Ũ and Ṽ are quantified analogously. From the results in

Figure 2 we see that the estimators converge rapidly as the sample size n increases.

In addition, we observe that the optimal tuning parameters for ρ, U and V are

rather different for Tikhonov estimators, e.g., the ϵ that minimizes |ρ̂−ρ| may not

be the optimal choice for estimating the weight functions U and V . By contrast,

the optimal truncation parameter k for ρ, U and V seems to have little difference

in FPCA method.

In practice, we propose to choose the tuning parameters via a κ-fold cross-

validation (CV) approach with κ = 5. Specifically, we split the dataset into κ

partitions of roughly even size. Taking the FPCA estimation for example, let

Û−l
k and V̂ −l

k be the FPCA estimators of the weight functions with the tuning

(truncation) parameter k obtained without using data from the l-th partition.

The cross-validation score of k is defined based on the squared Pearson correlation

(Leurgans et al., 1993)

CV(k) =

 n (
∑n

i=1 xi,kyi,k)− (
∑n

i=1 xi,k) (
∑n

i=1 yi,k)√{
n
∑n

i=1 x
2
i,k − (

∑n
i=1 xi,k)

2
}{

n
∑n

i=1 y
2
i,k − (

∑n
i=1 yi,k)

2
}


2

(4.2)

with

xi,k =
κ∑

l=1

⟨Logµ̂X
Xi, Û

−l
k ⟩1i∈Il and yi,k =

κ∑
k=1

⟨Logµ̂Y
Yi, V̂

−l
k ⟩1i∈Il ,
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Table 1: The absolute error |ρ̂− ρ| (|ρ̃− ρ|, respectively) for different noise levels

with tuning parameters chosen by 5-fold CV, where the values are multiplied by

103 for visualization.

FPCA Tikhonov

σ n=50 n=100 n=200 n=500 n=50 n=100 n=200 n=500

Case 1

0.05 1.892 1.097 .8242 .5604 38.41 12.61 6.853 4.703

0.1 7.381 4.311 3.232 2.172 44.89 21.65 14.28 9.289

0.2 26.17 15.55 11.58 7.449 74.89 35.73 25.25 17.18

0.3 48.67 28.72 21.63 13.47 111.8 49.53 36.76 22.42

0.5 84.16 49.89 37.40 21.87 159.7 74.89 51.28 27.18

Case 2

0.05 1.822 1.049 .7877 .5194 28.80 12.77 6.753 4.683

0.1 7.125 4.095 3.092 2.008 44.63 21.65 13.99 9.218

0.2 25.17 14.88 11.06 6.967 74.31 35.71 24.67 17.01

0.3 47.61 28.18 20.96 12.75 101.7 49.74 32.47 21.95

0.5 82.50 49.17 36.46 21.10 137.9 75.76 47.43 26.49
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where Il denotes the set of indices of data in the l-th partition. Then we choose the

value of k that maximizes CV(k). Selection for the tuning parameters associated

with the Tikhonov estimators Ũ and Ṽ can be performed analogously.

Tables 1–2 report the absolute error |ρ̂−ρ| (|ρ̃−ρ|, respectively) and the IMSE

for estimating U , where the tuning parameters are selected by the 5-fold CV (4.2).

The supplementary material provides the IMSE for estimating V . From Table 1, we

see that the correlation ρ is estimated well by both methods and converges rapidly

as the sample size increases. When inspecting the estimation error for ρ in Figure

2 and Table 1 closely, one may find that Figure 2 shows similar results between two

methods (|ρ̂−ρ| v.s. |ρ̃−ρ|) over the illustrated ranges of tuning parameters, while

Table 1 shows that |ρ̂− ρ| by the FPCA method is clearly lower than that by the

Tikhonov method when the tuning parameters are chosen by the 5-fold CV. This

might be explained by Figure 3, which presents the selected tuning parameters in

both methods. For the FPCA method, most of the selected truncation numbers

are concentrated in 2, that is, exactly the optimal tuning parameter. Figure 2

also indicates that the optimal range of ϵ is around (10−8, 10−6) (the optimal

choice of ϵ is decreasing as the sample size grows, which is consistent with our

theoretical results). However, as shown in Figure 3, a substantial proportion of

the selected values do not fall into this range even as the sample size increases,

which deteriorates the performance of the Tikhonov method. In addition, for the

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0147



Table 2: IMSE of Û (Ũ , respectively) for different noise levels with tuning param-

eters chosen by 5-fold CV.

FPCA Tikhonov

σ n=50 n=100 n=200 n=500 n=50 n=100 n=200 n=500

Case 1

0.05 .1281 .0900 .0850 .0481 .2536 .2580 .3033 .2498

0.1 .1935 .1446 .1377 .0863 .2846 .2519 .2977 .2888

0.2 .2979 .2194 .2303 .1417 .3538 .3154 .3156 .2481

0.3 .3806 .2880 .2747 .1873 .4318 .3783 .3328 .2551

0.5 .5237 .3816 .3429 .2808 .5322 .4876 .3912 .3067

Case 2

0.05 .1312 .0870 .0847 .0492 .2546 .2537 .3006 .2577

0.1 .1994 .1419 .1447 .0828 .2928 .2494 .3037 .2966

0.2 .2938 .2124 .2278 .1460 .3562 .3131 .3199 .2497

0.3 .3789 .2811 .2744 .1911 .4279 .3723 .3359 .2582

0.5 .5178 .3867 .3457 .2764 .5241 .4803 .3853 .3030
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Figure 3: Histograms of selected tuning parameters in FPCA (left column) and

Tikhonov (right column) methods by 5-fold CV with noise level σ = 0.05 in Case

1.

Tikhonov method, the CV procedure (4.2) aiming for ρ seems not optimal for the

weight functions U and V , as observed from Figure 2. This may partially explain

why the Tikhonov method yields larger estimation errors for the weight functions

than the FPCA method, as exhibited in Tables 2. Additional figures and results

can be found in supplementary material.

In theory, we only require the decay rates of eigenvalues of the covariance

operator, which correspond to the decay rates of the variances of the functional
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principal scores. Besides the normal and uniform scores, we also consider the

following setting with log-normal scores to see whether our proposed method can

adapt to the heavy-tailed distribution. Details on the settings and convergence

rates for the weight functions can be found in the supplementary material. The

results exhibit a pattern similar to that in Figure 2, demonstrating the robustness

of our proposed method.

5. Application

We apply the proposed Wasserstein correlation analysis to study functional connec-

tivities between different brain regions by using data from the HCP 1200 subjects

release (Van Essen et al., 2013) that is available at https://db.humanconnectome.

org/app/template/Index.vm. Specifically, we focus on the correlation of longi-

tudinally measured distributions of the signal strength between two specific areas

in the brain.

The dataset we use consists of n = 209 subjects who are healthy young adults

and have been scanned for both a resting-state fMRI (rsfMRI) image and a task-

evoked fMRI (tfMRI) image related to fine motor skills. The rsfMRI data were

acquired in four runs of approximately 15 minutes each, two runs in one session and

two in the other session. During data acquisition, subjects were instructed to keep

their eyes open and fixed on a projected bright cross-hair on a dark background that
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Table 3: Top five largest correlations obtained by FPCA, Tikhonov and traditional

FDA methods for the fMRI data.

ρ 1 2 3 4 5

FPCA

rfMRI .6966 .3505 .2970 .2593 .2474

tfMRI .7476 .4448 .4108 .3093 .2809

Tikhonov

rfMRI .7250 .3246 .2510 .2160 .1840

tfMRI .7457 .3450 .2960 .2135 .1300

Traditional FDA

rfMRI .6967 .4314 .0773 .0032 .0001

tfMRI .6874 .6676 .3827 .2907 .0860

was presented in a darkened room. In the tfMRI data acquisition, subjects were

presented with visual cues that asked them to either tap their left or right fingers,

squeeze their left or right toes, or move their tongues to map motor areas. During

the experiment, the brain of each subject was scanned and the neural activities

were recorded at 284 equal-spaced time points. More details of the experiment

and data acquisition can be found in the reference manual of WU-Minn HCP 1200

Subjects Data Release.

We consider the Putamen and Caudate nucleus areas, which are known to be

related to motor skills in medical literature. At each time t, Xrest
i (t) and Xmotor

i (t)
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denote the distributions of the signal strength in the left Caudate nucleus of the i-th

subject for rsfMRI and tfMRI, respectively, and Y rest
i (t) and Y motor

i (t) represent the

distributions of the signal strength in the Putamen area. The proposed Wasserstein

correlation analysis is applied to investigate the correlation between Xrest
i (t) and

Y rest
i (t), as well as the correlation between Xmotor

i (t) and Y motor
i (t). The tuning

parameters are selected by 5-fold CV (4.2).

From Table 3 that reports the top five correlations, we observe that FPCA

and Tikhonov methods yield similar patterns that the correlation between these

two areas in the tfMRI images is larger relative to its rsfMRI counterpart, while

difference seems more pronounced by FPCA method. For comparison, we ran the

traditional functional canonical correlation analysis by taking the average of the

signals within each brain region for every observation time. As shown in Table 3,

the traditional functional canonical correlation analysis fails to capture the change

in correlations from resting-state to motor fMRI. From Figure 4, we see that,

compared with rsfMRI, fluctuation of weight functions along time in tfMRI is

more intensive, which suggests that the association between the two brain regions

is more dynamic during a motor task. In summary, via the proposed method

we find that the correlations for distributions of the signal strength between the

Putamen area and Caudate nucleus increase during the motor task in contrast to

the resting state, moreover, the weight functions in tfMRI express a more active
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Figure 4: Heat-map for the estimated weight functions Û (left) and V̂ (right) for

the rsfMRI data (top) and tfMRI data (bottom).

pattern than those in rsfMRI.

Supplementary Material

The supplementary materials include detailed technical proofs and additional sim-

ulation results.
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Gajardo, Á. and H.-G. Müller (2023). Point process models for covid-19 cases and deaths. J. Appl.

Stat. 50(11-12), 2294–2309.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0147



REFERENCES

Gangbo, W. and R. J. McCann (1996). The geometry of optimal transportation. Acta Math. 177(2),

113–161.

Hall, P. and J. L. Horowitz (2007). Methodology and convergence rates for functional linear regression.

Ann. Stat. 35(1), 70–91.

Hall, P. and M. Hosseini-Nasab (2006). On properties of functional principal components analysis. J. R.

Stat. Soc., B: Stat. Methodol. 68(1), 109–126.

He, G., H.-G. Müller, and J.-L. Wang (2003). Functional canonical analysis for square integrable stochas-

tic processes. J. Multivar. Anal. 85(1), 54–77.
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