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Abstract: We propose an estimator for precision matrices with the structure of Banded Kronecker

Sparse forms (BKS). BKS takes advantage of the special feature of a precision matrix, which has the

form of the kronecker product of an adaptively banded matrix and a sparse matrix, both are positive

definite. Such precision matrix arises frequently in practice in finance data, medical data and time

series data. We achieve the adaptive bandedness via a specially designed penalty, and enforce

the sparsity via lasso. We apply a computationally efficient procedure named Alternative Convex

Search (ACS) algorithm to implement BKS. We establish the computational convergence and

show the statistical guarantee through establishing the asymptotic rate. Our extensive simulation

studies indicate the superior finite sample performance of BKS in comparison to existing methods.

Additionally, we apply BKS to EEG and ADHD datasets, wherein it outperforms other methods

in capturing the banding sparsity characteristics of the precision matrix.
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1. Introduction

Matrix-valued data are becoming increasingly common in modern data collection proce-

dures. This type of data can be found, for instance, in neuro image data, finance data,

and time series data. In this paper, we focus on multivariate longitudinal data, which

is a special type of matrix-valued data. This type of data contains multiple outcomes

of interest for each subject, with repeated measurements taken over time. It is natural

to represent the resulting data in a matrix format with two dimensions corresponding to

variables and time. We are aware that the estimation of covariance or precision matrices

is a fundamental problem in multivariate data analysis, including techniques such as prin-

ciple component analysis, discriminant analysis, and regression analysis. Our objective

is to estimate the precision matrix of the vectorized version of multivariate longitudi-

nal data. However, considering the characteristics of multivariate longitudinal data, the

covariance matrix in the two dimensions of the observed matrix contains different struc-

tural information. It not only incorporates the structural information between multiple

outcomes at a fixed time point but also incorporates the time-series correlation structure

among different time points for each response variable. The precision matrix exhibits

the same characteristics. Due to the presence of complex structural information and the

typically large dimension of the observed matrices, obtaining an efficient estimator for the

precision matrix becomes increasingly challenging as the number of unknown parameters

increases quadratically with the vector length.

To address the challenges posed by high-dimensionality when estimating a large di-
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mensional precision matrix based on high-dimensional vector observations, the existing

literature has proposed two general approaches by incorporating sparse structural as-

sumptions. The first approach involves directly imposing sparsity on the precision ma-

trix through methods, like the graphical lasso (e.g., Yuan and Lin (2007); Banerjee et al.

(2008); Friedman et al. (2008)). These methods are suitable for estimating an unstruc-

tured precision matrix. In the case of variables with a natural ordering, such as time-series

data, the second approach involves directly imposing a banded structure on the precision

matrix. This approach has been explored in works like Yu and Bien (2017) and Furrer

and Bengtsson (2007). The asymptotic validity of the inversion procedure was later es-

tablished by Bickel and Levina (2008b) under the assumption of equal bandwidth for all

rows and by Cai et al. (2010) under a general bandedness assumption. However, these

methods treat the vector data as a whole and assume a sparse structure based on the

characteristics of the vector data. Consequently, they are not suitable for modeling mul-

tivariate longitudinal data. This is because the aforementioned sparse structures cannot

simultaneously capture the correlation structures among response variables and observed

time points.

To estimate the precision matrix for multivariate longitudinal data, various method-

s have been proposed. These methods have shown success when the dimension of the

observed matrix is not very large ((Kim and Zimmerman, 2012; Lee et al., 2020)). One

approach involves utilizing modified Cholesky block decomposition to reparameterize the

covariance. The purpose of this decomposition is to ensure positive definiteness, rather

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0131



than reducing the number of parameters. However, when dealing with high-dimensional

data, structural assumptions are necessary to reduce the complexity of the model. Tak-

ing into consideration the characteristic that the correlation between measurements for

any two time points decays with increasing time distance, Qian et al. (2020) and Qian

et al. (2021) propose a regularized estimator for the precision matrix. This is achieved

through a modified Cholesky block decomposition and by penalizing the log-likelihood

with a penalty function that encourages a block banded structure in the lower triangle

block matrix. However, the adaptive block banded precision matrix estimator (ABR)

introduced by Qian et al. (2021) has a significant computational drawback. The running

time of ABR increases dramatically as the number of rows or columns in the observa-

tion matrix increases. Additionally, the theoretical properties of ABR are based on the

assumption that the repeated measurements are finite.

To address the challenges involved in estimating the precision matrix for high-dimensional

multivariate longitudinal data, it is common to introduce a separability assumption on

the covariance matrix. This assumption represents the precision matrix as a Kronecker

product structure with two smaller matrices. To capture various types of structural infor-

mation, different approaches have been proposed for these smaller matrices (Tsiligkaridis

and Hero (2013),Greenewald and Hero (2015),Leng and Tang (2012), Leng and Pan

(2018),Zhang et al. (2023),Dai et al. (2023)). Tsiligkaridis and Hero (2013) and Gree-

newald and Hero (2015) assume both matrices to be low-rank, Leng and Tang (2012)

assume both matrices to be sparse, and further assume normality and propose the Sparse
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Matrix Graphical Model (SMGM) estimator by penalizing the log-likelihood. However,

these methods only consider sparsity in the precision matrix or correlation matrix, over-

looking the potential bandedness property. Zhang et al. (2023) and Dai et al. (2023)

assume a banded structure for both of these matrices. These methods are particularly

suitable for space-time data where both the row and column variables in the observed

matrix have a natural ordering. In this paper, we address the situation where the ob-

served variables of interest may not have a natural ordering. To capture this complexity,

we assume that one of the two matrices is sometimes sparse, while the other is banded.

For instance, each column of the original matrix data may have a sparse precision matrix,

such as in cases where a matrix column represents measurements at different brain loca-

tions. Conversely, different columns may correspond to measurements taken at different

times, resulting in a banded precision matrix due to the decreasing time relation. Esti-

mating a large-dimensional precision matrix is a challenging task due to the quadratic

increase in the number of unknown parameters along the vector length. However, the

kronecker product form mentioned earlier effectively reduces the number of parameters

and enables contemporary methods to simultaneously consider bandedness and sparsity.

The remainder of this paper is structured as follows. Section 2 introduces the specific

model setting, as well as the BKS estimator and the ACS algorithm. The algorithmic

convergence of ACS is also established in this section. The theoretical properties of

BKS are provided in Section 3. Section 4 presents simulation studies, while Section 5

presents real data analysis. Lastly, Section 6 offers concluding remarks. For the proofs
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and technical derivations, please refer to the Supplement Materials.

2. Model and Estimation

In this section, we will provide a description of the model and the motivation behind our

statistical model. Additionally, we delve into the computational aspects of the estimation

procedure.

2.1 Model setup

Let Yi ≡ (Yi1·, . . . ,YiJ ·) be the K×J random matrix associated with individual i across

all time. We assume Y1, . . . ,Yn are independent and identically distributed (iid). Each

matrix Yi is vectorized to form vec(Yi) ≡ (YT
i1·, . . . ,Y

T
iJ ·)

T ∈ RKJ , and we assume

that the mean and covariance of vec(Yi) are E{vec(Yi)} = 0 and cov{vec(Yi)} = Σ,

respectively. The covariance matrix Σ captures the correlations between any two re-

sponses at different times, including the temporal correlation for a fixed response vari-

able cor(Yijk, Yij′k), the variable correlation for a fixed time point cor(Yijk, Yijk′), and the

correlation between any two response variables at different time points cor(Yijk, Yij′k′),

where j 6= j′ ∈ {1, · · · , J}, k ∈ {1, · · · , K}. Let us divide Σ into J2 size K ×K block

matrices. We denote the (j, l) block as Σ(jl), where j and l range from 1 to J . The diag-

onal block matrix Σ(jj) = cov(Y ij·) represents the variance-covariance structure between

the K responses at the jth time point. Similarly, Σ(jl) = cov(Y ij·,Y il·) denotes the

covariance between the K responses at the jth and the lth time points. We assume that
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2.1 Model setup

the correlation structure information can be separated into two dimensions: variable and

time. Specifically, the assumed temporal correlation is the same for all responses, and

the assumed variable correlation is the same for all time points. Thus, the covariance

matrix for multivariate longitudinal data can be represented as a Kronecker product,

Σ = R ⊗W, where R ∈ RJ×J and W ∈ RK×K . Under this assumption, we can write

Σ(jl) as rjlW for all j, l range from 1 to J . Here, rjl represents a constant that denotes the

signal amplication at different time points. In this case, the Kronecker structure R⊗W

is non-identifiability. For convenience, we set W = Σ(11)/Σ1,1, where Σ1,1 represents the

entry at position (1, 1) in the matrix Σ. Our interest is in estimating the precision matrix

R−1 ⊗W−1. However, in high-dimensional situations, the number of variables and time

points both may exceed the sample size. To obtain a stable and efficient estimator for

the precision matrix, it is necessary to introduce additional structure assumptions for

R−1 and W−1. To obtain a positive definite estimator for R−1, we perform a cholesky

decomposition such that R−1 ≡ LTL, where L is a lower triangle matrix and Lj,j > 0,

j = 1, · · · , J . The elements in R−1 represent the conditional correlation between any

two time points, given the other observed time points, for the response variable. In prac-

tice, as the distance between two time points increases, the conditional correlation will

decrease. Therefore, we assume that R−1 is a banded matrix with a bandwidth of d,

where d is significantly smaller than J . The elements in W−1 represent the conditional

correlation between any two response variables, given the other variables for a specific

time point. For W−1, we assume that it is a sparse matrix. Furthermore, we provide
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2.2 Estimation

a detailed introduction to the Kronecker structure through two examples in Supplement

Material S5.

Remark 1. The assumption that the true covariance or precision matrix is separable

plays a crucial role in our model framework and should be evaluated during the da-

ta preprocessing stage. In this study, we follow Zhang et al. (2023) and employ the

projection-based bootstrap test method introduced by Aston et al. (2017). This method

is theoretically guaranteed and computationally fast in high-dimensional settings. More-

over, as a distribution-free approach, it is suitable for our framework.

2.2 Estimation

To estimate R−1 ⊗W−1, we only need to estimate R−1 and W−1 based on the iid

observations Y1, . . . ,Yn. We consider minimizing the target function

l(W−1,R−1) = −J log |W−1| −K log |R−1|+ 1

n

n∑
i=1

tr(Y
T

i W−1YiR
−1).

Obviously, up to a constant, l(W−1,R−1) is the negative loglikelihood of (W−1,R−1)

under the assumption that vec(Yi)’s are normally distributed with mean zero. However,

we do not assume normality here, so we view l(W−1,R−1) as a general loss function.

We incorporate a lasso penalty to take into account of the sparsity of W−1. Specifi-

cally, we add the penalty term λ1‖vec(W−1)‖1 to the loss function. To account for the

positive definiteness and banded structure of R−1, we adopt the same methodology as Yu

and Bien (2017). Begin with, we utilize the Cholesky decomposition of R−1 to express
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2.2 Estimation

it as R−1 = LTL, where L is a lower triangle matrix with Lj,j > 0 and Lj,l = 0 for

all j − l > d. To incorporate the banded structure for L, we consider each row of L

separately. In the lower triangle form of L, the jth row exclusively includes potentially

non-zero elements Lj,1, . . . , Lj,j−1 and a positively definite element Lj,j. Roughly speak-

ing, the banded structure implies that a smaller column index, denoted by l, suggests

a higher probability for the entry Lj,l to be zero. Thus to encourage more likely zeros

corresponding to smaller column index l, we consider the penalty

p(Lj,·) ≡
j−1∑
l=1

√√√√ l∑
q=1

L2
j,q. (2.1)

We can see that this is actually a group lasso penalty, where the lth group is the subvector

formed by the first l elements of the jth row. Because of the relation (
∑l

q=1 L
2
j,q)

1/2 ≤

(
∑l+1

q=1 L
2
j,q)

1/2, a zero value corresponding to an index l automatically implies a zero value

for all indices < l. In other words, the sparsity penalty in (2.1) automatically leads to

a banded structure on the jth row. Taking into account all rows, we thus incorporate

a penalty λ2
∑J

j=2 p(Lj,·) to factor in the banded structure on L, or equivalently, the

banded structure on R−1.

Combining the above analysis, we propose to estimate W−1 and L through minimizing

Q(W−1,L,λ) = −J log |W−1| − 2K log |L|+ 1

n

n∑
i=1

tr(YT
i W−1YiL

TL)

+ λ1J‖vec(W−1)‖1 + λ2K
J∑
j=2

p(Lj,·)

(2.2)
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2.2 Estimation

subject to the positive-definite constraint on W−1, where p(Lj,·) is defined in (2.1), and

λ ≡ (λ1, λ2)
T contains the turning parameters.

At any λ, Q(W−1,L,λ) is biconvex in (W−1,L), i.e., it is a convex function of

W−1 when L is fixed, and is a convex function of L when W−1 is fixed. We thus solve

the optimization problem in (2.2) by alternate convex search (ACS), i.e., we alternately

minimize Q(W−1,L,λ) with respect to W−1 or L while keeping the other matrix fixed.

Specifically, at the sth step, we first fix L at L̂(s), and update the estimator of W−1 by

solving

(Ŵ−1)(s+1) = argmin
W−1>0

{− log |W−1|+ 1

nJ

n∑
i=1

tr{YT
i W−1Yi(L̂

(s))TL̂(s)}+λ1‖vec(W−1)‖1},

(2.3)

where W−1 > 0 means W−1 is positive definite. We then fix W−1 at (Ŵ−1)(s+1) and

update the estimator of L by minimizing

−2 log |L|+ 1

nK

n∑
i=1

tr{YT
i (Ŵ−1)(s+1)YiL

TL}+ λ2

J∑
j=1

p(Lj,·), (2.4)

subject to Lj,j > 0, and Lj,j′ = 0, 1 ≤ j < j′ ≤ J . We repeat the above optimization

steps (2.3)-(2.4) until ‖(Ŵ−1)(s+1)− (Ŵ−1)(s)‖F + ‖L̂(s+1)− L̂(s)‖F < ε, where ε is a pre-

determined sufficiently small constant. We then set Ŵ−1 = (Ŵ−1)(s+1) and L̂ = L̂(s+1)

as the final estimators.

Next, we discuss the details in sovling (2.3) and (2.4) respectively. (2.3) is a well stud-

ied problem (Yuan and Lin, 2006; Rothman et al., 2008) and here, we adopt the graphical
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2.2 Estimation

lasso (glasso) algorithm (Friedman et al., 2008), which guarantees the positive definite-

ness of the matrix (Ŵ−1)(s+1). To investigate the minimization problem of (2.4), we write

Y∗i ≡ ((Ŵ−1)(s+1))1/2Yi, Y∗ ≡ {(Y∗1)T, . . . , (Y∗n)T}T, and Lj ≡ LT
j,1:j as a j-dimensional

column vector formed by the first j elements on the jth row of the matrix L for a generic

matrix L. We then obtain
∑n

i=1 tr(YT
i (Ŵ−1)(s+1)YiL

TL) =
∑n

i=1 tr((Y∗i )
T(Y∗i )L

TL) =∑J
j=1 ‖Y∗·,1:jLj‖22. Thus (2.4) can be equivalently written as

−2
J∑
j=1

logLj,j +
1

nK

J∑
j=1

‖Y∗·,1:jLj‖22 + λ2

J∑
j=1

p(Lj,·).

We can now decompose the optimization with respect to L into J separately optimization

problems with respect to L1,·, . . .LJ,· respectively. Specifically,

L̂
(s+1)
1,1 = argmin

L1,1>0
{−2K logL1,1 +

1

n
‖Y∗·,1L1,1‖22} = {(Y∗·,1)TY∗·,1/nK}−1/2,

L̂
(s+1)
j = argmin

Lj,j>0,Lj∈Rj

{−2 logLj,j +
1

nK
‖Y∗·,1:jLj‖22 + λ2p(Lj)}, j = 2, . . . , J.

(2.5)

Note that p(Lj,·) = p(Lj). To solve each of the J − 1 optimization problems above, we

adopt the alternating direction method of multipliers (ADMM) algorithm (Boyd et al.

(2011)). To this end, to obtain L̂
(s+1)
j , we introduce the constrains Lj = Ψj, and modify

the objective function for (Lj,Ψj) into

Q∗(Lj, λ2,Uj, ρ,Ψj) = −2 logLj,j +
1

nK
‖Y∗·,1:jLj‖22

+ λ2p(Ψj) + UT
j (Lj −Ψj) +

ρ

2
‖Lj −Ψj‖22.

(2.6)

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0131



2.2 Estimation

Given Ψ̂
(r)

j and Û
(r)
j , we compute the derivative of (2.6) with respect to Lj and obtain

the estimation equation:

−2
1

Lj,j
ej +

2

nK
(Y∗·,1:j)

TY∗·,1:jLj + Û
(r)
j + ρ(Lj − Ψ̂

(r)

j ) = 0,

where ej denotes the j-dimensional indicator vector, with 1 on the jth element and the

other elements 0. The above estimation equation can be written as


Lj,1:j−1

{
2
nK

(Y∗·,1:j−1)
TY∗·,1:j−1 + ρI

}
+ 2

nK
(Y∗·,j)

TY∗·,1:j−1Lj,j + Û
(r)
j,1:j−1 = ρΨ̂

(r)

j,1:j−1,

− 2
Lj,j

+
{

2
nK

(Y∗·,j)
TY∗·,j + ρ

}
Lj,j + 2

nK
(Y∗·,j)

TY∗·,1:j−1L
T
j,1:j−1 + Û

(r)
j,j = ρΨ̂

(r)
j,j .

The first equation leads to that Lj,1:j−1 = −{2(nK)−1(Y∗·,j)
TY∗·,1:j−1Lj,j + Û

(r)
j,1:j−1 −

ρΨ̂
(r)

j,1:j−1}{2(nK)−1(Y∗·,1:j−1)
TY∗·,1:j−1 + ρI}−1. Inserting this into the second equation

yields an equation of the form AL2
j,j +BLj,j + 2 = 0, where

A =

{
4

nK
(Y∗·,j)

TY∗·,1:j−1

}{
2

nK
(Y∗·,1:j−1)

TY∗·,1:j−1 + ρI

}−1
{

1

nK
(Y∗·,1:j−1)

TY∗·,j

}
− 2

nK
(Y∗·,j)

TY∗·,j − ρ,

B =

{
2

nK
(Y∗·,j)

TY∗·,1:j−1

}{
2

nK
(Y∗·,1:j−1)

TY∗·,1:j−1 + ρI

}−1
(Û

(r)
j,1:j−1 − ρΨ̂

(r)

j,1:j−1)− Û
(r)
j,j + ρΨ̂

(r)
j,j .

Note that −1/A is the lower-right entry of the matrix {(Y∗·,1:j)TY∗·,1:j/nK + ρI/2}−1,
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2.2 Estimation

hence A < 0. Further (B2 − 8A)1/2 > |B|. Thus, to satisfy the positive requirement of

Lj,j, we get L̂
(r+1)
j,j = −{B + (B2 − 8A)1/2}/2A. This provides a closed-form solution for

L̂
(r+1)
j,j , and subsequently a closed-form solution for L̂

(r+1)
j,1:j−1. We next update Ψj based on

L̂
(r+1)
j and Û

(r)
j by minimizing the objective function

ρ

2
‖Ψj − L̂

(r+1)
j − 1

ρ
Û

(r)
j ‖22 + λ2p(Ψj), (2.7)

which has the group lasso penalty. To minimize (2.7), we consider its dual problem.

Theorem 1. A dual of (2.7) is given by

min
A
‖Zj −

λ2
ρ

j−1∑
l=1

A·,l‖22, s.t. ‖A1:l,l‖2 ≤ 1,Al+1:j,l = 0, for l = 1, . . . , j − 1, (2.8)

where Zj = L̂
(r+1)
j + Û

(r)
j /ρ, A is a j× (j−1) matrix. Given Â, the optimizer of (2.7) is

Ψ̂
(r+1)

j = Zj −
λ2
ρ

j−1∑
l=1

Â·,l.

The proof of Theorem 1 is given in the Supplement Materials. Following Yu and Bien

(2017), we use the blockwise coordinate descent (BCD) method to solve (2.8), where we

sequentially perform elliptical projection to update each column of A ∈ Rj×(j−1). This

strategy is developed in Bien et al. (2016) and Jenatton et al. (2011). It takes advantage

of the upper triangle struture of A, and only requires a single pass of BCD. Specifically,

we first set Â = 0, then for l = 1, · · · , j − 1, we sequentially update the lth column of
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2.2 Estimation

Â. Following (2.8), the lth column of A is obtained by solving

min
A·,l
‖Γl −

λ2
ρ

A·,l‖22, s.t. ‖A1:l,l‖2 ≤ 1 and Al+1:j,l = 0,

where Γl ≡ Zj − ρ−1λ2
∑l−1

q=1 Â·,q is a j-dimensional vector. Obviously, if ‖(Γl)1:l‖2 ≤

λ2/ρ, then Â1:l,l = ρ(Γl)1:l/λ2. Otherwise, Â1:l,l = (Γl)1:l/‖(Γl)1:l‖2. Combining the

two situations, we can write that Â1:l,l = (Γl)1:l/max{λ2/ρ, ‖(Γl)1:l‖2}. Ψ̂
(r+1)

j = Zj −

ρ−1λ2
∑j−1

l=1 Â·,l. Finally, based on L̂
(r+1)
j and Ψ̂

(r+1)

j , we follow the ADMM procedure to

update Lagrange multiplier Û
(r+1)
j via Û

(r+1)
j = Û

(r)
j + ρ(L̂

(r+1)
j − Ψ̂

(r+1)

j ). The detailed

process of solving the objective function (2.6) are provided in Algorithm 1. Algorithm 1

is applied to all j = 1, . . . , J to yield L̂(s+1) defined in (2.4). We iteratively update the

estimation for W−1 and L as described in Algorithm 2 to obtain Ŵ−1 and L̂, and form

Σ̂
−1

= L̂TL̂⊗ Ŵ−1 as out final estimator for the precision matrix. Although there is no

guarantee that the algorithm converges to the global minimum, the algorithm converges

to a local stationary point of (2.2).

Remark 2. The optimization process (Algorithm 2) requires an initial precision matrix

for the time dimension, R−1. As the sample covariance matrix for the time dimension

depends on W−1, we initialize R−1 as the identity matrix. For the variable dimension,

W−1 is estimated using the glasso function, which defaults to the inverse of the sample

covariance matrix. In Algorithm 1, there requires initial values of L, Φ and U. Given that

R−1 is initialized as the identity matrix, we set the initial values as L(0) = I, Φ(0) = I,
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2.2 Estimation

Algorithm 1 ADMM algorithm to solve (2.6)

Input: Initial values L̂
(0)
j , Ψ̂

(0)

j , Û
(0)
j , λ2, ρ > 0, r = 0.

Main procedure:

Step 1. Update L̂
(r+1)
j,j = −B−

√
B2−8A

2A
and

L̂
(r+1)
j,1:j−1 =

{
ρΨ̂

(r)

j,1:j−1 −
2

nK
(Y∗·,j)

TY∗·,1:j−1L̂
(r+1)
j,j − Û

(r)
j,1:j−1

}{
2

nK
(Y∗·,1:j−1)

TY∗·,1:j−1 + ρI

}−1
Step 2. Let Zj = L̂

(r+1)
j + Û

(r)
j /ρ. For l = 1, . . . , j − 1, let Γl = Zj − (λ2/ρ)

∑l−1
q=1 Â·,q,

and Â1:l,l = (Γl)1:l/max{λ2
ρ
, ‖(Γl)1:l‖2}, Âl+1:j,l = 0. Set Ψ̂

(r+1)

j = Zj − λ2
ρ

∑j−1
l=1 Â·,l.

Step 3. Set Û
(r+1)
j = Û

(r)
j + ρ(L̂

(r+1)
j − Ψ̂

(r+1)

j );

Step 4. Increase r by 1 and go back to Step 1 until ‖L̂(r+1)
j − Ψ̂

(r+1)

j ‖2 < εprime, and

‖ρ(Ψ̂
(r+1)

j − Ψ̂
(r)

j )‖2 < εdual, where εprime =
√
jεabs + εrel max{‖L̂(r+1)

j ‖2, ‖Ψ̂
(r+1)

j ‖2},
εdual =

√
jεabs + εrel‖Û(r+1)‖2, and εabs, εrel are predetermined constants.

Output: L̂
(r+1)
j , Ψ̂

(r+1)

j .

and U(0) = 0.

We divide the entire optimization process into two stages. First, given L̂(s), we apply

the graphical lasso algorithm to obtain (Ŵ−1)(s+1). Since the objective function is convex

and the initial L̂(s) ensures that (R̂−1)(s) remains positive definite, thus, the optimization

process always converges. In the second stage, based on (Ŵ−1)(s+1), we impose the

condition Ψ = L and employ the ADMM algorithm to compute L̂(s+1). As the objective

function is convex with respect to L and Ψ, and given an appropriate tuning parameter

λ2, this computation process also converges. Since both subroutines are convergent, we

leverage the convergence properties of bi-convex functions, as discussed in Gorski et al.

(2007). By iteratively alternating between these two stages, the optimization process

converges to a locally optimal solution, {(Ŵ(−1))(s+1), L̂(s+1)}.
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Algorithm 2 The complete algorithm to solve (2.2)

Input: Initial values L̂(0), (Ŵ−1)(0), λ1, λ2, ρ > 0, s = 0.

Main procedure:

Step 1. At the given L̂(s), obtain (Ŵ−1)(s+1) by applying the glasso method to solve

(2.3).

Step 2. At the given (Ŵ−1)(s+1), obtain L̂(s+1) by solving (2.4). (2.4) is solved row-

wise, where for j = 1, . . . , J , the nonzero part of the jth row, i.e., L̂
(s+1)
j , is obtained

through solving (2.5) via Algorithm 1.

Step 3. Increase s by 1 and go back to Step 1 until ‖(Ŵ−1)(s+1) − (Ŵ−1)(s)‖F +

‖L̂(s+1) − L̂(s)‖F < ε, where ε is a pre-determined constant.

Output: Ŵ−1 ≡ (Ŵ−1)(s+1) and L̂ ≡ L̂(s+1).

3. Statistical Properties

We now study the statistical properties of BKS, through establishing the converge rates of

L̂ and Ŵ−1 respectively. All technical proofs are provided in the Supplement Materials.

Let dj be the true bandwidth of the jth row in L, we will show the consistence of the

estimators d̂j, j = 2, . . . , J . We now explain some notations that will be used throughout

the paper. For a n×p real matrix M = (Mij), the l1 norm is defined as |M|1 =
∑

i,j |Mij|,

and the Frobenius norm is ‖M‖F = (
∑

i,jM
2
i,j)

1/2. We make the following assumptions.

(C1) The true lower triangular matrix L ∈ RJ×J has bandwidth dj on row j for j =

2, . . . , J , and has positive diagonal elements. Therefore, Lj,q = 0 for 1 ≤ q < j − dj
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and q > j. W−1 ∈ RK×K is a sparse positive definition matrix. Let maxj=2,...,J dj =

O(1). Let w and v ≡
∑J

j=2 dj represent the total numbers of non-zero off-diagonal

elements in W−1 and L respectively, and satisfy w = O(K), v = O(J).

(C2) There exist positive constants τ1 and τ2 such that

0 < τ−11 ≤ σmin(L) ≤ σmax(L) ≤ τ1 <∞,

0 < τ−12 ≤ σmin(W−1) ≤ σmax(W
−1) ≤ τ2 <∞,

where σmin(·) and σmax(·) denote the minimum and maximum singular values of a

matrix.

(C3) Let the square of the jth component of vec(Yi) have distribution function Gj, then

max
1≤j≤KJ

∫ ∞
0

exp(ψt)dGj(t) <∞, for all ψ ∈ (0, ψ0),

where ψ0 > 0 is a constant.

For (C1), it means that the true precision matrix Σ−1 = R−1 ⊗W−1 has a sparse

block banded structure. (C2) suggests that the singular value of L is bounded, which

is equivalent to the bounded eigenvalue condition generally. In reference to (C3), which

is defined similarly to the condition in Bickel and Levina (2008a), to accommodate the

departure from normality, we establish that the maximum difference between Sj,l and

Σj,l, denoted as max1≤j,l≤KJ |Sj,l −Σj,l|, always satisfies the inequality Op{log(KJ)/n}.
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3.1 Precision matrix estimation consistency

Here, S represents the sample covariance matrix for the random samples {yi}ni=1.

3.1 Precision matrix estimation consistency

We now consider the convergence rate of the precision matrix estimator Σ̂
−1

when m ≡

KJ and n both diverge to infinity. Denote a � b as c1 ≤ |a/b| ≤ c2, where c1 and c2 are

positive constants.

Theorem 2. Assuming that Assumptions (C1),(C2) and (C3) hold, and the tuning pa-

rameters satisfy λ1 � (logm/n)1/2 and λ2 � (logm/n)1/2. If (K + J) logm = o(n),

then there exists a local minimizer of (2.2). Moreover, the estimators Ŵ−1, L̂j and Σ̂
−1

converge in the sense that

‖Ŵ−1 −W−1‖F = Op{(K logm/n)1/2}, ‖L̂j − Lj‖2 = Op{(logm/n)1/2},

and

‖Σ̂
−1
−Σ−1‖F = Op{(m logm/n)1/2}.

Furthermore, if vec(Yi) ∼ N(0,R ⊗W), then the estimators Ŵ−1, L̂j and Σ̂
−1

will

converge at a faster rate. Specifically, assume Assumptions (C1), (C2) and (C3) to hold

and the tuning parameters to satisfy λ1 � {logK/(nJ)}1/2 and λ2 � {log J/(nK)}1/2.

If J log J � K logK, and logK = o(n), log J = o(n), then the estimators Ŵ−1, L̂j and

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0131



3.2 Uniqueness of the banded estimator

Σ̂
−1

converge in the sense that

‖Ŵ−1 −W−1‖F = Op[{K logK/(nJ)}1/2], ‖L̂j − Lj‖2 = Op[{log J/(nK)}1/2],

and

‖Σ̂
−1
−Σ−1‖F = Op[max{(J log J/n)1/2, (K logK/n)1/2}].

Theorem 2 establishes the convergence rate of the precision matrix estimation. This

rate agrees with that of SMGM (Leng and Tang, 2012), and is better than that of ABR

(Qian et al., 2020), which will be reflected in the simulation studies. As noted by Leng

and Tang (2012), when multiple local minimizers exist, identifying the optimal solution

in practice becomes challenging, and there does not seem to be an algorithm that can

consistently find the optimal solution.

3.2 Uniqueness of the banded estimator

In handling the optimization problem in (2.4), we have decomposed it into J separate

optimization problems. It is worth noting that without the banded requirement, the

individual estimator L̂j may not be unique. For example, when the dimension of Lj

satisfies j > nK, the objective function in (2.5) may not be strictly convex as a function

of Lj which leads to multiple minimizers. However, when λ2 is sufficiently large, we will

show that the additional banded requirement will lead to sufficient sparseness so that the

optimizor L̂j will be unique. In order to show this, we first establish two lemmas.
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3.2 Uniqueness of the banded estimator

Lemma 1. For any given λ2 > 0 and any given Ŵ−1, L̂j is a solution to the objective

function minLj,j>0,Lj∈Rj f(Lj), where

f(Lj) ≡ −2 logLj,j +
1

nK
‖Y∗·,1:jLj‖22 + λ2p(Lj), (3.1)

iff there exists Â ∈ Rj×(j−1) such that

− 2

L̂j,j
ej +

2

nK
Y∗T·,1:jY

∗
·,1:jL̂j + λ2

j−1∑
l=1

Â·,l = 0, (3.2)

where for l = 1, . . . , j − 1,

Âl+1:j,l = 0, Â1:l,l = (L̂j)1:l/‖(L̂j)1:l‖2, if (L̂j)1:l 6= 0, and ‖Â1:l,l‖2 ≤ 1. (3.3)

Further, if the tuning parameter λ2 = C(logm/n)1/2, where C is a sufficiently large con-

stant, then under the conditions in Theorem 2, the estimator L̂j is sparse with bandwidth

d̂j, and ‖Â1:l,l‖2 < 1 for l = 1, . . . , j − 1− d̂j.

Lemma 2. Let L̂j and Â be as defined in Lemma 1. Assume that ‖Â1:l,l‖2 < 1 for

l = 1, . . . , j − d̂j − 1. Then, any other solution L̃j has a bandwidth at most that of L̂j,

i.e., d̃j ≤ d̂j.

Theorem 3. For any given λ2 > 0 and Ŵ−1, let L̂j be a solution to the objective function

minLj,j>0,Lj∈Rj f(Lj) with bandwidth d̂j, where f(Lj) is defined in Lemma 1. Let Â be

as defined in Lemma 1, and define the non-zero index set D̂ ≡ {l : L̂j,l 6= 0}. Let
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3.3 True bandwidth recovery

λ2 = C(logm/n)1/2, where C is a sufficiently large constant, and assume Y∗·,D̂ has full

column rank, i.e., rank(Y∗·,D̂) = d̂j + 1. Then, L̂j is unique.

3.3 True bandwidth recovery

In this section, we show that our estimator L̂ can correctly recover the true bandwidth of

each row uniformly with probability approaching 1 under mild conditions. To show this,

following the primal-dual witness procedure in Yu and Bien (2017), we first construct

the primal-dual witness solution pairs (Ã, L̃) for the optimal problem assuming the true

bandwidth dj of each row is known. We then prove that this solution is identical to the

solution to (2.4), which in turn implies that the estimated bandwidths are identical to

the true bandwidths.

Theorem 4. Assume the conditions required in Lemmas 1, 2 and Theorems 2, 3 are

satisfied, if the condition minj∈{2,...,J}minl≥j−dj |Lj,l| > λ2 is satisfied, then

pr( sup
j=2,...,J

|d̂j − dj| = 0)→ 1.

Remark 3. Theorem 4 holds under the assumption that the nonzero entries in L are

uniformly bounded below by (logm/n)1/2. This implies that the minimal signal strength

of L that is detectable is determined by the relation between the matrix size K, J and

the sample size n. A larger matrix requires stronger minimal signal.
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4. Simulation Studies

We now conduct simulation studies to study the finite sample performance of BKS. For

comparison, in addition to BKS, we also implement some competitive methods, including

SMGM (Leng and Tang, 2012) and ABR (Qian et al., 2021), both are designed to handle

matrix-valued data. In addition, we also implement VB and Unweighted VB (UVB)

proposed in Yu and Bien (2017), which is suitable when the vector vec(Yi) is ordered,

i.e. nearby components of vec(Yi) have larger correlations. To facilitate the comparison

to VB, we introduce a weighted version of BKS, where the penalty in (2.1) is modified to

pw(Lj·) ≡
∑j−1

l=1 (
∑l

q=1w
2
jqL

2
j,q)

1/2, where wjq = 1/(j−q+1)2. Please note that the weights

wjq are the same as that of VB. We name the corresponding method Weighted BKS

(WBKS). Note that these figures in simulation studies both can be found in Supplement

Material S6.

4.1 Multivariate normal distribution

We generate the precision matrix by setting Σ−1 = (LTL) ⊗W−1, where L is a lower

triangular matrix with ones on the diagonal and row specific bandwidth dj, j = 1, . . . , J ,

and W−1 is a sparse positive definite matrix. To generate L, we consider two cases.

• Case 1. Lj,l = I(j − l = 0) + 0.8I(j − l = 1) + 0.6I(j − l = 2) + 0.4I(j − l =

3) + 0.2I(j − l = 4), where j = 1, . . . , J , and 1 ≤ l ≤ j.

• Case 2. Lj,l = 0.7|j−l|, where j = 1, . . . , J , and j− dj ≤ l ≤ j. Here, dj is randomly

generated from a discrete uniform distribution on [1, j/2].
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4.1 Multivariate normal distribution

We can see that L in Case 1 is a banded matrix with equal values 1, 0.8, 0.6, 0.4, 0.2 on

the lower bands starting from the diagonal, while in Case 2, L has row-specific bandwidth,

and in each row, the values of the nonzero elements are decreasing while moving away

from the diagonal position. To generate W−1, we set W−1 = 0.5(B + BT) + cIK , where

B is a strictly upper triangular matrix with its elements independently generated from a

Bernoulli distribution with parameter 0.1, and c is chosen such that the condition number

of W−1 is K. We illustrate the structure of the precision matrix in the two cases when

K = 20, J = 10 in Figure 1.

We then proceed to generate the n independent longitudinal data {vec(Yi)}ni=1 from

the m = KJ dimensional multivariate normal distribution N(0,Σ). We consider sample

sizes n = 10, 50 and 100, and repeat 100 times under each sample size. We consider four

combinations of (K, J).

We report the estimation accuracy of the estimator Σ̂
−1

in terms of two criterions,

Frobenius norm (FN) and Kullback-Leibler (KL) loss, defined as

∆FN(Σ̂
−1
,Σ−1) ≡ 1

m
‖Σ̂
−1
−Σ−1‖2F , ∆KL(Σ̂

−1
,Σ−1) ≡ 1

m
{tr(Σ−1Σ̂)− ln(Σ−1Σ̂)−m}

respectively. We also report the performance of bandwidth recovery using the true neg-

ative rate (TNR) and the true positive rate (TPR) (Leng and Tang, 2012), that is,

TNR =
#{Σ̂ij = 0 & Σij = 0}

#{Σij = 0}
, TPR =

#{Σ̂ij 6= 0 & Σij 6= 0}
#{Σij 6= 0}

.
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4.1 Multivariate normal distribution

Table 1: Comparison in terms of FN and KL for different estimators of the precision
matrix Σ−1, in the form averagestandarderror, over 100 replications in Case 1.

(K, J) (10,10) (10,20) (20,10) (20,20) (10,10) (10,20) (20,10) (20,20)

Methods FN KL

10

WBKS 1.2760.315 3.2560.352 2.6200.527 4.7820.499 0.1060.021 0.1200.014 0.0750.012 0.0780.008

BKS 1.4990.349 2.8650.330 2.4120.458 4.1570.467 0.0960.017 0.0930.011 0.0730.012 0.0650.007

SMGM 7.7143.912 7.2872.823 12.394.107 12.452.833 0.7640.538 0.4030.449 0.3650.325 0.2150.208

50

WBKS 0.4540.150 0.5390.114 0.5410.138 0.8810.135 0.0180.003 0.0220.003 0.0150.002 0.0140.001

BKS 0.3280.113 0.4770.103 0.6340.158 0.6440.112 0.0170.003 0.0190.003 0.0140.002 0.0130.001

SMGM 0.4040.094 0.5060.095 1.2520.176 1.8620.181 0.0230.003 0.0260.004 0.0270.002 0.0220.002

ABR 10.590.093 12.750.070 20.120.092 0.3860.009 0.4290.007 0.4810.007

VB 10.730.077 12.960.055 18.590.102 22.640.061 0.3960.015 0.4680.012 0.4420.010 0.5200.007

UVB 11.030.067 12.610.050 20.300.071 23.540.051 0.4750.012 0.4980.010 0.5680.008 0.5980.005

100

WBKS 0.1720.059 0.3270.076 0.2610.071 0.3080.068 0.0090.001 0.0110.001 0.0070.001 0.0070.001

BKS 0.1520.052 0.3240.075 0.2150.049 0.2730.062 0.0090.001 0.0090.001 0.0070.001 0.0060.001

SMGM 0.2990.078 0.4760.085 1.0780.145 1.8800.143 0.0110.002 0.0130.001 0.0140.001 0.0140.001

ABR 10.590.093 11.780.046 17.980.096 0.3860.009 0.3270.003 0.3640.004

VB 10.730.077 12.960.055 17.130.079 20.720.052 0.3960.014 0.4680.012 0.3140.005 0.3660.004

UVB 11.030.067 12.600.050 18.210.057 21.630.040 0.4750.012 0.4980.010 0.4410.006 0.4760.004

During the estimation process, it is common for the estimated values of elements in Σ

that should be 0 to be very small in absolute value but not exactly zero. In order to

examine the accuracy of structure recovery, we assign a value of zero to all estimates

below 0.01 in absolute value across all methods. In Table 1, we present the matrix

estimation performance in Case 1. The results show that the average of FN and KL both

decrease when the sample size increases for all estimators.
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4.1 Multivariate normal distribution

Table 2: Comparison in terms of TNR and TPR for different estimators of the precision
matrix Σ−1, in the form averagestandarderror, over 100 replications in Case 1.

(K, J) (10,10) (10,20) (20,10) (20,20) (10,10) (10,20) (20,10) (20,20)

Methods TNR TPR

10

WBKS 70.890.054 85.170.017 86.560.023 92.450.008 98.340.018 93.500.022 97.130.020 94.240.018

BKS 77.210.044 89.200.018 84.490.023 93.780.008 97.440.021 94.730.019 97.270.019 94.790.018

SMGM 88.510.133 92.690.038 89.850.054 93.960.011 41.250.395 62.980.290 54.090.255 67.830.099

50

WBKS 85.880.030 84.160.020 87.310.016 92.950.007 99.610.009 99.190.010 99.940.004 99.820.003

BKS 82.390.035 86.320.021 87.960.015 93.400.007 99.770.007 99.370.008 99.940.004 99.910.002

SMGM 56.720.043 77.270.021 59.000.020 82.080.010 98.480.018 96.700.020 95.720.031 91.360.025

ABR 81.960.009 92.860.003 89.750.007 39.560.009 33.330.005 30.760.009

VB 93.510.005 97.890.002 94.740.003 98.430.001 33.250.010 25.880.006 30.620.008 22.570.005

UVB 86.190.005 92.630.001 95.870.002 98.120.001 31.210.007 29.510.004 14.790.003 12.810.002

100

WBKS 76.730.034 88.700.012 86.300.015 91.100.013 99.940.003 99.850.004 100.000.00 100.000.00

BKS 76.560.034 90.050.014 85.580.015 93.050.012 99.970.002 99.890.003 100.000.00 100.000.00

SMGM 65.310.038 82.970.019 66.970.020 87.410.013 99.120.015 98.060.015 97.110.023 92.010.019

ABR 74.900.009 90.960.003 82.300.004 52.110.013 39.840.008 38.330.006

VB 84.390.006 93.510.003 92.010.003 91.400.001 48.440.012 37.590.007 38.660.008 31.960.005

UVB 76.980.005 87.190.002 82.540.003 92.250.001 46.570.011 47.530.007 34.410.005 29.470.003

WBKS and BKS perform the best on average in every circumstance, because these

methods fully take into account the sparsity of W−1, the bandedness of L and the Kro-

necker product structure. In contrast, SMGM does not take into account the banded

matrix feature for L, ABR does not utilize the Kronecker product nature of the precision

matrix, and VB and UVB ignore sparsity and the Kronecker product structure. We also

find that WBKS and BKS tend to have rather small variability. In fact, they have the

smallest variability when sample size n = 10, reflecting superior estimation efficiency.
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4.1 Multivariate normal distribution

Table 3: Comparison in terms of FN and KL for different estimators of the precision
matrix Σ−1, in the form averagestandarderror, over 100 replications in Case 2.

(K, J) (10,10) (10,20) (20,10) (20,20) (10,10) (10,20) (20,10) (20,20)

Methods FN KL

10

WBKS 1.6510.220 2.3330.210 1.7080.220 2.2200.286 0.1040.018 0.1090.012 0.0780.012 0.0720.008

BKS 1.3080.210 1.6870.199 1.6100.205 1.9340.254 0.0910.017 0.0840.010 0.0750.011 0.0600.007

SMGM 3.9761.825 5.0422.019 5.1532.788 6.5210.778 0.8270.416 0.8830.435 0.4850.418 0.1380.086

50

WBKS 0.1950.064 0.2680.058 0.3130.076 0.5110.091 0.0150.003 0.0210.002 0.0150.002 0.0140.001

BKS 0.1800.060 0.2420.054 0.2850.069 0.3900.077 0.0150.003 0.0180.002 0.0150.002 0.0130.001

SMGM 0.1900.042 0.2430.044 0.4100.058 0.9350.109 0.0210.003 0.0240.002 0.0250.003 0.0200.002

ABR 4.7970.062 6.0800.041 8.8820.051 0.3500.010 0.3510.006 0.4550.006

VB 4.6350.058 6.3100.031 7.9820.052 12.910.042 0.3400.016 0.3970.009 0.4210.012 0.4800.008

UVB 4.8360.051 6.3510.034 8.7190.043 13.610.041 0.4250.014 0.4470.007 0.5340.008 0.5620.006

100

WBKS 0.1240.037 0.2140.042 0.1670.038 0.2030.044 0.0080.001 0.0110.001 0.0070.001 0.0070.001

BKS 0.1130.035 0.1770.038 0.1860.042 0.1870.042 0.0080.001 0.0090.001 0.0070.001 0.0060.000

SMGM 0.0970.025 0.1900.035 0.2540.045 0.8810.087 0.0100.002 0.0130.001 0.0110.001 0.0110.001

ABR 3.7190.056 4.1940.054 7.8310.037 0.2260.006 0.2570.005 0.3390.004

VB 3.8210.047 5.6000.030 6.8040.046 11.700.038 0.2160.007 0.2670.004 0.2720.005 0.3300.004

UVB 3.7990.041 5.1880.028 7.7330.037 12.360.025 0.2750.008 0.2990.005 0.4090.005 0.4280.004

Between the weighted and unweighted versions of BKS, we would recommend BKS, due

to its simplicity and its better performance under larger J . To demonstrate the band-

width recovery performance of different estimators, we further report the averages and

standard errors of TNR and TPR in Table 2. Once again, WBKS and BKS consistently

demonstrate superior performance compared to their competitors, as evidenced by their

large and balanced TNR and TPR values, and the superior ROC curves presented in

Figure 4. Due to the similar performance from BKS and WBKS, we only choose to show
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4.1 Multivariate normal distribution

Table 4: Comparison in terms of TNR and TPR for different estimators of the precision
matrix Σ−1, in the form averagestandarderror, over 100 replications in Case 2.

(K, J) (10,10) (10,20) (20,10) (20,20) (10,10) (10,20) (20,10) (20,20)

Methods TNR TPR

10

WBKS 82.170.052 84.480.023 80.400.035 80.080.023 98.020.028 95.840.026 99.370.013 98.470.011

BKS 83.390.045 87.710.021 81.620.031 82.700.019 99.140.017 97.690.020 99.430.013 98.730.010

SMGM 85.900.235 94.160.100 84.000.131 90.740.014 32.530.385 26.630.352 54.270.383 65.100.075

50

WBKS 75.380.041 77.570.029 74.080.029 81.450.015 100.000.00 99.950.006 100.000.00 99.030.010

BKS 75.760.039 76.820.028 76.000.026 81.710.015 99.960.004 99.480.007 100.000.00 99.320.007

SMGM 36.650.056 57.350.045 42.130.041 65.510.021 99.890.006 97.270.015 99.900.006 94.020.019

ABR 66.550.023 80.640.009 62.070.013 66.250.040 45.890.020 72.320.021

VB 75.860.015 93.440.004 85.030.007 93.220.003 58.980.025 30.360.013 48.300.015 28.200.009

UVB 72.620.010 90.620.003 89.290.004 94.930.001 58.630.019 27.090.007 28.740.010 15.550.003

100

WBKS 72.520.038 75.440.030 79.280.020 81.860.013 100.000.00 99.280.009 100.000.00 99.670.006

BKS 72.460.039 76.450.028 80.030.019 82.270.012 100.000.00 99.420.007 100.000.00 99.650.006

SMGM 53.730.040 70.070.033 52.120.025 75.650.013 100.000.00 96.800.015 99.960.004 94.510.019

ABR 36.570.018 54.040.011 84.280.007 94.960.013 86.750.013 47.410.013

VB 57.400.015 83.850.007 70.250.008 86.150.003 77.540.018 45.460.015 66.500.013 40.710.008

UVB 47.370.011 74.520.005 72.040.005 85.670.002 89.910.015 59.480.011 58.670.011 35.330.005

the ROC curve of BKS. We also experiment with the data generated from Case 2 under

sample sizes n = 10, 50 and 100, and present the corresponding results in Tables 3 and 4.

A similar conclusion can be drawn as in Case 1. Besides, we provide the boxplot figures

of FN and KL values, as well as the corresponding boxplots of TNR and TPR in two

Cases in the Supplement Materials.

Further, we again find BKS tend to outperform WBKS, especially when J is large.

This observation agrees with the relative performance of VB and UVB in Yu and Bien
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Table 5: Average running time (seconds) of six precision matrix estimators under different
combinations of (K, J). The results are based on 100 replicates with sample size n = 100.

Method (K, J) = (10, 5) (K, J) = (10, 10) (K, J) = (20, 10) (K, J) = (10, 20)

WBKS 1.22 1.55 2.20 2.95

BKS 1.19 1.46 2.05 2.72

SMGM 1.41 1.91 3.03 3.44

ABR 8.13 118.86 1531.42 3044.67

VB 20.41 84.89 776.71 792.86

UVB 2.79 14.62 138.18 122.68

(2017). Intuitively, this is because the banded property is a special sparseness, where on

each row, the elements farther away from the diagonal is more likely to be zero. p(Lj)

incorporates this feature by repeated penalization, while pw(Lj) downweights the penalty

in each repetition, hence somewhat reduces the heavier penalty for elements farther away

from the diagonal imposed by p(Lj). Such downweighting is especially harmful when J

is large due to larger sparseness. Further, we provide the ROC curves in the right Figure

4.

Finally, we compare the computational complexity of these methods by examining

their respective running times, measured in seconds. The results are presented in Table

5. It is evident that BKS is the fastest, and this advantage becomes particularly significant

as J increases.

4.2 Multivariate t distribution

We will analyze the precision matrix used in Case 1 of the multivariate t distribution. We

generate n independent longitudinal data {vec(Yi)}ni=1 from the m = KJ dimensional
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multivariate t distribution with df = 4 degrees of freedom. We consider sample sizes

of n = 10, 50 and 100. Similar to the multivariate normal distribution, we repeat the

process 100 times for each sample size across four combinations of (K, J).

We evaluate the accuracy of the Σ−1 estimator using FN and KL loss as metrics.

Furthermore, we evaluate the performance of bandwidth recovery through the use of TNR

and TPR measures. Table 6 presents the performance of matrix estimation accuracy in

Case 1 for the multivariate t distribution. The results reveal that, for all estimators,

the average values of FN and KL decrease as the sample size increases. Additionally,

WBKS and BKS consistently exhibit superior performance across all scenarios, mirroring

their performance with the multivariate normal distribution. To illustrate the bandwidth

recovery performance of different estimators, we also report the averages and standard

errors of TNR and TPR in Table 7. It is evident that WBKS and BKS consistently

outperform the other methods, as reflected by their high and well-balanced TNR and

TPR values.

5. Real Data Analysis

5.1 EEG data

We apply our method to analyze a public data set EEG from the UCI machine learning

repository dataset(http://archive.ics.uci.edu/ml/datasets/EEG+Database). This

data set contains n = 122 subjects, including n0 = 45 alcoholic subjects (z = 0) and

n1 = 77 controls (z = 1). Each subject had 64 electrodes placed on his/her scalp,
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Table 6: Comparison in terms of FN and KL for different estimators of the precision
matrix Σ−1 over 100 replications, in the form averagestandarderror.

(K, J) (10,10) (10,20) (20,10) (20,20) (10,10) (10,20) (20,10) (20,20)

Methods FN KL

10

WBKS 7.4531.324 13.3760.65 17.1171.57 14.5982.80 0.2990.153 0.5210.177 0.3660.158 0.2760.176

BKS 7.1541.424 11.5841.68 16.9441.67 13.4673.24 0.2840.153 0.3950.184 0.3600.159 0.2630.185

SMGM 10.4820.54 13.0640.48 18.8660.99 20.2812.56 0.5100.316 0.5520.229 0.4830.225 0.5740.372

50

WBKS 4.7891.337 5.4241.183 7.2282.481 9.6382.551 0.2240.123 0.1950.103 0.1980.121 0.2170.126

BKS 4.7481.361 5.5441.204 7.6462.484 9.1372.635 0.2230.124 0.1940.104 0.2010.122 0.2120.126

SMGM 6.0033.175 8.3394.785 12.8627.49 18.1737.68 0.4510.472 0.7420.581 0.5660.428 0.7530.420

ABR 12.6430.11 14.0210.17 22.4380.23 0.6380.034 0.5730.023 0.7280.030

VB 12.4850.12 14.1550.11 21.5700.20 25.0400.23 0.5960.041 0.5860.023 0.6160.032 0.6720.028

UVB 12.5760.15 14.1760.14 22.1070.29 25.4820.34 0.6330.047 0.6110.027 0.7050.057 0.7470.056

100

WBKS 4.0281.181 4.8841.172 7.0571.706 8.6442.069 0.1960.093 0.1890.082 0.1910.072 0.2000.087

BKS 4.1200.171 4.9251.175 7.0011.704 8.8162.059 0.1960.093 0.1870.083 0.1900.072 0.1990.087

SMGM 4.4122.728 5.7123.485 8.2194.455 16.3861.96 0.3070.365 0.3750.437 0.2690.261 0.3170.193

ABR 11.4590.15 13.3460.12 20.9050.21 0.4550.028 0.4840.024 0.5320.021

VB 11.3980.03 13.6750.12 20.4970.20 24.2120.16 0.4230.033 0.4920.029 0.4860.029 0.5530.024

UVB 11.4790.14 13.4300.13 22.0650.23 25.3370.21 0.4520.030 0.4880.028 0.6600.042 0.6880.041

and the measurements were taken at 256 Hz (3.9ms epoch) for 1 second. The electrode

positions were located at standard sites, see Zhang et al. (1995) for specific names of

these standard sites. In addition, each subject was exposed to two situations, either a

single stimulus (S1) or two stimuli (S1 and S2), which were pictures of objects chosen

from the 1980 Snodgrass and Vanderwart picture set. When two stimuli were shown, they

were presented in either a matched condition where S1 was identical to S2 or in a non-

matched condition, where S1 differed from S2. In this dataset, each subject completed 120
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Table 7: Comparison in terms of TNR and TPR for different estimators of the precision
matrix Σ−1 over 100 replications, in the form averagestandarderror.

(K, J) (10,10) (10,20) (20,10) (20,20) (10,10) (10,20) (20,10) (20,20)

Methods TNR TPR

10

WBKS 90.640.027 99.230.005 95.610.020 93.420.013 86.470.043 37.020.033 57.770.053 83.400.031

BKS 90.510.031 98.710.006 95.760.020 96.060.010 86.710.043 56.530.052 56.990.041 87.000.028

SMGM 97.810.013 98.800.007 98.140.011 98.670.011 45.500.178 35.280.093 35.430.133 36.830.263

50

WBKS 81.250.051 88.160.022 83.030.046 92.840.017 97.640.022 95.590.021 98.360.019 97.210.018

BKS 84.770.046 90.830.024 87.510.041 93.460.018 97.910.020 95.370.021 98.180.019 97.970.017

SMGM 78.300.135 89.040.116 79.140.210 94.030.090 72.280.393 49.200.455 51.690.465 32.730.419

ABR 89.410.030 93.470.015 93.570.038 32.450.028 31.980.025 24.020.045

VB 95.980.017 97.210.009 97.040.012 98.620.005 25.490.021 23.120.014 21.710.018 16.890.014

UVB 91.670.014 95.230.006 96.760.008 98.680.003 23.410.020 23.500.013 13.080.006 11.000.004

100

WBKS 84.510.045 89.080.021 88.650.038 93.380.018 99.110.015 98.060.015 99.610.011 99.240.017

BKS 85.590.044 91.470.023 88.320.039 94.580.017 98.090.016 99.420.015 99.610.012 99.170.011

SMGM 69.600.125 84.990.073 68.420.114 98.300.006 86.620.312 81.100.355 88.290.293 78.040.186

ABR 80.210.029 90.800.013 85.780.024 45.570.036 40.910.032 35.540.020

VB 87.190.025 95.380.012 93.790.014 97.640.007 42.450.022 31.820.015 33.000.013 25.810.009

UVB 81.360.013 91.700.006 95.610.007 97.920.004 39.020.020 33.610.017 15.790.009 13.800.009

trials under each situation. Taking averages over 120 trials, each subject has a 64× 256

measurement matrix. Following Qian et al. (2021), we take the average of every 32

measurements to reduce the time dimension from 256 to 8 and obtain a 64× 8 matrix for

each subject. This eventually leads to a data set Yi ∈ RK×J(i = 1, . . . , n) with K = 64,

J = 8 and n = 122. In addition, we also have a class label zi ∈ {0, 1} for i = 1, . . . , n.

Similar to Qian et al. (2021), we aim to classify these subjects into two classes, alco-

holic (class 0) and control (class 1), based on the information in Yi’s. We consider two
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methods, linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA)

to perform the classification. LDA classifies subject i to class 0 if δ
(0)
LDA(yi) > δ

(1)
LDA(yi),

otherwise to class 1, where

δ
(c)
LDA(yi) = yT

i Σ̂
−1
µ̂(c) − 1

2
(µ̂(c))TΣ̂

−1
µ̂(c) + log π̂(c)

for c = 0, 1 and π̂(c) is the estimated proportion of group c. Here, Σ̂ is the estimated

overall covariance matrix, and µ̂(c) is the estimated mean in group c. Similarly, QDA

classifies subject i to class 0 if δ
(0)
QDA(yi) > δ

(1)
QDA(yi), otherwise to class 1, where

δ
(c)
QDA(yi) = yT

i (Σ̂
(c)

)−1µ̂(c) − 1

2
(µ̂(c))T(Σ̂

(c)
)−1µ̂(c) + log π̂(c).

for c = 0, 1. Here, Σ̂
(c)

is the estimated covariance matrix in group c. To implement

these methods, we randomly sample 70% of the data to form a training set and use the

remaining 30% as the testing data. We used sample proportions to form π̂(c), sample

averages to form µ̂(c), (c = 0, 1), and used WBKS, BKS, SMGM, ABR, VB and UVB to

estimate Σ−1 in LDA and (Σ(c))−1, (c = 0, 1) in QDA. To select the tuning parameters

in these methods, we used a five-fold crossvalidation.

The upper row of Figure 5 in Supplement shows the estimated precision matrix Σ̂
−1

obtained from WBKS, BKS and SMGM. The plots from ABR, VB, and UVB are excluded

since they are already provided in Qian et al. (2021).

WBKS and BKS lead to a block-banded precision matrix, which agrees with the
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Table 8: The average classification errors of different methods over 10 random train-test
splits.

WBKS BKS SMGM ABR VB UVB

LDA 0.19 0.18 0.24 0.25 0.24 0.28

QDA 0.18 0.18 – 0.24 0.29 0.29

general conclusion from ABR (Qian et al., 2021). In contrast, SMGM exhibits a lack of

time correlation during the first three time points, followed by inter-correlation within

the remaining five time points. This pattern is counter-intuitive. Finally, UVB and VB

lead to simple banded precision matrix estimation, which is also unrealistic due to the

spacial correlation that tends to persist across time. We further plot the resulting R̂−1

and Ŵ−1 by BKS in the lower row of Figure 5. We can clearly see the banded feature

of R̂−1 and the sparseness of Ŵ−1. To evaluate the performance of these methods, we

compute the classification errors on the testing data. The results in Table 6 contain the

average testing data classification errors over 10 random train-test splits. It is clear that

WBKS and BKS outperform the other methods. Among the remaining methods, ABR

is the winner, indicating that the true precision matrix is close to have the block-banded

structure. However, ABR is inferior to WBKS and BKS, possibly because it contains too

many parameters (Qian et al., 2021). Note that due to the relative small sample size,

SMGM fails to produce a result when performing QDA.
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5.2 ADHD data

5.2 ADHD data

In this section, we will analyze a dataset pertaining Attention Deficit Hyperactivity Disor-

der (ADHD). ADHD is a prevalent mental disorder observed in children and adolescents,

characterized by symptoms such as distractibility, impulsivity, and restlessness. Func-

tional Magnetic Resonance Imaging (fMRI) data at rest from the ADHD-200 sample

dataset (http://www.nitrc.org/frs/?group_id=383) were collected by Oregon Health

and Science University. The data were processed using the Automated Anatomical La-

beling (AAL) software package and a dedicated digital atlas designed for the human

brain.

The ADHD dataset consists of 42 subjects who belong to the typical developmental

control groups. These children are used as a baseline for comparing with individuals diag-

nosed with Attention Deficit Hyperactivity Disorder (ADHD). Brain activity is measured

by detecting changes in blood flow correlated with low-frequency Blood Oxygen Level De-

pendent (BOLD) signals. Tzourio-Mazoyer et al. (2002) provided a detailed description

of brain region segmentation. Each individual’s brain was monitored in 116 regions of

interest (ROIs), and the signals from these 116 ROIs for each child were recorded over 74 s-

cans. Consequently, we obtained multivariate longitudinal data Y i ∈ RK×J(i = 1, . . . , n),

where K = 116, J = 74, n = 42. Leng and Pan (2018) assumed a Kronecker structure

for the covariance matrix of this data and estimated it using large-dimensional random

matrix theory. Their analysis revealed that the temporal covariance matrix exhibits a

banded structure, where correlations are strongest near the main diagonal and gradually
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decrease as they move away from it. However, the covariance matrix of the 116 brain re-

gions demonstrates sparsity. Additionally, their method does not incorporate the banded

structure information that exists in the longitudinal data.

To further explore the structural information among the K brain regions and J mea-

surements in the ADHD data, we applied our proposed method to estimate the precision

matrix of this dataset. Obtaining the ABR, UVB, and VB estimators for the data is chal-

lenging due to the high temporal and variable dimensions. Furthermore, we utilized the

sparse matrix graphical model with Kronecker structure, as proposed by Leng and Tang

(2012), to estimate the precision matrix for SMGM. Figure 6 shows the plotted structural

information of the precision matrix estimator obtained using our method, while Figure

7 presents the structural information of the precision matrix estimator for SMGM. Due

to the high dimensionality of KJ = 8584, which is conducive to detailed structural rep-

resentation, we present the precision matrix separately for the temporal dimension (left)

and the variable dimension (right).

From Figure 6, it is evident that the precision matrix in the temporal dimension

exhibits an adaptive banded structure. The band width starts wider at the beginning

and gradually narrows. The conditional correlations among the 116 brain regions in the

variable dimension exhibit sparsity, with a distinct block structure observed in the top-left

and bottom-right corners. However, the structural information in other regions appears

relatively scattered, which can be attributed to the division of brain regions. Figure 7

displays the estimated precision matrix by SMGM, which is observed to be a diagonal
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matrix, indicating a lack of captured structural information within the data. This finding

aligns with the conclusions of Leng and Pan (2018). Additionally, Figure 8 presents

the correlation matrix in the temporal and variable dimensions obtained by inverting

the precision matrix. The results reveal a banded correlation structure among the 74

time points and a localized block-structured correlation pattern among the 116 brain

regions. This can be attributed to the collective influence of specific local brain regions

on certain human behaviors. In conclusion, the precision matrix estimator obtained from

our proposed method effectively captures the conditional correlations among the 74 time

points. Furthermore, we observe that the conditional correlations among the 116 brain

regions exhibit sparsity, which aligns with the observed characteristics in reality.

6. Conclusions

We have proposed a new precision matrix estimator named BKS. BKS takes advantage

of the fact that the precision matrix is the Kronecker product of a banded matrix and a

sparse matrix. It incorporates the matrix bandedness by considering its Cholesky decom-

position and imposing a new penalty which increasingly encourages zeros for elements

farther away from the matrix diagonal. Matrix sparsity is enforced by applying the s-

tandard lasso penalty. BKS also guarantees a positive definite estimator of the precision

matrix. BKS is easy to implement. It optimizes a biconvex objective function, and is

achieved through an alternative optimization algorithm named ACS. ACS comprises of

two repeating steps, with each step solving a convex optimization problem using the glas-
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so and ADMM algorithms, respectively. This approach ensures computational efficiency.

We show the algorithmic convergence of ACS and establish the statistical convergence

rate of BKS. We find that BKS exhibits the same convergence rate as SMGM when the

data is normally distributed. However, the application and advantageous characteristic-

s of BKS extend beyond normality. We also demonstrate that BKS has the ability to

recover the true bandwidths of the banded matrix with a probability close to 1. Both

simulation studies and real data applications consistently indicate that BKS exhibits

favorable performance overall.

Supplementary Material

The supplementary materials provides the proofs of the lemmas, Theorem 1, Theorem 2,

Theorem 3 and Theorem 4, and these figures in simulation and real data studies.
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