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Abstract: Modern datasets often include different types of variables with complex features, making
variable selection particularly challenging. For example, a measure of dependence with the response
variable may not be directly comparable among predictor variables of different types and different
dimensions. To address this challenge, this work proposes a frequent-voting based independent
screening method for variable selection, which avoids a direct comparison of the dependence measure
among different variables. Asymptotic analyses show that the proposed method selects all of the
active variables with probability converging to one. We also demonstrate its great finite sample

performance through numerical experiments and the application to an ADHD study.
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1. Introduction

This work is motivated by collaborative projects with Psychiatrists where the goal of
the study is to find risk factors that are predictive of mental disorders such as Attention
Deficit Hyperactivity Disorder (ADHD), Major depression, and Suicidal behaviors. This

kind of study usually has a large pool of candidate risk factors, consisting of genetic,



brain imaging, clinical and demographic variables. Therefore, variable selection plays an
important role in these studies. The imaging data such as fMRI data and EEG data
are time course data observed at many brain regions. Our data starts with aggregated
time course data in each brain region (an average over all voxels in the region). The
time course data are then transformed to a multivariate vector using frequency analysis
and basis expansion. At this point, we select the multivariate vector as a whole. For
the gene data analysis, researchers may be interested in selecting relevant gene pathways
consisting a group of genes, where the variables (gene pathways) under consideration are
multivariate variables. Meanwhile, many clinical data and demographic data are also
available in the form of a continuous variable or a categorical variable. In addition, the
response variable could be multivariate as well. For example, we may follow subjects for
a few time points and produce a longitudinal outcome. These complex data structures
often leads to complex nonlinear relationships as well.

There is a rich body of literature on variable selection research, including penal-
ization /regularization methods (Tibshirani, 1996} 1997; Roth, 2004; Fan and Li, 2001}
Zou and Hastiel, 2005)), partial likelihood function approaches (Xu and Chen) 2014; Yang
et al., 2016; [Liu et al.| [2021)), and FDR control techniques (Barber and Candes, [2015; |Dul
et al., 2023)), among others. When adopting such approaches, a common prerequisite is
to construct a joint model for all variables. However, creating such models is typically
challenging when data have different types and dimensions. Considering the diverse types

of variables in our applications, we have chosen to first work within a marginal selection



framework and employ a test of independence. A joint model then might be built after
screening.

With the development of asymptotically consistent methods for the test of indepen-
dence (Székely et al. (2007)); Gretton et al. (2007); Heller et al. (2012); [Bergsma and
Dassios| (2014)); [Pan et al.| (2020)), researchers have naturally considered performing vari-
able selection using dependence measures such as the Distance Correlation measure (Li
et al. (2012))) and the Ball Correlation measure (Pan et al.|(2019)). In their papers, for
each predictor variable in the candidate set, one computes a measure of dependence be-
tween the variable under consideration and the response variable, and selects the top N
predictor variables based on the magnitude of the dependence measure. These can be
viewed as an extension of the Sure Independence Screening method (SIS) proposed by
Fan and Lv| (2008). The original SIS and its extensions (Fan et al.| (2009)); Li et al.| (2012);
Zhao and Li (2012); Barut et al.| (2016))) select variables by ordering the marginal corre-
lation coefficients. The new methods based on dependence measures are nice additions to
these existing sure screening methods because dependence measures are well defined for
multivariate data and beyond, which are particularly suitable in our application.

To apply dependence-measure-based sure screening method, existing works assume
that the magnitude of the estimated dependence measure represents the strength of the
variable importance, and the variables with larger values of the dependence measure will
be selected. We call these scale-based methods. However, we encountered a major chal-

lenge when trying to apply these scale-based methods to our studies. When the variables



are with different dimensions and in different types, it does not always make sense to de-
termine their importance based on the estimated magnitude of the dependence measure.
For example, when employing the distance covariance measure, to apply the scale-based
method, one has to first standardize the distance covariance measure to the distance cor-
relation measure. The dCor?,(X,Y") from 10,000 simulations are shown in Figure , for
three candidate predictors, where X; € R is a 1-dimensional inactive variable, X5 € R? is
a 20-dimensional inactive variable, and X35 € R is a 1-dimensional active variable. All of
them are generated from Gaussian distributions. At moderate sample sizes n = 100 and
200, the values for dCor?,(X3,Y) are mostly larger than dCor?,(X3,Y). If we directly
compare the estimated dCor? for X, and X3, the 20-dimensional inactive variable X5 will
be preferred over the 1-dimensional active variable X3. In our simulations, the scale-based
method always tends to miss the true low dimensional variables and over selects larger-
dimensional inactive variables. When the sample size gets larger, the problem will be
alleviated, as shown in the last panel of Figure [l with n = 500. When we consider asymp-
totics with n goes to oo, the active variables can eventually be separated from the inactive
variables, and therefore the sure screening property still holds asymptotically. However,
with a moderate sample size, an ordering based on the magnitude of the estimated dCor
could be misleading. Scale-based methods based on other dependence measures such as
the Ball correlation measure (Pan et al.,[2019)) and the bias-corrected distance correlation
measure (Székely and Rizzo, 2013)) might be employed to alleviate the effect of dimension

on the null distribution, However, it’s still hard to justify that the estimated standardized
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Figure 1: Distribution of dCor?,(X;,Y) (——, for a 1-dim inactive variable),
dCor?, (X5, Y) (e , for a 20-dim inactive variable), and dCor?,(X3,Y) (---, for 1-

dim active variable).

dependence measures can be ordered directly among variables with different dimensions
and types.

To address this challenge in data analysis, we propose a frequent-voting method that
does not directly compare the magnitude of the dependence measure between different
types of data. We order variables by their frequency to pass the independence test in
sub-samples. We are able to prove that all active variables are selected with probabil-
ity converging to one, and with appropriate assumptions on the re-sampling ratio, we
also show that with probability converging to one, none of the inactive variables will be
selected.

Incorporating a resampling procedure into variable selection is intuitively appealing



and not a new idea. Meinshausen and Biihlmann (2010) provides some formal analysis
on this and illustrates cases where this approach can be combined with various kinds of
selection methods. Bithlmann and Yu| (2002) investigates the gains of bootstrap aggre-
gation (bagging) in the context of decision trees. Meinshausen et al.| (2009)) aggregates
inference for individual variables across multiple random sample splits. The exploration
of sample splitting and bagging strategies is also evident in the works of Du et al.| (2023]),
Han et al. (2022) and |Dai et al.| (2023), where they construct a statistic possessing a global
symmetric property. Most of these studies are based on a joint modeling framework and
not directly applicable to our case.

In Section [2| we formally propose a Frequent-voting Independence Screening method
and establish its asymptotic sure screening properties. In Section [3, we demonstrate the
superb finite sample performance of the proposed method using numerical experiments.
In Section , we apply the proposed method to the ADHD-200 dataset (part of the 1000
human connectome study). The data consists of one-dimensional phenotype variables and
time course fMRI data observed at many brain regions. We show that selection based on
the scale-based method may result in selecting redundant brain regions and the frequent-
voting method provides more parsimonious and sensible selection results. Proofs for the

theorems can be found in the appendix.



2. Frequent-voting independence screening method

Consider a response variable Y and p predictor variables X1, ..., X,. Here Y and Xj,1 <
k < p, can have different dimensions. The scale-based independence screening will utilize
a dependence measure p(Xg,Y') as a marginal utility to rank the importance of Xj.

Let X and Y be random variables with marginal distributions Px on X and Py on ),
respectively, and joint distribution Pyxy on X' x)). We say that X and Y are independent if
Pxy # PxPy. A good dependence measure p is generally believed to satisfy the following

consistency condition.
(C1) p=0if and only if X and Y are independent and p > 0 otherwise.

Meanwhile, there needs to be a computable empirical counterpart p, that satisfies the

convergence property,

(C2) Given n independent samples, np, converges to a null distribution when X

and Y are independent and diverges to oo otherwise.

In recent years, there have been active attempts to develop dependence measures that
satisfy the above conditions. The distance covariance measure (Székely et al., 2007) is a
widely used measure that satisfy (C1) and (C2). This measure is originally defined for

X € R¥™ and Y € R%¥ through

ACoP(XY) = [ [lowr(t,s) - ox(Bor (9w, s)deds,

]RdX +dy



where ¢x (+), ¢y (), dx.v(+) are respective characteristic functions and w(s, t) = (cay Cay |t|;X
with ¢g = 70+9/20((1 + d)/2). Later it is has been put into a more general formula and
works for more general metric spaces (Lyons, 2013]).

To use this measure for scale-based independence screening, one need to consider the

standardized version

2
dCor?(X,Y) = dCov (X, V) ,
v/dCov?(X, X)dCov%(Y,Y)

ranging from 0 to 1. An empirical version dCor?,, can be obtained by plugging in dCov?,.
Li et al| (2012) then proposed to rank predictors based on dCor?,.

For two univariate normal random variables with the Pearson correlation coefficient
r, we can show that dCor is strictly increasing in |r| (Székely et al.| (2007))). This property
implies that the distance correlation based feature screening procedure is equivalent to
the marginal Pearson correlation screening for linear and Gaussian cases. Meanwhile, it
is well defined for multivariate variables, and could be more effective than the marginal
Pearson correlation screening in the presence of nonlinear relationship, which makes it a
good measure to use for independence screening. However, the magnitude of dCor does
not always indicate the importance of the predictors when predictors have different types
and dimensions. We, therefore, propose to combine a frequent-voting method with the
test of independence based on the dCov measure, avoiding a direct comparison of the
dependence measure between different variables.

Now consider the variable selection problem for X;,1 < k < p. Consider the condi-

+dx |S|1+dy)71



tional distribution function F(y | X) = P(Y <y | X). We have the following definition

of index sets:

A ={k: F(y | Xx) functionally depends on X}, for some y},

Z ={k: F(y| Xx) does not functionally depends on X}, for any y}.

Predictors in A are called active predictors. Predictors in Z are called inactive predictors.
We use p* to denote the cardinality of A. With a sample of size n, our aim is to construct
A, that contains all active predictors and contains none or very few inactive predictors.

For k =1,...,p, let p;, = dCov?(X},,Y). We use the notation z; = (X,,Y;) to denote
the paired data. For any given data Z = (zy;,, ..., 2ki,,) With size m, py.,, is the empirical
estimate based on m pairs of data. Let 7, as the a-level critical value of the limiting
null-distribution of mpy.,,, which is a mixture of x? distributions (Székely et al.[2007). For
a given sub-sample size m, we consider all ordered subset of m different integers chosen
from {1,...,n}, and its corresponding sub-samples (zg;,, ..., 2ki,,). A statistical decision

based on (zyi,, ..., 2ki,, ) 1S expressed as
P(Zkiy s s Zhin Tk,a) = I(mpk;m > Tk,a)-

A decision that takes value 1 is called a vote for the k-th variable. The selection of the
k-th variable is based on the frequency of the vote it gets from multiple sub-samples of

size m.

Remark 1. When employing the dCov-based test of independence, a permutation pro-

cedure is usually used to approximate the critical value of the null distribution. Several



recent results show that the permutation critical value converge to the critical value of the
null distribution for a class of independence tests whose test-statistics take a U-statistics
form; see Theorem A.1 of Kim et al. (2020), Theorem 1 of Xu and Zhu| (2022)), and

Proposition 18 of Berrett et al.| (2021) and also Rindt et al.| (2021)).

Formally, the stability score of X}, from all possible m tuples is defined as

-1
n
V,r{f’m = ( > Z h(zkila ceey Zkim; Tk,a), (21)

m ) )
11<...<tm
where the summation is taken over all sets of m different integers chosen from {1, ...,n}.

For a pre-specified frequency 6 € («, 1), the selected set of variables is then
A, ={k:VE >0} (2.2)

In practice, it is desirable to approximate Vn";m with some large enough number of
subsamples rather than computing all n-choose-m combinations.

While the numerical experiments and data analysis in this paper focuses on the use
of the distance covariance test and the distance correlation measure, the frequent-voting
framework and the following asymptotic analysis does not tie to a particular method of
independence test as long as it satisfies the technical conditions.

The following assumptions are needed to prove sure screening properties.
(A1) There exist some constant ¢; and 0 < k < 3 such that

min p, > cin” "
ke A p



(A2) For any € > 0, there exists some constant ¢y such that
P(|prn — prl > €) < exp(—cane®).

Assumption (A1) states that the dependency between each active predictor and the
response variable should not be too weak. It is similar to (C2) of |Li et al. (2012) and
(C1) of Pan et al.| (2019). Assumption (A2) ensures that the difference between the
population dependency and the estimated statistic is bounded by an exponential function.
Most of the dependence coefficients in the literature can be estimated by a U-statistic.
Assumption (A2) can be established using the concentration inequality for U-statistics
with some technical conditions. In particular, Li et al.| (2012]) showed that this holds for
the distance covariance when the variables are bounded. The boundedness assumption
can be relaxed to some Bernstein type tail moment conditions with recent developments
in U-statistics concentration inequalities. In the case where the dimension of the variable
grows to infinity with sample size n or even faster than sample size n, the convergence
rate of pr might differ. In our application of variable selection, we allow the total number
of variables under consideration to grow with n, but the dimension of each variable is

considered as a fixed dimension.

Theorem 1. (Sure screening property) Assume (A1)-(A2). Let m = con” for vy € (2k, 1],

and a constant co > 0. If log(p*) = o(nO=2AVU=1) "we have P(A C An) — L

Remark 2. Theorem [I| guarantees that all active predictors are selected in the model

with probability converging to one, when p*, the cardinality of A, grows at a rate slower



2.1 Selection of the frequency threshold 6

than certain exponential function of n, which is easy to satisfy. Here v controls the
sub-sampling ratio, whose lower limit is determined by the minimum signal strength as

1—2;{)

specified in (A1l). The optimal error bound is p* exp(—n , which is the same as the

rate for the corresponding scale-based method (Li et al., [2012; Pan et al., 2019)).

Theorem 2. Assume (A1)-(A2). Let m = con” for v € (2k,1) and a constant co > 0. If

log(p — p*) = o(n'™), we have P(A, C A) — 1.

Theorem [2| requires m to be in a smaller order than n. When m = cyn, we can

compute an upper bound of P(k € A,|k € T) using the Chebyshev inequality;

Var[VF |

which holds for sufficiently large m and n. Based on the U-statistic result, Va'r’[Vf;m] <
m/n-Var[h¥] (Serfling (2009)), the bound asymptotically becomes coa(1 — ) /{2(0—)?}.

When a = 0.05, ¢g = 0.8 and # = 0.8, this error bound is approximately equal to 0.03.

2.1 Selection of the frequency threshold ¢

In practice, one may select 6 based on the desired level of error control and the desired
level of stability across sub-samples. Meinshausen and Bithlmann| (2010)) suggests that
0 can be chosen from the interval (0.6, 0.9) for stability consideration. In our simula-
tions, we show results for § = 90%, 80%, 70% and 50%. The proposed frequent-voting
method outperforms the scale-based method across all of the different choices of 6 under

consideration.



2.1 Selection of the frequency threshold 6

Recall that, for any k£ € Z, the stability score Vrﬁm follows a distribution Fj with
asymptotic mean equal to o and the asymptotic variance bounded by m/n - «a(1 — «). For
any k € A, the stability score Vnk;m will have asymptotic mean equal to 1 and the asymp-
totic variance shrinking to zero. According to the upper bound derived after Theorem
2, the level o and the frequency cut-off value 8 collectively control the individual type 1
error bound. For a = 0.05 and m/n = 0.8, € can be chosen to control the individual type
I error at 0.05, which corresponds to # = 0.67 in our simulations. In some recent research,
data-driven method has been used to select the frequency threshold aiming at controlling
the False Discovery Rate (7Du et al., 2023; Dai et al., 2023). Motivated by these, we also
developed a data-driven approach to approximately control the FDR. Figure [2]is a his-

togram of Vf;m in one simulation (from simulation 1), for all 200 variables with n = 200.

120-
inactive
90- B active
60-
30-
O, I
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stability

Figure 2: Histogram of the stability score generated from a simulated data.



Assuming that the active predictors are sparse, we can consider fitting a distribution to
the observed stability scores whose values are less than 1. In particular, we employ a zero-
inflated beta distribution with a support range [0,1), characterized by a point mass 7 at
x = 0 and a density function fy(z) = (1—n)-Beta(fy, 51) for 0 < = < 1. Here, Beta(fy, /1)
is a beta density function with parameters [y, 51, which is a common distribution used to

model proportions. Once fg(x) is estimated, an upper bound for FDR at the given 6 can

p'fgl fO(z)dx

FRGI where \An(e)\ is the number of selected predictors for a given 6,

be computed as
and p is the total number of candidate predictors. Then the frequency 6 might be chosen
to control the FDR at a desired level. We note that this method reasonably controls

FDR if the correlation among candidate predictors are negligible and active predictors

are sparse. If candidate variables are largely correlated, the actual FDR is often inflated.

3. Simulation

We consider p = 200 covariates. Xj, ..., Xj90 are one-dimensional and generated from
a normal distribution with zero mean and a covariance matrix ¥ = (0yj)100x100 Where
0ij = 0.5, Therest X1, ..., X200 are 11-dimensional, where variables in each dimension
are normally distributed with the same covariance matrix . We conduct simulations for
three sample sizes n = 100, 150, 200.

Examples (1] - |3 are for a continuous response Y, and designed to demonstrate dif-
ferent types of relationships. The notation X denotes the average of the 11-dimensional

components of X and X? denotes the average of the squared dimensions.



Example 1. Y = 12X1 + 1.2X11 + 8X101 + 8X111 + €, €~ N(O, 1)
Example 2.Y = 08X1 + X121 + 4X101 + 3I(X111 > O) + €, €~ N(O, 1)

Example 3. Y = 1.2X, + X2 +5X101 +5X%, +¢€ e~ N(0,1).

Example {4 is designed to evaluate the performance of the methods when the response
variable Y is binary. Y follows a Bernoulli distribution with probability 1/(1 + e™) where

7 is generated as follows:
Example 4. T = X1 + X2 + 5X101 + 5X111.

The results from 500 simulations are summarized in Tables [ - 4l

For the scale-based method, standardized versions dCor(Xy,Y), for k = 1,...,p, are
used. There is no universal way to determine the model size of the scale-based method
and previous papers (Li et al. (2012)); Pan et al.| (2019)) have suggested to use (n/logn),
which are much larger than the true model size in our simulations. Later, ? suggest a
data-driven approach to select a cut-off value based on a sample splitting. For comparison
purpose, we list the selection results for multiple model sizes that match the size used in the
frequent-voting method. We hope to retain the true variables with high probability with a
reasonable size of the model. For the frequent-voting method, the results are based on 500
sub-samples with a significance level of 0.05 for the independence dCov test. Sub-sampling
ratio 0.8 is used. The [y distance is used in calculating the distance covariance. Critical

values are approximated by a permutation procedure on the whole data set. The total



Table 1: The proportions that each or all active predictors are selected in Example [1| are
calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected
high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% T0% 50% | 90% 80% T70% 50% | 90% 80% T0% 50%

P1 0.52 062 070 0.79 | 0.76 0.83 0.86 091 | 0.88 092 0.93 0.97
P11 0.51 061 068 0.77 | 0.71 0.79 0.83 0.89 | 0.87 0.89 0.93 0.96
Freq | Pio1 | 0.85 089 092 095 | 098 098 099 099 | 1.00 1.00 1.00 1.00

P11 | 0.82 088 091 095 | 097 098 099 099 | 1.00 1.00 1.00 1.00

Pait 023 033 041 056 | 051 064 070 080 | 076 081 0.86 0.93

ratio | 048 049 050 0.50 | 0.54 0.51 0.51 051 | 0.62 0.60 0.59 0.57

P1 028 031 034 038 | 049 052 055 059 | 068 072 0.74 0.78
P11 0.27 030 032 037 | 046 049 051 056 | 069 0.72 0.74 0.77
Scale | P1o1 | 0.92 096 097 0.99 [ 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00

P11 | 090 095 097 099 | 099 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00

Paut 0.07 0.09 0.11 0.15 | 024 0.27 030 035 | 047 0.52 0.55 0.60

ratto | 092 095 097 097 | 093 094 095 096 | 094 095 095 0.97

Size 4.5 6.4 8.5 13.8 5.1 6.5 7.8 11.3 6.8 8.5 10.3  15.1

number of variables selected, some of which could be multi-dimensional, is determined by
a frequency cutoff; variables are selected if they achieve 90%, 80%, 70% or 50% of the vote
from sub-sampled data. The results are based on the implementation using R packages
“dcov”.

In each table, the twelve columns represent the results under four different frequency



Table 2: The proportions that each or all active predictors are selected in Example [2] are
calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected
high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% T70% 50% | 90% 80% T0% 50% | 90% 80% T0% 50%

P1 0.48 0.59 064 077 | 0.76 083 0.88 093 | 090 094 096 097
P11 0.47 055 064 072 | 0.81 0.8 091 095 | 089 092 095 097
Freq | P1o1 | 052 066 0.70 0.76 | 0.85 089 093 096 | 092 096 0.96 0.98

P11 | 069 078 0.84 090 | 098 098 099 1.00 | 1.00 1.00 1.00 1.00

Pai 0.14 024 032 045 0.51 0.63 0.71 0.84 0.76 0.84 0.88 0.92

ratio | 0.47 047 048 0.49 | 049 0.47 047 047 0.5 0.48 048 049

P1 024 028 031 034 | 055 058 059 064 | 068 0.72 075 0.78
P11 0.13 0.14 0.17 023 | 020 026 030 038 | 048 049 0.53 0.59
Scale | Pio1 | 0.63 0.72 078 0.84 | 092 093 096 098 | 095 0.98 1.00 1.00

Pi111 | 0.80 086 0.89 095 | 099 099 1.00 1.00 | 1.00 1.00 1.00 1.00

Pail 0.02 0.04 0.06 0.09 | 008 0.12 0.15 024 | 029 033 038 045

ratto | 0.89 094 0.95 0.97 | 0.94 097 098 0.98 | 0.95 0.98 0.98 0.98

Size 4.4 7.2 9.8 17.0 5.8 8.1 10.5 17.0 5.8 7.6 9.5 14.5

cutoffs and with three levels of samples sizes. We evaluate the performance through Py,
P11, Pio1, P111 and P.y, which are the proportions of retaining each active variable and
all of the active variables in 500 replications. As expected, we observe that the average
size of the model increases as the frequency cutoff becomes lower. The performance

of the frequent-voting method and the scale-based method improves as the sample size



Table 3: The proportions that each or all active predictors are selected in Example [3] are
calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected
high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% 70% 50% | 90% 80% T0% 50% | 90% 80% T0%  50%

P1 070 078 081 0.89 [ 093 095 096 098 | 099 099 0.99 1.00
P11 0.19 027 033 045 | 045 055 061 074 | 074 081 0.85 0.90
Freq | Pio1 | 044 055 0.61 071 | 075 083 0.87 092 | 093 096 0.97 0.98

P11 | 016 023 032 044 | 037 045 054 066 | 065 0.76 081 0.87

Pai 0.03 0.07 010 0.20 | 018 0.26 0.34 049 0.49 062 0.68 0.78

ratio | 0.52 052 0.52 0.54 | 0.49 0.47 047 047 | 049 053 0.57 0.58

P1 0.51 053 057 0.61 [ 0.80 0.82 083 086 | 092 092 094 0.95
P11 0.03 0.03 0.04 0.07 | 0.06 0.07r 0.08 0.10 | 0.16 0.20 0.24 0.30
Scale | P1o1 | 0.58 0.68 076 0.84 | 0.85 0.92 094 097 | 097 0.99 099 1.00

P11 | 022 033 043 057 | 052 064 074 083 | 081 0.89 092 0.97

Pail 0.00 0.00 0.01 0.03 | 0.03 0.04 0.05 0.07 | 012 0.16 021 0.27

ratto | 0.93 096 097 098 | 0.94 097 098 0.98 | 0.89 094 096 097

Size 2.5 4.1 5.7 10.2 3.7 5.1 6.5 10.8 5.0 6.6 8.3 12.9

increases. Overall, the performance of the frequent voting-method is very satisfactory with
a sufficient sample size n = 200, in the sense that the probability of retaining all important
variable is close to 1 with a reasonable model size. In all of the settings, the frequent-voting
method is always better than the scale-based method, in the sense that the probability of

retaining all true variables is higher with the frequent-voting method when the size of the



Table 4: The proportions that each or all active predictors are selected in Example |4 are
calculated from 500 simulations. Here “ratio” is the average fraction of falsely selected
high-dimensional variables among all falsely selected predictors, and “size” is the average

number of selected predictors.

n=100 n=150 n=200

90% 80% 70% 50% | 90% 80% T0% 50% | 90% 80% T0% 50%

P1 0.37 045 052 063 | 0.60 068 0.74 0.84 | 0.76 0.83 0.87 0.92
P11 0.38 0.46 053 063 | 0.60 069 075 0.84 | 0.79 0.83 0.87 0.92
Freq | Pio1 0.31 042 049 062 | 063 074 079 087 | 0.86 090 0.92 0.96

P11 027 036 043 057 | 0.64 0.72 078 085 | 0.86 0.92 0.95 0.97

Pai 0.00 0.01 003 0.12 | 0.12 020 031 049 | 041 0.56 0.65 0.78

ratio 0.4 044 046 049 | 044 045 0.48 0.52 0.4 041 041 042

P1 032 036 040 044 | 051 056 061 0.65 | 068 0.72 0.74 0.78
P11 0.34 038 041 044 | 053 057 060 0.63 | 072 0.76 0.78 0.81
Scale | P1o1 0.37 050 059 072 | 069 081 08 093 | 089 093 095 0.98

P111 031 045 055 0.70 | 0.69 080 084 090 | 0.89 0.95 0.97 0.99

Pail 0.00 0.01 0.03 0.08 | 0.11 0.18 0.22 031 | 036 047 0.51 0.60

ratio | 0.53 0.67 0.76 084 | 0.63 074 079 085 | 064 0.74 0.79 0.86

Size 2.1 3.1 4.3 7.4 3.6 4.9 6.2 9.5 4.6 5.8 7.2 10.3

model is kept the same. We also recorded the fraction of falsely selected 11-dimensional
variables among all falsely selected variables, and the average fractions in all simulations
are reported in the tables as “ratio”. We can see that the scale-based method tends to
miss the one-dimensional active variables X; and X5, and include inactive variables with

higher dimensions. For the scale-based method, the fractions of falsely selected high-



dimensional variables are close to 1 in Example [1|- Example 3| The fraction is a bit more
balanced in Example , because the discrepancy in dCor,(X,Y’) for X variables with
varying dimensions is reduced when Y is binary.

We also explored the data driven approach for the selection of #. For n = 200,
to control FDR at 0.3 or 0.5, the average 6 selected is around 78% and 69%, in all
simulations. For a target value 0.5, the empricial FDR values are 0.57, 0.47, 0.43, 0.51
for simulations 1-4 respectively. For a target value 0.3, the empirical FDR values are
0.49, 0.37, 0.34, 0.41 for simulations 1-4 respectively. The results demonstrate that the
empirical FDR are controlled within a reasonable range, with a certain degree of inflation.
This inflation is mainly due to the correlation among predictor variables. We repeated
the same experiments with uncorrelated predictor variables, and the FDR values are well

controlled.

4. Application: ADHD 200

In this section, our method is employed to identify important variables related to Atten-
tion Deficit Hyperactivity Disorder (ADHD). ADHD is a common neurological disorder
prevalent among school-aged children (Willcutt| (2012))), characterized by difficulties in
attention and impulse control. We use ADHD-200 consortium data set (ADHD-200-
Consortium| (2012)); Bellec et al.| (2017)), which was publicly released to support the
development of scientific tools for diagnosing the condition. As this data set was made

available as part of the ADHD-200 Global Competition, it naturally underwent a rigorous



pre-processing step, making it highly suitable for methodological research as evidenced
by previous publications.

The dataset contains phenotype variables and resting-state fMRI data written into
MNT space at 4 mm x 4 mm x 4 mm voxel resolution. In each voxel, the mean blood-
oxygen-level dependent (BOLD) signal was recorded at equally spaced time points. The
data is processed using the Athena pipeline and aggregated over functionally parcellated
regions of interest (ROIs) called “CC200” (Craddock et al.|(2012)). The “ADHD Rating
Scale IV” measurement is used as the response variable, which represents the severity
of symptoms on a continuous scale. This analysis focuses on data collected at the NYU
site, resulting in a final sample of 215 observations with seven phenotype variables and
time course fMRI data from 190 ROIs. The phenotype variables include gender, age,
handedness, verbal 1Q, full-scale 1Q), performance 1Q, and medication status, all of which
are one-dimensional.

To use the distance covariance test dCov or the distance correlation measure dCor
in screening, one needs to employ an appropriate distance measure. For the phenotype
data, [y distance is used. For the rs-fMRI data, we choose not to apply the [, distance
directly on the time-series data, because the original time-series data are noisy and contain
individual level horizontal shift, which could lead to spurious distance between pairs of
ROIs. Following some previous papers (Biswal et al. (1995); |[Yu-Feng et al| (2007)) in
ADHD studies with fMRI data, we transformed each time-series data to Global Wavelet

Power Spectrum (GWPS) and then applied [, distance on the coefficients. The GWPS



transformation effectively summarizes the data by indicating the average power at specific
frequency levels. The frequency of interest in this data is from 0 to 0.25 Hz, on an equally
spaced grid of 60. Morlet’s wavelet (R package “biwavelet”) is used for our analysis.
In addition to the curve analysis, we also consider a five-dimensional summary for the
fMRI data, where data in each ROI is summarized into average GWPS values in five
predefined frequency bins (0-0.0117 Hz, 0.0117-0.0273 Hz, 0.0273-0.0742 Hz, 0.0742-0.1992
Hz, 0.1992-0.25 Hz) (Zhang et al.| (2015)); [Wang et al.| (2015); Luo et al.| (2020)). Then [y
distance is used for this five-dimensional data when applying the dCov or dCor methods.

Both the frequency-voting method and the scale-based method are applied to select
variables using distance covariance/distance correlation measures. The implementation
details are the same as specified in the simulation section. For the phenotype variables,
the frequency vote of each variable from the sub-samples is summarized in Table [5 The
ranking of variables based on the frequency vote exactly matches the ranking based on
the magnitude of dCor (the scale-based method). The order of variables is also aligned
with the p-values from an individual test of independence between each predictor and the
response variable using dCov. Several studies reveal an association between “Full-scale
IQ” and ADHD (Bridgett and Walker| (2006); [Fabio et al. (2022))) and the p-value from
the test of independence also supports this result. Therefore, the “Full-scale 1Q” is used
as a cutoff for the rest of the analysis. This means that variables, phenotypes and brain
ROIs, are selected if their votes exceed 54% for the frequent-voting method and if their

dependence measure (dCor) exceed that of “Full-scale 1Q” for the scale-based method.



Table 5: Summary of the association between phenotype variables and the response.

Variable Frequency vote | dCor | P-value
Medication Status 100% 0.49 0.00
Gender 100% 0.27 0.00
Verbal 1Q 76% 0.20 0.01
Age 74% 0.18 | 0.02
Full-scale IQ 54% 0.17 0.04
Performance 1Q 11% 0.14 0.12
Handedness 4% 0.12 0.17

Table 6: Selection path of brain ROIs using Full-scale 1Q as a cutoff with CC200 labels.

Numbers of selected ROIs are inside the parenthesis.

Method Data ROI selection path

5-dim 138 44 33 112 1 81 35 36 31 (9)

Frequent-voting
Curve 138 44 33 1 35 189 31 112 81 (9)

138 33 44 112 1 35 31 81
5-dim
102 160 175 90 119 122 36 (15)

Scale-based
138 33 35 112 1 31 44 102 160

Curve

90 32 189 122 119 81 175 108 173 47 (19)

The results of the brain ROI selection are summarized in Table [6] and Figure
The regions are ordered by the frequency vote or the magnitude of dCor. Each number

represents a brain region labeled by CC200 parcellation. Both the curve data and its five-



Figure 3: The selected brain regions are highlighted in green if selected by both the scale-

based and the frequent-voting methods, and in red if only selected by the scale-based
method. The top row displays the results using five-dimensional summary data; while
the bottom row shows the results using the curve data. The brain images include five

different horizontal slices, one sagittal slice, and one coronal slice.

dimensional summary data are used. The result from the frequent-voting method remains
stable for both versions of the data, where eight out of the nine selected brain regions
are the same. The scale-based method selects more brain regions. If the curve data are
used, the scale-based method selects an even larger number of brain regions comparing to
the result based on the five-dimensional version. We find that the ROIs selected by the
frequent-voting method are a subset of ROIs selected by the scale-based method. Our
simulations under a similar setting showed that the scale-based method tends to rank
high-dimensional inactive variables higher than some low-dimensional active variables.

While it is difficult to directly verify the correctness of the selection in this data analysis,



we found that the frequent-voting method provides more parsimonious and stable results.

The top ROIs selected by both methods have been identified and well discussed in
ADHD literature. For example, ROI 138 is mainly comprised of Right Cerebellum and
Fusiform Gyrus which has been confirmed as related to ADHD with different data and
theories (Wolf et al.| (2009); Lei et al.| (2014); Stoodley]| (2016); (Chiang et al.| (2020)). ROI
33 is largely a part of left superior temporal gyrus and left supramarginal gyrus which are
found in [Rubia et al. (2007); Wolf et al.| (2009); Sidlauskaite et al.| (2015)); [Zhang et al.
(2020). ROI 44 contains a part of lingual gyrus, as discussed in |An et al. (2013); [Zhao

et al.| (2017); Lan et al.| (2021).

5. Discussion

The marginal variable selection framework has a long history and has gained more at-
tention after the work of sure screening (Fan and Lv, 2008), where Pearson’s correlation
coefficient is employed to filter out variables in a linear regression setting. In some appli-
cations where strong inter-dependencies present among variables, conventional marginal
screening methods may lead to spurious (or overlooked) discoveries. Our study extends
the marginal sure screening framework to accommodate scenarios involving multivariate
(grouped) variables and complex relationships. It retains a marginal selection aspect in
that we refrain from imposing a joint model on all variables. Nevertheless, it is not en-
tirely marginal, as we can first identify relevant groups of variables that may exhibit high

correlation and then study their collective relationship with y. A successful application



of this grouping procedure in biological data can be found in [Wang et al. (2012). We
consider the proposed method a useful addition to the literature on variable selection.

Another potential approach to mitigate the limitations of marginal selection in some
applications is by employing a conditional dependence measure. Some work in this di-
rection already exists. For instance, Wang et al.| (2015) utilized the conditional distance
covariance measure for variable selection. The proposed notion of frequent voting can
be integrated with conditional independence tests, which are anticipated to outperform
scale-based methods when dealing with variables of varying types or dimensions. Never-
theless, developing a conditional dependence measure for variables of different types and
dimensions is itself an intricate challenge that is still under development.

Another point worth of discussion is the use of the sub-sampling approach instead of
the bootstrapping approach (sub-sampling with replacement). The standard bootstrap,
which involves constructing a resample that is of approximately the same size as the orig-
inal sample, works well if the statistics under consideration have an asymptotic normal
distribution and the function satisfies some continuity condition around the population
value. The statistics for the independence test often violate these conditions. Under the
null case, we have a degenerate U-statistic which follows a mixture of x? distributions,
while under the alternative case, the statistics have a normal distribution with a different
scaling factor. Empirically, we found that bootstrapping with m = 0.8n and n = 200 gen-
erated a spurious relationship between X and Y, because some pairs (X;,Y;) are sampled

multiple times. This leads to an over selection of irrelevant variables. A commonly used
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approach to overcome this difficulty is to use an “m-out-of-n” bootstrapping method with
a small m relative to n, which is essentially the same as a sub-sampling approach with a
small m. Whether there is a better resampling approach is a question might be worth of

further research.
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Appendix A : Proof

Proof of Theorem [

Proof. By a U-statistic theory (Serfling, 2009), we have

E[me] :E[h(zk o2k S Tha)s

119 ) Py,

VaT[V,f;m] < %Var[h(zfl, ...,me;Tk’a)]

For k € A, p,, is strictly positive. Therefore, there exists a positive integer ny and also a
corresponding myq such that p, — %Tk,a > 0, for m > mg. Then, for n > ny and m > my,

we have

E[V,E ] = P(Mprm > Tia)

) 1
= P(pr — Prsm < Pk — —Th,a)
m
\ 1
> Plpok = Prim| < P — —Tha)
m
1

>1 - - — T 1ea)?
= exp( C2m(pk mTk, ))

where the last inequality is driven from (A2). As m = ¢yn?, we have

exp(—eam(pi — ~7i0)?) = Ofexp(~mpd)) = Ofexp(~n™>)) 0.

Then

] =1 O(exp(—n""))
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and

Varlh®(z,, ..., 2} i mha)] = B[R] (1 — E[h"])

eey 74m

= O(exp(—n""""))

We now establish an upper bound of P(k ¢ A,). Since E[V,] — 1, we can find a large
enough ny and a corresponding mg, such that ]E[V,fm] — 0 > 0, for n > ng and m > my.
We consider n > ng and m > mg below.

(i) Using a Chebyshev inequality,

~

Pk ¢ A,) =PV}, <0)
= P(E[VE,] - VE >E[VE -0

- Var(V,f;m)
~ 2(E[VE,] —0)?

= O(n" texp(—n?""))
where the last inequality is derived from
Va?“(Vnk.m) < TVar[h(zfl, . zf Tha)] = O(n" ! exp(—n7"2)).
bl n m

(ii) Using a Bernstein bound for U-statistic,

- __n/m-ée
P(|Vn,m E{Vn,m” > 6) < eXp( 2<O_zk + 6/?)))
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where o7, = E[h*](1 — E[h*]) = O(exp(—n""?")). Then,

P(k¢ A,) =PVE, <0)

- (B -0 A
RN 7 BT L

and log(p*) = o(n0=2V1-7) P(A c A,) — 1 is derived.

2

+. converges to zero, and therefore the Chebyshev inequality provides

The variance o

a better bound than the Bernstein method for some values of 7.

]
Proof of Theorem 2]
Proof. 1f k € Z, we use a Bernstein bound for U-statistic;
PV — BV > €) < exp(— 5ol ™)
" — . €) < exp(————"——
mm P00 1 /3
where o7, = E[h*](1 — E[h¥]). Since E[V}, ] = o and 6 > «, there exists some positive

integer ny and a corresponding mg such that 6 — ]E[Vrﬁm] > 0, for n > ny and m > my.
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Then

(Vi ~ EVE > 0~ BV,
Lm0 EVE )P
<250z T Eg ) - e

In a last step, we used B[V, ] = E[h(z],...,2} )] = a and 0}, — a(1 — a) so that the

order only depends on a term n/m. Since

~ A

PA, CA)>1—-(p-—p)P(keA,),

given v < 1 and log(p — p*) = o(n'™7), we have P(A, C A) — 1. O
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