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Abstract: Reproducible learning of the underlying structure among large-scale

network data is important in many contemporary applications. Despite the fast-

growing literature on this subject, the practical issue of data heterogeneity has

rarely been addressed. In this paper, we propose a new method called the multi-

ple graphical knockoff filter to efficiently recover the underlying sparse connected

structure of a general population from a high-dimensional heterogeneous dataset.

We provide theoretical justification on the asymptotic false discovery rate con-

trol, and the theory for the power analysis is also established. To the best of

our knowledge, this is the first formal theoretical result on the power for the

graphical knockoffs procedure. Our new methodology and results are evidenced

by numerical studies.
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1. Introduction

The surge of big data in an unprecedented scale has brought us an enormous

amount of information that makes large-scale network analysis increasingly

frequent in many contemporary applications, such as biology, economics,

and social science (e.g. Giudici and Alessanfro (2016), and Shin et al.

(2014)). It is often of practical interest to uncover the underlying network

formed by a large number of individuals that are sparsely related. As a

popular choice, Gaussian graphical models provide a flexible way to specify

the conditional independence structure among a large number of nodes.

There is a growing literature on Gaussian graphical models, mainly focusing

on the problem of support recovery and link strength estimation; see for

example, Friedman et al. (2008); Fan and Lv (2016); Cheng et al. (2017);

Zhou et al. (2022), and among many others.

To obtain a reliable outcome and alleviate reproducibility issues, con-

trolling the false discovery rate (FDR) which is defined as the expected

proportion of false discoveries among all the discoveries proposed by Ben-

jamini and Hochberg (1995) has gained much attention recently. There

have been several studies proposed focusing on FDR control in structure

learning for Gaussian graphical models. One class of methods is based

on multiple testing approaches. For example, in low-dimensional settings,
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Drton and Perlman (2007) suggested testing pairwise partial correlations.

After obtaining the corresponding p-values, the BH procedure (Benjamini

and Yekutieli, 2001) can be applied to recover the graph structure with

finite sample FDR control without any additional assumptions. In high-

dimensional settings, Liu (2013) proposed a structure learning algorithm

named as GFC based on a certain test statistic and its asymptotic distribu-

tion, providing asymptotic FDR control under some regularity conditions.

Another class of methods is based on the knockoff idea which was o-

riginally proposed by Barber and Candès (2015) for low-dimensional linear

models called fixed-X knockoff and later extended to high-dimensional re-

gression models with random design called model-X knockoff (Candès et al.,

2018). The nice properties of the model-X knockoff procedure, such as hav-

ing no restrictions on dimensions and the conditional distribution, make this

procedure widely used and developed (Barber et al., 2020; Fan et al., 2020;

Liu et al., 2022). Based on fixed-X knockoff and model-X knockoff frame-

work, Li and Maathuis (2021) and Zhou et al. (2022) proposed graphical

knockoff methods to control the FDR of low-dimensional graphical models

and high-dimensional graphical models respectively. Additionally, a new

method that achieves the FDR control by estimating two independent pa-

rameters via data splitting and then obtaining symmetric statistics has also
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been extended to Gaussian graphical models (Dai et al., 2023).

Among those endeavors, they all focus on a single graphical model which

assumed that the dataset is homogeneous. However, in some real applica-

tions such as climate research, disease diagnosis, text mining, and so on,

high-dimensional heterogeneous datasets are popularly observed (Guo et al.,

2011; Lee and Liu, 2015; Ma and Michailidis, 2016), wherein the dataset

comprises multiple subpopulations. As a motivation example, consider a

gene expression dataset of breast cancer derived from the METABRIC,

which are discussed in detail in Section 5. Literature (Johnson et al., 2021)

suggests that breast cancer can be categorized into four molecular subtypes,

each exhibiting critical differences in incidence, survival rates, and imaging

characteristics. It is more realistic to acknowledge that gene expression

level distributions may vary across these subtypes, resulting in dataset het-

erogeneity. Ignoring the heterogeneity and employing existing FDR control

methods designed for homogeneous datasets to reconstruct gene network

structures may lead to a loss of power, rendering some significant edges

undetectable. Hence, in this paper, we introduce a novel procedure called

multiple graphical knockoff filter (MGKF) to address this challenge.

The major contributions of this paper are threefold. First of all, to the

best of our knowledge, this is the first work to attempt to address the chal-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0099



lenging issue of heterogeneity in reproducible learning of graphical models.

In the face of the heterogeneous data, our method can efficiently recover

the underlying connectivity patterns of a general population of interest with

guaranteed FDR control and high power. Secondly, we provide theoretical

justifications on the asymptotic false discovery rate control, and the power

analysis is also established. It’s worth pointing out that this is the first for-

mal theoretical result on the power for the graphical knockoffs procedure.

Last but not least, benefiting from the tuning-free property of the heteroge-

neous group square-root Lasso algorithm (Ren et al., 2019), our procedure

can deal with large-scale datasets with high computational efficiency.

The rest of the paper is organized as follows. Section 2 presents the

problem setup and our new methodology. We establish the theoretical

properties of the proposed method including FDR control and the power

analysis in Section 3. Simulation studies and a real data analysis are provid-

ed in Sections 4 and Section 5, respectively. Section 6 discusses implications

and extensions of our work. Additional technical details and all the proofs

are relegated to supplementary material.

Notations: For any a ∈ {1, . . . , p}, write [−a] = {1, . . . , p}\{a},

and we abbreviate it as −a when it appears in the subscript. For any

a ∈ {1, . . . , p}, x
(t)
−a denotes the subvector of x(t) = (X

(t)
1 , . . . , X

(t)
p ) by ex-
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cluding X
(t)
a . Moreover, the notation X(t)

a denotes the ath column of X(t),

and X
(t)
−a denotes the submatrix of X(t) with the columns in [−a]. For

any vector v, ‖v‖d denotes the ld norm of v for d ≥ 0. For any matrix

M ∈ Rp1×p2 and any subsets A ⊂ {1, . . . , p1}, B ⊂ {1, . . . , p2}, MA,B de-

notes the submatrix of M with the rows in A and columns in B. The

notation ‖M‖2 denotes the spectral norm of M. Moreover, for a sequence

of matrices M1, . . . ,Mp, bdiag{M1, . . . ,Mp} denotes the block diagonal

matrix consisting of M1, . . . ,Mp. Denote by λmin(·) and λmax(·) the small-

est and largest eigenvalues of a given symmetric matrix, respectively. The

notation | · | denotes the cardinality of a set, Ec is the complement of E,

and d1 ∨ d2 = max{d1, d2}.

2. The FDR control of multiple graphs

2.1 Model settings

Motivated by the prevalence of heterogeneous datasets, we focus on the

setting of multiple networks with Gaussian graphical models to encode the

connectivity patters among p features X1, . . . , Xp measured on k subpop-

ulations of a general population. For each class 1 ≤ t ≤ k, consider the

Gaussian graphical model G(t) = (V,E(t)) for a p-variate random vector

x(t) = (X
(t)
1 , . . . , X(t)

p )> ∼ N(0,Σ(t)) (2.1)
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2.1 Model settings

where the superscript (t) means that these p features are measured on the

tth subpopulation, Σ(t) is p×p covariance matrix, and G(t) is an undirected

graph associated with x(t). Here, V = {1, . . . , p} the set of vertices and

E(t) ⊆ {(i, j) : 1 ≤ i < j ≤ p} the set of the edges between vertices

of tth graph. The lack of an edge (j, k) in tth graph is characterized by

X
(t)
j ⊥⊥ X

(t)
k |x

(t)
−{j,k}, where x

(t)
−{j,k} represents the set of all variables in x(t)

except for Xj and Xk. The connectivity patters of the general population

can be characterized by E = ∪kt=1E
(t).

In high-dimensional settings where the number of covariates p is com-

parable to or exceeds the number of observation, the connectivity patters

among the set of covariates are usually assumed sparse. It’s reasonable

to assume that these k graphs share a similar sparsity structure as they

belong to a general population, where most of the pairs are not connect-

ed in all graphs. Meanwhile, the rest are connected in all or some graphs

with the connectivity strengths between nodes and the variability of n-

odes change across subpopulations due to the specificity, which cause the

heterogeneity of the observed dataset X =
(

(X(1))>, . . . , (X(k))>
)>

with

X(t) = (x
(t)
1 , . . . ,x

(t)

n(t))
>, where {x(t)

i }n
(t)

i=1 are independent and identically

distributed (i.i.d.) copies from model (2.1). In addition, X(1), . . . ,X(k) are

assumed to be independent.
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2.2 Review of model-X knockoffs framework

Denote by Ê the estimated edge set by some selection procedure based

on the heterogeneous dataset X. The FDR and power of the selection

procedure with respect to the edge set E is defined as

FDR(Ê) = E

[
|Ê ∩ Ec|
|Ê ∨ 1|

]
, and Power(Ê) = E

[
|Ê ∩ E|
|E|

]
.

Our goal is to develop a procedure to recover the edge set E with guaranteed

FDR control, meanwhile enjoying high power. Existing high-dimensional

graphical FDR control methods, such as GCF (Liu, 2013) and HGKF (Zhou

et al., 2022), are unsuitable for our models since they are designed for ho-

mogeneous datasets. Additionally, learning the structure of each subpopu-

lation individually and then merging them to estimate E is inefficient, as it

fails to leverage the common structure across different groups. Therefore,

we propose a new method called the multiple graphical knockoff filter to

achieve this goal.

2.2 Review of model-X knockoffs framework

Our suggested procedure falls in the general framework of model-X knock-

offs (Candès et al., 2018), which we briefly review in this section. The key

ingredient of the model-X knockoffs framework is the construction of the

so-called model-X knockoff variables that are defined as follows.

Definition 1. (Model-X knockoff variables (Candès et al., 2018)) For a
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2.2 Review of model-X knockoffs framework

set of random variables x = (X1, . . . , Xp), a new set of random variables

x̃ = (X̃1, . . . , X̃p) is called a set of model-X knockoff variables if it satis-

fies the following properties: (1) For any subset S ⊂ {1, . . . , p}, we have

(x, x̃)swap(S)
d
= (x, x̃), where

d
= denotes equal in distribution and the vec-

tor (x, x̃)swap(S) is obtained by swapping Xj and X̃j for each j ∈ S. (2)

Conditional on x, x̃ is independent of response Y , if there is a response Y .

With the constructed knockoff variables x̃, the next step is to construct

knockoff statistic Wj = fj(Zj, Z̃j) for each 1 ≤ j ≤ p, where Zj and Z̃j

represent feature importance measure for jth covariate Xj and its knock-

off counterpart X̃j, respectively, and fj(·, ·) is an antisymmetric function

satisfying fj(zj, z̃j) = −fj(z̃j, zj). For example, in linear regression model,

one can choose Zj and Z̃j as the Lasso regression coefficients of Xj and X̃j,

respectively, and a widely used knockoff statistic called Lasso Coefficient

Difference (LCD) is defined as Wj = |Zj| − |Z̃j|. Observe that all model-X

knockoff variables X̃
′
js are just noise features by the second property in

Definition 1. Thus, intuitively, a large positive value of knockoff statistic

Wj indicates that jth covariate Xj is important, while a small magnitude

of Wj usually corresponds to noise features. The final step of the knockoffs

inference framework is to sort |W ′
js| from high to low and select features

whose W
′
js are at or above some threshold T .
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2.3 Multiple graphical knockoff filter

2.3 Multiple graphical knockoff filter

Recall that for each subpopulation 1 ≤ t ≤ k, the p features follows the

multiple Gaussian distribution N(0,Σ(t)) (2.1). It’s well-known (See, e.g.

Lauritzen (1996)) that there is no edge between nodes a and j in tth graph

if and only if β
(t)
aj = β

(t)
ja = 0, where β

(t)
aj is the regression coefficient of X

(t)
j

in the regression of X
(t)
a on x

(t)
−a, that is

X(t)
a = x

(t)
−aβ

(t)
a + η(t)a (2.2)

where β(t)
a = (β

(t)
aj , j ∈ [−a])> ∈ Rp−1, and η

(t)
a is the random noise indepen-

dent of x
(t)
−a. To estimate the set of edges E, it’s equivalent to finding out

these pairs {(i, j), 1 ≤ i < j ≤ p} that satisfy β>i(j) = (β
(1)
ij , . . . , β

(t)
ij ) 6= 0.

Equation (2.2) builds the relationship between a Gaussian graphical

model and linear models. It’s therefore natural to consider make use of

the knockoff framework for FDR controlled graph estimation in Gaussian

graphical models. Following model-X knockoff framework, our method also

has three steps.

Step 1: Construct knockoffs. For any subgroup 1 ≤ t ≤ k, given

a node a, we treat the other p− 1 nodes as predictors. The ideal knockoff

variables x̃
(t)
−a = (X̃

(t)
j , j ∈ [−a])> ∈ Rp−1 can be constructed by sampling
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2.3 Multiple graphical knockoff filter

from the conditional distribution x̃
(t)
−a|x

(t)
−a ∼ N(µ

(t)
a ,Υ

(t)
a ) with

µ(t)
a =

(
Ip−1 − diag{s(t)a }Ω

(t)
−a

)
x−a and

Υ(t)
a =2diag{s(t)a } − diag{s(t)a }Ω

(t)
−adiag{s(t)a }, (2.3)

where Ip−1 is the (p− 1)× (p− 1) identity matrix, Ω
(t)
−a = (Σ

(t)
−a,−a)

−1 is the

precision matrix of x−a, diag{s(t)a } is a (p − 1) × (p − 1) diagonal matrix

with the vector s
(t)
a = {s(t)aj }j∈[−a] being the non-negative diagonal entries

such that Σ
(t)
−a,−a−2−1diag{s(t)a } is positive semidefinite. We will adopt the

semidefinite programme construction (SDP) (Candès et al., 2018) to obtain

an appropriate s
(t)
a . Similar to that in Fan et al. (2020), we will treat it as

a nuisance parameter throughout our theoretical analysis.

Since x̃
(t)
−a is constructed without looking at X

(t)
a andx

(t)
−a

x̃
(t)
−a

 ∼ N


0

0

 ,

 Σ
(t)
−a,−a Σ

(t)
−a,−a − diag{s(t)a }

Σ
(t)
−a,−a − diag{s(t)a } Σ

(t)
−a,−a


 ,

the ideal knockoff variables obviously satisfy Definition 1. For each 1 ≤

i ≤ n(t), denote by x
(t)
i,−a the ith row of X

(t)
−a. The ith row of the ideal

knockoff matrix X̃
(t)

−a can be constructed as above (2.3) using xi,−a and Ω
(t)
−a

for 1 ≤ a ≤ p, 1 ≤ t ≤ k.

However, the true matrices Ω
(t)
−a for all 1 ≤ a ≤ p, 1 ≤ t ≤ k used

to construct the ideal knockoff variables (2.3) are generally unknown. We

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0099



2.3 Multiple graphical knockoff filter

will replace Ω
(t)
−a with its some consistent estimate to generate approximate

knockoff variables in practice and show that FDR control can still be guar-

anteed (See Section 3 for details).

Step 2: Calculate statistics. Based on the knockoffs, we will ex-

tend the LCD statistic mentioned in Section 2.2 to our model to construct

the knockoff statistic Wa,j measuring the importance of node j to node

a. Specifically, let [(ζ(t)
a )>, (ζ̃

(t)

a )>] be an estimated coefficient vector of

X(t)
a regression on [X

(t)
−a, X̃

(t)

−a], where (ζ(t)
a )> = (ζaj, j ∈ [−a]) ∈ Rp−1 and

(ζ̃
(t)

a )> = (ζ̃aj, j ∈ [−a]) ∈ Rp−1 . Since the importance of node j to node a

is characterized by k graphs, the extended LCD statistic has the form of

Wa,j = fj(Zj, Z̃j) = |Zj| − |Z̃j| = ‖ζa(j)‖l − ‖ζ̃a(j)‖l, (2.4)

where ζa(j) = (ζ
(1)
aj , . . . , ζ

(k)
aj ), ζ̃a(j) = (ζ̃

(1)
aj , . . . , ζ̃

(k)
aj ), and 0 < l <∞.

The crucial point now is how to obtain an efficient estimate of the

regression coefficient vectors. It would be beneficial to borrow the strength

across all k classes of data to achieve more accurate estimation since these k

subpopulations share some common structure. In our procedure, we novelly

stack all k multiple linear regressions which combine original variables and

knockoff variables by introducing a large-scale block diagonal design matrix,

taking into account both heterogeneity and common information among

different graphs. The similar connected patterns between different graphs
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2.3 Multiple graphical knockoff filter

make the coefficient vector of the large-scale linear regression have a group

sparsity structure, then the heterogeneous group square-root Lasso (HGSL)

(Ren et al., 2019) can be applied to obtain an efficient estimator of the

coefficient vector, so as to obtain competitive statistics.

Specifically, Let

Ya =
(

(X(1)
a )>, . . . , (X(k)

a )>
)
, X−a = bdiag

{
(X

(1)
−a, X̃

(1)

−a), . . . , (X
(k)
−a, X̃

(k)

−a)
}

with k blocks. We run the heterogeneous group square-root Lasso (HGSL)

proposed by Ren et al. (2019) with the response Ya and the combined design

matrix X−a to jointly estimate of regression coefficients, that is,

β̂
aug

a = arg min
baug∈R2(p−1)k


k∑

t=1

Qt(b
(t), b̃

(t)
) + λ

∑
j 6=a

‖D1/2
a(j)b(j)‖2 +

∑
j 6=a

‖D̃
1/2

a(j)b̃(j)‖2

 ,

(2.5)

where

Qt(b
(t), b̃

(t)
) =

∥∥∥∥∥∥∥∥X
(t)
a −

(
X

(t)
−a, X̃

(t)

−a

) b(t)

b̃
(t)


∥∥∥∥∥∥∥∥
2√

n
,

with n = min1≤t≤k{n(t)} and λ > 0 is the regularization parameter. Addi-

tionally, b(t) = (b
(t)
j , j ∈ [−a])>, b̃

(t)
= (̃b

(t)
j , j ∈ [−a])>, b(j) = (b

(1)
j , . . . , b

(k)
j )>,

b̃(j) = (̃b
(1)
j , . . . , b̃

(k)
j )>, and baug =

(
(b(1))>, (b̃

(1)
)> . . . , (b(k))>, (b̃

(k)
)>
)

.

Moreover, the notations Da(j) and D̃a(j) denote k × k diagonal matrices

with their t-th diagonal entry equal to (X
(t)
j )>X

(t)
j /n

(t) and (X̃
(t)

j )>X̃
(t)

j /n
(t),

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0099



2.3 Multiple graphical knockoff filter

which are introduced to scale the design matrix. As we can see that in e-

quation (2.5) Qt(b
(t), b̃

(t)
) can be written as

Qt(b
(t), b̃

(t)
) =

∥∥∥∥∥∥∥∥X
(t)
a −

(
X

(t)
−a(D

(t)
a )−1/2, X̃

(t)

−a(D̃
(t)

a )−1/2
) (D(t)

a )1/2b(t)

(D̃
(t)

a )1/2b̃
(t)


∥∥∥∥∥∥∥∥
2√

n
,

where D(t)
a = diag

(
(X

(t)
−a)
>X

(t)
−a/n

(t)
)

and D̃
(t)

a = diag
(

(X̃
(t)

−a)
>X̃

(t)

−a/n
(t)
)

are diagonal scaling matrices.

Based on β̂
aug

a =
(

(β̂
(1)

a )>, (β̃
(1)

a )>, . . . , (β̂
(k)

a )>, (β̃
(k)

a )>
)

, where β̂
(t)

a =

(β̂
(t)
aj , j ∈ [−a])> ∈ Rp−1 and β̃

(t)

a = (β̃
(t)
aj , j ∈ [−a])> ∈ Rp−1, we specifically

use l2 norm as in (2.4) to simplify the power analysis that

Wa,j = ‖β̂a(j)‖2 − ‖β̃a(j)‖2, for 1 ≤ a 6= j ≤ p (2.6)

where β̂a(j) = (β̂
(1)
aj , . . . , β̂

(k)
aj ) and β̃a(j) = (β̃

(1)
aj , . . . , β̃

(k)
aj ).

Step 3: Find the global threshold vector. For convenience, here-

after we called the statistic Wi,j as the null statistic if there is no edge be-

tween the node pair (i, j). We take a similar form as that in Li and Maathuis

(2021) and Zhou et al. (2022) to obtain a global threshold vector. Specifical-

ly, for each node a ∈ {1, . . . , p}, we denote by NEa the true neighborhood of

node a, which is defined as NEa = {j ∈ [−a] : βa(j) = (β
(1)
aj , . . . , β

(k)
aj ) 6= 0}.

Given a positive threshold vector T = (T1, . . . , Tp), for each node a, we can

estimate NEa by N̂Ea(T) = {j ∈ [−a] : Wa,j ≥ Ta}. The estimated edge set
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2.3 Multiple graphical knockoff filter

Ê(T) is given by

Ê(T) =
{

(a, j) : j ∈ N̂Ea(T) or a ∈ N̂Ej(T), 1 ≤ a < j ≤ p
}
. (2.7)

Now given a pre-specified FDR level q, we will obtain an appropriate

threshold vector T̂ as follows.

T̂ =(T̂1, . . . , T̂p) = arg max
T={T1,...,Tp}

|Ê(T)| (2.8)

subject to
γ + |{j : j ∈ [−a],Wa,j ≤ −Ta}|

|Ê(T)| ∨ 1
≤ q̃a :=

q

cγp

and Ta ∈ {|Wa,j|, j ∈ [−a]} ∪ {+∞}\{0} for all a ∈ {1, . . . , p}.

Similar to that in Li and Maathuis (2021) and Zhou et al. (2022), we provide

two alternative pairs (1, 1.93) and (0.01, 102) for the choice of (γ, cγ). We

set T̂ = (+∞, . . . ,+∞) if there is no feasible solution. Based on the global

threshold vector T̂, we can obtain the estimate edge set Ê(T̂) via equation

(2.7). For convenience, we will abbreviate Ê(T̂) as Ê in the following

context, which denotes the final estimated edge set of our procedure with

true precision matrices.

Note that as we mentioned in step 1, the true precision matrices used

to generate ideal knockoff matrices X̃
(t)

−a are generally unknown, and we will

use some estimated precision matrices to replace the true ones in (2.3) to

generate approximate knockoff matrices, then proceed steps 2-3. In short,
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we will summarize that for any given sequence of symmetric positive denite

matrices in (p − 1) dimensions {Γ(t)
−a}1≤a≤p,1≤t≤k := θ, our procedure with

parameter θ can be proceed as follow.

Procedure 1 (MGKF): 1. For each node a, to generate knockoff

matrix X̃
(t)

−a(θ) following the Step 1 by replacing Ω
(t)
−a with Γ

(t)
−a.

2. For each node a, to obtain the estimated regression coefficient vector

β̂
aug

a (θ) via equation (2.5) by replacing X̃
(t)

−a with X̃
(t)

−a(θ). Then calculating

the knockoff statistic Wa,j(θ) via (2.6) based on β̂
aug

a (θ).

3. Based on {Wa,j(θ), 1 ≤ a 6= j ≤ p}, the threshold vector T̂(θ) is found

by step 3 via (2.8), and the final edge set estimation Ê(θ) is obtained via

(2.7) with the T̂(θ).

3. Theoretical properties

In this section, we investigate the theoretical properties of our proposed pro-

cedure, including asymptotic FDR control and power analysis. Throughout

our theoretical analysis, we consider the regularization parameter fixed at

λ = Cλ[
k+log(p)

n
]1/2 with Cλ is some positive constant. Therefore, we will

drop the dependence of various quantities on λ whenever there is no con-

fusion. We begin with introducing some technical conditions that will be

used in our theoretical analysis.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0099



Condition 1. For 1 ≤ t ≤ k, the eigenvalues of Ω(t) are uniformly bounded

within the interval [1/M1,M1] for some constant M1 ≥ 1.

Condition 2. It holds that n(1) � · · · � n(k) with max1≤t≤k{n(t)}/n ≤M2,

where�means the same order, n = min1≤t≤k{n(t)}, and M2 is some positive

constant.

Condition 3. For some positive constants M3, δ and bn → 0 as n → ∞,

with probability at least 1 − p−δ, ‖Ω̂
(t)

−a − Ω
(t)
−a‖2 ≤ M3bn holds uniformly

over 1 ≤ a ≤ p, 1 ≤ t ≤ k.

Condition 1 is typical, which is also used in Fan et al. (2020) and Zhou

et al. (2022). Similar to Ren et al. (2019), we assume that in Condition

2 that our sample is balanced with sample sizes of each of the k classes

comparable to each other. Condition 3 is quite flexible, which is also intro-

duced in Zhou et al. (2022), Fan et al. (2020), and Fan et al. (2015). This

condition holds for many existing approaches, such as CLIME (Cai et al.,

2011), ISEE (Fan and Lv, 2016), and Glasso (Friedman et al., 2008), as long

as the estimators are sparse and enjoy some typical entry-wise estimation

accuracy under mild regularity conditions.
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3.1 FDR control guarantee

3.1 FDR control guarantee

To develop the theory for FDR control, we begin with an important lemma

that motivates the basic theoretical framework. For ease of presentation, let

U
(t)
−a(θ) = [X

(t)
−a, X̃

(t)

−a(θ)]
>[X

(t)
−a, X̃

(t)

−a(θ)]/n and V
(t)
−a(θ) = [X

(t)
−a, X̃

(t)

−a(θ)]
>X(t)

a /n.

Denote by

U−a(θ) =
(
U

(1)
−a(θ), . . . ,U

(k)
−a(θ)

)
, and V−a(θ) =

(
V

(1)
−a(θ), . . . ,V

(k)
−a(θ)

)
.

Let Ha(θ) = [U−a(θ),V−a(θ)]. Considering the node a from 1 to p, we

focus on the large matrix H(θ) = bdiag{H1(θ), . . . ,Hp(θ)}.

Lemma 1. The estimated edge set Ê(θ) defined in Procedure 1 depends

only on H(θ).

This lemma suggests that the statistical H(θ) is crucial to the final

selection result Ê(θ). Based on this lemma we would like to sketch the

main ideas for deriving the theoretical guarantee on asymptotic FDR con-

trol of our procedure. According to the lemma and the definition of FDR,

the FDR can be written as E[FDP{H(θ)}]. Note that if H(θ) is replaced

by H(θ0), which is formed by ideal knockoff matrices, the FDR of our

procedure with true precision matrices, i.e. E[FDP{H(θ0)}], is perfectly

controlled to be no larger than q (See Lemma S1.3 in the Supplementary

Material for details). Intuitively, for a sequence of estimated precision ma-
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3.1 FDR control guarantee

trices {Ω̂
(t)

−a}1≤a≤p,1≤t≤k := θ̂, the E[FDP{H(θ̂)}] is close to E[FDP{H(θ0)}]

if the H(θ̂) is asymptotically equivalent to H(θ0) with large probability.

Nevertheless, note that FDP(·) is a discontinuous function, which makes

it challenging to establish the convergence of its expectation. Similar to

that in Fan et al. (2020) we also need an algorithmic stability assumption

to remedy the issue caused by the discontinuity of FDP(·). Drawing on

the analytical techniques in Fan et al. (2020), we will focus on a subspace

of H(θ) to facilitate introducing the algorithmic stability assumption. For

any subset Aa ⊂ [−a], let HAa(θ) = [UAa(θ),VAa(θ)], where

UAa(θ) =
(
U

(1)
Aa(θ), . . . ,U

(k)
Aa(θ)

)
, and VAa(θ) =

(
V

(1)
Aa(θ), . . . ,V

(k)
Aa(θ)

)
with

U
(t)
Aa =

1

n

[
X

(t)
Aa , X̃

(t)

Aa(θ)
]> [

X
(t)
Aa , X̃

(t)

Aa(θ)
]

and V
(t)
Aa =

1

n

[
X

(t)
Aa , X̃

(t)

Aa(θ)
]>

X(t)
a .

Let HA(θ) = bdiag
{
HA1(θ), . . . ,HAp(θ)

}
. For the sequence of {Aa}pa=1, we

simply denote it as A, that is {Aa}pa=1 := A. Define a mapping EA(HA(θ))

which represents the outcome of first restricting ourselves to the smaller

set of neighbors indexed by {Aa}pa=1, and then applying our procedure to

HA(θ) to further select neighbors of each node 1 ≤ a ≤ p from set Aa.

The following Lemma 2 provides the foundation to simplify our theoretical

analysis into a lower-dimensional space.
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3.1 FDR control guarantee

Lemma 2. Under Conditions 1-3, for any sequence of {Aa}pa=1 that satis-

fies Aa ⊃ A∗a(θ) of each node 1 ≤ a ≤ p, we have EF(H(θ)) = EA(HA(θ)),

where F = {[−a]}pa=1, and A∗a(θ) denotes the support of knockoff statistics

Wa(θ).

A similar lemma was introduced in Fan et al. (2020), demonstrating

that when Wa(θ) is sparse, the theoretical analysis of our procedure can be

simplified to a lower-dimensional space. Condition 4 guarantees the sparsity

of Wa(θ) for all 1 ≤ a ≤ p. As in Fan et al. (2020), the dimensionality

reduction to a smaller model characterized by {Aa}pa=1 serves to facilitate

theoretical analysis, and our procedure does not require any prior knowledge

of such a sequence {Aa}pa=1.

Condition 4. For any 1 ≤ a ≤ p, the HGSL estimator β̂
aug

a (θ) satisfies

|{l : 1 ≤ l 6= a ≤ p, β̂a(l)(θ) 6= 0 or β̃a(l)(θ) 6= 0}| < d/2 for some positive

integer d ≤ n ∧ p which may diverge with n.

This condition puts a constraint on the group sparsity of the HGSL

solution, which means that the sparsity level of Wa(θ) is no larger than

d/2. It is mild and can always be achieved since users have the freedom to

choose the size of the HGSL model. Similar constrain and justifications are

provided in Fan et al. (2020) for Lasso solution.
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3.1 FDR control guarantee

For any given {Aa}pa=1, it’s convenient to define H0
Aa = HAa(θ0) ∈

Rda1×da2 , where da1 = 2|Aa|, and da2 = 2k|Aa|+ k. Denote by

IA =

{
H = bdiag{R1, . . . ,Rp} with Ra ∈ Rda1×da2 : max

1≤a≤p
‖Ra −H0

Aa‖2 ≤ anp

}
,

where anp → 0 as n→∞.

Condition 5. (Algorithmic stability). For any sequence of {Aa}pa=1 with

Aa ⊂ [−a] for all 1 ≤ a ≤ p that satisfy maxpa=1 |Aa| ≤ d ≤ n ∧ p, there

exists a positive sequence ρnp → 0 as n ∧ p→∞ such that

sup
maxpa=1 |Aa|≤d

sup
H1,H2∈IA

|EA(H1)4EA(H2)|
|EA(H1)| ∧ |EA(H2)|

= O(ρnp),

where 4 stands for the symmetric difference between two sets.

Intuitively the above condition assumes that the knockoff procedure is

stable with respect to a small perturbation to the input H in any lower-

dimensional subspace IA. A similar condition is proposed in Fan et al.

(2020) to establish the asymptotic FDR control for the high-dimensional

linear regression model. Although there are p regressions in our model, we

control the overall perturbation by limiting the parameters to the uniformly

convergent space, so as to ensure the stability of the algorithm.

Theorem 1. (Robust FDR control) Assume that Conditions 1-5 hold and

the smallest eigenvalue of 2diag{s(t)a }−diag{s(t)a }Ω(t)
−adiag{s(t)a } is uniformly
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3.1 FDR control guarantee

bounded from below by some positive constant for all 1 ≤ a ≤ p, 1 ≤ t ≤ k.

If kbn = o(1) (bn appears in Condition 3) and log(p) = o(n), for any pre-

specified FDR level q ∈ (0, 1) it holds that

FDR(Ê(θ̂)) = E

[
|Ê(θ̂) ∩ Ec|
|Ê(θ̂)| ∨ 1

]
≤ q +O(ρnp + p−cδ)

where Ê(θ̂) is the estimated edge set obtained by Procedure 1 with estimated

precision matrices satisfying Condition 3, ρnp defined in Condition 5, and

cδ is some positive constant associated with the constant δ (Condition 3).

Theorem 1 establishes the robustness of the FDR control with respect

to the estimated precision matrices, which allows the number of graphs k

to diverge with n as long as kbn → 0. To conduct the analysis of the robust

FDR control, we generalize the analytical technique introduced by Fan et al.

(2020) from a single linear regression model to our graphical models. It’s

non-trivial since we grapple with p different but correlated linear regression

models simultaneously, and the design matrices are composed of multiple

data from different distributions due to the heterogeneity. It’s more complex

to characterize the impact on FDR induced by estimated precision matrices

and analyze the overall estimated errors.

Unlike the robust FDR control theory for graphical models discussed

in Zhou et al. (2022), our theory benefits from the advantage described in
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Fan et al. (2020), which does not require the independence between the

estimated precision matrices and the data matrices used in the knockoff

procedure. This advantage primarily stems from extending the algorithm

stability technique proposed in Fan et al. (2020) to our analysis. Leveraging

this condition, we can derive an upper bound for the FDP in the restricted

space IA that depends only on n and p, allowing us to obtain an upper

bound for the FDR without needing the independence property.

3.2 Power analysis

We have established the theorems of FDR control for our procedure. Now,

we will look at the other side of the cointhe power. We first impose some

basic regularity conditions.

Condition 6. It holds that min(i,j)∈E ‖βi(j)‖2 ≥ νn{(log(p) + k)/n}1/2,

1 ≤ i < j ≤ p, for some slowly diverging sequence νn →∞ as n→∞.

Condition 7. There exists some constant M4 ∈
(

(γ+1)cγp

q|E| , 1
)

such that

|Sa| ≥ M4la with Sa =

{
j ∈ [−a] : ‖βa(j)‖2 �

[
la{k+log(p)}

n

]1/2}
for 1 ≤

a ≤ p, where la = |NEa|.

Condition 8. Let lm = max{li, 1 ≤ i ≤ p}. It holds that lm �M5n/ log(p)

whereM5 is a positive constant, and there exists some constant α ∈
(

(γ+1)cγ
qlmM4

, 1
)

such that |E| ≥ αplm.
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3.2 Power analysis

Conditions 6 and 7 impose some signal constrains. Similar conditions

are also needed in Fan et al. (2020) and Fan et al. (2020) to achieve asymp-

totic power one. Condition 6 puts a lower bound on the minimal signal

strength, which is mild. Consider a special case where the signal strength

of ‖βi(j)‖2 is evenly distributed in k components. Then we only require each

component to be greater than 1/
√
n when k � log(p). Such weak signal

strength requirements explain the high power of our method. Condition

7 requires some strong signals in our model. Note that the set of Sa is

only a large enough proper subset of the NEa which shows that our model

still allows for many weak ones, and the magnitude of the strong signal is

modest as la(k+log(p))
n

= o(1) when k = O{log(p)}.

The first part of Condition 8 assumed that lm � M4n/ log(p), which

is a typical assumption in high-dimensional sparse graphical models (Ren

et al., 2015; Fan and Lv, 2016). In addition, Condition (8) puts a lower

bound on the number of the edges |E|, which requires the cardinality of

the true edge set |E| can not be too small. Nevertheless, the flexibility of

this condition is evident, as it puts the constrain on the whole graph E

rather than the edges set of each node. It permits the model to incorporate

isolated nodes with no connections to any other nodes.

Theorem 2. Assume that Conditions 1-3 and 6-8 hold, and the small-
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3.2 Power analysis

est eigenvalue of 2diag{s(t)a }−diag{s(t)a }Ω(t)
−adiag{s(t)a } is uniformly bounded

from below by some positive constant for all 1 ≤ a ≤ p, 1 ≤ t ≤ k. if

[log(p) + log(k)] = o(n) and {Ω̂
(t)

−a}1≤a≤p,1≤t≤k are independent of X, the

procedure 1 with the estimated precision matrices {Ω̂
(t)

−a}1≤a≤p,1≤t≤k has the

power satisfying

Power(Ê(θ̂)) = E

[
|Ê(θ̂) ∩ E|
|E|

]
≥ 1− Cν−1n − p−c̃δ + o(ν−1n )→ 1,

where C is some positive constant, and c̃δ is some positive constants related

to the constant δ defined in Condition 3.

Theorem 2 demonstrates that the asymptotic power guarantee of our

procedure. Since parameter νn characterizes the signal strength, it is seen

that the stronger the signal, the faster the convergence of power to one. To

the best of our knowledge, this is the first formal theoretical result on the

power of the graphical knockoffs procedure. Similar to the power analysis

within the knockoff framework presented in Fan et al. (2020), Barber et al.

(2020), and Zhou et al. (2022), our theorem also assumes that the estimated

precision matrices are independent of the data matrix used in the knockoff

procedure. However, it is important to note that this independence is more

of a technical assumption rather than a practical necessity.
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4. Simulation studies

In this section, we conduct some simulation studies to investigate the finite-

sample performance of our procedure (MGKF) in terms of FDR and power.

For comparison, we apply the HGKF method proposed by Zhou et al. (2022)

and the GFC method proposed by Liu (2013) to the whole dataset XN∗p

with N =
∑k

t=1 n
(t) stacked by {X(t)}kt=1 regardless heterogeneity among

the different subgroups.

Throughout all numerical studies, we use ISEE (Fan and Lv, 2016)

to obtain the estimated precision matrices θ̂ then run our procedure, and

the heterogeneous group scale-root Lasso used in our procedure is im-

plemented using R packages HGSL with the suggested tuning parameter

c
√

k+2 log p+2
√
k log p

n
, c > 1. Here, we use AIC to determine a suitable

c from the sequence [2, 4, 6, 8, 10] in our simulations. All codes includ-

ing the implementation of MGKF and HGKF are available on GitHub:

https://github.com/zhoujia66/MGKF. For the GFC method, we use the

R-package SILGGM developed by Zhang et al. (2018) with scaled Lasso esti-

mator and default values of the tuning parameters.
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4.1 Simulation study 1

4.1 Simulation study 1

We first consider a simple case where the k different graphs share the same

support structure, and the heterogeneity lies in the link strength and noise

level. With reference to the settings in Li and Maathuis (2021) and Ren

et al. (2019), let Γ(t)0 = (Γ
(t)0
i,j )1≤i,j≤p be a block diagonal matrix with m

blocks. Each block represents a fully connected graph of size 20. The

diagonal entries of the blocks are 1 and off-diagonal entries are generated

independently from a uniform distribution over [−0.8,−0.3]∪[0.3, 0.8]. Fur-

ther, to make the graph structure more general, we randomly permute the

rows of columns of Γ(t)0 to obtain the matrix Γ̃
(t)0

(Note that for 1 ≤ t ≤ k,

the permutation of Γ(t)0 is the same). The precision matrix of each sub-

group is eventually given by Γ(t) = Γ̃
(t)0

+
[
|λmin(Γ̃

(t)0
)|+ 0.3

]
Ip, which

ensures the positive definite of the precision matrix.

For each subgroup, let n(t) = n for 1 ≤ t ≤ k, and the rows of the n× p

data matrix X(t) are i.i.d copies of N(0, (Γ(t))−1). In all simulations, we set

the target FDR level at q = 0.2. To fully investigate the performance of

our approach, we consider different combinations of (n, p, k).

• Case 1: Let k = 3 and p = 200 be fixed, while the sample size n for

each subgroup varies between 400 and 700.
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4.1 Simulation study 1

• Case 2: Let p = 100 and n = 200 be fixed, while the number of

subgroups k varies between 3 and 9.

Figure 1: The empirical FDR and power of different procedures over 100

replications with q = 0.2.

Figure 1 shows that our procedure can control the FDR under the pre-

specified level meanwhile enjoying higher power compared to HGKF and

GFC methods. While the empirical FDR results of HGKF and GFC also

fall below the pre-specified level, it suffers from significant power loss, a

circumstance that is comprehensible. Note that the signal strength of an

edge (i, j) on different subpopulations is not the same or even has different

signs. Using a single regression coefficient to fit the strength can cause seri-
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4.2 Simulation study 2

ous estimation errors, resulting in relatively large thresholds in the process

of controlling FDR for the HGKF and GFC. In addition, the interaction of

positive and negative signals on different subgroups will make the estimated

coefficient with a very small absolute value, thus losing the edge. Therefore,

we can see that it makes sense to carefully deal with the heterogeneity for

the heterogeneous data.

4.2 Simulation study 2

We continue to investigate the performance of our procedure under a more

flexible sparsity pattern where the connection structure of k graphs is not

exactly the same. Here, we employ a different data-generating scheme for

entries inside the diagonal blocks. Specifically, for each entry (i, j) with

i 6= j inside a diagonal block Γ
(t)0
i,j = γi,jφi,j, where γi,j is generated inde-

pendently from the uniform distribution over [−0.8,−0.3]∪[0.3, 0.8] and φi,j

is generated independently form Bernoulli (4/5). The other settings are the

same as in simulation study 1. Obviously, in this way, the link structures

of different graphs are not the same.

Similar to simulation study 1, here we also consider different combina-

tions of (n, p, k) as follows:

• Case 1: Let k = 3 and p = 200 be fixed, while the sample size n for
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each subgroup varies between 200 and 500.

• Case 2: Let p = 100 and n = 200 be fixed, while the number of

subgroups k varies between 3 and 9.

Figure 2: The empirical FDR and power of two procedures over 100 repli-

cations with q = 0.2.

Figure 2 shows a similar phenomenon to that in Figure 1, where our

procedure can control the FDR under the pre-specified level and has an

overwhelming advantage in terms of power compared to HGKF and GFC.
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5. Real data analysis

In addition to simulation examples presented in Section 4, we also demon-

strate the practical utility of our MGKF procedure on a gene expression

dataset of breast invasive ductal carcinoma. This dataset consists of 22605

gene expression levels of 1575 patients which is publicly available on the

METABRIC repository (https://www.cbioportal.org/study/summary?

id=brca_metabric) . It would be interesting to investigate the connectiv-

ity pattern among mutated genes of this breast cancer, which provides a

stepping stone to understanding how genes affect cellular phenotypes.

Note that this dataset actually contains four subgroups corresponding

to four molecular subtypes of breast cancer, namely, luminal A, luminal

B, HER2-enriched, and basal-like. Previous studies (Johnson et al., 2021)

have shown that these four molecular subtypes have critical differences in

incidence, response to treatment, disease progression, survival, and imaging

features. It would be more realistic to assume that the distribution of gene

expression levels can vary from one subtype to another, which results in the

heterogeneity of the whole dataset. Meanwhile, they may also share some

common structure as they all belong to the breast cancer.

In this application, we select the top 100 signature genes with the high-

est frequency of mutation in breast invasive ductal carcinoma. Subsequent-
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ly, we eliminate samples with missing values, resulting in subsets comprising

485, 430, 180, and 266 patient samples, delineated according to four distinc-

t subtypes based on three established indicators: ER, HER2, and Ki-67.

Then, we apply our method to this refined dataset with K = 4. For com-

parison, we also apply methods of HGKF and GFC to the whole dataset

regardless the possible heterogeneity. We set the target FDR values at 0.1

for all methods.

The results show that our method identified 1056 edges, GFC identi-

fied 503 edges and HGKF identified none. This aligns with the observed

power performances of the three methods as demonstrated in the preceding

simulations. The gene networks reconstructed by our method and GFC are

displayed in supplementary material. Notably, among the 503 edges iden-

tified by the GFC method, a remarkable 440 edges were also identified by

our method. Furthermore, our approach reveals over 600 additional edges

compared to GFC. Several of these edges bear substantial biological signif-

icance, as evidenced by previous studies, demonstrating the high power of

our method. In the following, we will take TP53 gene as a representative

to carry out specific analysis.

Focusing on TP53 gene which encodes the important protein p53, the

GFC method identify 6 genes which are connected to TP53 while our meth-
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ods identify 19. For convenience, we tabulate the connected genes identified

by two methods (Table 1).

Table 1: Edges identify connected with TP53.

GFC PDE4DIP, NOTCH1, NCOR1, MAP2K4, SETD1A, PIK3R1

PDE4DIP, NOTCH1, NCOR1, MAP2K4, SETD1A, PIK3R1,

MGKF AKT1, FANCD2, TAF1, PBRM1, KDM3A, JAK1, SETDB1,

FAM20C, MYH9, PTPRD, LAMB3, SF3B1, MYO3A,

In view of Table 1, we can see that all genes identified by GFC are also

detected by our methods. Moreover, our approach uncovers an additional

13 edges, several of which have been corroborated by pertinent studies. For

instance, Ogawara et al. (2002) shows that phosphorylation of MDM2 by

Akt results in the translocation of MDM2 to the nucleus, where it promotes

the ubiquitination of p53. Akter et al. (2021) has pointed out that the loss

of p53 will induce Fanconi anemia group D2 protein (FANCD2) with ATRX

deficiency. Additionally, Wu et al. (2014) has report that TAF1 phospho-

rylates p53 at Thr55, leading to dissociation of p53 from the p21 promoter

and inactivation of transcription late in the DNA damage response.

The associations of TP53 with PBRM1, KDM3A, and JAK1 also ap-

pear plausible, as supported by Cai et al. (2020), Li et al. (2015), and
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Goyal et al. (2020), respectively. Although some studies may draw insights

from diverse cancer types like stomach and kidney cancers, their findings

can offer valuable insights into the TP53-gene connections identified within

breast cancer. While some edges identified by our method have received

limited attention in the current literature, it would be interesting to further

investigate if such edges are biologically meaningful.

6. Discussion

In this paper, we present a novel procedure for learning the connected struc-

ture of a population from heterogeneous datasets. To our knowledge, this is

the first study to extend the knockoff framework to multiple graphical mod-

els, tackling the complex issue of heterogeneity in reproducible learning. It

is worth pointing out that our method will facilitate the further investi-

gation of the heterogeneity among different subgroups. To be specific, one

can use our method as a preliminary screening tool, and then recovering the

connected structure for each subpopulation can be more efficient based on

a reduced-dimensional space. Moreover, our work has focused on multiple

Gaussian graphical models. It would be interesting to extend our idea to

other multiple graphical models. The possible extensions addressing these

issues are beyond the scope of the current article and will be interesting

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0099



REFERENCES

topics for future research.

Supplementary Materials

Supplementary materials available online include four auxiliary lemmas,

the proofs for all lemmas and Theorems 1-2, and two figures of real data

analysis mentioned in Section 5.
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