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Abstract: We propose a new sufficient dimension reduction approach designed

deliberately for high-dimensional classification problems. This novel method is

named as Maximal Mean Variance (MMV), inspired by the mean variance index

first proposed by Cui, Li and Zhong (2015). MMV requires reasonably mild re-

strictions on the predictors, and keeps the model-free advantage without the need

to estimate the link function. The consistency of the MMV estimator is estab-

lished under regularity conditions with possibly diverging number of predictors

and categories of the response. We also construct the asymptotic normality for

the estimator when the dimension of the predictors keeps fixed. The relationship

between MMV and several classical classification algorithms are further elaborat-

ed. Moreover, although without any definite theoretical guarantee, our method

works pretty well when the sample size is far less than the problem dimension.

The surprising classification efficiency gain of MMV is demonstrated by simula-

tion studies and real data analysis.

Key words and phrases: Classification, consistency, mean variance index, suffi-

cient dimension reduction.
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1. INTRODUCTION

1. Introduction

Sufficient dimension reduction fits into what is currently quite a hot area in

research of high dimensional data. Large quantities of related articles and

studies have appeared in recent decades. However, most of the literature

focuses on the regression problem where the response Y is a continuous

variable, while little is designed specially for the problem of classification

with a categorical response.

The slice-based methods, including but not limited to the seminal s-

liced inverse regression (Li, 1991), sliced average variance estimation (Cook

and Weisberg, 1991), directional regression (Li and Wang, 2007) and sliced

regression (Wang and Xia, 2008), can be naturally applied to the classifi-

cation problem with the slices determined directly by the categories of the

response. It seems to work nicely, but the number of the slices is strict-

ly restricted by the number of the categories, which can be problematic

when there are only a few categories. More specifically, faced with a com-

mon binary classification problem, the number of the slices is imposed as

2, and then the number of the effective dimension-reduction directions is

correspondingly forced to 1, which would directly reduce the accuracy of

classification. Moreover, almost all of the above methods require the lin-

earity condition or/and constant covariance condition, which are difficult
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1. INTRODUCTION

to verify in practice, and the results may be misleading if these conditions

are violated.

Other popular sufficient dimension reduction methods, like minimum

average variance estimation (Xia et al., 2002), inverse regression (Cook

and Ni, 2005) and distance covariance based sufficient dimension reduction

(Sheng and Yin, 2013, 2016), either require the response to be continuous or

just treat the response as a numeric variable, which limits the applicability

of these methods to classification problems.

To overcome the aforementioned limitations of the classical sufficien-

t dimension reduction methods, we propose a novel sufficient dimension

reduction approach – Maximum Mean Variance (MMV), designed delib-

erately for high-dimensional classification problems. This method utilizes

the MV index first proposed by Cui, Li and Zhong (2015) to construct a

sequential optimization problem to seek sufficient dimension reduction. S-

ince it is not slice-based, MMV circumvents the restriction on slice number.

The method also dispenses with the need for the linearity condition or con-

stant variance condition, and it does not make any assumptions regarding

specific distributions for the predictors X, X|Y or Y |X, which is essential

in the methods of Zhu and Zeng (2006), Cook and Forzani (2009), Cook

and Li (2009), Bura and Forzani (2015), Bura, Duarte and Forzani (2016)
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1. INTRODUCTION

and Zhang, Chen and Zhou (2022). In addition, our method inherits the

model-free advantage without estimating the link function. These benefits

together broaden the scope of applications for our approach.

The consistency of the MMV estimator is established for both fixed and

diverging problem dimensions, and the asymptotic normality is constructed

for the case of fixed dimension. The relationship between MMV and clas-

sification is more than the usual stepwise heuristics of dimension reduction

first and classification next, which is elaborated upon by taking the exam-

ples of linear discriminant analysis (LDA) and index models. Moreover,

we note that the asymptotic theory of MMV estimator is quite challenging

to set up. Since the empirical MV index includes the kernel estimation of

conditional and unconditional distribution functions, it cannot be directly

expressed by the sum of independent and identically distributed random

variables.

The rest of the paper is organized as follows. Section 2 revisits some

basic definitions in the literature of sufficient dimension reduction and the

definition and properties of the MV index. In Section 3, we propose the

MMV approach to high-dimensional classification. In Section 4, we elabo-

rate on the delicate relationship between MMV and several popular clas-

sification methods. Consistency and asymptotic normality of the MMV
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2. PRELIMINARIES

estimator are studied in Section 5. Several simulation studies together with

numerical comparisons and a real data example are conducted to illustrate

the efficiency and priority of the proposed method in Section 6. Section 7

concludes the article, and the technical proofs are deferred to the supple-

mentary material.

2. Preliminaries

2.1 Sufficient dimension reduction revisited

Let Y ∈ R be the response and X = (X1, . . . , Xp)
T ∈ Rp be continuous

predictors. For a subspace S ⊂ Rp, consider a projection PS : Rp → Rq

with q ≤ p. Denote by PSX the projection of X onto S. Then the subspace

S is called the dimension reduction subspace (Li, 1991, 1992) if

Y ⊥⊥ X|PSX , (2.1)

where ⊥⊥ is the independence notation. If PSX = BTX for some p × q

matrix B, then (2.1) can be rewritten as

Y ⊥⊥ X|BTX ,

which indicates that the regression information of Y on X are completely

contained by BTX, a q vector. If q < p, then we can regress Y on the

q predictor BTX instead of the original p predictor X without losing any
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information, and that is why we call the process of seeking B or S sufficient

dimension reduction.

The intersection of all dimension reduction subspaces is called the cen-

tral subspace (Cook, 1994, 1996), denoted by SY |X, which has the minimal

dimensions among all dimension reduction subspaces. In this paper, we as-

sume the central subspace exists uniquely, which is quite mild and practical

(Cook, 1996; Li, 2018).

2.2 Mean variance index

Let Y be a categorical response with R classes {y1, y2, . . . , yR}, and Z be a

continuous covariate. The MV index (Cui, Li and Zhong, 2015) is defined

as follows

MV(Z|Y ) = EZ [VarY {F (Z|Y )}] =
R∑
r=1

pr

∫
{Fr(z)− F (z)}2dF (z) , (2.2)

where F (z|Y ) = P(Z ≤ z|Y ), F (z) = P(Z ≤ z), Fr(z) = P(Z ≤ z|Y = yr)

and pr = P(Y = yr) for r = 1, . . . , R. It has been verified that MV(Z|Y ) =

0 if and only if Y and Z are independent, and thus the MV index charac-

terizes both linear and nonlinear correlations between a categorical random

variable Y and a continuous random variable Z.

Let {(Yi, Zi) : 1 ≤ i ≤ n} be an i.i.d random sample of size n. Let F̂ (Z)

and F̂r(Z) be some sample estimators of F (Z) and Fr(Z). Then, the MV
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3. MAXIMUM MEAN VARIANCE

index can be estimated by

M̂V(Z|Y ) =: MVn(Z|Y ) =:
1

n

R∑
r=1

n∑
i=1

p̂r{F̂ (Zi)− F̂r(Zi)}2 , (2.3)

where p̂r = n−1
∑n

i=1 I(Yi = yr) with I(·) representing the indicator func-

tion. Cui, Li and Zhong (2015) used the empirical distributions of Z and

Z|Y as their sample estimators in a screening procedure.

3. Maximum mean variance

Based on the MV index, we now introduce the MMV approach to sufficient

dimension reduction for high-dimensional classification problems. The idea

is to make use of the MV index to find a few linear combinations (or in-

dexes) of the possibly high-dimensional original predictors X ∈ Rp that

contribute to classification without any loss of information. These derived

low-dimensional indexes can then be utilized for classification.

Recall that MV(Z|Y ) = 0 if and only if Z and Y are statistically in-

dependent. Thanks to this property, the MV index is used for marginal

feature screening in discriminant analysis (Cui, Li and Zhong, 2015). Our

novel idea is to abandon this, and on the contrary, we seek a β ∈ Rp such

that MV(βTX|Y ) achieves its maximum under some constraints. This is

why we named this method maximum mean variance. A sequential algo-

rithm is elaborated as follows: we find the first linear combination of the
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predictors from

β01 = arg max
β1

MV(βT

1X|Y ) s.t βT

1β1 = 1 .

Then the kth linear combination can be calculated from

β0k = arg max
βk

MV(βT

kX|Y ) (3.1)

s.t βT

kβk = 1, and (β01, · · · ,β0(k−1))
Tβk = 0

for k ≥ 2. We continue this process till the MV index reaches 0. This

procedure is indeed conducting sufficient dimension reduction for the pre-

dictors X with respect to the response Y , which can be seen clearly from

the following theorem. Hereafter, we assume that the linearity condition

and the coverage condition hold.

Theorem 1. Suppose there exists a positive integer d < p such that MV(βT

01X|Y )

≥ MV(βT

02X|Y ) ≥ · · · ≥ MV(βT

0dX|Y ) > 0 = MV(βT

0(d+1)X|Y ) = · · · =

MV(βT

0pX|Y ) where βT

0iβ0i = 1 and βT

0iβ0j = 0 for i, j = 1, . . . , p and i 6= j.

It holds that

SY |X ⊆ span(β01, . . . ,β0d) ,

and for any integer 0 < k < d, if X ∼ N(0, Ip),

span(β01, . . . ,β0k) + SY |X .
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Notice that the subscript 0 in β0is in Theorem 1 is used to indicate that

these parameters are specified in the population level. The existence of the

integer d < p is validated in the classical Linear Discriminant Analysis

(LDA) and in the index model setting. See more details in Section 4.

Remark 1. Theorem 1 shows that the MMV procedure does not actually

find the central subspace. Instead, solving the MMV sequentially, some

tight upper bound for the central space can be obtained. In some specific

models, MMV can exactly find the central subspace. See Section 4.2 for

details.

In practice, the population MV index remains unknown for any given

β, and we use its sample counterpart M̂V specified in (2.3) to conduct the

sequential optimization procedure. Let {(Yi,Xi), 1 ≤ i ≤ n} be an i.i.d

sample with Yi ∈ {y1, . . . , yR} and Xi ∈ Rp, and Z = βTX and Zi = βTXi

for a fixed β. Then, it is natural to estimate F (z) in (2.2) by its empirical

counterpart: F̂ (z) = n−1
∑n

i=1 I(Zi ≤ z), as done in Cui, Li and Zhong

(2015). However, the empirical distribution is a step function, which makes

the optimization problematic. Hence, here we adopt a kernel estimator

F̂ (z) := F̂h(z) =

∫ z

−∞
f̂h(u)du =

1

n

n∑
i=1

∫ z

−∞
Kh(Zi − u)du , (3.2)

where f̂h is a kernel density estimator of the density f of F and Kh(·) =
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h−1K(·/h) with K(·) being a kernel function and h = hn → 0 the band-

width. Similarly, Fr(z) in (2.2) can be estimated by

F̂r(z) := F̂hr(z) =
1

nr

nr∑
j=1

∫ z

−∞
Khr(Zj − u)du (3.3)

for r = 1, 2, . . . , R, where nr is the sample size of the rth category and Zj,

j = 1, . . . , nr, are the corresponding sample points in this category. Given

(3.2) and (3.3), we can use the estimator M̂V specified in (2.3) to implement

the optimization. The MMV procedure is summarized in Algorithm 1.

Suppose ε > 0 is a predefined small number, say ε = 10−3.

Since the optimization problems in Step 1 and Step 3 of Algorithm

1 are classic constrained nonlinear problems, our suggestion is to use the

ready-made function fmincon in matlab to solve the two optimizations. In

fmincon, sqp (sequential quadratic programming) is selected to adapt to

possibly high-dimensional problems. Moreover, due to the nonconvexity of

the optimizations, the choice of the starting point of sqp is of importance.

For the optimization in Step 1, since MMV equals LDA as shown in Corol-

lary 2, we suggest using the LDA solution as the starting point. In Step 3,

we choose the initial point for βk as the eigenvector of cov(X) associated

with its kth largest eigenvalue. Such choices works fine throughout our

numerical experiments.
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Algorithm 1: The MMV procedure for sufficient dimension reduction

Input: {Yi,Xi}ni=1, Yi ∈ {y1, . . . , yR} and Xi ∈ Rp

1 Compute β̂1 as

β̂1 = arg max
β1

M̂V(βT

1X|Y ) s.t βT

1β1 = 1 ,

where M̂V(βT

1X|Y ) = n−1
∑R

r=1

∑n
i=1 p̂r{F̂ (Zi)− F̂r(Zi)}2 with

p̂r = n−1
∑n

i=1 I(Yi = yr), Zi = βT

1Xi, F̂ (Zi) and F̂r(Zi) specified in

(3.2) and (3.3).

2 for k = 2, · · · , p do

3 Compute β̂k as

β̂k = arg max
βk

M̂V(βT

kX|Y )

s.t βT

kβk = 1, and (β̂1, · · · , β̂k−1)Tβk = 0 ,

where M̂V(βT

kX|Y ) is similarly defined as above.

4 if M̂V(β̂
T

kX|Y ) ≤ ε, let d = k − 1; break.

5 end

Output: β̂1, . . . , β̂d
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4. MMV in classification

MMV has intimate relationship with several classical classifiers, such as

Fisher’s LDA, logistic regression and more complex methods.

4.1 Fisher’s LDA

Consider a binary classification problem. Suppose we have n labeled i.i.d

training samples (Yi,Xi), 1 ≤ i ≤ n, where Xi is a p-dimensional feature

vector and Yi ∈ {−1, 1} is the corresponding class label. Let p1 = P(Yi = 1),

p−1 = P(Yi = −1), and assume

Xi ∼ N(Yi · µ, Σ) , (4.1)

where µ is the contrast mean vector between the two classes, and Σ is

the p× p covariance matrix. Given a new independent feature vector from

the same population, i.e. X ∼ N(Y · µ, Σ), our goal is to train (Yi,Xi)

to decide whether Y = −1 or Y = 1. Notice that although we use the

contrast mean in model (4.1), the method and result below also apply to a

more general model with mean vectors µ1,µ2 ∈ Rp with no extra difficulty.

Linear discriminant analysis, namely Fisher’s LDA, is a well-known

method for classification, which is essentially based on a weighted average

of the test features L(X) =
∑p

j=1wjXj and predicts Y = ±1 if L(X) >< 0.
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Here, w = (w1, . . . , wp)
T is a preselected weight vector. Fisher showed that

the optimal weight vector satisfies

w ∝ Ωµ ,

where Ω = Σ−1. In the classical setting where n� p, µ and Ω can be con-

veniently estimated and Fisher’s LDA is approachable. Unfortunately, in

the modern regime where p� n, Fisher’s LDA faces immediate challenges,

i.e. , the covariance matrix Σ is irreversible.

MMV can surprisingly estimate the optimal weight vector w in LDA

without inversing the covariance matrix, and thus bypass the difficulty of

estimating Ω when p ≥ n, which can be seen clearly form the following

corollary.

Corollary 1. Under model (4.1), d = 1 and β01 ∝ Ωµ, where d is defined

in Theorem 1.

Corollary 1 states that for model (4.1), d = 1 and βT

01X contains all

the information for classification. This means that the MMV procedure

gives exactly the LDA classifier at the population level. The corollary also

justifies the efficiency of the LDA for the normal model (4.1) in terms of

maximum mean variance. When p > n, the LDA needs to estimate the

inverse of the covariance matrix, and thus it is unsolvable or requires extra

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0143



4. MMV IN CLASSIFICATION

sparsity assumption. MMV is an efficient alternative to circumvent this

problem.

In practice, if we have an estimator of MV(βTX|Y ), say M̂V(βTX|Y )

as given in (2.3), then we can solve its maximizer with respect to β, denoted

as β̂1, by routine optimization algorithms. Since β̂1 is an estimator of β01,

by Corollary 1 it is also an estimator of the optimal weight vector w ∝ Ωµ

in LDA. Therefore, for a new given feature vector X, we classify it as Y = 1

if β̂
T

1X > 0 and Y = −1 if β̂
T

1X < 0. Clearly, MMV provides a new idea

for solving the optimal weight vector in LDA.

4.2 Index model

The index model enjoys a lot of popularity in regression and classification. A

general index model can be expressed as the following semi-parametric form.

Let Y ∈ {y1, . . . , yR} denote the response variable and X ∈ Rp denote the

covariates. In a index model, there exist orthogonal p-dimensional vectors

β1, . . . ,βk with unit norm such that

Y = f(βT

1X, . . . ,βT

kX, ε) (k < p) , (4.2)

where f is an arbitrary unknown link function and ε is independent of X.

With a slight abuse of notation, the notation k in (4.2) can be seen as a fixed

integer indicating the number of the indexes. The column space spanned

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0143



4. MMV IN CLASSIFICATION

by {β1, . . . ,βk} is defined as the efficient dimension reduction subspace by

Li (1991). Under the setting of index model (4.2), we can detail Theorem

1 to some extent. Let B = (β1, . . . ,βk)
T. Assume

Y ⊥⊥ X|BX , (4.3)

and there exists a p-dimensional vector γ such that

Bγ = 0 , γTX ⊥⊥ BX . (4.4)

Then by Lemma 4.3 in Dawid (1979) and Proposition 4.6 in Cook (1998), it

holds that MV(γTX|Y ) = 0. This implies that under mild conditions, the

MMV method can recover all the information in X related to classification

with d < p indexes specified in Theorem 1. Specifically, when X ∼ N(µ,Σ),

we can further obtain the following corollary.

Corollary 2. In model (4.2), assume X ∼ N(µ,Σ) and Y ⊥⊥ X|BX where

B = (β1, . . . ,βk)
T with k < p. For d specified in Theorem 1, if 2k ≤ p,

then d ≤ 2k. Specifically, if Σ = I, then d = k.

Corollary 2 indicates that when Σ = I, the MMV procedure can exactly

recover the efficient dimension reduction subspace with d = k steps under

the setting of index model and normal covariates To be specific, in the

logistic (probit) model with normally distributed covariates, β01 ∝ β1,
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where β1 denotes the coefficient vector of the logistic (probit) model and β01

is specified in Theorem 1. This implies that d = 1 is enough for the logistic

(probit) model. The advantage of our method is that it is a semiparametric

method, which does not depend on any specific form of the link functions.

4.3 Other classifiers

Other popular classification methods such as K-Nearest Neighbours (KN-

N), neural networks and Support Vector Machine (SVM), can be connected

to MMV by a two step procedure, i.e. , dimension reduction first and clas-

sification next. Such a two-step procedure will improve the accuracy of the

classification, because high dimensionality causes problems in the classifi-

cation algorithms mentioned above. Simulations in Section 6 demonstrate

the benefit of such a two-step procedure.

5. Consistency and asymptotic normality

In this section, we establish the consistency and asymptotic normality of

the proposed MMV estimator. To simplify the derivation of the proof and

the assumptions needed, we consider the case where d = 1 with d specified

in Theorem 1. For d > 1, similar results hold with similar but tediously

long conditions.
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We first introduce some notations. Recall {Xi, Yi}ni=1 denotes i.i.d sam-

ples, Yi ∈ {y1, . . . , yR}, and nr denotes the number of samples in the class

Y = yr for r = 1, . . . , R. Let Ω1 denote the parameter space of β1 and

B(κ1) = {β1 ∈ Rp : ‖β1 − β01‖ ≤ κ1} be a ball with center β01 and radius

κ1, where ‖ · ‖ denotes the Euclidean norm of a vector. The boundary of

the ball is denoted by ∂B(κ1). Let Γ1 = {β1 ∈ Rp : βT

1β1 = 1}. For any

β, we simplify MV(βTX|Y ) and MVn(βTX|Y ) as MV(β) and MVn(β),

respectively.

The following conditions are required to establish the asymptotic prop-

erties of the MMV estimator.

Condition 1. There exist c1, c2 > 0 such that c1/R ≤ min1≤r≤R pr ≤

max1≤r≤R pr ≤ c2/R, and R = O(nδ) for some δ ∈ (0, 1/2].

Condition 2. There exists an open subset ω1 of Ω1 ∩ Γ1 that contains

the true parameter β01 and supβ1∈B(κ01) MV(β1) < ∞ for some constant

κ01 > 0. For any κ1 ∈ (0, κ01], supβ1∈∂B(κ1)∩Γ1
MV(β1) < MV(β01).

Condition 3.
∫
uK(u)du = 0,

∫
u2K(u)du <∞, nh4 → 0 with h = h1 =

· · · = hR.

Condition 4. For any β ∈ B(κ01), the cumulative distribution functions

of βTX and βTX|Y = yr (r = 1, . . . , R) have bounded second derivatives.
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Condition 5. For any β1 ∈ B(κ01), MV
′
(β1) and MV

′

n(β1) exist, and

supβ1∈B(κ01){‖MV
′
(β1)‖+ ‖MV

′

n(β1)‖} = op(
√
p).

Condition 1 requires the proportion of each class of the response to be

moderate, not too small nor too large. The assumption R = O(nδ) allows

the number of the classes of the response to grow with the sample size,

which matches the demands of the big data era. A similar condition was

also imposed by Cui, Li and Zhong (2015) in a feature screening procedure.

Condition 2 is assumed to ensure the existence of a local MMV optimizer. A

similar condition was assumed in Chen, Ma and Zhou (2017) for a likelihood

function. Condition 3 is widely used in the literature of kernel density

estimation. Together with Condition 4, it ensures the uniform convergence

of the kernel estimators of the cumulative distribution functions; see Cheng

(2017) for reference. For simplicity and without loss of generality, we assume

h = h1, . . . ,= hn in Condition 3. Condition 5 is a high-level assumption on

the population and sample objective functions. Recall that the MV index is

defined on the cumulative distribution functions. Hence, for the population

objective function, Condition 5 requires that the cumulative distribution

functions of β>X and β>X|Y = yr have bounded first derivatives with

respect to β, and the density function of β>X has bounded first derivative

with respect to β. When p diverges with n, it also requires these derivatives
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grow not too fast. For the sample objective function, Condition 5 requires

E(‖X/√p‖) <∞ and |K|∞ = supu∈R |h−1K(u/h)| <∞.

Proposition 1 (Consistency). Under Conditions 1-5, it holds that

(i) when p is fixed, β̂1 → β01 in probability as n→∞;

(ii) when p satisfies pp/2n−α(1−δ) = o(1) for any α ∈ (0, 1/2), ‖β̂1 − β01‖ =

op(1).

Proposition 1 shows that the MMV estimator is consistent for both

fixed and diverging p cases under regularity conditions. For the diverging

case, we require p grows quite slowly with n. The condition pp/2n−α(1−δ) =

o(1) might be improved. In the simulation, we find that MMV works well

even when p � n. Furthermore, when p is fixed, the
√
n consistency

and asymptotic normality can be further proved. We introduce some new

notation.

Let C(κ1) = {β1 ∈ Cp : ‖β1−β01‖ ≤ κ1} be a complex ball in Cp with

center β01 and radius κ1. Denote ΓC1 = {β1 ∈ Cp : βT

1β1 = 1}. Let ΩC1 be

the parameter space of the complex β1. For the case d = 1, denote

L(θ1) =: L(β1, λ1) = MV(βT

1X|Y ) + λ1(βT

1β1 − 1) ,

Lnh(θ1) =: Lnh(β1, λ1) = MVn(βT

1X|Y ) + λ1(βT

1β1 − 1) ,

where λ1 denotes the Lagrange multiplier and θ1 = (βT

1 , λ1)T. Let θ01 =
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5. CONSISTENCY AND ASYMPTOTIC NORMALITY

(βT

01, λ01)T and θ̂1 = (β̂
T

1 , λ̂1)T be the maximizers of L(θ1) and Lnh(θ1),

respectively. The following assumptions are needed.

Condition 6. There exists a positive constant κ′01 such that MV(β1) is

an analytic function of each coordinate of β1 in C(κ′01) ⊆ ΩC1 ∩ ΓC1 and

supβ1∈C(κ′01) MV(β1) < ∞. For any β1 ∈ C(κ01), MV
′
(β1), MV

′′
(β1) and

MV
′′′

(β1) exist, and supβ1∈C(κ′01){‖MV
′
(β1)‖+ ‖MV

′′
(β1)‖} <∞.

Condition 7. L
′′
(θ01) is nonsingular.

Condition 6 is an extension of Condition 5 to the complex setting.

Condition 7 is required to guarantee the root-n consistency of the proposed

estimator, which is in the spirit of the Von Mises proposition (Serfling

(1980), Section 6.1).

Let α(Xi) = 2
∑R

r=1 pr{F (βT

01Xi)−Fr(βT

01Xi)}{f(βT

01Xi)−fr(βT

01Xi)}

and Σ = E{α(Xi)XiX
T
i } + 4λ01β01E{α(Xi)X

T
i } + 4λ2

01β01β
T

01. We then

define V1 = A1ΣA1 for A1 specified in (S5.8) in the supplement. We

obtain the following result.

Theorem 2 (Asymptotic normality). Under Conditions 1-7,
√
n(β̂1−β01)

is asymptotically normally distributed with mean zero and covariance matrix

V1.
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6. Numerical studies

In practice, the number of the indexes d is unknown. It is usually better

to use cross validation to choose the proper number of d, and the empirical

bandwidth h. However, the computation cost of doing so is very high,

especially in simulation. For simplicity, instead, in the following simulation

studies, we use d as the true dimension of the central subspace and h =

3 · sd(β̃1)n−1/3 where sd stands for standard deviation and β̃1 is a good

initial estimate of β1 .

We use ten-fold cross validation to calculate the classification error in

both simulation and real data analysis. We repeat the experiment 400 times,

and the average classification error and the corresponding standard devia-

tion (in parentheses) are then calculated. Let β1 = (1, 1, 1, 1, 0, . . . , 0)T and

β2 = (1,−1, 1,−1, 0, . . . , 0)T. The calculation for LDA, logistics regression,

SVM and KKN is based on the corresponding Matlab (R2015a) packages

using default settings.

Although the MMV method can be readily applied under settings of

n < p, the computation cost for a sequential algorithm like ours is quite

high. If the predictors’ dimension is ultra-high, our suggestion is to conduct

feature screening first to reduce dimensionality p (say, exp(O(nξ)) for some

ξ > 0) to a relatively large scale d′ (e.g. , o(n)) by fast methods such as
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those of Fan and Fan (2008) and Cui, Li and Zhong (2015). When the size

of p is comparable to n, our method is quite fast and effective.

6.1 Fisher’s LDA

In this study, we set p be 50 and 200 respectively, with the sample size

n = 80. We generate Y = (1, . . . , 1,−1, . . . ,−1)T first, and then generate

X as follows. It is an ordinary LDA model which is in fact an inverse model

with a one-dimensional central subspace.

Model I

X = β1Y + ∆ε ,

where ε ∼ N(0, In) and ∆ = (∆ij) with ∆ij = 0.5|i−j| for 1 ≤ i, j ≤ p.

Table 1: Average classification error (percentage)

Method MMV+LDA LDA

p = 50

Model I 9.95 (3.43) 24.15 (6.21)

p = 200

Model I 13.87 (4.42) 19.83 (6.33)

Table 1 shows that MMV+LDA outperforms LDA significantly in both
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settings (p = 50 and p = 200). By applying MMV, the classification error

is decreased by 50 percent or so. Although MMV+LDA equals LDA in the

population level, the former does work better in the finite sample settings.

The reason might be that dimension reduction through MMV increases

estimation efficiency. Notice that the performance of LDA gets suprisingly

better when p goes higher from 50 to 200. That is because the traditional

LDA fails when the empirical covariance matrix for p = 200 is nonsingular,

and the regularized LDA is then applied. See the matlab documentation for

details on the regularized LDA. Despite the regularization, our MMV+LDA

still gains superiority over LDA.

6.2 Logistic regression

In this study, we set p be 20 and 50 respectively, with the sample size

n = 80. Since logistic regression utilizes likelihood estimation, the sample

size is required to be larger than the dimension of the predictors. We

generate data using the logistic model as follows.

Model II

Y = I (1/{1 + exp(βT

1X)} ≥ 0.5) ,

where I is the indicator function and X = (X1, . . . , Xp)
T ∼ N(0,Ψ) with

Ψ = (Ψij) and Ψij = 0.5|i−j| for 1 ≤ i, j ≤ p. In this study, the central
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subspace is spanned by the direction β1.

Table 2: Average classification error (percentage)

Method MMV+Logistic regression Logistic regression

p = 20

Model II 9.33 (3.36) 13.31 (4.16)

p = 50

Model II 14.85 (4.36) 31.71 (6.27)

It can been seen clearly from Table 2 that MMV, as a dimension reduc-

tion technique, improves estimation efficiency, and thus reduces classifica-

tion error remarkably when it is combined with Logistic regression.

6.3 More complex models

We compare our method with more advanced algorithms like SVM and

KKN in this study. Models III and IV are multiple index models. We set

p be 50 and 200 respectively, while the sample size n = 160. In these two

models, the central subspace is spanned by the directions β1 and β2.

Model III

Y = I
(
βT

1X/{0.5 + (βT

2X + 1.5)2}+ 0.2ε ≥ 0
)
,
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where ε ∼ N(0, 1), X = (X1, . . . , Xp)
T ∼ N(0,Ψ) with Ψij = 0.5|i−j| for

1 ≤ i, j ≤ p, and X ⊥⊥ ε.

Model IV

Y = I
(
(βT

1X)2 + (βT

2X)2 + 0.2ε ≥ 1
)
,

where ε ∼ N(0, 1), X = (X1, . . . , Xp)
T ∼ N(0,Ψ) with Ψij = 0.5|i−j| for

1 ≤ i, j ≤ p, and X ⊥⊥ ε.

Table 3: Average classification error (percentage)

Method MMV+SVM SVM MMV+KKN KKN

p = 50

Model III 16.65 (3.61) 20.49 (4.01) 17.80 (3.75) 34.52 (4.51)

Model IV 16.66 (4.09) 25.22 (4.46) 18.33 (4.65) 22.75 (5.43)

p = 200

Model III 25.18 (4.05) 27.08 (4.45) 25.63 (3.99) 42.21 (4.40)

Model IV 16.20 (5.02) 19.35 (5.89) 14.09 (4.06) 22.70 (6.45)

Table 3 indicates that even for complex classification algorithms such

as SVM and KNN, employing MMV before classification still enjoys a sig-

nificant decrease of the classification error and its variance. This further
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Figure 1: Average computation time (in seconds) and classification error

versus the problem dimension with n = 80.

confirms the efficiency and priority of our proposed method.

6.4 Computation cost

We compare the proposed method (MMV) with sliced inverse regression

(SIR) and one powerful method called MAximum SEparation Subspace

(MASES) recently proposed by Zhang, Mai and Zou (2020) for sufficient

dimension reduction with categorical response. The SIR function in matlab

is used for the SIR method, and we obtain the MASES’s matlab code in

the author’s webpage. The comparison are conducted in Model I as an

illustration. For each method, we record the average computation time (in

seconds), together with the average classification error across 400 repetitions

under each (n, p) setting. The results are reported in Figures 1 and 2 .
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Figure 2: Average computation time (in seconds) and classification error

versus the sample size with p = 50.

Although the proposed MMV method exhibits slower computation speed

compared to the two contrastive methods, it significantly improves the ac-

curacy of classification. While SIR demonstrates the fastest execution, its

classification error is notably high. In fact, as shown in Figure 1, when

the problem dimension p goes to 100, the classification error of SIR reach-

es 50%, which equals random guess in this binary classification problem.

Moreover, compared with MASES, MMV exhibits some robustness against

the sample size n, as shown in the left subfigure of Figure 2. In summary,

the proposed method can achieve satisfactory estimation and classification

within an acceptable timeframe.
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6.5 Real data analysis

We apply our method to human colon cancer data with n = 62 and p =

2000, which is available in R. There are 40 samples from tumors “t”, and

22 samples are from normal “n” biopsies. The data was originally collected

on microarrays with 6500 probes. 2000 of them were selected apparently,

randomly, to be used for demonstrating statistical methods. We first screen

the number of the predictors to 100 by the method of Cui, Li and Zhong

(2015), and compare our methods with LDA, SVM and KKN. We apply

the same bandwidth selection and cross validation methods as those in the

simulation study. A few choices of the dimension d = 1, 2, 3 are tried,

and they have rather similar results. Here we only present the result with

fixed d = 1. To get a fair comparison, we repeat the permutation 100

times for cross validation results. The table below summarizes the average

classification errors and the corresponding standard deviations.

Table 4 demonstrates that “MMV+.” performs much better than the

original classification method. It seems that the performances of the three

methods are comparable to each other, with SVM performing a little better,

while MMV+LDA performs the best among the three “MMV+.” methods.

We conjecture that the relationship between MMV and the original classi-

fication algorithms may be more than simple addition.
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Table 4: Average classification error (percentage)

MMV+LDA LDA

11.24 (1.16) 16.74 (3.00)

MMV+SVM SVM

12.40 (1.52) 16.53 (2.41)

MMV+KKN KKN

14.37 (2.14) 18.73 (1.43)

7. Conclusion

In this paper, we propose a new sufficient dimension reduction approach –

Maximal Mean Variance, which is designed deliberately for high-dimensional

classification. Our method requires fairly mild restrictions on the predictors

and keeps the model-free advantage without estimating the link function.

Hence, it can be applied to a wide range of scenarios. The relationships

between MMV and several popular classification methods are discussed in

detail. The asymptotic properties of the MMV estimator are investigat-

ed. Numerical experiments show the potential of the proposed method for

p� n problems.

While cross validation can be employed to choose a proper dimension d
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of the central subspace in practice, it would be quite challenging to derive

an optimal d theoretically. This is partially because the algorithm of M-

MV is a stepwise procedure. We leave it for further research. Besides, the

MMV method can be readily applied to the ultra high-dimensional setting

by conducting a screening procedure first. This two-scale learning frame-

work carrys forward the spirit of Fan and Lv (2008) for sure independence

screening.

Supplementary Material

The supplementary material includes all the theoretical proof of the main

paper.
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