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Abstract: Gene expression-based heterogeneity analysis has been extensively conducted. In

recent studies, it has been shown that network-based analysis, which takes a system perspec-

tive and accommodates the interconnections among genes, can be more informative than

that based on simpler statistics. Gene expressions are regulated. Incorporating regulations

in analysis can better delineate the “sources” of gene expression effects. Although conditional

network analysis can somewhat serve this purpose, it does not render enough attention to the

regulation relationships. In this article, significantly advancing from the existing heterogene-

ity analyses based only on gene expression networks, conditional gene expression network

analyses, and regression-based heterogeneity analyses, we propose heterogeneity analysis

based on gene expression networks (after accounting for or “removing” regulation effects)

as well as regulations of gene expressions. A high-dimensional penalized fusion approach

is proposed, which can determine the number of sample groups and parameter values in a

single step. An effective computational algorithm is proposed. It is rigorously proved that

the proposed approach enjoys the estimation, selection, and grouping consistency properties.

Extensive simulations demonstrate its practical superiority over closely related alternatives.
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In the analysis of two breast cancer datasets, the proposed approach identifies heterogene-

ity and gene network structures different from the alternatives and with sound biological

implications.

Key words and phrases: Heterogeneity analysis, Gene expression network, Regulation, Pe-

nalization.

1. Introduction

Many complex diseases are intrinsically heterogeneous, with samples having the same

disease diagnosis behaving differently. In early studies, heterogeneity analysis is of-

ten based on low-dimensional clinical and demographic measurements. With the

development of high-throughput profiling, omics measurements, which may more

informatively capture disease biology, have been increasingly used in heterogeneity

analysis (Lee et al., 2021). Among the various omics measurements, gene expressions

have drawn special attention because of important biological implications, broad

availability of data, and promising empirical results. Through a series of studies

(Church et al., 2019; Pio et al., 2022), gene expression-based heterogeneity analysis

has demonstrated significant successes. It can be supervised and unsupervised, and

the two types of analysis serve different purposes. In this study, we conduct unsu-

pervised heterogeneity analysis, under which different sample groups have different

gene expression properties.
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Some gene expression-based heterogeneity analyses, especially some early ones

(Leek and Storey, 2007; Church et al., 2019), are based on simple data characteristics

such as mean and variance. In recent studies, it has been shown that gene expression

network (graph)-based analysis can take a system perspective and lead to more

informative heterogeneity structures (Tang et al., 2018; Pio et al., 2022). Here it is

noted that network-based heterogeneity analysis can also accommodate information

on mean and variance. The existing network-based heterogeneity analysis studies are

mostly based on the Gaussian Graphical Model (GGM) technique, and there have

been two main families of approaches. The first family is based on the finite mixture

model technique (Hao et al., 2018), and a common challenge is how to determine

the number of sample groups. The second family is based on the fusion technique

(Radchenko and Mukherjee, 2017), which may provide a more “straightforward” way

of determining the number of groups.

Gene expressions are regulated by multiple types of regulators (methylation, mi-

croRNAs, etc.). Published studies have suggested that the interconnections among

gene expressions, as reflected in networks, can be attributed to regulators as well

as “net connections” (Kagohara et al., 2018). As schematically presented in Figure

1, gene expression networks without accounting for regulators (left two plots) can

be denser and hence less lucid than those accounting for regulatory effects (right

two plots). With the growing popularity of multiomics studies (that collect data
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on gene expressions and their regulators), multiple strategies/approaches have been

developed for the collective analysis of gene expression and regulator data. Exam-

ples include pooling multiple types of data and jointly modeling (Lee et al., 2021),

analyzing regulation relationships for example using regression (Seal et al., 2020),

and others. In the context of network analysis, conditional approaches, for example

conditional GGM, have been developed for studying gene expression interconnections

with account for regulators (Yin and Li, 2011; Sohn and Kim, 2012; Cai et al., 2013;

Wang, 2015). In conditional analysis, especially under the context of heterogeneity

analysis, regulation relationships often serve as a “middle step” and do not play an

important role (Huang et al., 2018; Lartigue et al., 2021).

Figure 1: Schematic example: gene expression networks for two sample groups before

(left two) and after (right two) accounting for regulators.

In this article, our goal is to further advance gene expression network-based het-

erogeneity analysis by developing a new approach that can more effectively accom-

modate regulator data. This has been made possible by the increasing availability of
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multiomics data and motivated by the successes of existing gene expression network-

based heterogeneity analyses as well as their limitation in accounting for regulation

relationships. This study has a solid ground. Specifically, it belongs to the family

of network-based heterogeneity analysis techniques and can enjoy similar merits as

Danaher et al. (2014) and Hao et al. (2018). It is built on the GGM technique –

note that, following Cai et al. (2013), the normality assumption can be relaxed to

make the proposed analysis more broadly applicable. Similar to Ren et al. (2022),

it is built on the sparse penalized fusion technique (Ma and Huang, 2017), can “au-

tomatically” determine the number of sample groups, and has advantages over the

finite mixture modeling approaches.

On the other hand, this study also advances from the existing ones in multi-

ple important aspects. First, it considers gene expression network interconnections

after accounting for regulator effects. As schematically shown in published studies

(Wytock and Kolter, 2013) and the right two plots of Figure 1, such interconnections

can be sparser and easier to interpret. Additionally, they may reflect more essential

gene relationships (Sohn and Kim, 2012). Second, significantly different from most

conditional analyses, we more explicitly model the gene expression-regulator relation-

ships and, more importantly, include such relationships in defining the heterogeneity

structure. This has been motivated by the findings that such regulations have impor-

tant implications for exploring the “hidden” sources of variations in complex diseases,
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as dysregulations can be directly associated with disease risk, progression, progno-

sis, etc. Published literature has also stressed that identifying heterogeneous genetic

regulatory mechanisms is essential in the precision medicine era (Kagohara et al.,

2018). For the example in Figure 1, some additional analysis results are reported in

Section S1 (Supplementary Materials), which may further suggest the advantage and

necessity of incorporating regulators. Third, with both gene expression networks and

gene expression-regulator relationships, and along with heterogeneity, the proposed

method differs significantly from the existing ones in both the mixture and penalized

fusion structures. In the proposed analysis, each component of the mixture corre-

sponds to a conditional GGM, and both the networks and regulation relationships

are subject to fusion penalization, which introduces additional technical challenges.

The proposed method can simplify to some existing ones, for example, by not ac-

commodating regulators, by focusing on heterogeneous distribution means, and by

assuming a known number of groups. A brief comparison of the different methods

is provided in Table S2 (Supplementary Materials). Computational and theoreti-

cal developments, although may share some similar spirit with the existing studies,

can be more complicated and demand careful investigations. Last but not least, as

demonstrated in our data analysis, this study may deliver a practically useful new

approach and findings for deciphering heterogeneity of complex diseases. It is noted

that, although developed in the context of gene expressions and their regulators,

6

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0109



the proposed analysis can have much broader applications. For example, for some

other types of omics data (e.g., proteins), heterogeneity analysis and network-based

analysis have also been conducted, and there are also upstream measurements with

regulatory relationships. Another example may be human disease network analy-

sis, where demographic variables, environmental factors, lifestyle, and others can be

viewed as “regulators”.

The rest of this article is organized as follows. In Section 2, we introduce the

proposed method and present its rationale, computation, and theoretical properties.

Simulation study is conducted in Section 3 to gauge performance and compare with

alternatives. Data analysis is presented in Section 4. Concluding remarks are pre-

sented in Section 5. Additional computational, theoretical, and numerical results are

provided in Supplementary Materials.

2. Methods

Suppose that the observations (yi,xi), i = 1, . . . , n are independent, where yi =

(yi1, · · · , yip) and xi = (1, xi1, · · · , xi,q+1). In our analysis, yi’s are gene expres-

sions, and xi’s are regulators such as microRNAs, copy number variations, and DNA

methylation, all of which can significantly affect gene expression levels. As noted in

conditional analysis and other analyses (Tabor et al., 2002), the collection of regu-

lators does not need to be complete, in the sense that xi does not need to include
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all or a specific set of regulators. Let X = (xT
1 , . . . ,x

T
n ) denote the deterministic

design matrix. Assume that the n subjects belong to K0 groups defined based on

gene expression networks and/or gene expression-regulator relationships, where the

group memberships and value of K0 are unknown. For the l-th group, consider the

regulation model:

y = Γlx+ ϵ,

where Γl is the p× (q+1) coefficient matrix, and ϵ ∈ Rp with zero mean and covari-

ance matrix Σl. Let Θl = Σ−1
l be the l-th precision matrix and Ωl = vec(Γl,Θl) =

(γ11,l, . . . , γ1(q+1),l, . . . , γp(q+1),l, θ11,l, . . . , θ1p,l, . . . , θpp,l)
T be its vectorized representa-

tion. Conditional on x, assume that y follows a multivariate normal distribution

N(Γlx,Θ
−1
l ), that is,

fl(y;x,Ωl) = (2π)−p/2|Θl|1/2 exp
{
−1

2
(y − Γlx)

TΘl(y − Γlx)

}
.

Here samples in the same group share the same precision matrix and the same

coefficient matrix.

Although it is difficult to know K0, it is often easy to specify an “upper bound”

K > K0. To be cautious, K can be taken as a relatively large number. With K

groups, we denote Ω = (Ω1, · · · ,ΩK)
T and consider the mixture distribution:

f(y;x,Ω) =
K∑
l=1

πlfl(y;x,Ωl),
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where πl is the mixture probability of the l-th group. Denote π = (π1, . . . , πK)
T ,

which is also unknown.

For parameter estimation and determination of the heterogeneity structure, we

propose the penalized objective function:

L(Ω,π|Y ,X) =
1

n

n∑
i=1

log

{
K∑
l=1

πlfl(yi;xi,Ωl)

}
− P(Ω). (2.1)

Here, the penalty is proposed as:

P(Ω) =
K∑
l=1

∑
j ̸=m

p(|θjm,l|, λ1) +
K∑
l=1

p∑
j=1

q+1∑
m=1

p(|γjm,l|, λ2)

+
∑
l<l′

p
{
(∥Θl −Θl′∥2F + ∥Γl − Γl′∥2F )1/2, λ3

}
.

(2.2)

θjm,l is the jm-th entry of the l-th precision matrix Θl. γjm,l is the jm-th entry of

the l-th coefficient matrix. ∥ · ∥F is the Frobenius norm. p(·, λ) is a penalty function

with regularization parameter λ > 0. Convenient choices are MCP and SCAD. The

proposed estimator (Ω̂, π̂) is defined as the maximizer of L(Ω,π|Y ,X). Denote

Ω̂1, . . . , Ω̂K̂0
as the unique values of Ω̂1, . . . , Ω̂K . Then it is concluded that there are

K̂0 groups, with corresponding parameter values Ω̂1, . . . , Ω̂K̂0
. The sparsity patterns

of the precision matrix estimates directly correspond to the structures of the net-

works. Specifically, if and only if the (j,m)-th entry of the estimate for Θl is zero,

the corresponding two genes are not connected conditional on the other genes after

removing the shared effects of the regulators in the l-th sample group. The sparsity

of the estimate of Γl describes the sparse regulations of the regulators on the gene
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expressions in the l-th sample group. Note that the regulations can flexibly vary

across genes, which corresponds to the different sparsity patterns across the rows of

Γl. This can be partly seen from the sparsity structure of the coefficient matrices in

the real data analysis. The estimated mixture probabilities can be obtained accord-

ingly. The proposed approach is characterized by the simultaneous estimation of the

precision matrices, coefficient matrices, and group memberships. Its brief flowchart

is presented in Figure S1 (Supplementary Materials).

Rationale The proposed modeling has two components: gene expression network

and gene expression-regulator relationship. For the first component, we adopt the

GGM technique as in multiple published studies. For the second component, we

adopt linear regression. Although nonlinear regulations have been proposed, linear

regression can be preferred considering the high dimensionality of gene expressions

and regulators. It has also been shown to have satisfactory performance (Yin and Li,

2011; Cai et al., 2013). We adopt penalization for regularized estimation and selec-

tion. In (2.2), the first two sparse penalties have been commonly adopted (Rothman

et al., 2010; Yin and Li, 2011). With the third penalty term, we start with K(> K0)

sample groups and examine if two groups can be shrunk together. By examining

the final estimates, we can directly obtain the estimated number of groups as well as

model parameters for all groups. The fusion strategy has been adopted in multiple

recent heterogeneity analyses and shown to be advantageous over multiple alterna-
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2.1 Computation

tives. Significantly different from the existing heterogeneity analysis (Ren et al.,

2022), in (2.2), the regression coefficient matrices are considered along with the pre-

cision matrices – that is, the heterogeneity structure is jointly defined by the gene

expression networks and regulation relationships.

2.1 Computation

For optimization, we develop an EM + Altering Direction Method of Multipliers

(ADMM) algorithm. The complete data log-likelihood function is:

1

n

n∑
i=1

K∑
l=1

ωil {log πk + log fl(yi;xi,Ωl)} ,

where ωil is the latent indicator variable showing the group membership of the ith

sample in the mixture. The EM algorithm maximizes the objective function com-

posed of the above complete data log-likelihood function and penalty function in

(2.2) iteratively in the following two steps.

Expectation step: here, we compute the conditional expectation of the complete

data log-likelihood function with respect to ωil, given the observed data (yi,xi)’s

and current estimates from the (t− 1)-th step. The conditional expectation is:

EL|y,x,Ω(t−1){L(Ω,π|Y ,X)} =
1

n

n∑
i=1

K∑
l=1

L
(t)
il {log πl + log fl (yi;xi,Ωl)} − P(Ω),

(2.3)

where L
(t)
il is the conditional expectation of ωil, which depends on the estimates from
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2.1 Computation

the (t− 1)-th step and can be computed as:

L
(t)
il =

π
(t−1)
l fl

(
yi;xi,Ω

(t−1)
l

)
∑K

l=1 π
(t−1)
l fl

(
yi;xi,Ω

(t−1)
l

) . (2.4)

Maximization step: we maximize (2.3) with respect to (Ω,π). For π, we have:

π
(t)
l =

1

n

n∑
i=1

L
(t)
il . (2.5)

For Ω, we update Γ = (Γ1, . . . ,ΓK)
T and Θ = (Θ1, . . . ,ΘK)

T separately. For

Γl, l = 1, . . . , K, maximizing (2.3) is equivalent to solving:

{
Γ(t)

}
= argmin

Γ

{
1

2n

n∑
i=1

K∑
l=1

L
(t)
il

{
(yi − Γlxi)

T Θ
(t−1)
l (yi − Γlxi)

}
+

K∑
l=1

p∑
j=1

q+1∑
m=1

p(|γjm,l|, λ2) +
∑
l<l′

p
{
(∥Θl −Θl′∥2F + ∥Γl − Γl′∥2F )1/2, λ3

}}
.

(2.6)

We adopt the local quadratic approximation technique. Details are provided in

Supplementary Materials. For Θl, l = 1, . . . , K, maximizing (2.3) is equivalent to

solving:

{
Θ(t)

}
= argmin

Θ

{
K∑
l=1

n
(t)
l

{
− log det(Θl) + tr(S

(t)
ΓlΘl)

}
+

K∑
l=1

∑
j ̸=m

p(|θjm,l|, λ1) +
∑
l<l′

p
{
(∥Θl −Θl′∥2F + ∥Γl − Γl′∥2F )1/2, λ3

}}
,

(2.7)

where S
(t)
Γl = C

(t)
yl −C

(t)
yx,lΓ

(t)T
l − Γ

(t)
l C

(t)T
yx,l + Γ

(t)
l C

(t)
xl Γ

(t)T
l , n

(t)
l =

∑n
i=1 L

(t)
il , and Cyl,
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2.1 Computation

Cxl, and Cyx,l are weighted covariance matrices:

C
(t)
yl =

n∑
i=1

L
(t)
il yiy

T
i /

n∑
i=1

L
(t)
il ,C

(t)
yx,l =

n∑
i=1

L
(t)
il yix

T
i /

n∑
i=1

L
(t)
il ,C

(t)
xl =

n∑
i=1

L
(t)
il xix

T
i /

n∑
i=1

L
(t)
il .

This optimization is achieved using the ADMM technique (Supplementary Materi-

als). Overall, the algorithm contains iterating (2.4), (2.5), (2.6) and (2.7). The iter-

ation is concluded when the difference between the estimates from two consecutive

steps is smaller than a prefixed constant. Satisfactory convergence is observed in all

of our numerical studies. For initial values, we resort to the nonparametric mixture

approach (Chauveau and Hoang, 2016) and observe satisfactory performance. With

the additional complexity of the proposed approach, the computation is inevitably

more complicated than some of the existing ones. However, it is still feasible and

affordable. Additional information on computational cost is provided in Table S10

(Supplementary Materials).

Tuning parameter selection For selecting the optimal λ1, λ2 and λ3, we conduct

a grid search and minimize the Hannan-Quinn information criterion (HQC):

−2
n∑

i=1

log


K̂0∑
k=1

π̂kfk(yi;xi, Γ̂k, Θ̂k)

+

K̂0∑
k=1

log{log(n)}dfk, (2.8)

where dfk is the total number of nonzero parameters in Γ̂k and Θ̂k, k = 1, . . . , K̂0.

The HQC criterion has been shown to have satisfactory performance in the literature.

In our limited numerical studies, it is found to have comparable or better performance

than some other criteria. A systematic investigation of the tuning parameter selection
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2.2 Theoretical properties

criterion is beyond our scope.

2.2 Theoretical properties

Denote the true parameter values as Υ∗ = (Υ∗
1, . . . ,Υ

∗
K0
)T and Υ∗

k = vec(Γ∗
k,Θ

∗
k)

for k = 1, . . . , K0. Define Sk = {(j,m) : θ∗jm,k ̸= 0, 1 ≤ j ̸= m ≤ p} and the sparsity

parameter s = max{|Sk|, k = 1, . . . , K0}. Similarly, define Dk = {(j,m) : γ∗
jm,k ̸=

0, 1 ≤ j ≤ p, 1 ≤ m ≤ q + 1} and d = max{|Dk|, k = 1, . . . , K0}. The following

conditions are assumed.

(C1) For some positive constants β1 and β2, 0 < β1 < min1≤k≤K0 λmin(Θ
∗
k) <

max1≤k≤K0 λmax(Θ
∗
k) < β2, where λmin(Θ

∗
k) and λmax(Θ

∗
k) are the smallest and

largest eigenvalues of Θ∗
k, respectively.

(C2) ∥Θ∗∥∞ = maxk=1,...,K0 ∥Θ∗
k∥∞ and ∥Γ∗∥∞ = maxk=1,...,K0 ∥Γ∗

k∥∞ are bounded.

(C3) The design matrix X = (X1, · · · ,Xq+1) satisfies maxj ∥Xj∥2 = O(
√
n), j =

1, . . . , q + 1. For each k = 1, . . . , K0, let XDk
be the sub-matrix of X with the

support of coefficient matrix Dk, and XDC
k
is the corresponding complement.

Define Lk(y;x,Υ
∗) = πkfk(y;x,Υ

∗
k)/

∑K
k=1 πkfk(y;x,Υ

∗
k), E{Lk(y;x,Υ

∗)} =∫
Lk(y;x,Υ

∗)f(y|x,Υ∗
k)dy andGk = diag [E{Lk(yi;xi,Υ

∗)}] is a n×n diago-

nal matrix with E{Lk(yi;xi,Υ
∗)} as its elements. Denote ∥B∥2,∞ = max∥v∥2 ∥Bv∥∞.
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2.2 Theoretical properties

For a positive constant C0 and α1 ∈ [0, 1/2),

λmin(X
T
Dk
GkXDk

/n) ≥ C0,
∥∥∥(XT

DC
k
GkXDk

)(XT
Dk
GkXDk

)−1
∥∥∥
2,∞

≤ O(nα1).

(C4) Minimal signal condition:

min
{
{|γ∗

jm,k| : (j,m) ∈ Dk, k = 1, . . . , K0}, {|θ∗jm,k| : (j,m) ∈ Sk, k = 1, . . . , K0}
}

> (a+ 0.5) ·max{λ1, λ2}.

Denote b = min1≤k ̸=k′≤K0 ∥Υ∗
k −Υ∗

k′∥2. Then, b > (a+ 0.5)λ3.

(C5) λ1 ≫
√

(d+s+p)(log p+log q)
n

, λ2 ≫
√

(d+s+p)(log p+log q)
n

, and λ3 ≫
√

(d+s+p)(log p+log q)
n

.

(C6) The K0 clusters are sufficiently separable such that, with a small γ > 0,

Lk(y;x,Υ
∗) · Lj(y;x,Υ

∗) ≤ γ

24(K0 − 1)
√
max{W,W ′,W ′′}

,

for each pair {(j, k), 1 ≤ j ̸= k ≤ K0}. Here, W = max1≤k≤K0 Wk, W
′ =

max1≤k≤K0 W
′
k, and W ′′ = max1≤k≤K0 W

′′
k , and for each k = 1, . . . , K0,

Wk = sup
t∈[0,1]

E
{
δΥt,k

(y)T δΥt,k
(y)∥Θ∗

k(y − Γ∗
kx)x∥2F

}
,

W ′
k = sup

t∈[0,1]
E
{
δΥt,k

(y)T δΥt,k
(y)∥Θ∗−1

k ∥2F
}
,

W ′′
k = sup

t∈[0,1]
E
{
δΥt,k

(y)T δΥt,k
(y)∥(y − Γ∗

kx)(y − Γ∗
kx)

T∥2F
}
.

Define Υ̃t = Υ∗ + t(Υ − Υ∗), Υ̃t = (Υ̃t,1, . . . , Υ̃t,K0), Υ̃t,k = vec(Γ̃t,k, Θ̃t,k)

with t ∈ [0, 1], and for any Υ ∈ Bα0(Υ
∗) = {Υ : ∥Υ−Υ∗∥2 ≤ α0}:

δΥt,k
(y) =

 vec
{
Θ̃t,k(y − Γ̃t,kx)x

}
1
2
vec

{
Θ̃−1

t,k − (y − Γ̃t,kx)(y − Γ̃t,kx)
T
}
 .
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2.2 Theoretical properties

(C7) ρ(t) = λ−1p(t, λ) is concave in t ∈ [0,+∞) with a continuous derivative ρ′(t)

satisfying ρ(0+) = 1, and ρ′(0+) is independent of λ. There exists a constant

0 < a < ∞ such that ρ(t) is constant for all t ≥ aλ.

Conditions (C1) and (C2) have been commonly assumed in the GGM literature par-

ticularly including those on heterogeneity analysis (Hao et al., 2018). The bound-

edness condition on the coefficients is also common for high-dimensional regression.

Condition (C3) is on the design matrix and controls the correlations between vari-

ables as well as the correlations between unimportant and important variables in

each sample group. It is similar to Condition 4 in Fan and Lv (2011). Condition

(C4) specifies the minimal signals and minimal differences across the sample groups.

Condition (C5) specifies the orders of the tuning parameters. Condition (C6) is

the sufficiently separable condition and requires that a sample belongs to a group

with a probability close to either zero or one. Relevant discussions can be found in

Hao et al. (2018). This condition is similar to Condition 3 in Cai et al. (2021). It

has been shown that, under a simpler two-component mixture model, the separable

condition reduces to the commonly adopted signal-to-noise condition (Balakrishnan

et al., 2017). Condition (C7) has been commonly assumed for penalized estima-

tion/selection and is satisfied by SCAD and MCP.

Theorem 1: Suppose that Conditions (C1)-(C7) hold. If additionally (d + s +

p)(log p + log q)/n = o(1), then there exists a local maximizer of (2.1) such that,
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2.2 Theoretical properties

with probability tending to 1:

1. K̂0 = K0.

2.
∑K̂0

k=1

(
∥Γ̂k − Γ∗

k∥F + ∥Θ̂k −Θ∗
k∥F

)
= Op

(√
(d+s+p)(log p+log q)

n

)
.

3. Define D̂k = {(j,m) : γ̂jm,k ̸= 0} and Ŝk = {(j,m) : θ̂jm,k ̸= 0}. Then D̂k = Dk

and Ŝk = Sk for k = 1, . . . , K̂0.

This theorem shows that the proposed approach has the well-desired consistency

properties. Specifically, it can consistently identify the number of sample groups,

which has not been established in quite a few existing heterogeneity analysis studies.

Additionally, it has estimation and variable selection consistency. Here we note

that, as in many published studies, only local convergence is established. Global

convergence will demand additional conditions and investigations. Although the

obtained results are not “surprising” and somewhat similar to those in the existing

literature, the present data and model settings are much more complicated and

include the existing ones (for example, GGM-based heterogeneity analysis (Hao et al.,

2018) and under homogeneity, and high-dimensional regression-based heterogeneity

analysis (Sun et al., 2022)) as special cases, and the theoretical developments are not

trivial. The proof is provided in Supplementary Materials.

17

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0109



3. Simulation

Simulation is conducted to gauge performance of the proposed approach and compare

against relevant alternatives. We set K0 = 3 and consider dimensions p = q = 50

and p = q = 100. For sample sizes, we consider three cases: a balanced case with all

groups having sample sizes 200, a balanced case with all groups having sample sizes

500, and an imbalanced case with the three groups having sample sizes 150, 200 and

250. Additionally, the following three settings are considered.

(S1) xi has the first element being 1, and the other elements follow a normal dis-

tribution N(0, Iq). The coefficient matrices Γ1 ̸= Γ2 ̸= Γ3. The positions

of the nonzero entries are randomly selected, and each entry has a probabil-

ity proportional to 1/q of being nonzero. The nonzero values are generated

from Unif(−1.5,−1)
⋃

Unif(1, 1.5). All sample groups have tridiagonal preci-

sion matrices with the diagonal elements equal to 1 and the nonzero off-diagonal

elements equal to 0.2, 0.3, and 0.4 for the three sample groups, respectively.

(S2) The precision matrices are generated by the nearest-neighbor networks. Specif-

ically, each network consists of 10 equally-sized disjoint subnetworks (modules),

among which eight are shared by the three sample groups. Additionally, the

first group shares one module with the second group and another one with the

third group. The second group and the third group also have a unique module
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of their own. The structure of each module is generated by a nearest-neighbor

network. We first generate p/10 points randomly on a unit square, calculate

all p/10× (p/10− 1)/2 pairwise distances, and select m = 2 nearest neighbors

of each point besides itself. The nonzero off-diagonal elements of the preci-

sion matrices are located at which the corresponding two points are among

the m nearest neighbors of each other. The nonzero values are generated from

Unif(−0.4,−0.1)
⋃

Unif(0.1, 0.4). The diagonal elements are all set to 1. The

other settings are the same as S1.

(S3) xi’s have categorical distributions. Specifically, xij is generated randomly from

{0, 1, 2} with equal probabilities. The other settings are the same as S1.

The sample size and dimensionality settings are comparable to those in the litera-

ture. With the presence of both networks and high-dimensional regressions under

heterogeneity, our simulation can be considerably more challenging. It is noted that,

although p and q may not seem large, with the precision and regression coefficient

matrices for multiple sample groups, the number of unknown parameters is consid-

erably larger than the sample size. Both continuous and categorical regulators are

simulated, mimicking, for example, methylation and copy number variation. Two

types of network structures are considered, both of which are popular in the liter-

ature. When implementing the proposed method, we set K = 6 – we have also

19

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0109



experimented with a few other values and found similar results. To gauge its per-

formance, we consider the following close alternatives. It is noted that there can be

other alternatives. However, the following can be more relevant.

(a) The strategy is to first conduct clustering and generate sample groups. Then

estimation is conducted for each group separately. This can be the most natural

choice with the existing tools. Specifically, we use a nonparametric mixture

approach (Chauveau and Hoang, 2016) for clustering, which outperforms K-

means and many other clustering methods. The clustering is based on Y . It is

found that it outperforms that based on (X, Y ), which can be caused by the

high dimensionality and additional noises. The number of groups is set as K =

3, 4, 6, as there is not a simple way for determining its value. For estimation

with each group, we apply the conditional Gaussian graphical approach with

Lasso penalization (CGLasso) (Yin and Li, 2011). Tuning parameter selection

is conducted using BIC as proposed in the literature.

(b) This approach is similar to (a), except that the sparse multivariate regression

with covariance estimation (MRCE) approach (Rothman et al., 2010) is applied

for estimation after clustering.

(c) The mixture of conditional Gaussian graphical model (MCGGM) approach

(Lartigue et al., 2021) is applied. With a given number of clusters, it can
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achieve simultaneous clustering and estimation of the precision matrices as

well as the correlation matrices (between gene expressions and regulators).

Note that this approach estimates the mutual correlation matrices between x

and y, not the regression coefficient matrices Γ’s.

(d) The heterogeneous Gaussian graphical model via penalized fusion (HeteroGGM)

approach (Ren et al., 2022) is applied. It can simultaneously achieve cluster-

ing and precision matrix estimation. The number of groups is automatically

determined in a way similar to the proposed approach. However, it cannot

accommodate the regulations of x on y.

To evaluate performance, we consider the following measures. For grouping ac-

curacy, we consider K̂0 and adjusted Rand index (RI), which measures the similarity

between the estimated and true grouping structures. For estimation accuracy, we

consider root mean square error (RMSE). Specifically, for the precision matrices,

RMSE(Θ) =


1
K0

∑K0

k=1 ∥Θ̂k −Θ∗
k∥F K̂0 = K0,

1

K̂0

∑K̂0

l=1

∑K0

k=1 ∥Θ̂l −Θ∗
k∥F · I(

k = argmink′{∥Θ̂l −Θ∗
k′∥2F + ∥Γ̂l − Γ∗

k′∥2F}
)

K̂0 ̸= K0.

For variable selection accuracy, we consider true/false positive rates (TPR/FPR):

TPR(Θ) =


1
K0

∑K0

k=1

∑
j<m I(θ∗jm,k ̸=0,θ̂jm,k ̸=0)∑

j<m I(θ∗jm,k ̸=0)
K̂0 = K0,

1

K̂0

∑K̂0

l=1

∑K0

k=1

∑
j<m I(θ∗jm,k ̸=0,θ̂jm,l ̸=0)∑

j<m I(θ∗jm,k ̸=0)
· I(

k = argmink′{∥Θ̂l −Θ∗
k′∥2F + ∥Γ̂l − Γ∗

k′∥2F}
)

K̂0 ̸= K0,
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FPR(Θ) =


1
K0

∑K0

k=1

∑
j<m I(θ∗jm,k=0,θ̂jm,k ̸=0)∑

j<m I(θ∗jm,k=0)
K̂0 = K0,

1

K̂0

∑K̂0

l=1

∑K0

k=1

∑
j<m I(θ∗jm,k=0,θ̂jm,l ̸=0)∑

j<m I(θ∗jm,k=0)
· I(

k = argmink′{∥Θ̂l −Θ∗
k′∥2F + ∥Γ̂l − Γ∗

k′∥2F}
)

K̂0 ̸= K0.

The above measures are defined accordingly for the coefficient matrices.

To get some intuition into performance of the proposed and alternative ap-

proaches, in Figure 2, for one simulation replicate, we compare grouping performance

of the different approaches. It is clear that, for this specific replicate, the proposed

approach has higher grouping accuracy. Further, in Figures S2 and S3 (Supplemen-

tary Materials), we consider one simulation replicate under S1 and S2, respectively.

Additionally, we consider two sample size settings. It is observed that the proposed

approach generates significantly different network estimations for different sample

groups. Under S1 with a relatively simpler structure, performance is already sat-

isfactory under the smaller sample size setting. Under S2, we observe a significant

improvement in identification accuracy when sample size increases.

More definitive results are based on 100 replicates for each setting. The summary

results for setting S1 and p = q = 50 are provided in Table 1. The results for the other

settings are presented in Tables S3-S7 in Supplementary Materials. The proposed

approach is observed to have competitive performance across the whole spectrum

of simulation. As a representative example, we consider Table 1, the setting with

group sizes (150, 200, 250). The proposed approach is able to accurately identify the

22

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0109



Table 1: Simulation results under S1 with p = q = 50. In each cell, mean (sd).

n Method RMSE TPR FPR RI K̂0

(200,200,200)

Proposed
Θ 1.740(0.613) 0.943(0.047) 0.057(0.014)

0.994(0.027) 3.05(0.22)Γ 1.531(1.206) 0.961(0.045) 0.008(0.015)

HeteroGGM
Θ 4.146(0.175) 0.980(0.011) 0.894(0.009)

0.569(0.250) 4.85(1.27)Γ - - -

CGLasso(K = 6)
Θ 3.632(0.114) 0.861(0.017) 0.266(0.011)

0.249(0.096) 6(0)Γ 6.083(0.344) 0.962(0.021) 0.108(0.006)

CGLasso(K = 4)
Θ 3.581(0.254) 0.915(0.012) 0.209(0.027)

0.443(0.137) 4(0)Γ 4.666(0.855) 0.989(0.013) 0.074(0.011)

CGLasso(K = 3)
Θ 3.638(0.493) 0.938(0.018) 0.173(0.048)

0.502(0.176) 3(0)Γ 4.491(1.591) 0.989(0.011) 0.056(0.017)

MRCE(K = 6)
Θ 3.870(0.122) 0.905(0.021) 0.406(0.024)

0.249(0.096) 6(0)Γ 6.876(0.347) 0.803(0.054) 0.114(0.016)

MRCE(K = 4)
Θ 3.412(0.373) 0.951(0.021) 0.292(0.034)

0.443(0.137) 4(0)Γ 4.677(1.452) 0.907(0.034) 0.156(0.024)

MRCE(K = 3)
Θ 3.197(0.871) 0.971(0.014) 0.278(0.027)

0.502(0.176) 3(0)Γ 4.166(2.313) 0.987(0.015) 0.118(0.011)

MCGGM(K = 3)
Θ 3.952(0.614) 0.794(0.202) 0.118(0.094)

0.395(0.192)) 3(0)Γ - - -

(150,200,250)

Proposed
Θ 1.457(0.130) 0.950(0.015) 0.058(0.006)

1.000(0.000) 3.00(0.00)Γ 0.937(0.512) 0.990(0.021) 0.003(0.002)

HeteroGGM
Θ 4.152(0.142) 0.986(0.010) 0.899(0.013)

0.547(0.244) 4.50(1.50)Γ - - -

CGLasso(K = 6)
Θ 3.681(0.158) 0.889(0.020) 0.263(0.018)

0.212(0.072) 6(0)Γ 5.919(0.699) 0.967(0.025) 0.105(0.010)

CGLasso(K = 4)
Θ 3.458(0.282) 0.926(0.018) 0.200(0.027)

0.417(0.119) 4(0)Γ 4.464(0.813) 0.991(0.019) 0.068(0.011)

CGLasso(K = 3)
Θ 3.645(0.533) 0.948(0.016) 0.176(0.050)

0.431(0.232) 3(0)Γ 4.619(1.766) 0.987(0.021) 0.057(0.019)

MRCE(K = 6)
Θ 3.929(0.623) 0.905(0.028) 0.343(0.040)

0.212(0.072) 6(0)Γ 6.535(0.709) 0.839(0.085) 0.146(0.022)

MRCE(K = 4)
Θ 3.196(0.324) 0.957(0.011) 0.311(0.045)

0.417(0.119) 4(0)Γ 4.485(0.870) 0.977(0.042) 0.160(0.018)

MRCE(K = 3)
Θ 3.346(0.650) 0.973(0.012) 0.284(0.046)

0.431(0.232) 3(0)Γ 4.557(1.894) 0.973(0.055) 0.145(0.019)

MCGGM(K = 3)
Θ 4.355(1.579) 0.768(0.195) 0.120(0.097)

0.394(0.166) 3(0)Γ - - -

(500,500,500)

Proposed
Θ 0.754(0.035) 0.999(0.002) 0.034(0.004)

1.000(0.000) 3.00(0.00)Γ 0.327(0.023) 1.000(0.000) 0.001(0.000)

HeteroGGM
Θ 4.049(0.105) 0.991(0.004) 0.879(0.006)

0.660(0.087) 5.80(0.70)Γ - - -

CGLasso(K = 6)
Θ 3.090(0.165) 0.934(0.024) 0.110(0.030)

0.470(0.049) 6(0)Γ 3.389(0.355) 0.998(0.004) 0.056(0.020)

CGLasso(K = 4)
Θ 2.924(0.145) 0.963(0.021) 0.089(0.034)

0.677(0.025) 4(0)Γ 2.707(0.258) 0.999(0.002) 0.042(0.009)

CGLasso(K = 3)
Θ 2.618(0.166) 0.968(0.021) 0.046(0.018)

0.809(0.020) 3(0)Γ 1.813(0.067) 1.000(0.000) 0.024(0.001)

MRCE(K = 6)
Θ 2.671(0.128) 0.985(0.009) 0.266(0.026)

0.470(0.049) 6(0)Γ 3.235(0.353) 0.995(0.009) 0.131(0.012)

MRCE(K = 4)
Θ 2.481(0.161) 0.997(0.003) 0.221(0.027)

0.677(0.025) 4(0)Γ 2.519(0.287) 0.999(0.003) 0.096(0.008)

MRCE(K = 3)
Θ 2.220(0.113) 0.995(0.011) 0.163(0.012)

0.809(0.020) 3(0)Γ 1.621(0.092) 1.000(0.000) 0.058(0.003)

MCGGM(K = 3)
Θ 4.256(0.479) 0.797(0.231) 0.071(0.048)

0.405(0.190) 3(0)Γ - - -
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Figure 2: Analysis of one simulation replicate generated under S1 with group sizes

(200, 200, 200). From left to right: Proposed method, HeteroGGM, nonparametric

clustering for CGLasso and MRCE, and MCGGM.

number of sample groups, while HeteroGGM, without accounting for the regulations,

over-estimates with a mean of 4.5. HeteroGGM has a satisfactory TPR value for

the precision matrices, however, much inferior RMSE and FPR values. The other

alternatives all have much inferior estimation performance with much larger RMSEs.

They can have acceptable identification performance, especially when the number of

sample groups is correctly specified – this can be very difficult in practice. In general,

their identification accuracy is worse than the proposed. The alternatives fail to

accurately identify the grouping structures. For this specific setting, the proposed

approach has an average RI value of 1, HeteroGGM has an average RI of 0.547, and

the other alternatives all have RI values below 0.5.

To further examine whether the proposed analysis can scale up, we consider the

more challenging settings with p = q = 200 and K0 = 10. The results are shown in
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Table S8 and S9 (Supplementary Materials). It is again observed that the proposed

approach outperforms the alternatives.

4. Data analysis

4.1 Analysis of the METABRIC data

Breast cancer has one of the highest incidence rates, and extensive profiling studies

have been conducted on breast cancer. Gene expression data has been collected

and analyzed in quite a few studies, among which some are multiomics (Tang et al.,

2018; Lin et al., 2020). We analyze data collected in the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) study (Pereira et al., 2016)

and refer to the published literature (Curtis et al., 2012) for information on sample

and data collection and processing.

Gene expression and copy number alteration (CNA) measurements are available

for 1,758 samples. In principle, the proposed analysis can be conducted with all gene

expression and CNA measurements. Considering the limited sample size and large

number of unknown parameters, we conduct a “candidate gene” analysis (Tabor

et al., 2002) and focus on genes in the KEGG hsa05224 pathway. This pathway is

named as “breast cancer” and contains well-known breast cancer related genes such

as ESR, MYC, WTN, EGFR, KRAS, HRAS, NRAS, MAPK, and NOTCH. It has

been examined in quite a few published studies (Dai et al., 2016), although it is noted
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4.1 Analysis of the METABRIC data

that the perspectives taken in the published studies are significantly different from

the proposed. A total of 147 genes belong to this pathway. Among them, two are

not measured in the METABRIC study. As such, a total of 145 gene expressions and

their corresponding CNAs are available for analysis. We refer to Curtis et al. (2012);

Pereira et al. (2016) for the preprocessing of gene expression and CNA measurements.

When implementing the proposed approach, we set K = 10. A total of six

sample groups are identified, with sizes 201, 387, 356, 303, 248, and 263. Detailed

sample grouping information is available from the authors. For those six groups, the

estimated gene expression networks are presented in Figure 3. The six networks have

684, 676, 432, 638, 380, and 652 edges, and Table S11 (Supplementary Materials)

suggests that they have small to moderate numbers of overlapping edges. Genes

with the highest degrees are presented in Figure S5 (Supplementary Materials), and

significant differences are observed across the sample groups. For example, gene

PIK3CD, which plays a critical role in some solid tumors including breast cancer,

is an isolated node in the first network but a key hub node in the other networks,

especially the sixth one. Other genes that behave differently in different sample

groups include ESR1, DVL3, PGR, RPS6KB1, EGFR, FZD7 and FGFR1. There

are also genes that behave similarly in all sample groups, such as CSNK1A1, E2F3

and MYC – they are established breast cancer markers and have high degrees in all

the networks. The estimated coefficient matrices are presented in Figure 4, where
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4.1 Analysis of the METABRIC data

we observe notable differences. In addition, it is observed that the cis regulations are

usually the strongest, which is as expected. The regulation relationships are sparse,

and there are a few trans regulations. In general, different genes have different sets

of regulators. Some genes are co-regulated by certain regulators, for example, as

observed in the case of SHC1 and FZD2.

Figure 3: Analysis of METABRIC data: network structures for the six sample groups.

The proposed analysis is unsupervised. A review of relevant literature suggests

that there is a lack of way for determining whether the identified sample groups and

their differences (in gene expression network and regulation relationship) are clini-

cally sensible. Here, to provide “indirect support”, we compare key clinical features
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4.1 Analysis of the METABRIC data

Figure 4: Analysis of METABRIC data: heatmaps of the estimated coefficient ma-

trices for the six sample groups.

across the identified groups. In Table S12 (Supplementary Materials), we report the

analysis of variance results for tumor size, mutation count, and tumor burden, all

of which have significant clinical implications. In Figure S6 (Supplementary Ma-

terials), we further compare overall survival and relapse free survival. Significant

differences are observed, suggesting that the six sample groups have notable clinical

differences. Breast cancer can be classified as luminal A, luminal B, HER2-enriched,

basal-like, and Claudin-low (Prat et al., 2015). In Table S13 (Supplementary Mate-

rials), we compare the identified six groups against these five subtypes. The Rand

index between these two types of grouping is 0.736, suggesting certain consistency.

For example, the basal-like ones are mostly in Group 5 identified by the proposed
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4.1 Analysis of the METABRIC data

approach, and the HER2-enriched ones are mostly in Group 6. On the other hand,

it is recognized that these two groupings also have notable differences. For example,

the Claudin-low ones are almost equally presented in Group 2 and Group 5. Here it

is noted that comparing with the Claudin subtypes, similar to the above analysis of

clinical outcomes/phenotypes, is meant to provide additional insight into the clus-

tering results. The Claudin subtyping is defined based on specific biomarkers, has a

strategy/approach significantly different from the proposed, and cannot be used to

evaluate clustering accuracy of the proposed approach.

Data is also analyzed using the alternative approaches. With HeteroGGM, the

number of sample groups is data-dependently selected to be six. For the other

alternatives, we fix the number of groups as five for better comparability. Here

it is noted that MCGGM generates two empty groups, leading to three nontrivial

ones. The heterogeneity analysis comparisons are summarized in Table S14 and

Figure S7 (Supplementary Materials). It is observed that different approaches lead

to significantly different groupings. Specifically, CGLasso and HeteroGGM have

stronger overlappings with the proposed approach, while MCGGM generates highly

imbalanced groups. The Rand index values between the five Claudin subtypes and

the alternative approaches are 0.726 (CGLasso and MRCE), 0.730 (HeteroGGM),

and 0.485 (MCGGM). The five networks generated by CGLasso have 590, 132, 96,

142 and 154 edges. Those generated by HeteroGGM have 594, 616, 662, 446, 752
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4.2 Analysis of the TCGA data

and 3340 edges. And those generated by MCGGM have 238, 70 and 472 edges.

MRCE fails in the first sample group due to its extremely small size and identifies

625, 393, 905, and 579 edges in the other sample groups. It is apparent that the

network structures are also significantly different. More detailed results are available

from the authors.

4.2 Analysis of the TCGA data

In Supplementary Materials, we analyze The Cancer Genome Atlas (TCGA) data on

breast cancer. The sample size is 1,048, and we also analyze the 147 gene expressions

and their corresponding CNAs in the KEGG hsa05224 (breast cancer) pathway. The

proposed approach identifies three sample groups, which have significantly different

gene expression network structures, regulation relationships, and clinical features.

Additionally, it is found that its findings are significantly different from those of

the alternatives. It is noted that the METABRIC and TCGA data have significant

differences and cannot be pooled for analysis or directly compared.

5. Discussion

Using gene expression and regulator data, we have developed a new heterogeneity

analysis approach that is based on high-dimensional conditional relationships as well

as high-dimensional regulations. This analysis/approach includes multiple existing

30

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0109



ones as special cases and can be more comprehensive/informative. Theoretical devel-

opments not only provide a solid foundation for the proposed approach but also may

advance complex high-dimensional statistics – it is noted that there have been limited

developments that collectively conduct conditional network and regression analysis,

especially in the challenging context of heterogeneity analysis. We have convincingly

demonstrated the practical effectiveness of the proposed approach. Multiple aspects

of this study may demand additional research. For example, it can be of interest to

accommodate other network constructions, other regulation models, and other types

of data. As in the literature, we have stacked multiple types of regulators in a single

vector. With proper data preprocessing, this has been shown as effective. It is noted

that, as in some other analyses, when the dimension of gene expressions and regula-

tors is extremly high, there is a risk of overfitting. For this study and beyond, it can

be of interest to examine how to more effectively merge multiple types of regulators.

A theoretical challenge, which has also been encountered by many published studies,

is the asymptotic validity of the proposed tuning parameter selection. Additionally,

as in many published studies, establishing the global maximization of the penalized

likelihood without concavity is challenging. The proposed approach does not demand

all relevant regulators. In practical data analysis, it can be of interest to examine

the impact of missing regulators.
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