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Abstract: Combining individual p-values to handle large scale inferences or to aggregate

results of different studies is one of major interest in meta-analysis which has been tra-

ditionally based on independent p-values. In contrast to combining methods that are con-

structed when p-values are independent, recently proposed combinations of p-values trans-

formed into heavy-tailed distribution are known to be robust to the dependence structure of

p-values. In this paper, we investigate theoretical properties of combining p-value meth-

ods for different heaviness of transformation under a wider class of correlation structures

compared to existing studies from the view point of controlling Type I error and obtain-

ing powers. We also investigate relationships between harmonic mean type combination

methods and combining methods that use transformation of p-values into stable distribu-

tion including Cauchy and Lévy combination methods. We provide extensive numerical

studies supporting theoretical results. We also apply these p-value combining methods

to real example of Crohn’s disease data and present some idea on how to validate these

methods.
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1. Introduction

Meta-analysis has been used in various fields as a statistical technique to

draw more reliable conclusions by combining the results of different studies

or experiments. Most of research has focused on how to aggregate p-values

generated from the assumption that all experiments or studies are independent.

Among the methods for combining such independent p-values, well known meth-

ods including Fisher’s method in Fisher (1934) and Stouffer’s method in Stouf-

fer et al. (1949) are based on aggregating some transformed p-values leading to

chi-square distribution and normal distribution, respectively. In particular, the

distribution of the sum of independent p-values or other forms of statistics needs

to be derived relatively easily for practical use. For example, if the p-value is

transformed into an infinitely divisible random variable, the distribution of the

sum of those transformed p-values is the same type of distribution as the trans-

formed distribution as in the case of Fisher’s method and Stouffer’s method.

On the other hand, there are limited studies on combining dependent p-

values. When p-values are dependent, Kost and McDermott (2002) and Hartung

(1999) aggregated the dependent p-values by estimating the correlation coeffi-
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cients. Recently, Liu and Xie (2020) showed that combining dependent p-values

transformed into the Cauchy distribution is robust to the overall dependency

when a significance level is fairly small. Numerical studies in Wilson (2021)

demonstrated the robustness of Lévy combination test for dependent p-values.

Fang et al. (2023) showed that combinations of dependent p-values have the

same tail behavior as that from independent p-values, however their result is re-

stricted to the case when the number of p-values is fixed. Liang and Rho (2022)

used stable combination tests under long range or short range dependence which

is somewhat restricted dependence in meta analysis. Wilson (2019) proposed to

use a harmonic mean of p-values to combine dependent p-values.

In this paper, we consider a broader class of dependence structure induced

from Gaussian copula used in Liu and Xie (2020) and investigate the asymptotic

performance of existing test statistics from the view point of controlling a given

Type I error and obtaining power. Liu and Xie (2020) assumed that eigenval-

ues of correlation matrix are bounded which cannot include highly correlated

p-values. The dependence structure in Liang and Rho (2022) is also somewhat

restricted in practice. We focus on figuring out the scopes of dependence struc-

ture in which existing methods control a given Type I error and obtain powers.

Among these two criteria in hypothesis testing, the first requirement is con-

trolling Type I error while obtaining power is pursued thereafter. In order to
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obtain the robustness to dependence of p-values, it is advantageous to have test

statistics dominated by a small number of small p-values. However this property

is undesirable to obtain testing power under non-null hypothesis especially when

there are many p-values generated from non-null hypothesis. Test statistics de-

pending on a relatively small number of p-values may lose testing power since

transformation of fairly small values of p-values tend to be extremely large, so

they dominate transformation of some other p-values which are also generated

from non-null hypotheses.

With this motivation, for dependent p-values, we investigate the properties

of methods of combining p-values in controlling Type I error and obtaining

power for different tail behaviors from different transformations. In particular,

it is highlighted that all test statistics considered in this paper are shown to have

a trade-off relationship between size and power. In other words, if the size is

controlled stably at strongly dependent p-values, the power will be low, whereas

it becomes difficult to control the size of a test statistic with an advantage in

power at p-values with strong dependence. We demonstrate the trade-off theo-

retically and numerically via presenting asymptotic results, simulations and real

data examples.

Test statistics considered in this paper are classified by the heaviness of the

tails of the transformed p-values. Depending on the heaviness of the tail, we
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consider heavier tailed distributions such as the Cauchy distribution and the Lévy

distribution which have been studied in Liu and Xie (2020), Chen et al. (2023)

and Wilson (2021), in addition to well known methods such as Stouffer’s and

Fisher’s methods. We provide various results on how different heaviness of tails

affects the performance of test statistics for dependent p-values.

We also investigate asymptotic relations between p-values combining meth-

ods for heavy-tailed distribution and for a type of harmonic mean of p-values.

Combining methods using the Cauchy and Lévy distribution and harmonic mean

are designed to rely on a small subset of transformed p-values which dominates

all other transformed p-values due to the heavy tail of Cauchy or Lévy distribu-

tions and inverse of p-values in harmonic mean. This property results in dimin-

ishing the effect of dependence of p-values since a few p-values dominating all

other p-values avoid the accumulation of dependence. Chen et al. (2023) showed

that Cauchy combination method and harmonic mean method are asymptotically

equivalent when the number of p-values is fixed and the smallest of p-value goes

to zero. On the other hand, Fisher’s method and Stouffer’s method are not ex-

plained by a few number of p-values, since these two methods use chi-square

and normal distributions which do not have heavy tails. As an extreme case,

the Tippet’s method (Tippett, 1931) which uses only the smallest p-value is also

considered as the heaviest transformation.
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This paper is organized as follows; Section 2 includes the introduction of

test statistics for different transformations. Section 3 presents theoretical results

from the view point of asymptotic size and power of test statistics. In Section 4,

relations between p-values combining methods for heavy-tailed distribution are

investigated. Numerical studies and real data examples are provided in Section

5 and Section 6, respectively. Section 7 presents concluding remarks.

2. Test Statistics for combining p-values

We consider the following global hypothesis testing ;

H0 : H0i are all true for 1 ≤ i ≤ d vs. H1 : at least one H0i is false (2.1)

where H0i : µi = 0 for two-sided test and H0i : µi ≤ (≥)0 for one-sided test

including right-tailed and left-tailed tests. For each hypothesis H0i, we obtain

p-values, p1, . . . , pd by marginally testing each hypothesis. In meta analysis, it

may not be known about the marginal data as well as the joint distribution of

those test statistics, but Liu and Xie (2020) assumed that the original data or the

test statistic X = (X1, . . . , Xd)
T follows the multivariate normal distribution,

X ∼ Nd(µ,Σ), where µ = (µ1, . . . , µd)
T and Σ is unknown. p-values are

represented by pi = 1−Φ(Xi) or Φ(Xi) depending on right-tailed or left-tailed

test and pi = 2 {1− Φ(|Xi|)} for two-sided test. Σ characterizes dependence
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structure of p-values, however, since it is unknown, it is not feasible to identify

such dependence.

Various methods of combining p-values in meta-analysis are constructed

through an appropriate transformation of p-values such as T =
∑d

i=1 h(pi)

where h(·) is a decreasing function. Typical examples are Stouffer’s method,

TStouffer = 1√
d

∑d
i=1 Φ̄

−1(pi), and Fisher’s method, TFisher = −2
∑d

i=1 log(pi).

When p-values are independent, TStouffer and TFisher have the standard normal

distribution and chi-square distribution with 2d degrees of freedom under H0,

respectively. We reject H0 if TStouffer > zα and if TFisher > χ2
α(2d), where zα

and χ2
α(2d) are the upper α quantiles of a standard normal distribution and chi-

square distribution with degrees of freedom 2d, respectively. However, when

p-values are dependent, distributions of TStouffer and TFisher are not guaranteed to

be the standard normal and chi-square distributions, respectively, so such deci-

sion rules are not valid any more. If there exists relatively strong dependency

among p-values, TStouffer and TFisher with the critical values zα and χ2
α(2d) are not

able to control Type I error.

Recently, methods for combining dependent p-values using heavy-tailed dis-

tributions have been studied intensively since combination of dependent heavy

tailed distributions may have similar behavior to the combination of those in-

dependent distributions. For example, the Cauchy transformation, TCauchy =
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1
d

∑d
i=1 tan(π(1/2 − pi)), in Liu and Xie (2020), follows Cauchy distribution

under H0 and independent p-values. Liu and Xie (2020) showed that, under

dependent p-values with some conditions, the tail behavior of TCauchy is asymp-

totically equivalent to the standard Cauchy distribution. Then H0 is rejected

when TCauchy > cα where cα is the upper α quantile of Cauchy distribution.

With a similar motivation, we can also consider a heavier tailed distribution

than Cauchy distribution such as Lévy distribution (Wilson, 2021). We define

TLévy = 1
d2

∑d
i=1

{
Φ−1

(
1
2
(1 + pi)

)}−2 and reject H0 if TLévy > lα where lα is

the upper α quantile of Lévy distribution.

Note that tail behaviors of TStouffer, TFisher, TCauchy and TLévy are different in

that the thickness of the tail part has an order of TStouffer < TFisher < TCauchy <

TLévy. Lastly, we also consider the Tippet’s method which uses the minimum

of p-values, TminP = maxiΦ
−1(1 − pi), or T ′

minP = mini pi, equivalently. As a

critical value which is based on independence, we reject H0 if TminP ≥ Φ−1((1−

α)1/d) or equivalently T ′
minP = mini pi ≤ 1− (1− α)1/d, for a given significant

level α.

Throughout this paper, we evaluate different properties of TStouffer, TFisher,

TCauchy, TLévy and TminP by their different distributions with different tail behav-

iors. Each of test statistics uses critical values derived under independent p-

values such as zα, χ2
α(2d), cα, lα and Φ−1((1−α)1/d), respectively. These critical
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values may departure from the true critical values of TStouffer, TFisher, TCauchy, TLévy

and TminP under dependent p-values. In practice, since we do not know the de-

pendent structure induced from unknown Σ, we have no choice but to use them

derived under independent p-values. We highlight that, as the tail of the trans-

formed distribution h(·) is heavier, a smaller number of p-values dominate the

variation of the test statistics which avoids the accumulation of dependence of

p-values. We also address the issue of testing power of these test statistics which

have reverse order of performances of robustness in controlling Type I error.

In the following sections, we provide theoretical studies on the properties

of TStouffer, TFisher, TCauchy, TLévy and TminP and present numerical studies includ-

ing simulations and real data examples. All proofs of theoretical studies are

presented in the supplementary materials.

3. Type I error and testing power

In this section, we present theoretical results on controlling a given Type I

error and obtaining power of TStouffer, TFisher, TCauchy, TLévy and TminP. Throughout

this section, we see that the heavier the distribution of the transformed p-values,

the more advantageous it is to control Type I error. However, we also see that

such heavy tailed distributions can be detrimental to the achievement of testing

power which is 1− Type II error. As an overall performance, we investigate the
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conditions for each of test statistics under which we have the following proper-

ties: Let α be a given level of Type I error. Then, as d→ ∞ and α → 0,

Type I error ≤ α → 0 and Type II error → 0. (3.1)

We compare conditions satisfying (3.1) for different types of testing proce-

dures and observe there exists trade-off relationship to obtain these two criteria.

To implement dependent p-values, we use the Gaussian copula as in Liu and Xie

(2020) rather than considering arbitrary dependence in Vovk and Wang (2020)

and Chen et al. (2023). As seen in Vovk and Wang (2020), a modification of

some test statistics for arbitrary dependent p-values become impractical due to

their fairly low powers.

We use the Gaussian copula to model dependent p-values which are not

that restrictive and we derive conditions for realistic powers of some existing

test statistics. More specifically, the raw data or statistics Xi’s for 1 ≤ i ≤ d

are normally distributed with a correlation matrix Σ = (ρij)1≤i,j≤d which is an

element in a collection of correlation matrices, Fd,ρ = {Σ : 0 ≤ ρij ≤ ρ <

1 for 1 ≤ i ̸= j ≤ d}.

Although our dependence is implemented via the Gaussian copula, Fd,ρ cov-

ers various dependent structures including a correlation matrix in Liu and Xie

(2020). In particular, as d increases, the correlation matrices in Liu and Xie

(2020) are limited in that they represent weak dependence among all p-values

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0117



due to the condition λmax(Σ) ≤ C for some constant C where λmax(Σ) is the

maximum eigenvalue of Σ. For example, they exclude a case of equally corre-

lated data. Specifically, since it is known that 1+ 1
d

∑
i̸=j ρij ≤ λmax(Σ), under a

high dimensional setting or a case where the dimension increases, an assumption

of bounded eigenvalues requires each correlation coefficient becomes very small

or diminishes to zero order of reciprocal of dimension. In practice, especially

for applications to genomic data, there are many cases that the assumption of

bounded eigenvalues is not realistic due to dependence among SNPs in genes

in high dimensionality. On the other hand, Fd,ρ covers highly correlated data

including equally correlated case since Fd,ρ allows λmax(Σ) to diverge as d in-

creases. Fd,ρ includes correlation matrices since it allows a case where λmax(Σ)

diverges as d increases. Similarly, Liang and Rho (2022) used the weakly de-

pendent structures such as serially correlated cases also included in Fd,ρ. And

in the real data, since true correlation coefficients are unknown, the condition in

this paper can include the worst case scenario. From this point, we deal with a

broader class of correlation matrices, Fd,ρ.

We introduce some notations used in this paper. Denote f(x) ∼ g(x) as

x → c if limx→c f(x)/g(x) = 1. The statement a ≲ b means that a ≤ γ · b,

where γ > 0 is a fixed constant independent of dimension d. Let ϕ(x), Φ(x)

and Φ̄(x) be the density function, the cumulative distribution function and the
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3.1 Type I error control

survival function of standard normal distribution, respectively. For f(x) > 0 and

g(x) > 0, we define f(x) ≪ g(x) if lim supx→∞ f(x)/g(x) = C for a constant

C ∈ (1,∞). The notation [x] means the integer part of a positive value x.

3.1 Type I error control

We present theorems showing that each of test statistics, TStouffer, TFisher,

TCauchy, TLévy and TminP controls Type I error under different scenarios such as

ρij or α is fixed while other parameters depends on d. We first present a theorem

implying that for an exchangeable case, both TStouffer and TFisher fail to control

a given Type I error when the correlation coefficient is fixed. This shows the

weakness of TStouffer and TFisher which do not use the heavy tailed distribution.

On the other hand, Type I errors of TStouffer and TFisher are approximately a given

level α if the correlation coefficient diminishes to zero under some conditions.

In the following theorem, we define PH0 as the probability measure under H0.

Theorem 1. 1. Suppose that 0 < ρ = Corr(pi, pj) for 1 ≤ i ̸= j ≤ d is fixed.

Then for any α ∈ (0, 1), underH0 in (2.1), we have limd→∞ PH0(TStouffer ≥

zα) = 1/2. However, if ρ = o(1/d), then limd→∞ PH0(TStouffer ≥ zα) = α.

2. Suppose that 0 < ξ = Corr(−2 log pi,−2 log pj) for 1 ≤ i ̸= j ≤ d is

fixed. Then for any α ∈ (0, 1), underH0 in (2.1), we have limd→∞ PH0 (TFisher ≥ χ2
α(2d)) =

1/e.However, if ξ = o(1/d) and d
√
ξ → c ∈ [0,+∞], then limd→∞ PH0 (TFisher ≥ χ2

α(2d)) =
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3.1 Type I error control

α.

We note that TFisher can be expressed as a special combining method of gen-

eralized averaging of p-values. Let p1, . . . , pd be any p-values following the

uniform distribution marginally and Mr = d−1/r(pr1 + · · · prd)1/r be a combining

function. From Vovk and Wang (2020), the combining function is precise if for

each ϵ ∈ (0, 1), supP (Mr ≤ ϵ) = ϵ, where the supremum encompasses arbi-

trary dependence structure between p1, . . . , pd. Vovk and Wang (2020) showed

that, if a constant ad depending on d and ad → e as d → ∞, the supremum

of adjusted statistic adM0 for M0 :=
(∏

i=1,...,d pi

)1/d
achieves precise proba-

bility, that is, supP (adM0 ≤ ϵ) = ϵ. Therefore, TFisher also can be considered

to be precise. However, in the perspective of hypothesis testing procedure for

Fisher’s method, the adjusted method of Vovk and Wang (2020) becomes too

conservative. Indeed, from the precise probability, for a given significance level

α ∈ (0, 1), α = supP (adM0 ≤ α) = supP (TFisher ≥ 2d log(ad/α)). How-

ever, for large d, since log(ad/α) > 1, the rejection region, [2d log(ad/α),+∞)

is narrower than that of Fisher’s method. Hence, the adjusted statistic becomes

conservative which is a cost for validity under arbitrary dependence structure.

Numerical studies in Chen et al. (2023) showed that under arbitrary dependence

structure, powers of methods based on the generalized averaging are lower than

power of Bonferroni method so that the adjusted statistics are hard to be used
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3.1 Type I error control

in practice. Therefore, in this paper, we adapt the quantile constructed under

independence assumption that is called VI (Valid for Independent) method for a

practical balance between power and size. In the following theorem, we define

PΣ(·) as the probability under a given correlation matrix Σ ∈ Fd,ρ.

Theorem 2. 1. For any Σ ∈ Fd,ρ and any α ∈ (0, 1), under H0 in (2.1), we

have

inf
Σ∈Fd,ρ

PΣ
H0
(TStouffer ≥ zα) = P I

H0
(TStouffer ≥ zα) = α. (3.2)

Furthermore, for any given α ∈ (0, 1) and if
∑

i̸=j ρij = o(d), under H0

in (2.1), we have

lim
d→∞

PΣ
H0
(TStouffer ≥ zα) = α. (3.3)

2. For any Σ ∈ Fd,ρ and any α ∈ (0, 1), under H0 in (2.1), we have

inf
Σ∈Fd,ρ

PΣ
H0
(TFisher ≥ χ2

α(2d)) = P I
H0
(TFisher ≥ χ2

α(2d)) = α. (3.4)

Furthermore, let ξij = Corr(−2 log pi,−2 log pj) for i ̸= j = 1, . . . , d. if∑
i̸=j ξij = o(1/d), then

lim
d→∞

PΣ
H0
(TFisher ≥ χ2

α(2d)) = α. (3.5)

3. For any Σ ∈ Fd,ρ and any α ∈ (0, 1), under H0 in (2.1), we have

sup
Σ∈Fd,ρ

PΣ
H0
(TminP ≥ xα) = P I

H0
(TminP ≥ xα) = α (3.6)
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3.1 Type I error control

where xα = Φ−1
(
(1− α)1/d

)
. Furthermore, for any Σ with ρij ≥ ϵ > 0,

under H0 in (2.1), we have

lim
d→∞

PΣ
H0
(TminP ≥ xα) = 0. (3.7)

Note that (3.2), (3.4) and (3.6) are non-asymptotic results while (3.3), (3.5)

and (3.7) are asymptotic results for varying correlation coefficients depending

on d. Theorem 1 and 2 show the weakness of TStouffer, TFisher and TminP in the

sense that TStouffer and TFisher may fail in controlling a given Type I error and

TminP is too conservative when there exist some dependence among p-values.

Liu and Xie (2020) and Wilson (2019) presented numerical studies showing that

Stouffer’s test and Fisher’s test fail in controlling Type I error when p-values are

correlated. However, the results of Theorem 1 and 2 have the novelty in that

they provide theoretical reasons of the failures of Stouffer’s and Fisher’s tests

in controlling Type I error. These results are related to how many components

in TStouffer, TFisher and TminP contribute to explain the whole variation of those

three tests, respectively. In other words, TStouffer and TFisher are aggregating all

transformed p-values while TminP relies on only one term, maximum of Xis. We

leave the following remarks as implications of Theorem 2.

Remark 1. 1. For any given Σ, TStouffer and TFisher control Type I error non-

asymptotically only when all p-values are independent, i.e., Σ = I . Otherwise,
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3.1 Type I error control

TStouffer and TFisher cannot control Type I error for dependent p-values. However,

when the number of p-values increases, TStouffer and TFisher may control Type I

error asymptotically when the effect of overall correlations is not large enough

such as
∑

i̸=j ρij = o(d) and
∑

i̸=j ξij = o(1/d), respectively.

2. For exchangeable p-values under H0, if, for all 1 ≤ i ̸= j ≤ d,

Corr(pi, pj) = ρ is positive and fixed, PH0(TStouffer > zα) → 1/2 under the

null, as d → ∞, whereas the Type I error of TFisher converges to e−1, if 0 < ξ =

Corr(−2 log pi,−2 log pj) is fixed. Since 1/e ≈ 0.37, Type I error of TStouffer is

larger than that of TFisher so that TStouffer obtains more seriously inflated Type I

error than TFisher. These results can be confirmed by Figure 1 in Section 5.

3. TminP = maxiXi or mini pi can control Type I error for any Σ ∈ Fd,ρ and

exact α is obtained only when all p-values are independent. In particular, when

there exist serious correlations such that ρij ≥ ϵ > 0 for some ϵ, TminP is fairly

conservative in the sense that Type I error converges to 0 as d increases.

Compared to the weakness of TStouffer, TFisher and TminP which are either too

liberal or conservative for dependent p-values, the motivation of TCauchy and TLévy

is developing test statistics which are intermediate positions between TStouffer (or

TFisher) and TminP in the sense that some small subset of transformed p-values can

explain most of variations.

Before we present the asymptotic properties of TCauchy and TLévy, we pro-
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3.1 Type I error control

vide the following lemma. Roughly speaking, Lemma 1 shows that the lower

bound of max1≤i≤dXi is decreasing in ρ which leads the corresponding p-value

min1≤i≤d pi to be larger since min1≤i≤d pi is derived under the critical value with

ρ = 0. In fact, this result is also related to the third result in Theorem 2 since

Type I error of max1≤i≤dXi converges to 0 when ρij ≥ ϵ > 0 for some ϵ.

Lemma 1. Let X ∼ Nd(0,Σ) for Σ ∈ Fd,ρ, then max1≤i≤dXi ≥
√
1− ρ

√
2 log d+

op(1).

Now we present asymptotic properties of TCauchy and TLévy under varying

quantities such as the nominal level of Type I error α and the dimension d. Our

asymptotic results of TCauchy and TLévy in the following theorem are different

from Liu and Xie (2020) and Liang and Rho (2022) in that they dealt with the

case of weakly dependent cases such as covariance matrix with bounded eigen-

values and serially correlated cases while we discuss the cases of Σ ∈ Fd,ρ which

also includes exchangeable matrix as an example of strong dependence. Further-

more, the following theorem shows an answer to the robustness of TCauchy and

TLévy for Σ ∈ Fd,ρ as d diverges while Fang et al. (2023) considered the case of

given Σ with fixed d.

Theorem 3. Suppose X ∼ Nd(0,Σ) where Σ ∈ Fd,ρ. Let cα and lα be upper α

quantiles of standard Cauchy and Lévy distributions, respectively.
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3.2 Comparison of TCauchy and TLévy in controlling Type I error

1. For 0 < aC <
1−ρ2

(
√
3ρ+

√
2)2

and d = [(cα)
aC ], we have,

lim
α→0

sup
Σ∈Fd,ρ

PΣ
H0
(TCauchy ≥ cα)

P I
H0
(TCauchy ≥ cα)

= lim
α→0

sup
Σ∈Fd,ρ

PΣ
H0
(TCauchy ≥ cα)

α
= 1.

2. For 0 < aL <
1−ρ2

5ρ2+4
√
3ρ+2

and d = [(ℓα)
aL ], we have,

lim
α→0

sup
Σ∈Fd,ρ

PΣ
H0
(TLévy ≥ lα)

P I
H0
(TLévy ≥ lα)

= lim
α→0

sup
Σ∈Fd,ρ

PΣ
H0
(TLévy ≥ lα)

α
= 1.

3.2 Comparison of TCauchy and TLévy in controlling Type I error

Theorem 3 shows that TCauchy and TLévy are robust to dependence under given

dimension dC = [(cαC )
aC ] and dL = [(ℓαL)

aL ] for some constraints on aC and

aL. Such constraints on d can be considered as the scope of the robustness to the

accumulation of dependence among p-values which is due to increasing d. From

the relation between d and α, the robustness in controlling Type I error under the

dependence consists of conditions on d and α. If d → ∞, to handle the accu-

mulation of dependence, the robustness of TCauchy and TLévy in controlling Type

I error is attained when α → 0. From this motivation, we compare TCauchy and

TLévy from the following view points : for Type I error and dimension (αC , dC)

and (αL, dL) corresponding to TCauchy and TLévy, (i) under αC = αL → 0, we

compare divergence rates of dC and dL which are required to control Type I error

and (ii) under dC = dL → ∞, we compare the rates of αC and αL converging

to 0 which are required to control Type I error. Based on these two criteria, we
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3.2 Comparison of TCauchy and TLévy in controlling Type I error

now show that TLévy is more robust than TCauchy in controlling Type I error for

Σ ∈ Fd,ρ. We first present the following lemma which is used in comparison of

TCauchy and TLévy.

Lemma 2. For α ∈ (0, 1), we have 2πc2α ∼ ℓα as α → 0.

In Theorem 3, the dimension d is expressed based on the aC and aL such

that the polynomial orders of the upper α quantiles are dC = [(cα)
aC ] and dL =

[(lα)
aL ]. In the proof of Lemma 2, approximations of tail probabilities of Cauchy

and Lévy distributions are obtained by α ∼ 1/πcα and α ∼
√

2/πℓα. Then,

three parameters (d, α, a) for TCauchy and TLévy have the following relationship :

αL ∼
√

2

π

(
1

dL

) 1
2aL

, αC ∼ 1

π

(
1

dC

) 1
aC

(3.8)

where (dC , αC , aC) and (dL, αL, aL) are three parameters corresponding to TCauchy

and TLévy.

Theorem 3 shows that TCauchy and TLévy control Type I error α asymptotically

under 0 < aC < 1−ρ2
(
√
3ρ+

√
2)2

and 0 < aL < 1−ρ2
5ρ2+4

√
3ρ+2

, respectively. It is

obvious that {(2αL, dL)} satisfying (3.8) includes {(αC , dC)} since 0 < 2aL <

2(1−ρ2)
5ρ2+4

√
3ρ+2

includes 0 < aC <
1−ρ2

(
√
3ρ+

√
2)2

due to 1−ρ2
(
√
3ρ+

√
2)2

<
2(1−ρ2)

5ρ2+4
√
3ρ+2

. Figure

S3 in the supplementary materials shows the upper bounds of 2aL and aC for the

values of 0 ≤ ρ < 1 and it is shown that the upper bound of 2aL is larger than

that of aC .
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3.2 Comparison of TCauchy and TLévy in controlling Type I error

Based on these, we define ranges of aC and 2aL which are

IC =

{
aC : 0 < aC <

1− ρ2

(
√
3ρ+

√
2)2

}
,

IL =

{
2aL : 0 < 2aL <

2 (1− ρ2)

5ρ2 + 4
√
3ρ+ 2

}
and regions of (α, d) for TCauchy and TLévy

GC =

{
(αC , dC) : αC ∼ 1

π

(
1

dC

) 1
aC

, aC ∈ IC

}
,

GL =

{
(αL, dL) : αL ∼

√
2

π

(
1

dL

) 1
2aL

, aL ∈ IL

}

where GC is the collection of sequences (α, d) satisfying α ∼ c ·
(
1
d

) 1
a for a ∈ IC

where c is a constant. and GL is similarly interpreted.

We note that, to control Type I error, Liu and Xie (2020) presents the con-

dition of dimension d in TCauchy corresponding to 0 < aC < 1/2 which is wider

than 0 < aC < 1−ρ2
(
√
3ρ+

√
2)2

in Theorem 3. Indeed, 0 < aC < 1−ρ2
(
√
3ρ+

√
2)2

equals

to 0 < aC < 1/2 when ρ = 0. Hence, the conditions in Theorem 3 can be

considered as a cost to encompass arbitrary structures of correlations matrix.

GC and GL provide the scopes of α and d under which TCauchy and TLévy

control Type I error for dependent p-values. We have the following corollary

derived from Theorem 3 which states some advantage of TLévy over TCauchy in

controlling Type I errors.

Corollary 1. Under the conditions in Theorem 3, we have the following results
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3.3 Power Studies

for any 0 < ρ < 1: (i) GC ⊂ GL. (ii) For aL ∈ IL − IC , if αL ∼ αC , we have

dC/dL → 0 for any aC ∈ IC and the corresponding dC . If dL ∼ dC , we have

αC/αL → 0 for any aC ∈ IC and the corresponding αC .

The first result in Corollary 1 shows that TLévy controls Type I error α in a

wider class of (α, d) than TCauchy. The second result shows the behavior of α

and d of TLévy in GL but outside of GC . From these results, TLévy can control

Type I error asymptotically in additional region of (α, d) such as larger values of

dimension d and α compared to those of TCauchy.

3.3 Power Studies

To find sufficient conditions under which combination test statistics have

asymptotically power converging to 1, we consider Type II error of each test

which is 1 − power. If Type II error of a test goes to zero asymptotically, it

can be concluded that the test is asymptotically powerful. Denote N and S as

index sets of null and signal part under non-null hypothesis, respectively, i.e.,

for i ∈ N , Xi
d
= Zi and for i ∈ S, Xi = Zi + µi where Zi ∼ N(0, 1) and

µi ≡ µ =
√
2τ log d for τ > 0. Assume that |S| = dβ , 0 < β < 1. Donoho and

Jin (2008) called the case of 0 < β < 1/2 a strongly sparse case and the case of

1/2 < β < 1 a moderately sparse case.

The following theorem states that neither of TCauchy nor TLévy dominates the
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3.3 Power Studies

other in terms of controlling Type I error and obtaining asymptotic power 1.

Theorem 4. Assume that |S| = dβ for 0 < β < 1. (i) If 1
β+τ−1

< aC , Type II

error of TCauchy converges to 0, as d → ∞. (ii) If 1
β+2τ−2

< aL, Type II error of

TLévy converges to 0, as d→ ∞.

From Theorem 3 and 4, we have sufficient conditions to achieve two criteria

in (3.1). The following corollary presents conditions for TCauchy and TLévy to

achieve (3.1) as α → 0 and d→ ∞.

Corollary 2. Under the settings of Theorem 3 and 4, (i) TCauchy has Type I error+

Type II error → 0 under d1−β−τ ≪ α ≪ d
− (

√
3ρ+

√
2)2

1−ρ2 if β + τ > (
√
2ρ +

√
3)2/(1−ρ2). (ii) TLévy has Type I error+Type II error → 0 under d1−β/2−τ ≪

α ≪ d
− 5ρ2+4

√
3ρ+2

2(1−ρ2) if β + 2τ > (
√
3ρ+ 2)2/(1− ρ2).

Corollary 2 presents the sufficient asymptotic conditions of α to attain the

robustness and obtain the power for TCauchy and TLévy. For a given ρ, the upper

bounds of α implies that α of TCauchy converges to 0 faster than TLévy to attain the

robustness. On the other hand, for given moderately large values of β and τ , the

lower bounds of α implies that TLévy requires d to increase faster than TCauchy to

obtain the power. Therefore, the relationship between α and d with β, τ and ρ

shows the trade-off between robustness and power for TCauchy and TLévy.
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4. Asymptotic equivalence between heavy-tailed stable distribution and

harmonic mean in combining p-values

In this section, we discuss that hypothesis testing procedures based on p-

value combining methods using heavy-tailed stable distribution are asymptoti-

cally equivalent to those using a type of harmonic mean. Wilson (2019) showed

that the harmonic mean of p-values can be considered as a global p-value of hy-

pothesis testing since it approximately tends to the Landau distribution which is

a specific form of heavy-tailed stable distribution. Fang et al. (2023) and Chen

et al. (2023) showed that Cauchy combination is asymptotically equivalent to

the harmonic mean. Also, Wilson (2021) discussed the equivalence of Lévy

combination and squared type of harmonic mean.

We investigate more general cases than those in Fang et al. (2023) and Wil-

son (2021). Fang et al. (2023) used the Pareto distribution which has different

tail behaviors to represent heavy-tailed distribution for different parameters such

as P (X > t) = C(η)/tη for some constant C(η). In particular, the Pareto dis-

tributions with η = 1 and η = 1/2 have the same asymptotic tail behavior as

Cauchy and Lévy distributions, respectively except some constants. Indeed, the

Cauchy and Lévy distributions are special cases of a family of stable distribu-

tion, referred to as the Lévy alpha-stable distribution of which the tail probability

is given by P (X > t) ∼ C∗(η, ψ, γ)/tη, as t → ∞ where C∗ is a constant de-
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pending on parameters η, ψ and γ. Here, η and ψ are parameters reflecting the

heaviness of tail and the skewness, respectively, and γ is a scale parameter. With

these parameters, the Pareto and the Lévy alpha-stable distributions reflect the

properties of the heaviness of the tail probability.

Although Fang et al. (2023) and Wilson (2021) analyzed tail behaviors of

heavy tailed distributions and their properties, in this section, we investigate

the connection between combining method based on transforming into the Lévy

alpha-stable distribution and the harmonic mean type method in detail. Con-

cretely, we highlight the result of the equivalence of combining method of heavy

tailed transformation and generalized harmonic mean method when dimension

d goes to infinity while Fang et al. (2023), Wilson (2021) and Chen et al. (2023)

used the assumption of fixed d.

First, we define the generalized harmonic mean of p-values by pgHMP (η)
global :

for p1, . . . , pd and η > 0, pgHMP (η)
global = d/

(∑d
j=1 p

−1/η
i

)η
. The generalized

harmonic mean includes typical cases, for example, when η = 1, pgHMP (1)
global is

a harmonic mean of p-values. Note that the generalized harmonic mean is also

used in Vovk and Wang (2020), Chen et al. (2023) and Wilson (2021) with the

notation Mr,K .

Using the theory of regularly varying functions as in Wilson (2019), we can
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derive the following result: for η > 0 and weightswi > 0, i = 1, . . . , d, as ϵ→ 0

P

((
d∑
j=1

wip
−1/η
i

)η

≥ 1

ϵ

)
∼

(
d∑
j=1

wi

)
P
(
p
−1/η
i ≥ ϵ−1/η

)
= ϵ,

where pi’s are allowed to be arbitrary dependent and d is fixed. That is, pgHMP (η)
global

can be considered as a global p-value approximately.

In the perspective of testing procedure, we define a test statistic TgHMP (η)

based on the generalized harmonic mean of p-values as a global p-value. Let

α > 0 and η > 0 be given. Define TgHMP (η) = I
(
p
gHMP (η)
global < α

)
, where I(·)

is an indicator function. If TgHMP (η) = 1, the null hypothesis is rejected and if

TgHMP (η) = 0, the null hypothesis cannot be rejected.

The following Theorem 5 and 6 present the robustness of Type I error and

asymptotic power for TgHMP (η), respectively. In the below theorem, let EΣ
H0

be

the expectation under H0 with a given correlation matrix Σ ∈ Fd,ρ.

Theorem 5. Let X ∼ Nd(0,Σ) where Σ ∈ Fd,ρ. Let d = [α−aG ]. Then for 0 <

aG <
1−ρ2

(η+2)ρ2+2η+2ρ
√

(η+1)(2η+1)
, underH0, we have limd→∞ supΣ∈Fd,ρ

EΣ
H0
TgHMP (η)

α
=

1, as α → 0.

Theorem 6. Assume that |S| = dβ for 0 < β < 1. If 1
ηβ+τ−1

< aG, Type II error

of TgHMP (η) converges to 0 as d→ ∞.

From Theorem 5 and 6, the following corollary presents the condition of α

and d under which both Type I and Type II errors of TgHMP (η) converge to 0.
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Corollary 3. Under settings of Theorem 5 and 6, TgHMP (η) has Type I error +

Type II error → 0 under d1−ηβ−τ ≪ α ≪ d
− (η+2)ρ2+2η+2ρ

√
(η+1)(2η+1)

1−ρ2 , if τ + ηβ >

(η+1)ρ2+2η+1+2ρ
√

(η+1)(2η+1)

1−ρ2 .

Similar to pgHMP (η)
global , we also generalize the transformation of p-values to

heavy tailed stable distribution. For this, let hη,ψ(pi) be a transformation function

of p-value to a random variable of heavy-tailed stable distribution with 0 < η ≤

1 and −1 ≤ ψ ≤ 1. hη,ψ(pi) also can be considered as a form of inverse

cumulative distribution function of heavy-tailed stable distribution. If η = 1 and

ψ = 0, then h1,0 is a Cauchy transformation and if η = 1/2 and ψ = 1, then

h1/2,1 is a Lévy transformation. We denote a global p-value of transformation of

stable distribution by gS(η,ψ)global = PH0

(
Tη,ψ >

∑d
i=1 d

−1/ηhη,ψ(pi)
)
, where Tη,ψ

is a combination test statistic of heavy-tailed transformation. It follows from

Nolan (2020) that, for observed p-values, p1, . . . , pd,

p
S(η,ψ)
global = PH0

(
Tη,ψ >

d∑
i=1

d−1/ηhη,ψ(pi)

)
∼ d · cη,ψ ·

(
d∑
i=1

hη,ψ(pi)

)−η

,

where cη,ψ denotes a generic constant depending on η and ψ.

We now present the following Theorem 7 which investigates the asymptotic

equivalence between pgHMP (η)
global and pS(η,ψ)global under some conditions when d→ ∞.

Theorem 7. For Σ ∈ Fd,ρ, 0 < η ≤ 1 and −1 ≤ ψ ≤ 1, if one of the following

conditions: (i) maxj
∑d

i=1 ρ
2
ij ≤ C0 for some constant C0 > 0, (ii) for 0 < η <
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1, 0 < ρ < 1− η and for η = 1, 0 ≤ ρij ≤ ρ = o
(

log log d
log d

)
is satisfied, then we

have
p
S(η,ψ)
global

p
gHMP (η)
global

p→ 1 as d→ ∞.

We note that Fang et al. (2023) proved the equivalence between transforma-

tion functions of Cauchy combination and harmonic mean for one p-value. On

the other hand, Vovk and Wang (2020) showed the asymptotic equivalence of

Cauchy combination and harmonic mean when the minimum of p-values goes to

zero for fixed dimension. However, Theorem 7 presents the equivalence of com-

bining method of heavy tailed transformation and generalized harmonic mean

method when d → ∞ which is more practical assumption than that of Fang

et al. (2023) and Vovk and Wang (2020).

Remark 2. 1. We request some conditions on Σ in Theorem 7 such as (i)maxj
∑d

i=1 ρ
2
ij ≤

C0 for some constant C0 > 0 or (ii)ρ = o
(

log log d
log d

)
. Neither (i) nor (ii) implies

the other. The first one allows sparse ρ2ij such that a small number of ρ2ij can

have values not diminishing to 0 and all others are fairly negligible. This does

not satisfy the condition (ii) since there exist some ρij which does not diminish

to zero. On the other hand, (ii) can include the case of dense such that most of

ρij diminishing to zero, but decreasing order is faster than log log d
log d

. This does not

satisfy (i) since
∑d

j=1 ρ
2
ij = o(d log log d

log d
) may diverge.

2. The asymptotic equivalence between pS(η,ψ)global and pgHMP (η)
global shown in The-

orem 7 implies that the condition of robustness of two methods are also equiva-
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lent. In Theorem 5 and 6, when η = 1/2, the upper and lower bounds of aG can

be expressed by 2 times of the upper and lower bounds of aL in Theorem 3 and

4, respectively. On the other hand, when η = 1, the upper and lower bounds of

aG equal to the upper and lower bounds of aC in Theorem 3 and 4, respectively.

5. Numerical Studies

In this section, we evaluate Type I error and power for various dependency

structures to compare p-values combining methods according to heaviness of

transformation functions and simulate the relationships between p-values com-

bining methods. To investigate properties of p-values combining methods, we

construct p-values from the multivariate normal distribution with mean µ and

correlation matrix Σ in X ∼ Nd(µ,Σ) and then derive one-sided right-tailed

p-values. The correlation matrix Σ = (ρij)i,j=1,...,d is defined by as follows:

1. Exchangeable: For 0 < ρ < 1, ρij = ρ if i ̸= j, and 1 if i = j.

2. Polynomial decay: For r > 0, ρij = 1/(1 + |i− j|r) for i ̸= j and 1 if i = j.

3. Exponential decay, AR(1): For 0 < ρ < 1, ρij = ρ|i−j|.

For each dependency structure, ρ and r decide the strength of the dependency.

Thus we vary ρ and r to evaluate effects of the dependencies.
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5.1 Asymptotic Equivalence between Heavy Tailed combination test and
Generalized Harmonic mean method

5.1 Asymptotic Equivalence between Heavy Tailed combination test and

Generalized Harmonic mean method

In this subsection, we present simulation studies for three types of correla-

tion matrices which demonstrate the similarity of pS(η,ψ)global and pgHMP (η)
global for finite

d. We consider (η, ψ) = (1, 0) and (1/2, 1) in pS(η,ψ)global which are corresponding

to the Cauchy method and Lévy method, respectively.

Figures S4 and S5 in the supplementary materials provide plots of pS(1,0)global

vs. p
gHMP (1)
global and pS(1/2,1)global vs. p

gHMP (1/2)
global . As mentioned, we observe that the

Cauchy method and the harmonic mean method are quite close to each other for

the cases of polynomial decay with large coefficient (Bottom panel) and expo-

nentially decay (Middle panel) since the scatter plots are almost located around

the diagonal line. However, under exchangeable dependency structures indicat-

ing strong dependence, the top panels in Figure S4 show that these two methods

tend to be different. All plots in Figure S5 show that the Lévy method pS(1/2,1)global

looks fairly close to pgHMP (1/2)
global for all three correlation matrices. From Figure

S4 and S5, we see that pS(1/2,1)global and pgHMP (1/2)
global are close to each other compared

to pS(1,0)global and pgHMP (1)
global . This is due to the fact that pS(1/2,1)global and pgHMP (1/2)

global are

dominated by a smaller number of p-values which are affected less severely by

correlation structures compared to pS(1,0)global and pgHMP (1)
global .
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5.2 Type I error

5.2 Type I error

We present Figure 1 showing Type I error of each method at significant level

0.05 under exchangeable cases where ρ varies from 0 to 0.9 and d is fixed at 200.

As expected from Theorem 1, TStouffer and TFisher fail in controlling a given Type

I error 0.5 except ρ = 0, the case of independent p-values. We also see that as

ρ increases, Type I errors of TStouffer and TFisher converge to 1
2

and 1
e
, respectively,

shown in Theorem 1. In Figure 1, patterns of Type I errors of TLévy and TminP

are similar, since two methods are influenced by a small number of dominating

p-values. Additionally, as ρ increases, both TLévy and TminP are getting more

conservative. On the other hand, TCauchy fails to control Type I error at the mid-

level dependency structures while Type I error is well controlled for independent

or extremely correlated p-values. Since TStouffer and TFisher tend to have inflated

Type I errors, we focus on the rest of tests such as TCauchy, TLévy and TminP.

Figure 2 shows Type I errors of TCauchy, TLévy and TminP under exchangeable,

polynomially and exponentially decaying dependency structures at significance

levels 0.05, respectively. As seen in Figure 1, Figure 2 shows almost similar

patterns of Type I errors under three types of correlation matrices. In addition,

to evaluate effects of dimension and significance level, we present Type I errors

of each method with d = 2000 and 3000 in Figure S7 and at significance level

0.01 in Figure S6 in the supplementary materials showing also similar patterns.
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5.2 Type I error
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Figure 1: Box plots of Type I errors of TStouffer, TFisher, TCauchy, TLévy and TminP

under exchangeable case. Horizontal line indicates the significance level 0.05.
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Figure 2: Box plots of Type I error of TCauchy, TLévy and TminP at 0.05 with ex-

changeable, polynomially and exponentially decaying dependency structures.
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5.3 Power

In order to compare the finite-sample performances of pgHMP (η)
global and pS(η)global ,

Figure S8 in the supplementary materials represents Type I error of TCauchy,

TgHMP(1), TLévy and TgHMP(1/2) under the three types of correlation. As mentioned

in Section 5.1 and as shown in Figure S4 and S5, pS(1/2,1)global and pgHMP (1/2)
global are

close to each other compared to pS(1,0)global and pgHMP (1)
global in the finite samples.

5.3 Power

We compare powers of TStouffer, TFisher, TCauchy, TgHMP(1), TLévy and TminP un-

der the exchangeable case in Figure 3. We also provide Figure S9 and S10 in the

supplementary materials for polynomially and exponentially decaying depen-

dency structures at significance level α = 0.05. Simulation settings are similar

to Liu and Xie (2020) under the model X ∼ Nd(µ,Σ), where µ = (µi)1≤i≤d

and Σ is a correlation matrix. All signals for non-null are defined to have

the same strength and to account for effects of sparsity of signals such that

µi :=
√
2 log(d)/s1/3 for i ∈ S, where S denotes the index set of signals and s

is the cardinality of S. The range of d is 20 to 500.

In Figure 3, powers of TStouffer and TFisher are unreliable since Type I errors

are inflated under ρ > 0 shown in Figure 1. On the other hand, powers of TLévy

and TminP are reliable regardless of ρ > 0. Powers of TCauchy depend on ρ since

its Type I errors are inflated except the cases where correlations are close to 0 or
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1. Figure S9 and S10 show similar patterns to Figure 3.

Compared to TCauchy and TLévy, TminP has the lowest power which is related to

the conservativeness represented in numerical studies of Type I errors. There are

additional patterns in the powers of each method. For example, in exchangeable

case in Figure 3, TCauchy has more power than TLévy and TminP. In addition, for

more weak dependency structures such that correlations are polynomially and

exponentially decaying , TLévy achieves comparable power compared to TCauchy

(Figure S9 and S10). As signals become dense such that the cardinality of S

increases, the power of TLévy is getting lower than that of TCauchy. This is from

the fact that TLévy is dominated by a smaller number of components than TCauchy.

This indicates the trade-off relationship between Type I error and power dis-

cussed in section 3 that TLévy has advantage in controlling Type I error under

dependent p-values at the cost of losing powers under dense signals.

We also compare size-adjusted powers of each method in finite samples un-

der exchangeable, polynomially and exponentially decaying cases in Figure S11,

S12 and S13, respectively, in the supplementary materials.

6. Real Data Example

For a real-data analysis, we apply the combination methods to the Crohn’s

disease GWAS (Duerr et al., 2006) which is also used in Liu and Xie (2020). For
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this data, the goal is identifying genes that are associated with the disease.

The dataset is based on 968 cases and 995 controls using the Illumina Hu-

manHap300 Genotyping BeadChip. The cases were selected to have Crohn’s

disease, and the controls were matched to the cases based on sex and year of

birth. Subjects were drawn from two cohorts: 1. persons with non-Jewish, Eu-

ropean ancestry (561 cases and 563 controls), 2. persons with Jewish ancestry

(407 cases and 432 controls). To analyze the association between genes and the

disease, we grouped SNPs to genes via Genome Browser in a Box. Each SNP

can be contained in multiple genes. As a result, all 242,535 SNPs are grouped

into 19,769 genes according to the Genome Reference Consortium Human Build

38. The number of SNPs in each gene ranges from 1 to 676. Among all genes,

only 4,969 genes having more than 10 SNPs are used. p-values are constructed

by using a Cochran-Mantel Haenszel chi-square test separately for each SNP.

The dataset is downloaded from the database of Genotypes and Phenotypes.

Figure 4 shows histograms of p-values of SNPs in two genes, “NLGN1” and

“CDH4”. We present these two genes since they show some strong deviation

from the uniform distribution which may be expected for highly correlated p-

values. There are 118 and 123 SNPs in each gene, respectively. The histogram

of p-values in each gene deviate from the uniform distribution since there are

more null p-values, which is p-values from the null distribution than those of
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Figure 4: Histogram of p-values of SNPs for the “NLGN1” and “CDH4” genes

ideal uniform distribution. There may be possible cases such that either the p-

values are highly correlated or there are many weak signals which are hard to

be detected. However, it is more reasonable to assume that p-values in a spe-

cific gene are highly correlated based on biological properties of GWAS. From

this point of view, the objective of the study is to test if there are any significant

signals among the highly correlated SNPs in each gene and to compare combi-

nation methods. Since the dataset consists of only p-values of individual SNPs,

a dependency structure between p-values is unknown and can not be estimated.

Table 1 and Table 2 in the supplementary materials represent p-values gen-

erated from TCauchy, TLévy and TminP. Table 1 contains 15 genes rejected by TCauchy

and TLévy simultaneously. Table 2 contains 15 genes rejected by TCauchy but can-

not be rejected by TLévy and TminP. Table 1 and 2 show that p-values from TCauchy,

TLévy and TminP tend to be ordered for each gene which matches to our theoretical

and numerical results.
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On the other hand, TStouffer and TFisher produce unstable p-values since their

p-values have large variability compared to the other three methods. Although it

is difficult to validate this for real data examples, we conjecture that TStouffer and

TFisher are not robust to dependent p-values and all the other three methods have

robustness to dependent p-values in controlling Type I error. We also discuss

Type I error of each method using simulated null p-values which is discussed in

detail in the supplementary materials. In addition, we present Quantile-Quantile

plots (Figure S14) of real dataset to check Type I errors of each methods.

7. Concluding Remarks

In this paper, we analyze properties of different p-value combining methods

according to their heaviness of transformation functions of individual p-values,

when p-values are correlated and the dependence structure is unknown. We

investigated Type I error and power of several methods under a wide class of

dependence structures both theoretically and numerically. We also provide the

theoretical study on the asymptotic equivalence between two types of recently

proposed p-value combining methods, stable combination and harmonic mean.

Throughout this paper, we provide intensive results on characteristic of dif-

ferent p-value transformations from the view point of the thickness of the tail

which affects the robustness to dependence structure. Our contributions are more
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extensive compared to existing studies in the following sense : Firstly, we intro-

duce a class of dependence structure based on Gaussian copula with increasing

dimension while Chen et al. (2023) used arbitrary dependence under fixed di-

mension and Liu and Xie (2020) and Liang and Rho (2022) used a correlation

matrix with bounded eigenvalues and serially correlated p-values. Secondly,

we present theoretical studies on controlling Type I error for different depen-

dent structures and provide insight on the reason for such failures for different

transformations. Thirdly, we provide theoretical results showing the trade-off re-

lationship in controlling Type I error and obtaining powers depending on differ-

ent heaviness of the tail. Lastly, we investigate relationships between harmonic

mean type methods and combining methods with stable distribution.

Supplementary Materials

All proofs of theoretical studies and additional numerical results are con-

tained in the supplementary materials.
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