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Abstract: Modern datasets often include different types of variables with complex features, making

variable selection particularly challenging. For example, a measure of dependence with the response

variable may not be directly comparable among predictor variables of different types and different

dimensions. To address this challenge, this work proposes a frequent-voting based independent

screening method for variable selection, which avoids a direct comparison of the dependence measure

among different variables. Asymptotic analyses show that the proposed method selects all of the

active variables with probability converging to one. We also demonstrate its great finite sample

performance through numerical experiments and the application to an ADHD study.
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1. Introduction

This work is motivated by collaborative projects with Psychiatrists where the goal of

the study is to find risk factors that are predictive of mental disorders such as Attention

Deficit Hyperactivity Disorder (ADHD), Major depression, and Suicidal behaviors. This

kind of study usually has a large pool of candidate risk factors, consisting of genetic,
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brain imaging, clinical and demographic variables. Therefore, variable selection plays an

important role in these studies. The imaging data such as fMRI data and EEG data

are time course data observed at many brain regions. Our data starts with aggregated

time course data in each brain region (an average over all voxels in the region). The

time course data are then transformed to a multivariate vector using frequency analysis

and basis expansion. At this point, we select the multivariate vector as a whole. For

the gene data analysis, researchers may be interested in selecting relevant gene pathways

consisting a group of genes, where the variables (gene pathways) under consideration are

multivariate variables. Meanwhile, many clinical data and demographic data are also

available in the form of a continuous variable or a categorical variable. In addition, the

response variable could be multivariate as well. For example, we may follow subjects for

a few time points and produce a longitudinal outcome. These complex data structures

often leads to complex nonlinear relationships as well.

There is a rich body of literature on variable selection research, including penal-

ization/regularization methods (Tibshirani, 1996, 1997; Roth, 2004; Fan and Li, 2001;

Zou and Hastie, 2005), partial likelihood function approaches (Xu and Chen, 2014; Yang

et al., 2016; Liu et al., 2021), and FDR control techniques (Barber and Candès, 2015; Du

et al., 2023), among others. When adopting such approaches, a common prerequisite is

to construct a joint model for all variables. However, creating such models is typically

challenging when data have different types and dimensions. Considering the diverse types

of variables in our applications, we have chosen to first work within a marginal selection
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framework and employ a test of independence. A joint model then might be built after

screening.

With the development of asymptotically consistent methods for the test of indepen-

dence (Székely et al. (2007); Gretton et al. (2007); Heller et al. (2012); Bergsma and

Dassios (2014); Pan et al. (2020)), researchers have naturally considered performing vari-

able selection using dependence measures such as the Distance Correlation measure (Li

et al. (2012)) and the Ball Correlation measure (Pan et al. (2019)). In their papers, for

each predictor variable in the candidate set, one computes a measure of dependence be-

tween the variable under consideration and the response variable, and selects the top N

predictor variables based on the magnitude of the dependence measure. These can be

viewed as an extension of the Sure Independence Screening method (SIS) proposed by

Fan and Lv (2008). The original SIS and its extensions (Fan et al. (2009); Li et al. (2012);

Zhao and Li (2012); Barut et al. (2016)) select variables by ordering the marginal corre-

lation coefficients. The new methods based on dependence measures are nice additions to

these existing sure screening methods because dependence measures are well defined for

multivariate data and beyond, which are particularly suitable in our application.

To apply dependence-measure-based sure screening method, existing works assume

that the magnitude of the estimated dependence measure represents the strength of the

variable importance, and the variables with larger values of the dependence measure will

be selected. We call these scale-based methods. However, we encountered a major chal-

lenge when trying to apply these scale-based methods to our studies. When the variables
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are with different dimensions and in different types, it does not always make sense to de-

termine their importance based on the estimated magnitude of the dependence measure.

For example, when employing the distance covariance measure, to apply the scale-based

method, one has to first standardize the distance covariance measure to the distance cor-

relation measure. The dCor2n(X, Y ) from 10,000 simulations are shown in Figure 1, for

three candidate predictors, where X1 ∈ R is a 1-dimensional inactive variable, X2 ∈ R20 is

a 20-dimensional inactive variable, and X3 ∈ R is a 1-dimensional active variable. All of

them are generated from Gaussian distributions. At moderate sample sizes n = 100 and

200, the values for dCor2n(X2, Y ) are mostly larger than dCor2n(X3, Y ). If we directly

compare the estimated dCor2 for X2 and X3, the 20-dimensional inactive variable X2 will

be preferred over the 1-dimensional active variable X3. In our simulations, the scale-based

method always tends to miss the true low dimensional variables and over selects larger-

dimensional inactive variables. When the sample size gets larger, the problem will be

alleviated, as shown in the last panel of Figure 1 with n = 500. When we consider asymp-

totics with n goes to ∞, the active variables can eventually be separated from the inactive

variables, and therefore the sure screening property still holds asymptotically. However,

with a moderate sample size, an ordering based on the magnitude of the estimated dCor

could be misleading. Scale-based methods based on other dependence measures such as

the Ball correlation measure (Pan et al., 2019) and the bias-corrected distance correlation

measure (Székely and Rizzo, 2013) might be employed to alleviate the effect of dimension

on the null distribution, However, it’s still hard to justify that the estimated standardized
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Figure 1: Distribution of dCor2n(X1, Y ) ( , for a 1-dim inactive variable),

dCor2n(X2, Y ) ( , for a 20-dim inactive variable), and dCor2n(X3, Y ) ( , for 1-

dim active variable).

dependence measures can be ordered directly among variables with different dimensions

and types.

To address this challenge in data analysis, we propose a frequent-voting method that

does not directly compare the magnitude of the dependence measure between different

types of data. We order variables by their frequency to pass the independence test in

sub-samples. We are able to prove that all active variables are selected with probabil-

ity converging to one, and with appropriate assumptions on the re-sampling ratio, we

also show that with probability converging to one, none of the inactive variables will be

selected.

Incorporating a resampling procedure into variable selection is intuitively appealing
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and not a new idea. Meinshausen and Bühlmann (2010) provides some formal analysis

on this and illustrates cases where this approach can be combined with various kinds of

selection methods. Bühlmann and Yu (2002) investigates the gains of bootstrap aggre-

gation (bagging) in the context of decision trees. Meinshausen et al. (2009) aggregates

inference for individual variables across multiple random sample splits. The exploration

of sample splitting and bagging strategies is also evident in the works of Du et al. (2023),

Han et al. (2022) and Dai et al. (2023), where they construct a statistic possessing a global

symmetric property. Most of these studies are based on a joint modeling framework and

not directly applicable to our case.

In Section 2, we formally propose a Frequent-voting Independence Screening method

and establish its asymptotic sure screening properties. In Section 3, we demonstrate the

superb finite sample performance of the proposed method using numerical experiments.

In Section 4, we apply the proposed method to the ADHD-200 dataset (part of the 1000

human connectome study). The data consists of one-dimensional phenotype variables and

time course fMRI data observed at many brain regions. We show that selection based on

the scale-based method may result in selecting redundant brain regions and the frequent-

voting method provides more parsimonious and sensible selection results. Proofs for the

theorems can be found in the appendix.
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2. Frequent-voting independence screening method

Consider a response variable Y and p predictor variables X1, . . . , Xp. Here Y and Xk, 1 ≤

k ≤ p, can have different dimensions. The scale-based independence screening will utilize

a dependence measure ρ(Xk, Y ) as a marginal utility to rank the importance of Xk.

Let X and Y be random variables with marginal distributions PX on X and PY on Y ,

respectively, and joint distribution PXY on X×Y . We say thatX and Y are independent if

PXY ̸= PXPY . A good dependence measure ρ is generally believed to satisfy the following

consistency condition.

(C1) ρ = 0 if and only if X and Y are independent and ρ > 0 otherwise.

Meanwhile, there needs to be a computable empirical counterpart ρ̂n that satisfies the

convergence property,

(C2) Given n independent samples, nρ̂n converges to a null distribution when X

and Y are independent and diverges to ∞ otherwise.

In recent years, there have been active attempts to develop dependence measures that

satisfy the above conditions. The distance covariance measure (Székely et al., 2007) is a

widely used measure that satisfy (C1) and (C2). This measure is originally defined for

X ∈ RdX and Y ∈ RdY through

dCov2(X, Y ) =

∫
RdX+dY

||ϕX,Y (t, s)− ϕX(t)ϕY (s)||2w(t, s)dtds,
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where ϕX(·), ϕY (·), ϕX,Y (·) are respective characteristic functions and w(s, t) = (cdXcdY |t|
1+dX
dX

|s|1+dY
dY

)−1

with cd = π(1+d)/2Γ((1 + d)/2). Later it is has been put into a more general formula and

works for more general metric spaces (Lyons, 2013).

To use this measure for scale-based independence screening, one need to consider the

standardized version

dCor2(X, Y ) =
dCov2(X, Y )√

dCov2(X,X)dCov2(Y, Y )
,

ranging from 0 to 1. An empirical version dCor2n can be obtained by plugging in dCov2n.

Li et al. (2012) then proposed to rank predictors based on dCor2n.

For two univariate normal random variables with the Pearson correlation coefficient

r, we can show that dCor is strictly increasing in |r| (Székely et al. (2007)). This property

implies that the distance correlation based feature screening procedure is equivalent to

the marginal Pearson correlation screening for linear and Gaussian cases. Meanwhile, it

is well defined for multivariate variables, and could be more effective than the marginal

Pearson correlation screening in the presence of nonlinear relationship, which makes it a

good measure to use for independence screening. However, the magnitude of dCor does

not always indicate the importance of the predictors when predictors have different types

and dimensions. We, therefore, propose to combine a frequent-voting method with the

test of independence based on the dCov measure, avoiding a direct comparison of the

dependence measure between different variables.

Now consider the variable selection problem for Xk, 1 ≤ k ≤ p. Consider the condi-
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tional distribution function F (y | X) = P (Y ≤ y | X). We have the following definition

of index sets:

A = {k : F (y | Xk) functionally depends on Xk for some y},

I = {k : F (y | Xk) does not functionally depends on Xk for any y}.

Predictors in A are called active predictors. Predictors in I are called inactive predictors.

We use p∗ to denote the cardinality of A. With a sample of size n, our aim is to construct

Ân that contains all active predictors and contains none or very few inactive predictors.

For k = 1, ..., p, let ρk = dCov2(Xk, Y ). We use the notation zki = (Xki, Yi) to denote

the paired data. For any given data Z = (zki1 , ..., zkim) with size m, ρ̂k;m is the empirical

estimate based on m pairs of data. Let τk,α as the α-level critical value of the limiting

null-distribution ofmρ̂k;m, which is a mixture of χ2 distributions (Székely et al., 2007). For

a given sub-sample size m, we consider all ordered subset of m different integers chosen

from {1, ..., n}, and its corresponding sub-samples (zki1 , ..., zkim). A statistical decision

based on (zki1 , ..., zkim) is expressed as

h(zki1 , ..., zkim ; τk,α) = I(mρ̂k;m > τk,α).

A decision that takes value 1 is called a vote for the k-th variable. The selection of the

k-th variable is based on the frequency of the vote it gets from multiple sub-samples of

size m.

Remark 1. When employing the dCov-based test of independence, a permutation pro-

cedure is usually used to approximate the critical value of the null distribution. Several
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recent results show that the permutation critical value converge to the critical value of the

null distribution for a class of independence tests whose test-statistics take a U-statistics

form; see Theorem A.1 of Kim et al. (2020), Theorem 1 of Xu and Zhu (2022), and

Proposition 18 of Berrett et al. (2021) and also Rindt et al. (2021).

Formally, the stability score of Xk from all possible m tuples is defined as

V k
n;m =

(
n

m

)−1 ∑
i1<...<im

h(zki1 , ..., zkim ; τk,α), (2.1)

where the summation is taken over all sets of m different integers chosen from {1, ..., n}.

For a pre-specified frequency θ ∈ (α, 1), the selected set of variables is then

Ân = {k : V k
n;m > θ}. (2.2)

In practice, it is desirable to approximate V k
n;m with some large enough number of

subsamples rather than computing all n-choose-m combinations.

While the numerical experiments and data analysis in this paper focuses on the use

of the distance covariance test and the distance correlation measure, the frequent-voting

framework and the following asymptotic analysis does not tie to a particular method of

independence test as long as it satisfies the technical conditions.

The following assumptions are needed to prove sure screening properties.

(A1) There exist some constant c1 and 0 < κ < 1
2
such that

min
k∈A

ρk ≥ c1n
−κ.
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(A2) For any ϵ > 0, there exists some constant c2 such that

P (|ρ̂k;n − ρk| > ϵ) ≤ exp(−c2nϵ
2).

Assumption (A1) states that the dependency between each active predictor and the

response variable should not be too weak. It is similar to (C2) of Li et al. (2012) and

(C1) of Pan et al. (2019). Assumption (A2) ensures that the difference between the

population dependency and the estimated statistic is bounded by an exponential function.

Most of the dependence coefficients in the literature can be estimated by a U -statistic.

Assumption (A2) can be established using the concentration inequality for U-statistics

with some technical conditions. In particular, Li et al. (2012) showed that this holds for

the distance covariance when the variables are bounded. The boundedness assumption

can be relaxed to some Bernstein type tail moment conditions with recent developments

in U-statistics concentration inequalities. In the case where the dimension of the variable

grows to infinity with sample size n or even faster than sample size n, the convergence

rate of ρ̂k might differ. In our application of variable selection, we allow the total number

of variables under consideration to grow with n, but the dimension of each variable is

considered as a fixed dimension.

Theorem 1. (Sure screening property) Assume (A1)-(A2). Let m = c0n
γ for γ ∈ (2κ, 1],

and a constant c0 > 0. If log(p∗) = o(n(γ−2κ)∨(1−γ)), we have P (A ⊂ Ân) → 1.

Remark 2. Theorem 1 guarantees that all active predictors are selected in the model

with probability converging to one, when p∗, the cardinality of A, grows at a rate slower
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2.1 Selection of the frequency threshold θ

than certain exponential function of n, which is easy to satisfy. Here γ controls the

sub-sampling ratio, whose lower limit is determined by the minimum signal strength as

specified in (A1). The optimal error bound is p∗ exp(−n1−2κ), which is the same as the

rate for the corresponding scale-based method (Li et al., 2012; Pan et al., 2019).

Theorem 2. Assume (A1)-(A2). Let m = c0n
γ for γ ∈ (2κ, 1) and a constant c0 > 0. If

log(p− p∗) = o(n1−γ), we have P (Ân ⊂ A) → 1.

Theorem 2 requires m to be in a smaller order than n. When m = c0n, we can

compute an upper bound of P (k ∈ Ân|k ∈ I) using the Chebyshev inequality;

P (V k
n;m > θ) = P (V k

n;m − E[V k
n;m] > θ − E[V k

n;m]) ≤
V ar[V k

n;m]

2(θ − E[V k
n;m])

2
,

which holds for sufficiently large m and n. Based on the U-statistic result, V ar[V k
n;m] ≤

m/n·V ar[hk] (Serfling (2009)), the bound asymptotically becomes c0α(1− α)/{2(θ−α)2}.

When α = 0.05, c0 = 0.8 and θ = 0.8, this error bound is approximately equal to 0.03.

2.1 Selection of the frequency threshold θ

In practice, one may select θ based on the desired level of error control and the desired

level of stability across sub-samples. Meinshausen and Bühlmann (2010) suggests that

θ can be chosen from the interval (0.6, 0.9) for stability consideration. In our simula-

tions, we show results for θ = 90%, 80%, 70% and 50%. The proposed frequent-voting

method outperforms the scale-based method across all of the different choices of θ under

consideration.
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2.1 Selection of the frequency threshold θ

Recall that, for any k ∈ I, the stability score V k
n;m follows a distribution F0 with

asymptotic mean equal to α and the asymptotic variance bounded by m/n ·α(1−α). For

any k ∈ A, the stability score V k
n;m will have asymptotic mean equal to 1 and the asymp-

totic variance shrinking to zero. According to the upper bound derived after Theorem

2, the level α and the frequency cut-off value θ collectively control the individual type I

error bound. For α = 0.05 and m/n = 0.8, θ can be chosen to control the individual type

I error at 0.05, which corresponds to θ = 0.67 in our simulations. In some recent research,

data-driven method has been used to select the frequency threshold aiming at controlling

the False Discovery Rate (?Du et al., 2023; Dai et al., 2023). Motivated by these, we also

developed a data-driven approach to approximately control the FDR. Figure 2 is a his-

togram of V k
n;m in one simulation (from simulation 1), for all 200 variables with n = 200.
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Figure 2: Histogram of the stability score generated from a simulated data.
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Assuming that the active predictors are sparse, we can consider fitting a distribution to

the observed stability scores whose values are less than 1. In particular, we employ a zero-

inflated beta distribution with a support range [0,1), characterized by a point mass η at

x = 0 and a density function f0(x) = (1−η)·Beta(β0, β1) for 0 < x < 1. Here, Beta(β0, β1)

is a beta density function with parameters β0, β1, which is a common distribution used to

model proportions. Once f̂0(x) is estimated, an upper bound for FDR at the given θ can

be computed as
p·
∫ 1
θ f̂0(x)dx

|Ân(θ)|
, where |Ân(θ)| is the number of selected predictors for a given θ,

and p is the total number of candidate predictors. Then the frequency θ might be chosen

to control the FDR at a desired level. We note that this method reasonably controls

FDR if the correlation among candidate predictors are negligible and active predictors

are sparse. If candidate variables are largely correlated, the actual FDR is often inflated.

3. Simulation

We consider p = 200 covariates. X1, ..., X100 are one-dimensional and generated from

a normal distribution with zero mean and a covariance matrix Σ = (σij)100×100 where

σij = 0.5|i−j|. The restX101, ..., X200 are 11-dimensional, where variables in each dimension

are normally distributed with the same covariance matrix Σ. We conduct simulations for

three sample sizes n = 100, 150, 200.

Examples 1 - 3 are for a continuous response Y , and designed to demonstrate dif-

ferent types of relationships. The notation X denotes the average of the 11-dimensional

components of X and X2 denotes the average of the squared dimensions.
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Example 1. Y = 1.2X1 + 1.2X11 + 8X101 + 8X111 + ϵ, ϵ ∼ N(0, 1).

Example 2. Y = 0.8X1 +X2
11 + 4X101 + 3I(X111 > 0) + ϵ, ϵ ∼ N(0, 1).

Example 3. Y = 1.2X1 +X2
11 + 5X101 + 5X2

111 + ϵ, ϵ ∼ N(0, 1).

Example 4 is designed to evaluate the performance of the methods when the response

variable Y is binary. Y follows a Bernoulli distribution with probability 1/(1 + eπ) where

π is generated as follows:

Example 4. π = X1 +X2 + 5X101 + 5X111.

The results from 500 simulations are summarized in Tables 1 - 4.

For the scale-based method, standardized versions dCor(Xk, Y ), for k = 1, ..., p, are

used. There is no universal way to determine the model size of the scale-based method

and previous papers (Li et al. (2012); Pan et al. (2019)) have suggested to use (n/ log n),

which are much larger than the true model size in our simulations. Later, ? suggest a

data-driven approach to select a cut-off value based on a sample splitting. For comparison

purpose, we list the selection results for multiple model sizes that match the size used in the

frequent-voting method. We hope to retain the true variables with high probability with a

reasonable size of the model. For the frequent-voting method, the results are based on 500

sub-samples with a significance level of 0.05 for the independence dCov test. Sub-sampling

ratio 0.8 is used. The l2 distance is used in calculating the distance covariance. Critical

values are approximated by a permutation procedure on the whole data set. The total
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Table 1: The proportions that each or all active predictors are selected in Example 1 are

calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected

high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% 70% 50% 90% 80% 70% 50% 90% 80% 70% 50%

Freq

P1 0.52 0.62 0.70 0.79 0.76 0.83 0.86 0.91 0.88 0.92 0.93 0.97

P11 0.51 0.61 0.68 0.77 0.71 0.79 0.83 0.89 0.87 0.89 0.93 0.96

P101 0.85 0.89 0.92 0.95 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00

P111 0.82 0.88 0.91 0.95 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00

Pall 0.23 0.33 0.41 0.56 0.51 0.64 0.70 0.80 0.76 0.81 0.86 0.93

ratio 0.48 0.49 0.50 0.50 0.54 0.51 0.51 0.51 0.62 0.60 0.59 0.57

Scale

P1 0.28 0.31 0.34 0.38 0.49 0.52 0.55 0.59 0.68 0.72 0.74 0.78

P11 0.27 0.30 0.32 0.37 0.46 0.49 0.51 0.56 0.69 0.72 0.74 0.77

P101 0.92 0.96 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P111 0.90 0.95 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pall 0.07 0.09 0.11 0.15 0.24 0.27 0.30 0.35 0.47 0.52 0.55 0.60

ratio 0.92 0.95 0.97 0.97 0.93 0.94 0.95 0.96 0.94 0.95 0.95 0.97

Size 4.5 6.4 8.5 13.8 5.1 6.5 7.8 11.3 6.8 8.5 10.3 15.1

number of variables selected, some of which could be multi-dimensional, is determined by

a frequency cutoff; variables are selected if they achieve 90%, 80%, 70% or 50% of the vote

from sub-sampled data. The results are based on the implementation using R packages

“dcov”.

In each table, the twelve columns represent the results under four different frequency
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Table 2: The proportions that each or all active predictors are selected in Example 2 are

calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected

high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% 70% 50% 90% 80% 70% 50% 90% 80% 70% 50%

Freq

P1 0.48 0.59 0.64 0.77 0.76 0.83 0.88 0.93 0.90 0.94 0.96 0.97

P11 0.47 0.55 0.64 0.72 0.81 0.88 0.91 0.95 0.89 0.92 0.95 0.97

P101 0.52 0.66 0.70 0.76 0.85 0.89 0.93 0.96 0.92 0.96 0.96 0.98

P111 0.69 0.78 0.84 0.90 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00

Pall 0.14 0.24 0.32 0.45 0.51 0.63 0.71 0.84 0.76 0.84 0.88 0.92

ratio 0.47 0.47 0.48 0.49 0.49 0.47 0.47 0.47 0.5 0.48 0.48 0.49

Scale

P1 0.24 0.28 0.31 0.34 0.55 0.58 0.59 0.64 0.68 0.72 0.75 0.78

P11 0.13 0.14 0.17 0.23 0.20 0.26 0.30 0.38 0.48 0.49 0.53 0.59

P101 0.63 0.72 0.78 0.84 0.92 0.93 0.96 0.98 0.95 0.98 1.00 1.00

P111 0.80 0.86 0.89 0.95 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Pall 0.02 0.04 0.06 0.09 0.08 0.12 0.15 0.24 0.29 0.33 0.38 0.45

ratio 0.89 0.94 0.95 0.97 0.94 0.97 0.98 0.98 0.95 0.98 0.98 0.98

Size 4.4 7.2 9.8 17.0 5.8 8.1 10.5 17.0 5.8 7.6 9.5 14.5

cutoffs and with three levels of samples sizes. We evaluate the performance through P1,

P11, P101, P111 and Pall, which are the proportions of retaining each active variable and

all of the active variables in 500 replications. As expected, we observe that the average

size of the model increases as the frequency cutoff becomes lower. The performance

of the frequent-voting method and the scale-based method improves as the sample size
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Table 3: The proportions that each or all active predictors are selected in Example 3 are

calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected

high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% 70% 50% 90% 80% 70% 50% 90% 80% 70% 50%

Freq

P1 0.70 0.78 0.81 0.89 0.93 0.95 0.96 0.98 0.99 0.99 0.99 1.00

P11 0.19 0.27 0.33 0.45 0.45 0.55 0.61 0.74 0.74 0.81 0.85 0.90

P101 0.44 0.55 0.61 0.71 0.75 0.83 0.87 0.92 0.93 0.96 0.97 0.98

P111 0.16 0.23 0.32 0.44 0.37 0.45 0.54 0.66 0.65 0.76 0.81 0.87

Pall 0.03 0.07 0.10 0.20 0.18 0.26 0.34 0.49 0.49 0.62 0.68 0.78

ratio 0.52 0.52 0.52 0.54 0.49 0.47 0.47 0.47 0.49 0.53 0.57 0.58

Scale

P1 0.51 0.53 0.57 0.61 0.80 0.82 0.83 0.86 0.92 0.92 0.94 0.95

P11 0.03 0.03 0.04 0.07 0.06 0.07 0.08 0.10 0.16 0.20 0.24 0.30

P101 0.58 0.68 0.76 0.84 0.85 0.92 0.94 0.97 0.97 0.99 0.99 1.00

P111 0.22 0.33 0.43 0.57 0.52 0.64 0.74 0.83 0.81 0.89 0.92 0.97

Pall 0.00 0.00 0.01 0.03 0.03 0.04 0.05 0.07 0.12 0.16 0.21 0.27

ratio 0.93 0.96 0.97 0.98 0.94 0.97 0.98 0.98 0.89 0.94 0.96 0.97

Size 2.5 4.1 5.7 10.2 3.7 5.1 6.5 10.8 5.0 6.6 8.3 12.9

increases. Overall, the performance of the frequent voting-method is very satisfactory with

a sufficient sample size n = 200, in the sense that the probability of retaining all important

variable is close to 1 with a reasonable model size. In all of the settings, the frequent-voting

method is always better than the scale-based method, in the sense that the probability of

retaining all true variables is higher with the frequent-voting method when the size of the
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Table 4: The proportions that each or all active predictors are selected in Example 4 are

calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected

high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% 70% 50% 90% 80% 70% 50% 90% 80% 70% 50%

Freq

P1 0.37 0.45 0.52 0.63 0.60 0.68 0.74 0.84 0.76 0.83 0.87 0.92

P11 0.38 0.46 0.53 0.63 0.60 0.69 0.75 0.84 0.79 0.83 0.87 0.92

P101 0.31 0.42 0.49 0.62 0.63 0.74 0.79 0.87 0.86 0.90 0.92 0.96

P111 0.27 0.36 0.43 0.57 0.64 0.72 0.78 0.85 0.86 0.92 0.95 0.97

Pall 0.00 0.01 0.03 0.12 0.12 0.20 0.31 0.49 0.41 0.56 0.65 0.78

ratio 0.4 0.44 0.46 0.49 0.44 0.45 0.48 0.52 0.4 0.41 0.41 0.42

Scale

P1 0.32 0.36 0.40 0.44 0.51 0.56 0.61 0.65 0.68 0.72 0.74 0.78

P11 0.34 0.38 0.41 0.44 0.53 0.57 0.60 0.63 0.72 0.76 0.78 0.81

P101 0.37 0.50 0.59 0.72 0.69 0.81 0.86 0.93 0.89 0.93 0.95 0.98

P111 0.31 0.45 0.55 0.70 0.69 0.80 0.84 0.90 0.89 0.95 0.97 0.99

Pall 0.00 0.01 0.03 0.08 0.11 0.18 0.22 0.31 0.36 0.47 0.51 0.60

ratio 0.53 0.67 0.76 0.84 0.63 0.74 0.79 0.85 0.64 0.74 0.79 0.86

Size 2.1 3.1 4.3 7.4 3.6 4.9 6.2 9.5 4.6 5.8 7.2 10.3

model is kept the same. We also recorded the fraction of falsely selected 11-dimensional

variables among all falsely selected variables, and the average fractions in all simulations

are reported in the tables as “ratio”. We can see that the scale-based method tends to

miss the one-dimensional active variables X1 and X2, and include inactive variables with

higher dimensions. For the scale-based method, the fractions of falsely selected high-
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dimensional variables are close to 1 in Example 1 - Example 3. The fraction is a bit more

balanced in Example 4, because the discrepancy in dCorn(X, Y ) for X variables with

varying dimensions is reduced when Y is binary.

We also explored the data driven approach for the selection of θ. For n = 200,

to control FDR at 0.3 or 0.5, the average θ selected is around 78% and 69%, in all

simulations. For a target value 0.5, the empricial FDR values are 0.57, 0.47, 0.43, 0.51

for simulations 1-4 respectively. For a target value 0.3, the empirical FDR values are

0.49, 0.37, 0.34, 0.41 for simulations 1-4 respectively. The results demonstrate that the

empirical FDR are controlled within a reasonable range, with a certain degree of inflation.

This inflation is mainly due to the correlation among predictor variables. We repeated

the same experiments with uncorrelated predictor variables, and the FDR values are well

controlled.

4. Application: ADHD 200

In this section, our method is employed to identify important variables related to Atten-

tion Deficit Hyperactivity Disorder (ADHD). ADHD is a common neurological disorder

prevalent among school-aged children (Willcutt (2012)), characterized by difficulties in

attention and impulse control. We use ADHD-200 consortium data set (ADHD-200-

Consortium (2012); Bellec et al. (2017)), which was publicly released to support the

development of scientific tools for diagnosing the condition. As this data set was made

available as part of the ADHD-200 Global Competition, it naturally underwent a rigorous
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pre-processing step, making it highly suitable for methodological research as evidenced

by previous publications.

The dataset contains phenotype variables and resting-state fMRI data written into

MNI space at 4 mm x 4 mm x 4 mm voxel resolution. In each voxel, the mean blood-

oxygen-level dependent (BOLD) signal was recorded at equally spaced time points. The

data is processed using the Athena pipeline and aggregated over functionally parcellated

regions of interest (ROIs) called “CC200” (Craddock et al. (2012)). The “ADHD Rating

Scale IV” measurement is used as the response variable, which represents the severity

of symptoms on a continuous scale. This analysis focuses on data collected at the NYU

site, resulting in a final sample of 215 observations with seven phenotype variables and

time course fMRI data from 190 ROIs. The phenotype variables include gender, age,

handedness, verbal IQ, full-scale IQ, performance IQ, and medication status, all of which

are one-dimensional.

To use the distance covariance test dCov or the distance correlation measure dCor

in screening, one needs to employ an appropriate distance measure. For the phenotype

data, l2 distance is used. For the rs-fMRI data, we choose not to apply the l2 distance

directly on the time-series data, because the original time-series data are noisy and contain

individual level horizontal shift, which could lead to spurious distance between pairs of

ROIs. Following some previous papers (Biswal et al. (1995); Yu-Feng et al. (2007)) in

ADHD studies with fMRI data, we transformed each time-series data to Global Wavelet

Power Spectrum (GWPS) and then applied l2 distance on the coefficients. The GWPS
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transformation effectively summarizes the data by indicating the average power at specific

frequency levels. The frequency of interest in this data is from 0 to 0.25 Hz, on an equally

spaced grid of 60. Morlet’s wavelet (R package “biwavelet”) is used for our analysis.

In addition to the curve analysis, we also consider a five-dimensional summary for the

fMRI data, where data in each ROI is summarized into average GWPS values in five

predefined frequency bins (0-0.0117 Hz, 0.0117-0.0273 Hz, 0.0273-0.0742 Hz, 0.0742-0.1992

Hz, 0.1992-0.25 Hz) (Zhang et al. (2015); Wang et al. (2015); Luo et al. (2020)). Then l2

distance is used for this five-dimensional data when applying the dCov or dCor methods.

Both the frequency-voting method and the scale-based method are applied to select

variables using distance covariance/distance correlation measures. The implementation

details are the same as specified in the simulation section. For the phenotype variables,

the frequency vote of each variable from the sub-samples is summarized in Table 5. The

ranking of variables based on the frequency vote exactly matches the ranking based on

the magnitude of dCor (the scale-based method). The order of variables is also aligned

with the p-values from an individual test of independence between each predictor and the

response variable using dCov. Several studies reveal an association between “Full-scale

IQ” and ADHD (Bridgett and Walker (2006); Fabio et al. (2022)) and the p-value from

the test of independence also supports this result. Therefore, the “Full-scale IQ” is used

as a cutoff for the rest of the analysis. This means that variables, phenotypes and brain

ROIs, are selected if their votes exceed 54% for the frequent-voting method and if their

dependence measure (dCor) exceed that of “Full-scale IQ” for the scale-based method.
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Table 5: Summary of the association between phenotype variables and the response.

Variable Frequency vote dCor P-value

Medication Status 100% 0.49 0.00

Gender 100% 0.27 0.00

Verbal IQ 76% 0.20 0.01

Age 74% 0.18 0.02

Full-scale IQ 54% 0.17 0.04

Performance IQ 11% 0.14 0.12

Handedness 4% 0.12 0.17

Table 6: Selection path of brain ROIs using Full-scale IQ as a cutoff with CC200 labels.

Numbers of selected ROIs are inside the parenthesis.

Method Data ROI selection path

Frequent-voting
5-dim 138 44 33 112 1 81 35 36 31 (9)

Curve 138 44 33 1 35 189 31 112 81 (9)

Scale-based

5-dim
138 33 44 112 1 35 31 81

102 160 175 90 119 122 36 (15)

Curve
138 33 35 112 1 31 44 102 160

90 32 189 122 119 81 175 108 173 47 (19)

The results of the brain ROI selection are summarized in Table 6 and Figure 3.

The regions are ordered by the frequency vote or the magnitude of dCor. Each number

represents a brain region labeled by CC200 parcellation. Both the curve data and its five-
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Figure 3: The selected brain regions are highlighted in green if selected by both the scale-

based and the frequent-voting methods, and in red if only selected by the scale-based

method. The top row displays the results using five-dimensional summary data; while

the bottom row shows the results using the curve data. The brain images include five

different horizontal slices, one sagittal slice, and one coronal slice.

dimensional summary data are used. The result from the frequent-voting method remains

stable for both versions of the data, where eight out of the nine selected brain regions

are the same. The scale-based method selects more brain regions. If the curve data are

used, the scale-based method selects an even larger number of brain regions comparing to

the result based on the five-dimensional version. We find that the ROIs selected by the

frequent-voting method are a subset of ROIs selected by the scale-based method. Our

simulations under a similar setting showed that the scale-based method tends to rank

high-dimensional inactive variables higher than some low-dimensional active variables.

While it is difficult to directly verify the correctness of the selection in this data analysis,
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we found that the frequent-voting method provides more parsimonious and stable results.

The top ROIs selected by both methods have been identified and well discussed in

ADHD literature. For example, ROI 138 is mainly comprised of Right Cerebellum and

Fusiform Gyrus which has been confirmed as related to ADHD with different data and

theories (Wolf et al. (2009); Lei et al. (2014); Stoodley (2016); Chiang et al. (2020)). ROI

33 is largely a part of left superior temporal gyrus and left supramarginal gyrus which are

found in Rubia et al. (2007); Wolf et al. (2009); Sidlauskaite et al. (2015); Zhang et al.

(2020). ROI 44 contains a part of lingual gyrus, as discussed in An et al. (2013); Zhao

et al. (2017); Lan et al. (2021).

5. Discussion

The marginal variable selection framework has a long history and has gained more at-

tention after the work of sure screening (Fan and Lv, 2008), where Pearson’s correlation

coefficient is employed to filter out variables in a linear regression setting. In some appli-

cations where strong inter-dependencies present among variables, conventional marginal

screening methods may lead to spurious (or overlooked) discoveries. Our study extends

the marginal sure screening framework to accommodate scenarios involving multivariate

(grouped) variables and complex relationships. It retains a marginal selection aspect in

that we refrain from imposing a joint model on all variables. Nevertheless, it is not en-

tirely marginal, as we can first identify relevant groups of variables that may exhibit high

correlation and then study their collective relationship with y. A successful application
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of this grouping procedure in biological data can be found in Wang et al. (2012). We

consider the proposed method a useful addition to the literature on variable selection.

Another potential approach to mitigate the limitations of marginal selection in some

applications is by employing a conditional dependence measure. Some work in this di-

rection already exists. For instance, Wang et al. (2015) utilized the conditional distance

covariance measure for variable selection. The proposed notion of frequent voting can

be integrated with conditional independence tests, which are anticipated to outperform

scale-based methods when dealing with variables of varying types or dimensions. Never-

theless, developing a conditional dependence measure for variables of different types and

dimensions is itself an intricate challenge that is still under development.

Another point worth of discussion is the use of the sub-sampling approach instead of

the bootstrapping approach (sub-sampling with replacement). The standard bootstrap,

which involves constructing a resample that is of approximately the same size as the orig-

inal sample, works well if the statistics under consideration have an asymptotic normal

distribution and the function satisfies some continuity condition around the population

value. The statistics for the independence test often violate these conditions. Under the

null case, we have a degenerate U-statistic which follows a mixture of χ2 distributions,

while under the alternative case, the statistics have a normal distribution with a different

scaling factor. Empirically, we found that bootstrapping with m = 0.8n and n = 200 gen-

erated a spurious relationship between X and Y , because some pairs (Xi, Yi) are sampled

multiple times. This leads to an over selection of irrelevant variables. A commonly used
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approach to overcome this difficulty is to use an “m-out-of-n” bootstrapping method with

a small m relative to n, which is essentially the same as a sub-sampling approach with a

small m. Whether there is a better resampling approach is a question might be worth of

further research.
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Appendix A : Proof

Proof of Theorem 1

Proof. By a U-statistic theory (Serfling, 2009), we have

E[V k
n;m] = E[h(zki1 , ..., z

k
im ; τk,α)],

V ar[V k
n;m] ≤

m

n
V ar[h(zki1 , ..., z

k
im ; τk,α)]

For k ∈ A, ρk is strictly positive. Therefore, there exists a positive integer n0 and also a

corresponding m0 such that ρk − 1
m
τk,α > 0, for m > m0. Then, for n > n0 and m > m0,

we have

E[V k
n;m] = P (mρ̂k;m > τk,α)

= P (ρk − ρ̂k;m < ρk −
1

m
τk,α)

≥ P (|ρk − ρ̂k;m| < ρk −
1

m
τk,α)

≥ 1− exp(−c2m(ρk −
1

m
τk,α)

2)

where the last inequality is driven from (A2). As m = c0n
γ, we have

exp(−c2m(ρk −
1

m
τk,α)

2) = O(exp(−mρ2k)) = O(exp(−nγ−2κ)) → 0.

Then

E[V k
n;m] = 1−O(exp(−nγ−2κ))
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and

V ar[hk(zki1 , ..., z
k
im ; τk,α)] = E[hk](1− E[hk])

= O(exp(−nγ−2κ))

We now establish an upper bound of P (k /∈ Ân). Since E[V k
n;m] → 1, we can find a large

enough n0 and a corresponding m0 such that E[V k
n;m] − θ > 0, for n > n0 and m > m0.

We consider n > n0 and m > m0 below.

(i) Using a Chebyshev inequality,

P (k /∈ Ân) = P (V k
n;m < θ)

= P (E[V k
n;m]− V k

n;m > E[V k
n;m]− θ)

≤ P (|E[V k
n;m]− V k

n;m| > E[V k
n;m]− θ)

≤
V ar(V k

n;m)

2(E[V k
n;m]− θ)2

= O(nγ−1 exp(−nγ−2κ))

where the last inequality is derived from

V ar(V k
n;m) ≤

m

n
V ar[h(zki1 , ..., z

k
im ; τk,α)] = O(nγ−1 exp(−nγ−2κ)).

(ii) Using a Bernstein bound for U -statistic,

P (|V k
n;m − E[V k

n;m]| > ϵ) < exp(− n/m · ϵ2

2(σ2
hk + ϵ/3)

)
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where σ2
hk = E[hk](1− E[hk]) = O(exp(−nγ−2κ)). Then,

P (k /∈ Ân) = P (V k
n;m < θ)

= P (E[V k
n;m]− V k

n;m > E[V k
n;m]− θ)

≤ P (|E[V k
n;m]− V k

n;m| > E[V k
n;m]− θ)

≤ exp(−
n/m · (E[V k

n;m]− θ)2

2(σ2
hk + (E[V k

n;m]− θ)/3)
) = O(exp(−n1−γ)).

Combining (i) and (ii), we have P (k /∈ Ân) = O(exp(−n(γ−2κ)∨(1−γ))). Since

P (A ⊂ Ân) > 1− p∗P (k /∈ Ân),

and log(p∗) = o(n(γ−2κ)∨(1−γ)), P (A ⊂ Ân) → 1 is derived.

The variance σ2
hk converges to zero, and therefore the Chebyshev inequality provides

a better bound than the Bernstein method for some values of γ.

Proof of Theorem 2

Proof. If k ∈ I, we use a Bernstein bound for U -statistic;

P (|V k
n;m − E[V k

n;m]| > ϵ) < exp(− nϵ2/m

2(σ2
hk + ϵ/3)

)

where σ2
hk = E[hk](1 − E[hk]). Since E[V k

n;m] → α and θ > α, there exists some positive

integer n0 and a corresponding m0 such that θ − E[V k
n;m] > 0, for n > n0 and m > m0.
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Then

P (k ∈ Ân) = P (V k
n;m > θ)

= P (V k
n;m − E[V k

n;m] > θ − E[V k
n;m])

≤ P (|V k
n;m − E[V k

n;m]| > θ − E[V k
n;m])

≤ 1

2
exp(−

n/m · (θ − E[V k
n;m]))

2

2(σ2
hk + (θ − E[V k

n;m])/3)
) = O(exp(−n1−γ))

In a last step, we used E[V k
n;m] = E[h(zki1 , ..., z

k
im)] → α and σ2

hk → α(1 − α) so that the

order only depends on a term n/m. Since

P (Ân ⊂ A) ≥ 1− (p− p∗)P (k ∈ Ân),

given γ < 1 and log(p− p∗) = o(n1−γ), we have P (Ân ⊂ A) → 1.
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