
 

 
 
 
 
 
 
 

 

Statistica Sinica Preprint No: SS-2023-0118 
Title Linear Hypothesis Testing for High Dimensional Tobit 

Models 
Manuscript ID SS-2023-0118 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202023.0118 

Complete List of Authors Tate Jacobson and  
Hui Zou 

Corresponding Authors Tate Jacobson 
E-mails jacobtat@oregonstate.edu 



Statistica Sinica

1

Linear Hypothesis Testing for High Dimensional

Tobit Models

Tate Jacobson1 and Hui Zou2

1Department of Statistics, Oregon State University

2School of Statistics, University of Minnesota

Abstract: Few methods have been developed for conducting statistical inference

in high-dimensional left-censored regression. Among the methods that do exist,

none are flexible enough to test general linear hypotheses—that is, all hypotheses

of the form H0 : Cβ∗
M = t. To fill this gap, we introduce partial penalized

Tobit tests for testing general linear hypotheses in high-dimensional left-censored

data. In particular, we develop partial penalized Wald, score, and likelihood ratio

tests for high-dimensional Tobit models. We derive approximate distributions

for the partial penalized Tobit test statistics under the null hypothesis and local

alternatives in an ultra high-dimensional setting, finding that the tests achieve

their nominal size asymptotically and that they are approximately equivalent for

large n. In addition, we derive the tests’ approximate power in this setting. We

propose an alternating direction method of multipliers algorithm to compute the

partial penalized test statistics. Through an extensive empirical study, we show

that the partial penalized Tobit tests achieve their nominal size and that they

are consistent in a finite sample setting. As an application, we analyze data from
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the AIDS Clinical Trials Group, using our partial penalized Tobit tests to test

whether certain HIV mutations are significant predictors of HIV viral load.

Key words and phrases: censoring, high-dimensional statistical inference, hypoth-

esis testing.

1. Introduction

As it has become easier to collect large amounts of data, high dimensional

modeling problems have become increasingly common in many domains.

For researchers analyzing data with a left-censored response—common in

some economic and medical applications—the availability of high dimen-

sional data leads to the challenge of dealing with two modeling compli-

cations at once. As a motivating example, we consider the problem of

modeling the relationship between human immunodeficiency virus (HIV)

viral load and mutations in the HIV genome. The assays used to mea-

sure HIV viral load cannot detect the virus if its concentration is below

a certain (known) threshold. Rather than discarding these observations,

researchers simply record that the viral load is less than or equal to the

detection threshold. As a result, the observed viral load is left-censored

at the threshold value. At the same time, the number of participants in

any given study is typically smaller than the number of unique mutations
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present in the genomes of the participants’ HIV infections. In particular,

genome data are often assumed to be ultra high-dimensional, meaning that

the number of predictors p grows almost exponentially with the number of

observations n, as adding new participants to the study introduces many

new mutations into the sample.

Researchers analyzing high-dimensional left-censored data need statis-

tical models which meaningfully account for both high-dimensions and cen-

soring. Only a few estimators have been developed for performing regression

in this setting: Johnson (2009), Li, Dicker and Zhao (2014), and Soret et al.

(2018) extended the Buckley-James estimator for high-dimensional data

(Buckley and James, 1979); Müller and Van de Geer (2016) and Zhou and

Liu (2016) extended the least absolute deviation (LAD) estimator (Pow-

ell, 1984); and Jacobson and Zou (2023) extended the Tobit model (Tobin,

1958). Of these estimators, only those introduced by Müller and Van de

Geer (2016) and Jacobson and Zou (2023) possess any theoretical guaran-

tees in the ultra high-dimensional setting—Müller and Van de Geer (2016)

established that their lasso-penalized censored LAD estimator is consistent

while Jacobson and Zou (2023) proved that their folded-concave penalized

Tobit estimator possesses the strong oracle property.

In this study, our interest lies in developing flexible testing procedures
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for high dimensional left-censored regression. The literature on inference

for high-dimensional regression models has grown rapidly in recent years.

Several authors have used the desparsifying or debiasing technique (Van

de Geer et al., 2014; Zhang and Zhang, 2014; Javanmard and Montanari,

2014; Cai and Guo, 2017; Cai, Guo and Ma, 2021) to develop inferential

procedures for lasso type estimators. Zhang and Cheng (2017) introduced a

bootstrap-assisted test based on the desparsified lasso estimator for testing

H0 : β
∗
M = t, where β∗

M is a subvector of the true regression coefficient vec-

tor β∗, in high-dimensional generalized linear models (GLMs). Likewise,

Ma, Cai and Li (2021) used a debiased lasso estimator to develop a test of

H0 : β
∗
M = 0 for high-dimensional logistic regression. Ning and Liu (2017)

debiased Rao’s score test statistic to develop a decorrelated score function

for hypothesis testing and constructing confidence regions for generic penal-

ized M-estimators. Similarly, Fang, Ning and Liu (2017) developed decor-

related score, Wald, and partial likelihood ratio tests for high-dimensional

Cox regression. See Cai, Guo and Xia (2023) for a thorough review of

debiasing methods for high-dimensional inference.

A few recent high-dimensional inference methods do not rely on the de-

biasing technique. Chang et al. (2021) introduced a method for constructing

confidence regions for θM, a low-dimensional component of the full param-
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eter vector θ, using general estimating equations. Rather than applying

a bias-correction, the authors transformed the estimating functions in the

empirical likelihood to reduce the impact of the high-dimensional nuisance

parameters θMc in the estimation. In addition, they discussed the possi-

bility of extending their method to construct confidence regions for trans-

formations of θM, including linear transformations CθM. Cui, Guo and

Zhong (2018) introduced a procedure which uses a refitted cross-validation

estimate of the variance to test the significance of the entire coefficient vec-

tor in linear models. Chen, Li and Chen (2023) developed a score test of

H0 : β
∗
M = t for non-sparse subvectors β∗

M of β∗ in high-dimensional GLMs.

Wang and Cui (2014) introduced a partial penalized likelihood ratio test

for testing H0 : β
∗
M = 0 in the setting where p = o

(
n1/5

)
. Expanding their

approach, Shi et al. (2019) proposed partial penalized Wald, score, and

likelihood ratio tests for testing general linear hypotheses—that is, all hy-

potheses of the form H0 : Cβ∗
M = t—in GLMs in the ultra high-dimensional

setting. Among existing testing procedures for high-dimensional GLMs,

only Shi et al.’s (2019) partial penalized tests cover this broad class of

testing problems.

None of the studies outlined above examine left-censored data. How-

ever, Ning and Liu’s (2017) test of H0 : β∗
M = 0 for generic penalized
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M-estimators and Chang et al.s’ (2021) approach to constructing confi-

dence regions for θM using general estimating equations could be adapted

for several left-censored regression models. To our best knowledge, only

Bradic and Guo (2019) have proposed inferential procedures specifically

for high-dimensional left-censored regression: they developed one-step esti-

mators based on the lasso-penalized censored LAD estimator (Müller and

Van de Geer, 2016) to construct robust confidence intervals for contrasts of

the regression coefficients.

The main goal of this study is to develop flexible testing procedures

for high-dimensional left-censored regression based on the penalized Tobit

model (Jacobson and Zou, 2023). We extend the partial penalized testing

framework of Shi et al. (2019) for its unique flexibility among testing proce-

dures for high-dimensional GLMs. Because the Tobit model is not a GLM,

significant effort is required to develop theory for our new procedures. We

design our testing procedures to be flexible enough to test general linear

hypotheses and to generalize to the ultra high-dimensional setting. In our

theoretical study of these tests, we also allow the number of constraints

under the null hypothesis and the set of coefficients being tested to grow

with n, ensuring that the tests are suitable for a wide range of applications.

We use partial penalized Tobit estimators to develop partial penalized
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Wald, score, and likelihood ratio tests for high-dimensional Tobit regres-

sion. We derive rates of convergence and limiting expressions for partial

penalized Tobit estimators with folded concave penalties and, using these

estimators, derive approximate distributions for the partial penalized test

statistics for large n under the null hypothesis and local alternatives in

the ultra high-dimensional setting. From these results, we establish that

the partial penalized Tobit tests are approximately equivalent for large n

and achieve their nominal size asymptotically. In addition, we derive their

approximate power under local alternatives. For our implementation of

these testing procedures, we develop an alternating direction method of

multipliers (ADMM) algorithm (Boyd et al., 2011) to compute the partial

penalized Tobit estimators by minimizing the partial penalized negative

Tobit log-likelihood.

This paper is organized as follows. In Section 2 we introduce general

linear hypotheses for high-dimensional Tobit regression. In Section 3 we de-

velop the partial penalized Tobit estimators and examine their asymptotic

properties. In Section 4 we introduce the partial penalized Tobit hypothesis

tests and derive approximate distributions for their test statistics. In Sec-

tion 5 we outline our ADMM algorithm for computing the partial penalized

Tobit estimators and discuss details of our implementation. In Section 6 we
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assess the finite sample behavior of the partial penalized Tobit hypothesis

tests through an extensive simulation study. In Section 7 we return to our

motivating example, applying the partial penalized Tobit hypothesis tests

to conduct significance testing for potential HIV drug resistance mutations

using data from the AIDS Clinical Trials Group. Theoretical proofs, sup-

porting lemmas, and additional simulation results are given in Sections S.1,

S.2, and S.3 of the supplementary material, respectively.

2. Testing Setup

We begin by introducing high-dimensional left-censored data and general

linear hypotheses. Suppose we have predictors x = (1, x1, . . . , xp)
′ ∈ Rp+1

and a left-censored response y ≥ L, where L is a known left-censoring point.

Following Tobin (1958), we assume that there exists an unobserved latent

response variable y∗ such that y = max{y∗, L} and that y∗ is generated

from a linear model, y∗ = x′β∗ + ε, where β∗ = (β∗
0 , β

∗
1 , . . . , β

∗
p) ∈ Rp+1

and ε ∼ N(0, σ∗2). We assume that L = 0 without loss of generality. Let

{(yi,x′
i)}ni=1 be the observed data and assume that the predictors are fixed.

In addition to working with a left-censored response, we assume that the

data are ultra-high-dimensional, with log p = O(nη) for some η ∈ (0, 1).

We aim to test general linear hypotheses about β∗, the true regression
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coefficient vector. Let M ⊆ {0, 1, . . . , p} denote the set of indices for the

coefficients being tested and let m = |M|. General linear hypotheses are of

the form:

H0 : Cβ∗
M = t, (2.1)

where the constraint matrix C ∈ Rr×m is of full row rank (so none of the

constraints placed on β∗ under H0 are redundant) and t ∈ Rr. Note that

(2.1) is flexible enough to cover a wide range of null hypotheses, including

special testing problems such as H0 : β∗
M = 0 and H0 : a′β∗

M = b where

a ∈ Rm, b ∈ R.

3. Partial Penalized Tobit Regression

3.1 Tobit likelihood

Based on Tobin’s (1958) latent-variable formulation for a left-censored re-

sponse, one can derive the following likelihood:

Ln(β, σ
2) =

n∏
i=1

[
1√
2πσ

exp

{
− 1

2σ2
(yi − x′

iβ)
2

}]di {
Φ

(
−x′

iβ

σ

)}1−di

,

where di = 1yi>0 and Φ(·) denotes the standard normal CDF. Note that

logLn(β, σ
2) is not concave in (β, σ2). As such, we will instead use Olsen’s

(1978) reparameterization of the Tobit model, δ := β/σ and γ := 1/σ, as

it gives us a concave log-likelihood logLn(δ, γ). The Tobit log-likelihood in
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3.1 Tobit likelihood 10

(δ, γ) is given, up to an affine transformation, by

logLn(δ, γ) =
n∑

i=1

di

{
log(γ)− 1

2
(γyi − x′

iδ)
2

}
+ (1− di) log {Φ (−x′

iδ)} .

(3.1)

Note that we cannot separate the dispersion parameter γ from the regression

coefficients δ in logLn(δ, γ). Since we will be working with the entire

parameter vector, we define θ := (δ′, γ)′ for ease of notation. We use

β∗, σ∗, δ∗, γ∗, and θ∗ to denote the true parameter values.

We use the (δ, γ) parameterization solely to facilitate estimation. In

taking this approach, we do not lose the ability to estimate and make infer-

ences about β and σ. We see that δ and β have the same sparsity pattern

since δj = 0 if and only if βj = 0. Moreover, we can express (2.1) in terms

of (δ, γ) or in terms of θ, as H0 : Cδ∗
M = γ∗t or H0 : C∗θ∗

M′ = 0, where

C∗ :=
[
C −t

]
and M′ := M ∪ {p + 1} so that θ∗

M′ = (δ∗
M

′, γ∗)′. It

is the first non-trivial result that the convex reparameterization of Tobit

likelihood does not alter the linear nature of hypotheses. We will switch

between these equivalent expressions for H0 as needed.
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3.2 Partial penalized negative Tobit log-likelihood

Let ℓn(θ) = − 1
n
logLn(θ) and pλ(·) be a penalty function. We use the

partial penalized negative Tobit log-likelihood

Qn(θ) := ℓn(θ) +
∑

j∈Mc\{0}

pλn(|δj|), (3.2)

to compute the estimators used in our tests. Note that the coefficients being

tested in H0 are not penalized in (3.2). Whereas debiasing techniques for

high-dimensional inference remove bias from an estimator after the fact,

the partial penalized likelihood avoids introducing bias in the first place.

Because we leave δM unpenalized, we can avoid placing a minimum signal

strength assumption on δ∗
M, giving our tests power at local alternatives.

3.3 Partial penalized Tobit estimators

We define the following partial penalized Tobit estimators based on the

partial penalized negative Tobit log-likelihood:

θ̂0 := argmin
θ∈Rp+2

Qn(θ) subject to C∗θM′ = 0 (3.3)

θ̂a := argmin
θ∈Rp+2

Qn(θ). (3.4)

We refer to θ̂0 as the reduced model estimator and θ̂a as the full model

estimator. One can think of the partial penalized estimators as analogues
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to the constrained and unconstrained maximum likelihood estimators, with

θ̂0 minimizing Qn(θ) over the set of θ values which satisfy the constraints

of the null hypothesis and θ̂a minimizing Qn(θ) without any constraints.

As we will see in Section 4, the partial penalized estimators play similar

roles to the constrained and unconstrained maximum likelihood estimators

in our partial penalized extensions of the Wald, score, and likelihood ratio

test statistics. Before we introduce the tests, however, we will examine the

statistical properties of the partial penalized Tobit estimators.

3.3.1 Notation

We adopt the following notation throughout our study. Given a matrix

A ∈ [aij]n×m and sets of indices U ⊆ {1, . . . ,m} and T ⊆ {1, . . . , n}, we

let A(U) denote the submatrix consisting of the columns of A with indices

in U and AT to denote the submatrix consisting of the rows of A with

indices in T . We let λmin{A} and λmax{A} denote the smallest and largest

eigenvalues, respectively, of A. Let A′ denote the transpose of A. We

will use the following matrix norms: the ℓ∞-norm ∥A∥∞ = maxi
∑

j |aij|,

the ℓ1-norm ∥A∥1 = maxj
∑

i |aij|, the ℓ2-norm ∥A∥2 = λ
1/2
max{A′A}, the

entrywise maximum ∥A∥max = max(i,j) |ai,j|, and the entrywise minimum

∥A∥min = min(i,j) |ai,j|. Given a square matrix B, we let tr{B} denote its
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trace. Given a vector v ∈ Rq, we let diag{v} denote the diagonal matrix

with the entries of v along its diagonal. We define ∥v∥0 = #{j : vj ̸= 0}.

Given a function f : Rm → R, we let ∇Uf(t) and ∇2
Uf(t) denote the

gradient and Hessian, respectively, of f(t) with respect to tU .

For any symmetric matrix S ∈ Rq×q, the spectral theorem guaran-

tees that there exists an orthogonal matrix U and a diagonal matrix D =

diag{d1, . . . , dq} such that S = UDU′. If S is positive semidefinite, then

the entries of D are non-negative and we define D1/2 = diag{d1/21 , . . . , d
1/2
q }

andD−1/2 = diag{d−1/2
1 , . . . , d

−1/2
q }. In addition, we define S1/2 = UD1/2U′

and S−1/2 = UD−1/2U′.

3.3.2 Assumptions

We assume, without loss of generality, that 0 ∈ M and that the predictors

are reordered so that M = {0, . . . ,m− 1}. Let S = {j ∈ Mc : δ∗j ̸= 0} and

s = |S|. We assume the following about the true model:

(A1) β∗ is sparse and satisfies Cβ∗
M = t+ hn, where hn → 0;

λmax{(CC′)−1} = O(1); and

∥hn∥2 = O(
√

min{s+m− r + 1, r}/n).

Condition (A1) implies that either the null hypothesis (2.1) is true (that is,

if hn = 0) or the true model satisfies a sequence of local alternatives.
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We set pλ(·) to be a folded-concave penalty function in order to reduce

bias in estimating δMc . As a consequence, (3.2) may be nonconvex and may

have multiple local minima. Define ρ(t;λ) = λ−1pλ(t) for λ > 0. We assume

that ρ(t;λ) is increasing and concave on [0,∞) and is continuously differ-

entiable on (0,∞). We further assume that ρ′(0+;λ) > 0, that ρ′(0+;λ) is

independent of λ, and that ρ′(t;λ) is increasing in λ ∈ (0,∞). For any vec-

tor v ∈ Rq, we define ρ̄(v;λ) := (sgn(v1)ρ
′(|v1|;λ), . . . , sgn(vq)ρ′(|vq|;λ))′,

where sgn(t) denotes the sign function. We define the local concavity of ρ

at v ∈ Rq with ∥v∥0 = q by

κ(ρ,v, λ) := lim
ϵ→0+

max
1≤j≤q

sup
t1<t2∈(|vj |−ϵ,|vj |+ϵ)

−ρ′(t2;λ)− ρ′(t1;λ)

t2 − t1
.

Note that if ρ(t;λ) is twice continuously differentiable, then κ(ρ,v, λ) =

max1≤j≤q −ρ′′(|vj|;λ). Two popular folded-concave penalties are the SCAD

penalty (Fan and Li, 2001), which has derivative p′λ(t) = (aλ−t)+
a−1

1(t>λ) +

λ1(t≤λ) where a > 2, and the MCP (Zhang, 2010), which has derivative

p′λ(t) =
(
λ− t

a

)
+
where a > 1.

Define N0 = {θ ∈ Rp+2 : ∥θM′∪S − θ∗
M′∪S∥2 ≤

√
(s+m+ 1) log n/n,

θ(M′∪S)c = 0} and κ0 = maxθ∈N0 κ(ρ,θ, λn). Let dn = minj∈S
|δ∗j |
2
. We

assume the following about the penalty function pλn(·):

(A2) λnκ0 = o(1); max{
√
s+m,

√
log p}/

√
n = o(λn), λn = o(dn); and
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p′λn
(dn) = o((s+m)−1/2n−1/2).

The minimum signal strength assumption in (A2) prevents the elements of

δ̂0,S and δ̂a,S from being pushed to 0 by the penalty, enabling us to derive

limiting expressions for θ̂0,M′∪S and θ̂a,M′∪S later in our study. Conditions

like (A2) are often assumed to establish asymptotic guarantees for folded-

concave penalized estimators (Fan and Lv, 2011; Shi et al., 2019).

As we can see in (3.1), the Tobit likelihood treats censored and un-

censored observations differently. We introduce the following notation to

express ℓn(θ) and its derivatives in simpler forms. Let n1 =
∑n

i=1 di denote

the number of uncensored observations and n0 = n−n1 denote the number

of censored observations among y1, . . . , yn. Let y1 ∈ Rn1 be the vector of

uncensored response values, yi > 0, and y0 ∈ Rn0 be the vector of censored

response values, yi = 0. Define X1 ∈ Rn1×(p+1) to be the matrix of predic-

tors corresponding to y1 and X0 ∈ Rn0×(p+1) to be the matrix of predictors

corresponding to y0. We reorder our observations so that X =
[
X′

0 X′
1

]′
and y =

[
y′
0 y′

1

]′
.

Using this new notation, we can express ℓn(θ) as

ℓn(θ) = −n1

n
log(γ) +

1

2n
(γy1 −X1δ)

′(γy1 −X1δ)−
1

n

n0∑
i=1

log{Φ(−x′
iδ)}

Let g(s) = ϕ(s)/Φ(s) = ∇log(Φ(s)), where ϕ(·) denotes the standard nor-
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mal density, and let g(δ) = (g(−x′
1δ), . . . , g(−x′

n0
δ))′. One can show that

∇ℓn(θ) =
1

n

[
−X′

1(γy1 −X1δ) +X′
0g(δ)

−n1γ
−1 + y′

1(γy1 −X1δ)

]
.

Define h(s) = g(s)(s + g(s)). It is straightforward to show that g′(s) =

−g(s)(s+ g(s)) = −h(s). As such, we can express the Hessian of ℓn(θ) as

∇2ℓn(θ) =
1

n

[
X′

1X1 +X′
0D(δ)X0 −X′

1y1

−y′
1X1 y′

1y1 + n1γ
−2

]

=
1

n

[
X′

−y′

][
D(δ) 0

0 In1

] [
X −y

]
+

1

n

[
0 0

0 n1γ
−2

]

where D(δ) is a n0 × n0 diagonal matrix with [D(δ)]ii = h(−x′
iδ) for i =

1, . . . , n0 and Iq denotes a q × q identity matrix. We define

H(θ) =

[
X′

(M∪S)

−y′

][
D(δ) 0

0 In1

] [
X(M∪S) −y

]
and assume the following additional conditions are satisfied:

(A3) ∃cH > 0 such that infθ∈N0 λmin {E [H(θ)]} ≥ ncH for all n,

λmax {E [H(θ∗)]} = O(n),

E

[
λ2
max

{[
X′

(M∪S)

−y′

] [
X(M∪S) −y

]}]
= O(n2),

maxj λmax

{
X′

(M∪S) diag{|X(j)|}X(M∪S)

}
= O(n), and∥∥∥∥∥E

[
X′

((M∪S)c)

[
D(δ∗) 0

0 In1

] [
X(M∪S) −y

]]∥∥∥∥∥
∞

= O(n);

(A4) maxj
∥∥X(j)

∥∥
2
= O(

√
n), maxj,k

∑n
i=1 x

2
ijx

2
ik = O(n),

∑n
i=1(x

′
iδ

∗)2 =
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3.3 Partial penalized Tobit estimators 17

O(n), maxj
∑n

i=1 x
2
ij{2 + x′

iδ
∗ + g(−x′

iδ
∗)}2 = O(n),∑n

i=1
1
2
(x′

iδ
∗)2{2 + x′

iδ
∗ + g(−x′

iδ
∗)}2 = O(n), maxi,j |xij| = O(1),

and maxi |xiδ
∗| = O(1), where j, k ∈ {0, . . . , p}; and

(A5) log(p) = O(nη) for some η ∈ (0, 1),

3.3.3 Asymptotic results for partial penalized Tobit estimators

Let ΣM′∪S = E [∇2
M′∪Sℓn(θ

∗)], C̃ =
[
C 0 −t

]
, and Ψ = C̃Σ−1

M′∪SC̃
′.

Theorem 1. Suppose that (A1) - (A5) hold and that (s+m)3 log(s+m) =

o(n). Then there exist local solutions θ̂0 and θ̂a to (3.3) and (3.4) satisfying

θ̂0,(M′∪S)c = θ̂a,(M′∪S)c = 0 with probability converging to 1 as n → ∞,∥∥∥θ̂0,M′∪S − θ∗
M′∪S

∥∥∥
2
= Op(

√
(s+m− r + 1)/n), and∥∥∥θ̂a,M′∪S − θ∗

M′∪S

∥∥∥
2
= Op(

√
(s+m+ 1)/n).

Additionally,

√
n(θ̂a,M′∪S − θ∗

M′∪S) =
1√
n
Σ−1

M′∪S∇M′∪S logLn(θ
∗) + op(1), (3.5)

and

√
n(θ̂0,M′∪S − θ∗

M′∪S) =
1√
n
Σ

−1/2
M′∪S(Is+m+1 −Pn)Σ

−1/2
M′∪S∇M′∪S logLn(θ

∗)

−
√
nγ∗Σ

−1/2
M′∪SPnΣ

1/2
M′∪S

[
C′(CC′)−1hn

0

]
+ op(1)

(3.6)
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where Pn = Σ
−1/2
M′∪SC̃

′Ψ−1C̃Σ
−1/2
M′∪S , a projection matrix.

Note that ΣM′∪S is positive definite by (A3), making the expression for Pn

valid. Theorem 1 establishes that there exist θ̂0 and θ̂a that are estimation

consistent and selection consistent. In addition, (3.5) and (3.6) provide lim-

iting expressions for the partial penalized Tobit estimators with
√
n-scaling.

We will leverage these properties in deriving approximate distributions for

our test statistics in the next section.

4. Partial Penalized Tobit Tests

4.1 Partial penalized Tobit test statistics

We use the partial penalized Tobit estimators, θ̂0 and θ̂a, to develop testing

procedures for high-dimensional Tobit regression based on the Wald test,

the score test, and the likelihood ratio test. To reflect our use of the partial

penalized negative Tobit log-likelihood as our objective for θ̂0 and θ̂a in

(3.3) and (3.4), we refer to our testing procedures as the partial penalized

Wald test, the partial penalized score test, and the partial penalized likelihood

ratio test.

We define the partial penalized Wald test statistic based on
√
nC∗θ̂a,M′ .

As an immediate consequence of (3.5) in Theorem 1, we see that
√
nC∗θ̂a,M′

has asymptotic variance C∗ [Σ−1
M′∪S

]
M′,M′ C

∗′. Let Ŝa = {j ∈ Mc : δ̂a,j ̸=

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0118
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0} denote the sample version of S for the full model. Theorem 1 establishes

that Ŝa = S with probability converging to 1 as n → ∞. As such, we define

the partial penalized Wald test statistic by

TW := (C∗θ̂a,M′)′
(
C∗
[
{−∇2

M′∪Ŝa
logLn(θ̂a)}−1

]
M′,M′

C∗′
)−1

C∗θ̂a,M′ .

Let Ŝ0 = {j ∈ Mc : δ̂0,j ̸= 0} denote the sample version of S for the

reduced model. We define the partial penalized score test statistic by

TS :=
{
∇M′∪Ŝ0

logLn(θ̂0)
}′ {

−∇2
M′∪Ŝ0

logLn(θ̂0)
}−1

∇M′∪Ŝ0
logLn(θ̂0).

Lastly, we define the partial penalized likelihood ratio test statistic by

TL := 2{logLn(θ̂a)− logLn(θ̂0)}.

The partial penalized Tobit test statistics are analogous to their low-

dimensional counterparts. The key difference is that the estimators used to

compute them minimize the partial penalized negative log-likelihood rather

than the unpenalized negative log-likelihood.

4.2 Testing procedure

Let T ∈ {TW , TS, TL} be any one of the partial penalized Tobit test statis-

tics. For a given significance level α ∈ (0, 1), we reject H0 : C
∗θ∗

M′ = 0 when

T > χ2
α(r), where χ2

α(r) denotes the upper-α quantile of a χ2 distribution
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with r degrees of freedom.

4.3 Approximate distributions of the test statistics

The following theorem supports our choice of T > χ2
α(r) as the rejection

rule for the partial penalized Tobit hypothesis tests.

Theorem 2. Suppose that (A1) - (A5) hold and that (s+m)3 log(s+m) =

o(n). Then TW , TS, and TL evaluated at the partial penalized estimators θ̂0

and θ̂a in Theorem 1 satisfy

sup
x

∣∣P (T ≤ x)− P (χ2(r, νn) ≤ x)
∣∣→ 0 (4.1)

as n → ∞ for T = TW , TS, or TL, where χ
2(r, νn) is a noncentral chi-square

random variable with r degrees of freedom and noncentrality parameter νn =

nγ∗2h′
nΨ

−1hn.

It is important to note Theorem 2 does not state that our partial penal-

ized test statistics converge in distribution to χ2(r, νn) random variables.

Because r can diverge with n the notion of convergence in distribution

is not well-defined in this setting. Instead, Theorem 2 provides that for

T ∈ {TW , TS, TL} and any x ∈ R the difference between P (T ≤ x) and

P (χ2(r, νn) ≤ x) converges to 0 and, as such, the distribution of T is well-

approximated by a χ2(r, νn) distribution for large n.
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Theorem 2 leads to a few immediate corollaries. Under H0, hn = 0

and, by extension, νn = 0. As such, Theorem 2 implies that under the

null hypothesis limn P (T > χ2
α(r)) = α for T = TW , TS, or TL—that is, the

partial penalized tests asymptotically achieve their nominal size. Theorem 2

further establishes that the partial penalized tests have approximate power

P (χ2(r, νn) > χ2
α(r)) for large n under the alternatives specified in (A1).

Under these alternatives, hn ̸= 0 and, by extension, νn ≥ 0. Since χ2(r, νn)

is stochastically larger than χ2(r) this implies that the partial penalized

tests have approximate power at least α for large n. In addition, Theorem

2 establishes that for T1, T2 ∈ {TW , TS, TL},

sup
x

|P (T1 ≤ x)− P (T2 ≤ x)| → 0

as n → ∞. That is, TW , TS, and TL are approximately equivalent. We sum

up these findings in the following corollary.

Corollary 1. Suppose that (A1) - (A5) hold and that (s+m)3 log(s+m) =

o(n). Then TW , TS, and TL evaluated at the partial penalized estimators θ̂0

and θ̂a in Theorem 1 satisfy the following:

� Under H0, for any significance level 0 < α < 1,

lim
n→∞

P (T > χ2
α(r)) = α
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for T = TW , TS, or TL, where χ2
α(r) denotes the upper-α quantile of

a χ2 distribution with r degrees of freedom.

� Under the alternative Cβ∗
M = t+ hn, where ∥hn∥2 =

O(
√
min{s+m− r + 1, r}/n), for any significance level 0 < α < 1,

lim
n→∞

∣∣P (T > χ2
α(r))− P (χ2(r, νn) > χ2

α(r))
∣∣ = 0

for T = TW , TS, or TL, where νn = nγ∗2h′
nΨ

−1hn.

� For T1, T2 ∈ {TW , TS, TL},

sup
x

|P (T1 ≤ x)− P (T2 ≤ x)| → 0 as n → ∞.

5. Implementation Details

5.1 Computing the partial penalized Tobit estimators

We develop algorithms based on the alternating direction method of mul-

tipliers (ADMM) to compute the partial penalized Tobit estimators. Here

we focus on computing the reduced model estimator θ̂0, though the same

approach can be used to compute θ̂a. For fixed λ > 0, we can express the

constrained optimization problem (3.3) as

θ̂λ
0 = argmin

θ∈Rp+2

ℓn(θ) +
∑

j∈Mc\{0}

pλ(|δj|) subject to CδM = γt.
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By introducing dummy variables η ∈ Rp−m, we can rewrite this problem as

(θ̂λ
0 , η̂

λ
0 ) = argmin

θ∈Rp+2

η∈Rp−m

ℓn(θ) +

p−m∑
j=1

pλ(|ηj|) subject to CδM = γt, δMc = η,

(5.1)

separating the objective into a component depending only on θ and a com-

ponent depending only on η. The augmented Lagrangian is

Lρ(θ,η,ν) = ℓn(θ) +

p−m∑
j=1

pλ(|ηj|)

+
ρ

2

∥∥∥∥CδM − γt+
ν1

ρ

∥∥∥∥2
2

+
ρ

2

∥∥∥∥δMc − η +
ν2

ρ

∥∥∥∥2
2

(5.2)

with Lagrangian penalty parameter ρ > 0 and dual variables ν1 ∈ Rr,

ν2 ∈ Rp−m, and ν = (ν ′
1,ν

′
2)

′.

Using the scaled form of the augmented Lagrangian (5.2), we develop

the ADMM algorithm given in Algorithm 1 to solve (5.1). We update

θ using a Newton-Raphson algorithm. We use the SCAD penalty in our

implementation, both because it is a folded-concave penalty and because

using it gives us a closed-form solution for the η updates.

5.2 Selecting the penalty parameter

We set λmax to be the smallest λ such that δj = 0 for all j ∈ Mc based on

the Karush-Kuhn-Tucker conditions. We then set λmin = c ·λmax where c is
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Algorithm 1: ADMM algorithm for θ̂0

Initialize (θ(0),η(0),ν(0));
repeat

Update θ:

θ(k+1) = argminθ

{
ℓn(θ) +

ρ
2

∥∥∥∥CδM − γt+
ν
(k)
1

ρ

∥∥∥∥2
2

+ ρ
2

∥∥∥∥δMc − η(k) +
ν
(k)
2

ρ

∥∥∥∥2
2

}
;

Update η:

η(k+1) = argminη

{∑p−m
j=1 pλ(|ηj |) + ρ

2

∥∥∥∥δ(k+1)
Mc − η +

ν
(k)
2
ρ

∥∥∥∥2
2

}
;

Dual update: ν(k+1) = ν(k) + ρ

(
Cδ

(k+1)
M − γ(k+1)t

δ
(k+1)
Mc − η(k+1)

)
;

k = k + 1;
until primal and dual residuals are sufficiently small ;

a small constant. We compute θ̂λ
0 along a path of λ values which are evenly

spaced on the log-scale between λmin and λmax. To speed up computation,

we warm start the ADMM algorithm for computing θ̂λk with the computed

solution for the previous penalty parameter value λk−1, setting θ
(0) = θ̂λk−1 ,

η(0) = η̂λk−1 , and ν(0) = ν̂λk−1 in Algorithm 1.

We select λ̂ based on the following information criterion:

λ̂ = argmin
λ

{
n ℓn(θ̂

λ
0 ) + cn

∥∥∥θ̂λ
0

∥∥∥
0

}
, (5.3)

where cn = max{log n, log(log n) log p}, and use θ̂0 = θ̂λ̂
0 as our final re-

duced model estimator. Our choice of cn is motivated by selection consis-

tency guarantees for BIC (Schwarz, 1978) and GIC (Fan and Tang, 2013)

in the fixed-p and ultra-high dimensional settings, respectively. We take
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the maximum of the BIC and GIC penalties to cover both settings. While

Schwarz (1978) and Fan and Tang (2013) only examine GLMs, similar ar-

guments could be used to extend their guarantees to the Tobit model.

6. Simulation Study

In the following simulation study, we examine the finite sample performance

of the partial penalized Tobit Wald, score, and likelihood ratio tests in a

variety of settings. In this section, we run the partial penalized tests with

significance level α = 0.05 and report their estimated rejection probabilities.

Throughout our empirical study, we set a = 3.7 for the SCAD penalty and

set ρ = 1 in the ADMM algorithm.

We examine 24 different simulation settings. For each simulation set-

ting, we generate 600 datasets with 200 observations each. We generate

the censored response yi by first generating an uncensored response from a

linear model y∗i = β0 + x′
iβ + εi, where xi ∼ N(0,Σ) and εi

iid∼ N(0, σ2),

then setting yi = max{y∗i , 0} for i = 1, . . . , 200. We generate these data

with β0 = 1 and β = (2,−2 − h1,0p−2), varying h1 to create different test

cases.

We vary Σ, p, and h1 to create our different simulation settings. We

examine settings where (1) Σ = Ip and (2) Σij = 0.5|i−j| for all i, j (we
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refer to these as these independent and AR1(0.5) settings, respectively).

For each covariance structure, we run simulations with every combination

of p ∈ {50, 250, 400} and h1 ∈ {0, 0.1, 0.2, 0.4}. We set σ = 1 across all

simulation settings.

We test the following hypotheses at significance level α = 0.05 in each

simulation setting:

� H
(1)
0 : β1 + β2 = 0

� H
(2)
0 : β2 = −2

� H
(3)
0 : β1 + β2 + β3 + β4 = 0

� H
(4)
0 : β1 + β2 = 0, β2 = −2, and β1 + β2 + β3 + β4 = 0 .

When h1 = 0, each of these null hypotheses is true. Based on our theoretical

results, we would expect the rejection probabilities for the tests to be close

to their nominal α = 0.05 significance level in these cases. As h1 increases,

the alternative gets farther from the null and we would expect that rejection

probabilities for the tests to increase. We include H
(4)
0 , a test of multiple

hypotheses, to illustrate the flexibility of our testing procedures.

Table 1 shows the estimated rejection probabilities for the partial pe-

nalized Wald, score, and likelihood ratio tests in simulations where Σ = Ip.

These estimates are based on 600 replications, with standard errors given
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in parentheses. Focusing first on simulations where the null is true (i.e.

h1 = 0), we see that the partial penalized Tobit tests all achieve estimated

rejection probabilities near the nominal significance level of α = 0.05 for

all four null hypotheses. These results are consistent with the large-sample

guarantees given in Corollary 1, which provide that the tests’ rejection

rates will converge to α. As h1 increases and the data generating model

moves further from satisfying the null hypothesis, we see that the rejection

probabilities for all three partial penalized Tobit tests rapidly increase. No-

tably, the estimated rejection probabilities are similar across simulations

with p = 50, p = 250, and p = 400 for each null H
(i)
0 and each value of

h1. This suggests that the partial penalized Tobit tests are not adversely

affected by p growing as n remains fixed. Moreover, the estimated rejection

probabilities for all three tests are close to each other in every simulation

setting. Comparing results across the null hypotheses being tested, we see

that the estimated rejection probabilities for the tests of H
(3)
0 are lower

than for the other hypotheses. This suggests that increasing the number of

coefficients being tested decreases the power of the partial penalized tests.

Table 2 shows the estimated rejection probabilities for the partial penal-

ized Tobit tests in simulations where Σij = 0.5|i−j| for all i, j. The results in

these cases are consistent with the results from the simulations with Σ = Ip.
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As in those simulations, we see that (i) when H0 is true the estimated re-

jection probabilities for the tests are all near the nominal level of α = 0.05,

(ii) as h1 increases so does the estimated power of each test, and (iii) the

estimated rejection probabilities for the tests do not appreciably change as

p increases. The clearest difference in this second set of simulations is that,

in cases where h1 > 0, the estimated rejection probabilities for the tests of

H
(1)
0 and H

(3)
0 are markedly higher than in the simulations with independent

predictors.

Supplementary simulations

We present additional simulation results in Sections S.3 and S.4 of the sup-

plementary material. In Section S.3, we examine the empirical distributions

of the p-values for the partial penalized Tobit tests in simulations where the

null hypothesis is true. These additional results provide evidence that the

test statistics approximately follow a χ2(r) distribution under the null, as

suggested by Corollary 1. In Section S.4, we conduct additional studies

examining the effects of the sample size n and the correlation coefficient ρ

in the AR1(ρ) correlation structure for the predictors on the power of the

partial penalized Tobit tests.
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Table 1: Estimated rejection probabilities when Σ = Ip

p = 50 p = 250 p = 400

LRT Wald Score LRT Wald Score LRT Wald Score

h1 H
(1)
0

0 5.33 (0.92) 5.17 (0.9) 5.17 (0.9) 4.67 (0.86) 4.67 (0.86) 4.67 (0.86) 4.67 (0.86) 4.67 (0.86) 4.67 (0.86)
0.1 15.17 (1.46) 14.83 (1.45) 14.83 (1.45) 15 (1.46) 15 (1.46) 15 (1.46) 13.67 (1.4) 13.67 (1.4) 13.67 (1.4)
0.2 39.5 (2) 39.83 (2) 39.83 (2) 42.83 (2.02) 42.83 (2.02) 42.83 (2.02) 38.5 (1.99) 38.5 (1.99) 38.33 (1.98)
0.4 89.5 (1.25) 89.5 (1.25) 89.5 (1.25) 92.17 (1.1) 92 (1.11) 92 (1.11) 91.67 (1.13) 91.5 (1.14) 91.5 (1.14)

h1 H
(2)
0

0 5.67 (0.94) 5.33 (0.92) 5.17 (0.9) 5.5 (0.93) 5.67 (0.94) 5.83 (0.96) 5.5 (0.93) 5.5 (0.93) 5.5 (0.93)
0.1 17 (1.53) 17 (1.53) 16.83 (1.53) 17.5 (1.55) 17.17 (1.54) 17 (1.53) 18 (1.57) 17.67 (1.56) 17.83 (1.56)
0.2 49 (2.04) 49 (2.04) 49.17 (2.04) 54.83 (2.03) 54.5 (2.03) 54.5 (2.03) 53 (2.04) 52.5 (2.04) 52.67 (2.04)
0.4 97.83 (0.59) 97.67 (0.62) 97.67 (0.62) 97.83 (0.59) 97.83 (0.59) 97.83 (0.59) 97.83 (0.59) 97.83 (0.59) 97.83 (0.59)

h1 H
(3)
0

0 3.5 (0.75) 3.5 (0.75) 3.5 (0.75) 5.17 (0.9) 5.17 (0.9) 5.17 (0.9) 7 (1.04) 7 (1.04) 7 (1.04)
0.1 10 (1.22) 9.83 (1.22) 9.67 (1.21) 10 (1.22) 10 (1.22) 10 (1.22) 8.33 (1.13) 8.33 (1.13) 8.33 (1.13)
0.2 22.17 (1.7) 22.33 (1.7) 22.33 (1.7) 21.5 (1.68) 21.5 (1.68) 21.5 (1.68) 24.33 (1.75) 24.33 (1.75) 24.33 (1.75)
0.4 65.17 (1.95) 65.33 (1.94) 65.33 (1.94) 67 (1.92) 67 (1.92) 67 (1.92) 66.17 (1.93) 65.83 (1.94) 65.67 (1.94)

h1 H
(4)
0

0 4.17 (0.82) 4.67 (0.86) 4.5 (0.85) 5.83 (0.96) 5.67 (0.94) 5.67 (0.94) 5.5 (0.93) 5.17 (0.9) 5.17 (0.9)
0.1 15.67 (1.48) 15 (1.46) 14.83 (1.45) 12.33 (1.34) 12.17 (1.33) 12 (1.33) 12.67 (1.36) 12 (1.33) 12 (1.33)
0.2 43.83 (2.03) 43 (2.02) 43 (2.02) 41.33 (2.01) 40.33 (2) 40.17 (2) 37.5 (1.98) 36.33 (1.96) 36.33 (1.96)
0.4 95.67 (0.83) 95.67 (0.83) 95.5 (0.85) 94.67 (0.92) 94.33 (0.94) 94.33 (0.94) 97 (0.7) 96.67 (0.73) 96.67 (0.73)
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Table 2: Estimated rejection probabilities when Σij = 0.5|i−j| for all i, j

p = 50 p = 250 p = 400

LRT Wald Score LRT Wald Score LRT Wald Score

h1 H
(1)
0

0 5.83 (0.96) 5.83 (0.96) 5.83 (0.96) 6 (0.97) 6 (0.97) 6.67 (1.02) 3.67 (0.77) 3.83 (0.78) 4 (0.8)
0.1 21.5 (1.68) 21.5 (1.68) 21.5 (1.68) 19 (1.6) 19.17 (1.61) 19 (1.6) 20.5 (1.65) 20.5 (1.65) 20.5 (1.65)
0.2 58 (2.01) 58 (2.01) 58 (2.01) 58 (2.01) 58 (2.01) 58 (2.01) 58.5 (2.01) 58.5 (2.01) 58.5 (2.01)
0.4 98 (0.57) 98.17 (0.55) 98.17 (0.55) 98.5 (0.5) 98.5 (0.5) 98.5 (0.5) 98.83 (0.44) 98.83 (0.44) 98.83 (0.44)

h1 H
(2)
0

0 6 (0.97) 6.17 (0.98) 6.33 (0.99) 6 (0.97) 5.83 (0.96) 5.83 (0.96) 6 (0.97) 5.83 (0.96) 5.83 (0.96)
0.1 15.5 (1.48) 15.83 (1.49) 15.67 (1.48) 13.83 (1.41) 14 (1.42) 13.83 (1.41) 14.67 (1.44) 14.33 (1.43) 14.5 (1.44)
0.2 44.67 (2.03) 44.67 (2.03) 44.33 (2.03) 46.67 (2.04) 46.17 (2.04) 45.5 (2.03) 42.17 (2.02) 42 (2.01) 42 (2.01)
0.4 95.5 (0.85) 95.83 (0.82) 95.83 (0.82) 96.17 (0.78) 96 (0.8) 96 (0.8) 95 (0.89) 95 (0.89) 95 (0.89)

h1 H
(3)
0

0 5.33 (0.92) 5.33 (0.92) 5.17 (0.9) 5.67 (0.94) 5.67 (0.94) 5.83 (0.96) 5.83 (0.96) 5.83 (0.96) 6.17 (0.98)
0.1 14.5 (1.44) 14.33 (1.43) 14.33 (1.43) 13.67 (1.4) 13.67 (1.4) 13.67 (1.4) 13.83 (1.41) 13.83 (1.41) 13.83 (1.41)
0.2 39.33 (1.99) 39.5 (2) 39.33 (1.99) 43.5 (2.02) 43.5 (2.02) 43.5 (2.02) 44 (2.03) 44 (2.03) 43.67 (2.02)
0.4 94.17 (0.96) 94.33 (0.94) 94.33 (0.94) 91.83 (1.12) 91.83 (1.12) 91.83 (1.12) 94.17 (0.96) 94.17 (0.96) 94.17 (0.96)

h1 H
(4)
0

0 4.33 (0.83) 4.17 (0.82) 4.33 (0.83) 6.83 (1.03) 6.33 (0.99) 6.33 (0.99) 5.17 (0.9) 5.17 (0.9) 5.17 (0.9)
0.1 13.5 (1.4) 13.5 (1.4) 13.5 (1.4) 14.83 (1.45) 14 (1.42) 14 (1.42) 15.33 (1.47) 14.83 (1.45) 14.83 (1.45)
0.2 46 (2.03) 45.5 (2.03) 45.5 (2.03) 48.33 (2.04) 47.83 (2.04) 47.83 (2.04) 49 (2.04) 47.83 (2.04) 47.83 (2.04)
0.4 97.17 (0.68) 97.33 (0.66) 97.33 (0.66) 99 (0.41) 99 (0.41) 99 (0.41) 97.33 (0.66) 97.17 (0.68) 97.17 (0.68)
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7. HIV Drug Resistance Mutation Testing

Human immunodeficiency virus (HIV) can mutate rapidly in HIV-infected

patients taking antiretroviral drugs. To manage the virus, physicians mon-

itor patients’ viral loads and conduct genotypic testing to check for known

HIV drug resistance mutations (DRMs) (Shafer, 2002). Research identi-

fying DRMs and quantifying their effects on HIV viral load is critical to

supporting this ongoing therapy (Shafer, 2006). As noted in the introduc-

tion, two challenges arise in modeling the relationship between HIV viral

load and mutations in the virus’ genome: (i) the observed viral load is

left-censored at a known detection threshold and (ii) the number of muta-

tions in a study of HIV-infected patients typically far exceeds the number

of participants in the study. Given these challenges, our partial penalized

Tobit hypothesis tests are well-suited for conducting significance testing for

potential DRMs using HIV viral load data.

We analyze data from the AIDS Clinical Trials Group’s OPTIONS

trial (Gandhi et al., 2020), which were obtained from the Stanford HIV

Drug Resistance Database (Shafer, 2006). The participants recruited for

the OPTIONS trial were HIV-infected individuals who had been taking

protease inhibitor (PI)-based treatment and were experiencing virological

failure. Researchers gave each participant an optimized drug regimen based
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on their treatment history and randomly assigned participants with moder-

ate drug resistance to either add nucleoside reverse transcriptase inhibitors

(NRTIs) to their drug regimens or omit NRTIs from their drug regimens.

Participants with highly drug-resistant HIV infections were all given drug

regimens which included NRTIs.

We model HIV viral load at a 12 week follow-up appointment from the

time of treatment assignment. Our predictors include indicator variables

for protease (PR) and reverse transcriptase (RT) gene mutations in HIV,

indicator variables for antiretroviral drugs in patients’ treatment regimens,

baseline viral load, observation week, and HIV subtype. Our sample in-

cludes n = 407 participants and p = 1295 total predictors. At 12 weeks,

35.6% of participants in this sample had viral loads which fell below the as-

says’ detection threshold of 50 copies/mL and were, therefore, left-censored

at 50 copies/mL. As in previous studies of HIV viral load, we log-transform

the response so that it is approximately normally distributed (Soret et al.,

2018; Jacobson and Zou, 2023).

The Stanford HIV Drug Resistance Database catalogs HIV mutations

which have been identified as potential DRMs (Shafer, 2006). The fol-

lowing NRTI resistance mutations from their list are present in our sample:

MNRTI = {M41L, K65R, D67N, T69TN, T69TA, K70R, K70E, L74V, L74I,
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Y115F, Q151M, M184V, L210W, T215Y, T215F, K219E, K219Q}. We test

the hypothesis βMNRTI
= 0 at significance level 0.05 using our partial pe-

nalized Tobit hypothesis tests. The p-values for the partial penalized likeli-

hood ratio, Wald, and score tests of this hypothesis are pL = 1.562× 10−2,

pW = 1.698 × 10−2, and pS = 5.144 × 10−5, respectively, all well below

the significance level of 0.05. As such, we reject the null hypothesis that

βMNRTI
= 0 and conclude that at least one of the RT mutations in MNRTI

is a significant predictor of HIV viral load.

8. Concluding Remarks

In this paper we have developed hypothesis tests for high-dimensional left-

censored regression based on the partial penalized negative Tobit log like-

lihood. Our partial penalized Tobit tests are designed for testing general

linear hypotheses, making them more broadly applicable than other infer-

ential procedures for high-dimensional left-censored data. We have derived

approximate distributions for our partial penalized Tobit test statistics in

an ultra high-dimensional setting in which the number of predictors, the

number of constraints under the null hypothesis, and the number of coeffi-

cients being tested can all grow with the number of observations. In doing

so, we have shown that our partial penalized Tobit tests are approximately
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equivalent for large n and achieve their nominal size asymptotically and

have derived their approximate power under local alternatives. In addition,

we have shown how the proposed tests can be implemented via an ADMM

algorithm. In our empirical study, we have presented strong evidence that

our partial penalized Tobit tests achieve their nominal size under the null

and are consistent in a finite-sample setting. Lastly, we used our tests to

conduct significance testing in HIV viral load data. The code for the pro-

posed tests will be made publicly available on the first author’s GitHub

site.

We see several possible avenues for future research. While our pro-

cedures can be used to test a broad range of hypotheses, the number of

coefficients being tested has to be relatively small. Future studies could

extend the score test of Chen, Li and Chen (2023) for high-dimensional

left-censored regression to test H0 : β
∗
M = t when |M| can grow at a faster

rate. As another extension, one could adapt the general estimating equa-

tions approach of Chang et al. (2021) to construct confidence intervals for

general transformations S(βM) of the coefficients in the Tobit model.
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Supplementary Material

The online supplementary file contains technical proofs, intermediate theo-

retical results, and additional simulation results.
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