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Abstract: Utilizing natural history data as external control plays an important

role in the clinical development of rare diseases, since placebo groups in double-

blind randomization trials may not be available due to ethical reasons and low

disease prevalence. This article proposed an innovative approach for utilizing

natural history data to support rare disease clinical development by constructing

reference centile charts. Due to the deterioration nature of certain rare diseases,

the distributions of clinical endpoints can be age-dependent and have an absorb-

ing state of zero, which can result in censored natural history data. Existing
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methods of reference centile charts can not be directly used in the censored nat-

ural history data. Therefore, we propose a new calibrated zero-inflated kernel

quantile (ZIKQ) estimation to construct reference centile charts from censored

natural history data. Using the application to Duchenne Muscular Dystrophy

drug development, we demonstrate that the reference centile charts using the

ZIKQ method can be implemented to evaluate treatment efficacy and facilitate

a more targeted patient enrollment in rare disease clinical development.

Key words and phrases: Natural history data, Quantile regression, Kernel esti-

mation, Zero-inflated data.

1. Introduction

A rare disease is defined as a disease or condition that affects less than

200,000 persons in the United States, according to Section 526(a)(2)(A)

of the Federal Food, Drug, and Cosmetic Act (FD&C Act)(U.S. Congress,

1934). There are approximately 7,000 recognized rare diseases, cumula-

tively affecting about 1 in 10 people in the United States. However, most

rare diseases do not have approved therapies owing to their complexity

and the challenges in clinical development. Most prominently, the golden

standard randomization, commonly used in clinical trials (Ingram et al.,

1997; Rubenstein et al., 1984), is often unethical and impractical for rare

diseases. To determine the treatment efficacy, one has to rely on exter-
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nal controls, which are commonly determined from natural history studies,

i.e., preplanned observational studies that “collect health information in

order to understand how a medical condition or disease develops”(National

Cancer Institute, 2019).

By design, natural history data can serve as clinical controls, as they

are non-interventional and often include patients receiving standard of care

(Ghadessi et al., 2020). For rare diseases with deteriorating conditions,

such external/historical control has to be age-dependent to align with the

natural disease progression. For example, patients suffering from Duchenne

Muscular Dystrophy (DMD), a rare but severe and progressive muscle dis-

order, typically show a noticeable decline of mobile function by age 3-5

and eventually lose ambulation around 10-12 years old. According to the

natural history data of DMD (Figure 1), the North Star Ambulatory As-

sessment (NSAA) score, which is a clinical endpoint to evaluate patients’

physical functions, tends to increase naturally at an early age 4-6, but later

decline gradually until it drops to zero (i.e., ”unable to perform indepen-

dently”). Clearly, the distribution of NSAA is highly age-dependent, with

an increased risk of entering the absorbing state of zero. Therefore us-

ing natural history data directly as external control can bring bias due to

not-matched age and disease status at baseline. Hence, we propose a new
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approach to utilize natural history data as external control by constructing

the age-adjusted reference centile chart for patients with rare diseases.

Figure 1: (Source: Figure 1 from Muntoni et al. (2019)) NSAA total score

trajectories for individual patients by age (in grey) and the fitted mean and

95% confidence interval (in black).

Widely used in pediatrics to monitor children’s growth over time, the

age-dependent reference centile chart comprises percentile curves of a tar-

get measurement over time at selected percentile levels. Typical choices of

percentiles are 5%, 25%, 50%, 75%, and 95%. When applied to natural

history data, such a chart displays the distribution of the target measure in

the disease population without interventions. It helps identify a patient’s
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percentile rank compared to his peers at the same age without interven-

tion. Thus, a noticeable increase in a patient’s percentile rank indicates a

slowdown in disease progression and evidence of the treatment effect.

Common approaches to building reference charts include the LMS method

(Cole and Green, 1992) with an age-dependent normality transformation

and more general semiparametric quantile-regression approaches proposed

inWei et al. (2006); Zhang et al. (2015). However, those normality-transformation-

based methods are designed for continuous variables. They do not incorpo-

rate the probability mass on the absorbing state, and hence fail to depict

the deteriorating progress of the rare disease. In the case of DMD, a patient

physical condition deteriorates over time until he completely loses his am-

bulatory function, and such a stage is non-reversible. Statistically speaking,

the distribution of the clinical endpoint, such as the NSAA score, contains

a probability mass on the zero states that increases over time.

We propose a new calibrated Zero-Inflated Kernel Quantile (ZIKQ)

estimation to construct reference centile charts for such deteriorating rare

diseases from their natural history data. The resulting reference charts

establish theoretically-validated age-dependent external controls for rare

diseases, which are essential to evaluate treatment efficacy. They can also be

used to develop enrollment strategies to enhance patient enrollment. Both
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provide practical solutions to the major challenges in rare disease clinical

development — the scarcity of patients and the difficulty of randomization.

The rest of the paper is organized as follows. In Section 2, we outline the

statistical challenges in estimating reference centiles for rare deteriorating

diseases from natural history data, the proposed methods and algorithms,

and how they address the challenges. It is followed by its asymptotic prop-

erties discussed in Section 3. In Section 4, we evaluate the performance

of our method compared to existing reference chart construction methods.

In Section 5, we demonstrate how the estimated reference chart can assist

DMD drug development. A discussion is concluded in Section 6 with pos-

sible future works. Additional simulation results and detailed proofs are

provided in the Supplement.

2. Methodology

2.1 Statistical Model for deteriorating disease progress

The deteriorating disease progress of a rare disease can be described by

a stochastic process {Y (t), T0}, where Y (t) is a continuous non-negative

clinical endpoint for a deteriorating disease measured at age t, and T0 is

the age at which Y reaches zero. The conditional distribution of Y at age
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2.1 Statistical Model for deteriorating disease progress

t can be decomposed as

F (Y | t) = I(Y = 0)P (T0 ≤ t) + F (Y | t, T0 > t)P (T0 > t)

= {1− S(t)}+ F (Y | t, Y > 0)S(t),

where S(t) = P (T0 > t) is the survival function of T0. Consequently, the

conditional quantile of Y at age t, QY (τ | t),

QY (τ | t) =


0 τ < 1− S(t)

F−1(τ ∗ | t, T0 > t) τ > 1− S(t),

(2.1)

where τ ∗ = τ−{1−S(t)}
S(t)

. Note that this is a hurdle model, in which the zeros

and positive values are clearly separated into two parts. Thus, there is no

identifiability issue for the model. One can view τ ∗ as a continuous mapping

from (1−S(t), 1) → (0, 1). That is, if the target quantile level τ > 1−S(t),

then the quantile function QY (τ | t) is equivalent to the conditional quantile

function F−1(τ ∗ | t, T0 > t) at the quantile level τ ∗. That can be derived

by solving the equation

τ = P(T0 ≤ t) + P{Y ≤ QY (τ | t) | T0 > t}P(T0 > t)

= {1− S(t)}+ P{Y ≤ QY (τ | t) | T0 > t}S(t).

Many fatal rare diseases could be caused by rare genetic mutations and

chromosome abnormalities other than environmental factors. Owing to the
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2.2 Estimation of QY (τ | t) from a natural history data

incomplete understanding and the complexity of disease pathophysiology,

nonparametric statistical approaches are preferred to model how the clinical

endpoint changes with age.

2.2 Estimation of QY (τ | t) from a natural history data

A natural history data set consists of n subjects with multiple measure-

ments of interest per subject: {(Yij, tij) : i = 1, ..., n; j = 1, ..., Ji}, where

tij denotes the observed age for Yij, and Ji is the total number of measure-

ments for the ith subject. Such measurement of clinical endpoints often

follows a positive monotone trajectory with the increase of age t. In reality,

patients are very likely to stop visiting hospitals when the disease becomes a

severe threat to their physical conditions due to the close to the worst state.

To account for such nonignorable missing and impute the barely observed

moment of hitting the worst state, i.e., Yij = 0, we follow practical clinical

guidance and denote a cutoff C0 close to zero, such that any observations

below C0 indicate the future drop to the worst state soon, e.g., after half a

year. For simplicity, we assume Yij = 0 if Yi,j−1 < C0. In addition to the

nonignorable missing, random censoring also happens frequently due to the

end of the study, which is a major difference between the natural history

data and the traditional time-to-event data. In natural history data, S(t)
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2.2 Estimation of QY (τ | t) from a natural history data

is modeled as a function of the patient’s age but not duration in the study.

As the study is often conducted within a certain period and participants

joined at different initial ages, they will be censored at different ages when

the study ends if the event has not happened yet. This random censoring

is independent of the disease progression. Such random censoring does not

affect the estimation of QY (τ | t), but needs to be considered in estimating

the survival function S(t).

We consider Kaplan-Meier (KM) estimator (Kaplan and Meier, 1958)

for S(t) and kernel estimation (Fan et al., 1994) for QY (τ | t). KM esti-

mate is a nonparametric maximum likelihood estimate of the survival func-

tion, which models the risk as a function of follow-up time. For brevity,

we refer to the clinical endpoint of interest dropping to the worst case

as an event or failure happened. The true survival function is S(tk) =

P (Yij > 0, tij = tk). Given the hazard function at tk is hk = P (Yij <

C0|tij = tk, Yi,j−1 > C0) = 1− S(tk)
S(tk−1)

, the survival function can be written

as S(tk) =
∏k

r=1(1−hr). Suppose we estimate S(t) on a grid of time points

of interest: {t1, · · · , tr, · · · , tR}. At a specific tr, we denote the number of

events or failures happened as dr =
∑n

i=1

∑Ji
j=1 1(Yij = 0, tij = tr), and the

individuals randomly dropped out of study as cr =
∑n

i=1 1(Yi,Ji > C0, tr >

ti,Ji > tr−1). Let nr be the number of individuals who remained active in
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2.2 Estimation of QY (τ | t) from a natural history data

the study just before age tr, then dr/nr represents the risk of being failed

at tr. For the classical KM estimate, all individuals start from the same

baseline where the risk of failure is zero and nr = nr−1 − dr−1 − cr−1, and

Ŝ(tk) =
∏k

r=1

(
1− dr

nr

)
.

However, directly applying the above procedure is problematic as the

life course data observed in natural history studies are different from the

time-to-event data studied above. First, the risk in natural history studies

is a function of age but not follow-up time. Thus, patients enrolled at

different ages have different (unknown) initial risks. Second, natural history

data is a biased sample because the observed data are only representative

of people who have survived up to certain age but not those who have

reached the worst state and ended their observation before this age. This

results in an underestimation when applying nr = nr−1 − dr−1 − cr−1. A

numerical example is provided in Supplement Section S2 to show the bias

of the classical design for the KM estimator in the context of time-to-event

data.

Based on these two major differences, we propose to use nr,new =

dr + cr + sr, where sr =
∑n

i=1

∑Ji
j=1 1(Yij > 0, tij = tr) is the number

of individuals remaining active at time tr. Given the two characteristics of

the natural history data, a natural plug-in estimator of the hazard func-
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2.2 Estimation of QY (τ | t) from a natural history data

tion is ĥ(tk) = 1 − dr
nr,new

for based on the aforementioned definition of

hk = P (Yij < C0 | tij = tk, Yi,j−1 > C0). The product-limit KM esti-

mator can be constructed naturally with the desired theoretical properties

maintained. One can also estimate S(t) from external or historical data or

estimate S(t) by other means consistently.

As for estimating the quantile function QY (τ | t), nonparametric ap-

proaches are often preferred in reference chart construction because of their

flexibility to capture the nonlinear pattern over age (Wei et al., 2006;

Muggeo et al., 2013). We propose to use kernel weighted local linear fit-

ting for nonparametric regression estimation. For any nominal quantile

τ ∈ (0, 1) of Y , a characterization of the τth conditional quantile QY (τ | t)

is as

QY (τ | t) = QY (τ
∗ | t, T0 > t) = argmin

a
E{ρτ∗(Y − a) | t, T0 > t}, (2.2)

where ρτ∗(u) is the check function given by ρτ∗(u) = u{τ ∗ − I(u < 0)}. We

consider the local linear fitting and approximate QY (τ
∗ | t, T0 > t) by a

linear function: for z in a neighborhood of t,

QY (τ
∗ | z, T0 > z) = QY (τ

∗ | t, T0 > t) +Q′
Y (τ

∗ | t, T0 > t)(z − t) ≡ aτ + bτ (z − t).

Locally, estimating QY (τ
∗ | t, T0 > t) and Q′

Y (τ
∗ | t, T0 > t) is equivalent

to estimating aτ and bτ . Thus, we apply local linear fitting and define the
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2.3 Bandwidth selection

estimator as Q̂Y (τ | t) ≡ âτ , where

(âτ , b̂τ ) = argmin
a,b

∑
i,j

1{Yij > 0}ρτ∗ {Yij − a− b(tij − t)}Khτ∗ (tij − t) ,

and K(·) is a kernel function with bandwidth hτ∗ . Since the above objec-

tive function requires the unknown quantity S(t) through τ ∗, the optimal

estimator of (aτ , bτ ) is unattainable. With Ŝ(t) being a consistent estimator

of S(t) and τ̂ ∗ = τ−{1−Ŝ(t)}
Ŝ(t)

, the practical estimator (˜̂aτ ,
˜̂
bτ ) is

(˜̂aτ ,
˜̂
bτ ) = argmin

a,b

∑
i,j

1{Yij > 0}ρτ̂∗ {Yij − a− b(tij − t)}Khτ̂∗ (tij − t) ,(2.3)

and the estimated quantile function is

Q̂Y (τ | t) = 0 · 1{τ ≤ 1− Ŝ(t)}+ ˜̂aτ · 1{τ > 1− Ŝ(t)}.

2.3 Bandwidth selection

We follow the automatic bandwidth selection strategy suggested by Yu

and Jones (1998) for smoothing conditional quantiles. First, we use the

technique of Ruppert et al. (1995) to select hmean. Then, we obtain the

bandwidth of τ̂ ∗ as

hτ̂∗ = hmean

[
τ̂ ∗(1− τ̂ ∗)

ϕ{Φ−1(τ̂ ∗)}2

]1/5
,

where ϕ and Φ correspond to the pdf and cdf of standard normal distribu-

tion, respectively. Though there are other ready-made approaches to select
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hmean, additional simulation results suggest that hmean based on the method

of Ruppert et al. (1995) provides satisfied results across different quantile

levels. More details for comparing different bandwidth selection methods

are presented in the Supplement.

As the KM estimator is a step function of time t, its smoothness will

affect the smoothness of estimated centile curves. Though we are using the

kernel estimation moving through the support of t with carefully selected

bandwidth, the discreteness of Ŝ(t) will be reflected on τ̂ ∗. One can apply

post-smoothing techniques such as B-splines to the estimated chart. How-

ever, post-smoothing is not within the scope of this paper, and its resulting

properties will not be discussed in detail.

3. Asymptotic consistency

In this section, we provide the asymptotic convergence of the chart in-

stead of its asymptotic distribution because of the following two reasons.

Practically, reference centile charts are served as a standard criterion once

established. Thus, the primary interest is the follow-up investigation but

not the inference of the chart itself (Wei et al., 2006). Theoretically, the

asymptotic distribution of QY (τ | t) depends on the convergence rate of

Ŝ(t), while the asymptotic consistency only requires its consistency. To
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open the possibility of estimating S(t) in either parametric or nonparamet-

ric ways, we do not discuss the asymptotic distribution of the chart here.

Once the convergence rate of Ŝ(t) is given, the asymptotic distribution of

Q̂Y (τ | t) can be derived based on theoretical proofs in Fan et al. (1994).

For ease of notation, in this section, we simplify the notations and de-

note observations {(Yij, tij); i = 1, ..., n, j = 1, ..., Ji} as {(Yi, ti); i = 1, ..., n}

as for the longitudinal information is ignored in the unconditional refer-

ence chart. Recall that τ ∗ = τ−{1−S(t)}
S(t)

and τ̂ ∗ = τ−{1−Ŝ(t)}
Ŝ(t)

, we define

φ(x | t) = E[ρτ̂∗{Y − mτ∗(t) + x | T = t}], φ′(x | t) = ∂φ(x | t)/∂t and

φ′′(x | t) = ∂2φ(x | t)/∂2t. Further, let f(t) ≡ fT (t) be the density of age T

and g(y | t) be the conditional density of Y given observed age T = t with

respect to measure µ. Now we state Assumptions (A)-(B) for the kernel

estimator and Assumptions (C) for quantile regression as below.

Assumptions A (for interior points):

(A1). The kernel function K(·) ≥ 0 has a bounded support and satisfies∫
K(v)dv = 1,

∫
vK(v)dv = 0.

(A2). The density function fT (·) for T is continuous and f(t) > 0.

(A3). The function mτ∗(·) is assumed to have a continuous second deriva-

tive. The conditional density function g(y | t) is continuous in t for
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each y.

(A4). Assume that there exists positive constants ϵ, δ and a positive func-

tion G(y | t) such that sup|tn−t|≤ϵ g(y | tn) ≤ G(y | t) and that∫
|ρ′τ̂∗(y−mτ∗(t))|2+δG(y | t)dµ(y) < ∞ and

∫
{ρτ̂∗(y− η)− ρτ̂∗(y)−

ρ′τ̂∗(y)η}2G(y | t)dµ(y) = o(η2), as η → 0.

(A5). The quantile check function ρτ (·) is convex with a unique minimizer

at 0. φ(x | z), φ′(x | z) and φ′′(x | z) are functions of z are assumed

to be bounded and continuous in a neighborhood of t for all small x

and that φ(0 | t) ̸= 0 for all t, including the support boundary, i.e.,

t = 0 and t = 1.

Assumptions B (for boundary points):

(B1). The kernel function K(·) ≥ 0 has a bounded support and satisfies∫
K(v)dv = 1,

∫
vK(v)dv = 0.

(B2). Without loss of generality, we assume the support of the density func-

tion fT (·) is [0, 1] and assume f(0) ≡ limt↓0 fT (t) exists and positive.

(B3). The function mτ∗(·) is assumed to have a continuous second deriva-

tive. For boundary points tn = chn, assume that g(y | 0) ≡ limz↓0 g(y |

z) exists.
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(B4). There exists positive constants ϵ and δ and a positive function G such

that suptn≤ϵ g(y | tn) ≤ G(y) and that
∫
|ρ′τ̂∗(y−mτ∗(0))|2+δG(y)dµ(y) <

∞ and
∫
{ρτ̂∗(y−η)−ρτ̂∗(y)−ρ′τ̂∗(y)η}2G(y)dµ(y) = o(η2), as η → 0,

where we assume there exists mτ∗(0) = limz↓0mτ∗(z).

(B5). The quantile check function ρτ (·) is convex with a unique minimizer

at 0. φ′′(x | z) is a function of x is continuous in a neighborhood of

the point 0, uniformly for z in a neighborhood of t.

Assumptions C (for quantile regression):

(C1). The observations {(Yi, ti); i = 1, ..., N} can be assumed as i.i.d. from

a joint distribution P .

(C2). The conditional distribution function FY (· | t, t > T0) is absolutely

continuous with a positive continuous density fY |t>T0(· | t) on [0,∞).

(C3). The conditional quantile function is right continuous at 0:

lim
τ→{1−S(t)}+

QY (τ | t) = 0.

Assumptions (A) and (B) are mostly borrowed from Yu and Jones

(1998); Fan et al. (1994), with some modifications regarding the calibrated

quantile level τ̂ ∗. Conditions (A1)-(A3) and (B1)-(B3) are necessary for
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the convergence rate of the bias, and (A4) and (B4) are used for dominated

convergence theorem and moment calculation. (A5) and (B5) are satisfied

by quantile regression. Thus, the uniqueness of the solution of eq (2.3) is

guaranteed, and the smoothness of the check function ρτ (·) ensures the de-

sirable convergence rate. Assumptions (C) are similar to Ling et al. (2022)

and Koenker (2005). Among them, Assumption (C2) ensures the validity

of using quantile regression for the positive part, and Assumption (C3) is

necessary for the connectivity at the change point.

Theorem 1. Under the Assumptions (A), (B) and (C), for any given τ ∈

(0, 1), Q̂Y (τ | t) is a consistent estimator, i.e., as n → ∞, hn → 0 and

nhn → ∞,

Q̂Y (τ | t) p−→ QY (τ | t).

The asymptotic consistency is constructed separately for both scenarios

when τ ≤ 1− S(t) and τ > 1− S(t) as QY (τ | t) is defined piecewisely. In

particular, when τ > 1 − S(t), we establish the consistency regarding the

boundary and interior points for the local linear kernel estimator Q̂Y (τ | t).

The main idea of the proof is similar to the proof in Fan et al. (1994), but

the loss function is more complicated as τ̂ ∗ contains the estimated quantity

Ŝ(t). Detailed proof is provided in the Supplement.
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4. Numerical studies

To evaluate the performance of the proposed kernel quantile regression

method for censored growth chart (ZIKQ), we simulate the data mimicking

real applications with DMD.

To mimic the real NSAA score, the true function S(t) is estimated

from Figure 2 of Wang et al. (2018), and then the true τth quantile curve

QY (τ | t) is obtained from Figure 1 of Muntoni et al. (2019) based on

eq (2.1). The points can be extracted using xyscan, which is a useful

tool for extracting points by scanning the plot. We simulate n = 1, 000

subjects with Ji observations for subject i, where Ji is sampled uniformly

from the set {1, 2, · · · , 6}. According to the nature of DMD, we initiate

the first observational age of each subject ti1 ∼ Unif(4, 13) and the starting

quantile level τi1 ∼ Unif(0, 1). Assume patients go to hospitals every six

months on a regular basis. The consecutive measurements are collected at

age tij = ti1 + 0.5(j − 1), and the associated quantile τij is generated from

Unif(max(τi1 − 0.05, 0),min(τi1 + 0.05, 1)) for j = 1, · · · , Ji. Given τij and

tij, we generate the response Yij as below. If τij ≤ 1 − S(tij), Yij = 0 and

no further data for the ith individual will be collected. Otherwise, Yij =

Qmin(tij)(1−τij)+Qmax(tij)[τij−{1−S(tij)}]
S(tij)

, where Qmin(t) = QY {τ = 1 − S(t) | t}

and Qmax(t) = QY (τ = 1 | t) are derived from the equation Qmax(t)−QY (τ |t)
QY (τ |t)−Qmin(t)

=
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1−τ
τ−{1−S(t)} .

We compare our method ZIKQ to the two methods discussed in Wei

et al. (2006): (1) LMS method (denoted as LMS), implemented by R pack-

age gamlss (Rigby and Stasinopoulos, 2005); (2) a nonparametric quantile

regression method with a B-spline representation of the curves (denoted as

QR), implemented using R package quantreg (Koenker, 2020). We report

the average estimated curves at quantile levels τ = {10%, 20%, ..., 90%}

and root mean square error (RMSE) for each method based on 1000 Monte

Carlo replicates.
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Figure 2: Estimated curves from ZIKQ (left), LMS (middle) and nonpara-

metric quantile regression (right). Solid lines are the ground truth, and

dashed lines are averaged results from estimation.

Results suggest that both LMS and the quantile regression methods

have severe bias, especially after age 8 when over 10% of individuals are
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Table 1: Average RMSE for three methods at different quantile levels.

Quantile 10% 20% 30% 40% 50% 60% 70% 80% 90%

ZIKQ 0.44 0.57 0.66 0.76 0.81 0.87 0.78 0.68 0.57

LMS 1.78 4.13 4.89 4.77 4.02 3.14 2.40 1.87 1.11

QR 0.71 2.29 3.40 4.04 4.10 3.51 2.65 1.76 0.89

disabled because of disease progression (Figure 2). On the contrary, the

proposed ZIKQ method provides consistent estimation with small RMSE

for all quantile levels (Table 1). We also conducted additional simulations

to evaluate multiple choices of bandwidth selection (see Supplement Figure

1). In general, the choice of bandwidth does not significantly affect the

estimation results.

We also conducted additional simulations to evaluate the performance

of the proposed ZIKQ method with an irregular observed time grid and

under the setting where Y is generated from a stochastic process instead of

the quantile functions estimated from natural history data. For both sce-

narios, the proposed ZIKQ method performs satisfactorily. Detailed results

are presented in Supplement Section S2.
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5. Clinical utilities for rare disease treatment developments

In this section, we use the DMD trial as an example to demonstrate the

use of the reference centile chart in rare disease clinical development. That

includes (1) understanding the natural course of the disease, (2) assessing

treatment efficacy, and (3) informing recruitment and retention strategies.

As a proof of concept, we again use the NSAA score and its smoothed

reference centile chart from Section 4.

5.1 Assessing treatment efficacy

Most rare diseases do not have an effective cure. The aim of treatment

development is often to slow down the disease progression. By displaying

the distributions of clinical endpoints over age, the reference charts provide

a comprehensive view of the disease progression under the natural course.

For example, according to the natural history data of DMD, the NSAA

scores naturally increase at early ages (e.g., 4-7 years old), before they

start declining (Figure 1). The declining rate depends on the patient’s age

and his initial percentile rank in the population. Therefore, a change in

the NSAA score alone is not sufficient to determine whether the disease

progression was slowed.

We propose to identify the age-dependent percentile rank of the pa-
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5.1 Assessing treatment efficacy

tients under treatment and view the increased percentile rank as evidence

of efficacy. Essentially, the reference chart allows us to compare a patient

under treatment to a reference group of the same age who did not receive

interventions (e.g., a pseudo-control group). We hypothesize that a patient

without interventions will remain at the same percentile rank in the refer-

ence population. Let qi,0 be the percentile rank of the i-patient at baseline

before the treatment starts. We then measure the effectiveness/efficacy of

the treatment by the change of one’s quantile rank qi,1 − qi,0, where qi,1 is

the quantile rank of the ith subject at the end of the trial.

As a demonstration, we plot two trajectories representing two patients

under their treatments (Figure 3). Individual 1, whose NSAA score in-

creased but remained on the 90% quantile curve. We would conclude that

the increase in the NSAA score is due to the natural course of the disease

at an early age, and there is no evidence of treatment effect. On the con-

trary, individual 2 experienced a decline in the NSAA score from age 10

to 13. However, this decline is much slower than his peers. He started at

the 50% quantile curve(green one), and his percentile rank is above 60th

after receiving the treatment. This suggests a potential treatment effect on

slowing the disease progression.

Suppose n patients participated in a clinical trial on DMD. We can
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Figure 3: Use reference centile chart to demonstrate treatment effect in

early drug development.

use Wilcoxon signed rank test (Wilcoxon, 1992) to determine testing the

efficacy. Let Di = qi,1 − qi,0 be the change of the percentile rank of the ith

patient before and after the treatment. We construct a one-side hypothesis

test, H0 : E(Di) = 0 v.s. Ha : E(Di) > 0. The null hypothesis H0 suggests

no treatment effect, while the alternative hypothesis Ha implies that the

treatment slows the disease progression.
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5.2 Inform enrollment and retention strategies

After excluding the pairs that |Di| = 0, we order the remaining Nr re-

duced samples from the smallest absolute differences to the largest absolute

differences and obtain their ranks Ri. Then, the test statistic W is

W =
Nr∑
i=1

[sgn(Di) ·Ri].

With a moderate size of Nr, e.g., Nr > 20, the Z score can be calculated

as z = W/σw, where σw =
√

Nr(Nr+1)(2Nr+1)
6

. Then, the p value can be

calculated based on the normal approximation for large samples.

5.2 Inform enrollment and retention strategies

Besides the lack of the capacity for randomization, recruitment and reten-

tion are other major challenges of rare disease clinical studies due to the

scarcity of patients (Crow et al., 2018). A standard inclusion criterion is

to set a minimum bar to exclude the patients who are too sick to stay on

trial.Using the DMD trial as an example, the NSAA score of 17 was used

as the recruitment lower bound since those patients can stay ambulatory in

a two-year study (Mazzone et al., 2013). Due to the deteriorating nature of

the disease, such fixed recruitment criteria may not be optimal for all age

groups. For example, based on the estimated chart (Figure 4), less than

40% of patients above ten years old are eligible for enrollment if the NSAA

score of 17 is used as the minimum inclusion criterion. That brings the risk
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5.2 Inform enrollment and retention strategies

of delaying the drug development process due to a lack of effective samples

in this age group.
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Figure 4: Use reference centile chart to guide patients enrollment criteria.

The dashed line indicates NSAA score = 17. The percentages indicated

above the line represent the portion of the population qualified for enroll-

ment at the given age.

Assuming that an individual will maintain the same percentile rank

over time without external interference, the reference centile charts could

help design an age-dependent enrollment strategy to optimize patient re-
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5.2 Inform enrollment and retention strategies

cruitment. Let qi,0(t) be the percentile rank of the ith patient at baseline

age t. We can then predict whether the patient will drop to zero during

the trial by tracing him on the centile chart along his baseline percentile

rank. That is, the ith patient will be eligible for recruitment if qi,0(u) > 0

for u ∈ [t, t+∆t], where ∆t is the planned trial duration.

Using the same model as the simulation study, we generate a cohort of

DMD patients with their NSAA scores. We then apply the proposed age-

dependent recruiting strategy and compare it with the fixed lower bound at

NSAA = 17 (denoted as the ”regular rule”). Suppose the study is designed

for two years (i.e., ∆t = 2) and the sample size is n = 1000. We compare

the recruitment results under the regular recruitment rule and our proposed

rule regarding the recruitment rate. Using the regular recruitment rule,

only 52.9% of patients are qualified for enrollment, while 81.9% of patients

can be eligible under age-dependent recruitment without undermining the

retention rates. Both inclusion criteria yield a nearly perfect retention rate

(100% vs. 100%) based on the simulations. Figure 5 provides the proportion

of eligible patients by age under the two recruitment rules. We observe that

age-dependent recruitment could significantly improve the recruitment rate

in all age groups, which is crucial to clinical development for rare diseases.
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Figure 5: The percentage of eligible patients at different ages by the regular

and the proposed inclusion criteria.

6. Discussion

An incomplete understanding of disease pathophysiology is a crucial chal-

lenge in the therapeutic development of rare diseases. Over the past decades,

researchers have been dedicated to further using comprehensive information

from natural history data to help evaluate disease progression and facilitate

clinical development. Traditional methods for growth chart construction,

such as quantile regression with B-spline and LMS method, have been shown
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to be heavily biased because of ignoring disease progress and constructing

percentiles only based on survived samples. Thus, existing methods can-

not be served as a reference for evaluating disease progression. This article

provides a powerful tool to construct historical controls from the reference

centile chart perspective. Through integrating survival information and

adjusting it according to the nature of life-course data, we developed a ver-

satile framework to address the bias issue owing to the nonignorable failure

in natural history data. More importantly, we illustrated how the reference

chart could benefit clinical development in various ways. Though centile

charts are often used without confidence intervals for better interpretability,

such as growth chart (Wei et al., 2006), one may be interested in construct-

ing confidence intervals. We described how to construct bootstrap-based

confidence intervals in Supplement Section S3. Results suggested that the

estimation of centile curves is precise as the confidence intervals are narrow

and well-separated.

A practical alternative is to manually impute zeros consecutively after

the event occurred so that the sample quantiles will be corrected. That

is a naive realization of the proposed method. After imputation, the tech-

niques applied in the proposed method, i.e., two-part modeling for the zeros

and non-zeros, are still required. The imputation-based approach is math-
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ematically equivalent to the survival function correction in the proposed

method. However, our approach is more general and rigorous, equipped

with asymptotic theory, and can be adjusted by user-specified estimated

survival function. This appealing feature allows more accurate estimations

when the survival function can be estimated from a large external data set

or other historical data. In addition, note that another popular nonpara-

metric analysis approach, B-spline, is not applicable in this framework. As

the adjusted quantile level τ ∗ is a mapping involving the nominal quantile

level τ and age t, simply decomposing the unknown effect of t to Y through

B-splines as in Wei et al. (2006) will not account for its role in τ ∗, while the

local fitting can be conducted regarding a fix τ and t. The two competitors,

namely LMS and QR, are possibly improved by incorporating the two-stage

modeling procedure, especially the first step of estimating S(t). However,

ZIKQ could still be more flexible and general, resulting in a more accurate

estimation of the centile curves due to the nonparametric nature of kernel

estimation.

Given the various practical guidance offered in this article, there is a

wide range of future works that are worth investigating. For instance, con-

sidering disease development within one subject and making inferences with

personal longitudinal information is a promising future direction. Similar
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to Zhang et al. (2015), disease progression can be analyzed based on the

proposed reference centile chart functionally to advance our understanding

and insights into rare diseases. When there are covariates that need to be

adjusted, the current framework can be extended to the realm of censored

quantile regression (Wang and Wang, 2009; Portnoy, 2003). Built on the

KM-type estimator for S(t), one of the key assumptions, which is also the

key assumption for all KM-type estimators, is noninformative censoring.

When the censoring depends on some latent variables, such as the risk,

then the KM estimator could be biased (Campigotto and Weller, 2014).

When censoring is dependent on other variables, one can use imputation

approaches for missing data before estimating S(t). Though we discussed at

the beginning of Section 2.2 that patients may stop visiting the hospital if

their physical conditions are too weak, such nonignorable censoring is usu-

ally close to the event, because patients with rare diseases usually rely on

visiting hospitals regularly for examination or therapies. Based on numeri-

cal experiments, the simple imputation strategy we provided in Section 2.2

helps the ZIKQ method maintain its robust performance reasonably well.

Extending the estimate of S(t) to incorporate other covariates, which may

affect the censoring scheme in complex scenarios, would also be a future

interest. In practice, different types of nonignorable missingness depending
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on the missed variables could happen during data collection. Then, more

sophisticated approaches are required for model identifiability and the mod-

eling of the missingness mechanism. Approaches based on shadow variables

are widely used to address model identifiability while modeling missingness

mechanisms through parametric/semiparametric methods (Shao and Zhao,

2013; Miao et al., 2024; Zhao, 2017; Zhao and Ma, 2018, 2022). It would

be a future interest to explore different missing data mechanisms under the

current framework. Researchers are also encouraged to conduct sensitiv-

ity analyses to evaluate the best and the worst cases if the independent

assumption is violated.

Supplementary Material

(1) The Supplement contains additional simulation results on bandwidth

selection and the proof for Theorem 1. (2) The related R code is available

at Github (https://github.com/tianyingw/ZIKQ). All tables and figures

can be reproduced based on the descriptions in Section 4.
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