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Abstract: The scalar-on-function regression is quite useful for modelling mixed-data in the

context of scalar and functional variables. Under this class of regression, the paper aims at

proposing a compelling alternative to model selection methods to address model selection

uncertainty. The considered models characterize a scalar response using parametric effect of

the scalar predictors and nonparametric effect of a functional predictor, and a model averag-

ing estimation is developed based on Mallows-type criterion to assign weights for averaging.

Further, the asymptotic optimality of the resulting estimator, in terms of achieving the small-

est possible squared error loss, is established. Besides, simulation studies demonstrate its

superiority to or comparability with some information criterion score-based model selection

and averaging estimators. The proposed procedure is also applied to a mid-infrared spectra

dataset for illustration.
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1. Introduction

Functional data analysis (FDA) has received growing attention in recent decades

due to its remarkable flexibility and widespread applicability in handling complex

data, including variables defined on a continuum, such as time or space. Ramsay

and Silverman (2005) offers a comprehensive introduction to FDA across various

fields. One of the most extensively studied topics in FDA pertains to functional

regression. A large body of research has been dedicated to developing regression

models that incorporate functional predictors, with a predominant focus on functional

parametric regression models, see Cardot et al. (1999, 2003); Yao et al. (2005); Cai and

Hall (2006). These studies, falling into the category of scalar-on-function regression,

assume specific forms of the regression model, such as functional linear model (FLM).

The classic FLM is formulated to depict a linear relationship between a scalar response

and a functional predictor, which is conventionally expressed as

Y = β0 +

∫
T
X(t)β(t)dt+ ε, (1.1)

where Y represents the scalar response, X(t) denotes the functional predictor defined

on a continuum T , β0 and β(t) represent the unknown coefficients, and ε is the error

term.

Nevertheless, it is often noted that the above functional parametric regression

may fall short in capturing potential non-linear associations between Y and X(t), es-

pecially in complex data from fields like meteorology and biometrics. Consequently,

statisticians have endeavored to develop nonparametric methodologies for functional
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regressions. For example, Müller and Yao (2008) and Fan et al. (2015) introduced an

additive form of the “features” for functional predictor(s) into models, derived from

the basis expansion. This established the framework of functional additive model.Yao

and Müller (2010) introduced the quadratic term of the functional predictor, and dis-

cussed the functional quadratic regression. These works illustrate both the necessity

and capability of nonparametric modeling in effectively capturing non-linear charac-

teristics in data.

The aforementioned models primarily concentrate on addressing functional pre-

dictors, potentially overlook the impact on the response variable from other available

scalar predictors. Recently, researchers have extended their investigations to address

a more common scenario in applications like neuroimaging and chemometrics studies,

where both scalar and functional predictors coexist. It is referred to as mixed data

or hybrid data in Ramsay and Silverman (2005). Many studies underscore the im-

portance of employing a partially linear structure in handling functional regressions

involving mixed data. For instance, Yu et al. (2016) and Kong et al. (2016) developed

partial functional linear regressions as

Y = θ0 + θTz+

∫
T
X(t)β(t)dt+ ε, (1.2)

where θ0 is the intercept, θ is a vector of coefficients, z represents a vector of scalar

predictors of interests. Compared to the FLM (1.1), these models integrate a linear

combination of scalar predictors into the framework. Wong et al. (2019) and Tang

et al. (2023) further augmented the modeling flexibility by introducing nonparametric
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effect of the functional predictor(s), which demonstrates improved fitting by consid-

ering both the partially linear structure and nonparametric modeling of functional

predictor(s). Aneiros-Pérez and Vieu (2006) and Wang et al. (2016) also incorporated

a partially linear structure of scalar predictors into their respective functional non-

parametric regression models. Inspired by these advancements, we aim to investigate

a class of partially linear functional nonparametric regression models for mixed data

as

Y = θ0 + θTz+m{X(t)}+ ε, (1.3)

where m(·) is a nonparametric modeling function for X(t). These models leverage

the capability of a partially linear framework to accommodate both scalar and func-

tional predictors simultaneously, while also harnessing the flexibility of nonparametric

modeling for the functional predictor.

An initial question arises: How to process X(t). A common practice in functional

regressions is to project X(t) onto a functional space with a finite functional basis.

These projections associated with basis functions, considered to contain all informa-

tion in X(t), are then used for subsequent analysis; see Müller and Yao (2008); Zhu

et al. (2014); Kong et al. (2016). Thereby, model uncertainty arises from the choice of

functional space truncation. Besides, varying decisions on which scalar components

to retain in the model (1.3) can also introduce model uncertainty. Hence, there is

a level of uncertainty inherent in using selection techniques, a factor usually ignored

by model selection approaches. To sum up, simply choosing one model may lead to

inferior performance, as early noted by Draper (1995); Buckland et al. (1997); Clyde
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and George (2004); Claeskens and Hjort (2008).

To mitigate this issue, an alternative strategy to model selection is adopted in

our work. Specifically, we employ a model averaging method for estimation, which

combines multiple candidate models by assigning weights to each to address potential

model uncertainty and deliver a more robust outcome. Model averaging paves an

alternative way for tackling model uncertainty and has been extensively investigated

in the scalar regression literature. For instance, Buckland et al. (1997) and Hjort

and Claeskens (2003) advocated information criterion-based weighting scheme, which

assigns weights calculated from information criterion scores (such as AIC, BIC, etc.)

for each candidate model. Hansen (2007) introduced a Mallow’s criterion for weights

optimization, demonstrating its asymptotic optimality.

This work has inspired the development of diverse Mallows-type model averaging

procedures, which rely on an unbiased estimator of squared risk (up to a constant),

in various model contexts. Zhang et al. (2014) proposed a Mallows-type criterion

for weights selection in linear mixed-effects models. They combined the conven-

tional best linear unbiased estimators from each candidate model using the assigned

weights. In a similar vein, Zhang and Wang (2019) and Zhu et al. (2019) also explored

a Mallows-type criterion for weights selection in the context of partially linear models

and varying-coefficient partially linear models. Besides, there are several other note-

worthy model averaging methods, including jackknife model averaging (Hansen and

Racine, 2012) and cross-validation model averaging (Zhang et al., 2013; Cheng and

Hansen, 2015; Gao et al., 2016; Zhang and Liu, 2023), which are particularly useful in
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cases where deriving an unbiased estimator of squared risk is challenging. Moreover,

Kullback-Leibler loss-based model averaging (Zhang et al., 2015; Fang et al., 2022;

Zou et al., 2022) utilizes the divergence of the unconditional and conditional densities

of Y given the fitted model, making it especially suitable for models with generalized

response variables. Collectively, these studies highlight the superior or comparable

performance of model averaging methods to conventional model selection techniques

in the context of scalar regressions.

It is worth noting that there have been growing developments in model averag-

ing estimation for functional regressions. These works primarily employ the model

averaging strategy to tackle model uncertainty arising from factors like functional

space truncation, as previously discussed. For instance, Zhang et al. (2018) intro-

duced a model averaging estimator for a linear model that includes a response and a

predictor, both of which are of functional types. In addition, Zhang and Zou (2020)

investigated a generalized functional linear model with a link function, incorporat-

ing a generalized scalar response and a functional predictor. And they developed a

model averaging framework for this context. Moreover, Zhu et al. (2018) considered

a mixed-data scenario and proposed an optimal model averaging method based on a

Mallows-type criterion for model (1.2), where both scalar and functional predictors

are parametrically included in the model. These procedures showcase their superior-

ity over other competing selection methods within their frameworks, indicating the

promising potential of model averaging for our model (1.3).

In summary, this article addresses the issue of mixed-data in functional regression
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by proposing a novel class of models that accommodate a partially linear structure for

scalar predictors and a nonparametric effect of the functional predictor. By adopting

this nonparametric approach, our work enhances modeling flexibility and facilitates

the detection of potential non-linear effects on Y . This distinguishes our approach

from that of Zhu et al. (2018), who also address the issue of mixed-data but employ

a linear modeling method. Another special feature of our work, which differs from

the existing functional regression literature, is that we focus on developing a model

averaging approach for estimation. This idea of model averaging tackles model un-

certainty stemming from selection procedures, thereby reducing the risk of selecting

an inferior model by model selection methods. Furthermore, we propose a Mallows-

type criterion for weights selection, based on an unbiased estimator of the squared

risk. And we establish the asymptotic optimality of the resulting estimator in terms

of achieving the lowest squared error loss, which also allows for non-nested and het-

eroscedastic candidate models.

The rest of this paper is organized as follows. Section 2 presents the model

setup and the proposed model averaging estimator. The asymptotic optimality is

established in Section 3. Section 4 and Section 5 illustrate the simulation study and

an empirical application. Section 6 concludes our work with a discussion. Additional

simulations, additional details in real application, and all proofs are given in the

supplementary material.
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2. Methodology

2.1 Model and estimator

Let Y be a scalar response variable associated with a scalar predictor vector z and a

functional predictorX. Let {Yi,Zi, Xi}ni=1 be independent identically distributed (iid)

copies of {Y, z, X}. We model the relationship between Y and {z, X(·)} in the form

of (1.3). As mentioned earlier, it is common practice to project X onto a functional

space with a finite functional basis and utilize these projections to specify the effect

of X. One of the most widely used bases is the eigen-basis derived from functional

principal component analysis (FPCA). Refer to Müller and Yao (2008); Kong et al.

(2016); Yu et al. (2016); Zhu et al. (2018); Zhang et al. (2018); Wong et al. (2019)

for examples. Hence, we follow this routine and establish our model as

Yi = µi + εi = ZT
i θ + f(ξi) + εi, (2.1)

where, albeit with a slight abuse of notation, ε = (ε1, . . . , εn)
T now denotes the

random error vector with conditional mean 0 and conditional variance matrix Ω =

diag(σ2
1, . . . , σ

2
n) given {z, X(·)}. f(·) is an unknown function for nonparametric mod-

eling. The vector ξi, which contains the information within each Xi, is derived

through FPCA. Specifically, suppose X(t), t ∈ T be a random function from Hilbert

space L2(T ) with mean function ν(t) and covariance function C(s, t) = cov{X(s), X(t)}.

T is typically assumed to be a compact interval.

The classical FPCA takes eigen decomposition of the corresponding covariance

operator as (Cψl)(t) = λlψl(t), l = 1, 2, . . ., where {ψ1(t), ψ2(t), . . .} is a set of (or-
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2.1 Model and estimator9

thonormal) eigenfunctions associated with eigenvalues λ1 ≥ λ2 ≥ · · · > 0. Then,

X(t) is projected onto the a finite set of eigenfunctions, resulting in a truncated

Karhunen-Loève expansion

X(t) = ν(t) +

q∑
l=1

ζlψl(t),

where ζl =
∫
T {X(t) − ν(t)}ψl(t)dt represents the functional principal component

(FPC) score associated with the k-th eigenfunction, and var(ζl) = λl, l = 1, . . . , q;

refer to Rice and Silverman (1991); Hall et al. (2006).

Denote by ζi = (ζi1, . . . , ζiq) the vector of FPC scores for Xi(t). To avoid possible

scale issues in nonparametric modeling, we apply a transformation to each ζil, yielding

ξil = Φ
(
ζil;λ

−1/2
l

)
, where Φ(·) is a continuously differentiable map from R to [0, 1].

And the resulting vector ξi = (ξi1, . . . , ξiq)
T represents the transformed FPC scores

for Xi(t). Similar to the process in Wong et al. (2019), we can choose Φ(·) to be

a suitable cumulative distribution function (CDF) in practice. For instance, if ζil

approximately follows Gaussian distribution, we can specify Φ(·) as the standard

Gaussian distribution function, then ξil = Φ
(
ζil;λ

−1/2
l

)
= Φ

(
λ
−1/2
l ζil

)
will be almost

uniform in [0, 1].

Since transformed FPC scores are used in our model (2.1), we refer to it as the

partially linear functional score (PLFS) model. Note that different functional space

truncations, i.e., different choices for ξ, as well as for z, introduce model uncertainty.

Hence, we investigate a model averaging procedure to address this issue. Assuming

there are M candidate models approximating the true model. The m-th candidate
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2.1 Model and estimator10

PLFS model comprises pm regressors in Zi and qm regressors in ξi,

Yi = µ(m),i + ε(m),i = ZT
(m),iθ(m) + f(m)

(
ξ(m),i

)
+ ε(m),i,

where pm and qm are determined during the construction of them-th candidate model,

Z(m),i is a pm × 1 vector, θ(m) is the corresponding unknown coefficients, ξ(m),i is a

qm × 1 vector, f(m) is an unknown function mapping from [0, 1]qm to R, and ε(m),i

contains both an approximation error of the m-th candidate model and a random

error.

For each candidate model, the kernel smoothing method (Speckman, 1988) is

employed in the estimation. Since multiple transformed FPC scores are to be pro-

cessed, we adopt a product kernel function here denoted as Khm(·) =
∏qm

l=1 khm,l
(·),

where khm,l
(·) is a univariate kernel function and hm,l is a scalar bandwidth. We take

hm,l = hm for simplicity and clarity, l = 1, . . . , qm. Furthermore, let K(m) =
(
K(m),ij

)
be the n× n smoother matrix with elements

K(m),ij =
Khm

(
ξ(m),i − ξ(m),j

)∑n
j′=1Khm

(
ξ(m),i − ξ(m),j′

) .
Then, the suggested kernel smoothing estimators for θ(m) and f(m)

(
ξ(m)

)
can be de-

rived as follows,

θ̃(m) =
(
Z̃T

(m)Z̃(m)

)−1
Z̃T

(m)(I−K(m))Y,

f̃(m)(ξ(m)) = K(m)(Y − Z(m)θ̃(m)),

where Y = (Y1, . . . , Yn)
T , Z(m) is an n × pm matrix, and Z̃(m) =

(
I − K(m)

)
Z(m).

Obviously, θ̃(m) is actually a least square estimate and f̃(m) is a Nadaraya-Watson

(local constant) estimator. Therefore, the estimation of µ = (µ1, . . . , µn)
T under the
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m-th candidate model is given by

µ̃(m) = Z(m)θ̃(m) + f̃(m)(ξ(m))

= Z̃(m)

(
Z̃T

(m)Z̃(m)

)−1
Z̃T

(m)(I−K(m))Y +K(m)Y ≡ P(m)Y.

Let P̃(m) ≡ Z̃(m)

(
Z̃T

(m)Z̃(m)

)−1
Z̃T

(m) which is idempotent, and P(m) ≡ P̃(m)

(
I−K(m)

)
+

K(m).

Remark 1. In contrast to the exploration of model (1.2) with multiple functional

predictors in Zhu et al. (2018), where both the effects of scalar and functional pre-

dictors are assumed to be linear, our model (2.1) enables the detection of potential

non-linear association in data through nonparametric modeling. They employed the

projections obtained from FPCA of Xj(t) and the corresponding coefficient function

βj(t), denoted by vectors ζj and βj, to characterize the “features” in X(t) and β(t).

This results in a reduced linear model as Y = zTθ +
∑v

j=1 ζ
T
j βj + ε. Then, they

utilized the OLS estimator for each candidate model, whereas our work employs a

kernel smoothing approach.

2.2 Weight choice criterion

Let ω = (ω1, . . . , ωM)T be a weight vector in the unit simplex of RM ,

Hn =
{
ω ∈ [0, 1]M :

M∑
m=1

ωm = 1
}
.

Then the model averaging estimator of µ follows as

µ̃(ω) =
M∑

m=1

ωmµ̃(m) =
M∑

m=1

ωmP(m)Y = P(ω)Y,
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where P(ω) =
∑M

m=1 ωmP(m). Define the square error loss function and the corre-

sponding conditional risk function as

Ln(ω) = ∥µ̃(ω)− µ∥2 = ∥P(ω)Y − µ∥2,

Rn(ω) = E{Ln(ω)|z, X} = ∥(P(ω)− I)µ∥2 + tr{PT (ω)P(ω)Ω},

where ∥·∥ denotes the L2 norm of a vector, and tr(A) represents the trace of matrix A.

So, we can select the optimal weights based on the following Mallows-type criterion

Cn(ω) = ∥Y − µ̃(ω)∥2 + 2tr{P(ω)Ω}.

It is evident that E{Cn(ω)|z, X} = Rn(ω) + tr(Ω). Therefore, Cn(ω) serves as

an unbiased estimator of the expected in-sample squared error loss plus a constant,

similar to the Mallow’s criterion proposed by Hansen (2007). As tr(Ω) is independent

of ω, optimal weights can be obtained by minimizing Cn(ω) given that Ω is known.

However, obtaining complete curves of X(t) is often infeasible in real-world mea-

surements, rendering the FPC scores ζ and the corresponding transformed FPC scores

ξ unobservable. Consequently, the above-mentioned procedure cannot be directly im-

plemented. To ensure practical applicability, we substitute the original ξ(m) with its

estimator ξ̂(m). Specifically, suppose Xi(t) is discretely measured with noise,

Xij = Xi(tij) + eij, i = 1, . . . , n, j = 1, . . . , Ni,

where eij’s are independent measurement errors with mean 0 and variance σ2
e . Ad-

ditionally, the errors eij are also independent of Xi and Zi. Now we focus on

densely observed trajectories, allowing Xi(t) to be effectively reconstructed from
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{(tij, Xij) : j = 1, . . . , Ni} using a smoother operator, see Kong et al. (2016); Wong

et al. (2019). The reconstructed function is denoted by X̃i(t). Then, the mean and

covariance function of X(t) are estimated by

ν̂(t) =
1

n

n∑
i=1

X̃i(t),

Ĉ(s, t) = 1

n

n∑
i=1

{
X̃i(s)− ν̂(s)

}{
X̃i(t)− ν̂(t)

}T
.

The spectral decomposition Ĉ(s, t) =
∑n−1

l=1 λ̂lψ̂l(s)ψ̂l(t) yields sample eigenvalues {λ̂l}

and eigenfunctions {ψ̂l}. The estimates for FPC scores are subsequently obtained by

ζ̂il =

∫
T

{
X̃i(t)− ν̂(t)

}
ψ̂l(t)dt, ξ̂il = Φ

(
ζ̂il; λ̂

−1/2
l

)
.

Once we obtain ξ̂(m), the original quantities listed above have their practical substi-

tutes.

The smoother matrix is now denoted as K̂(m) with elements

K̂(m),ij =
Khm

(
ξ̂(m),i − ξ̂(m),j

)∑n
j′=1Khm

(
ξ̂(m),i − ξ̂(m),j′

) .
Then, the final kernel smoothing estimators for θ(m) and f(m) are given by

θ̂(m) =
(
ẐT

(m)Ẑ(m)

)−1
ẐT

(m)(I− K̂(m))Y,

f̂(m)(ξ̂(m)) = K̂(m)

(
Y − Z(m)θ̂(m)

)
,

where Ẑ(m) =
(
I − K̂(m)

)
Z(m). Furthermore, the m-th estimator and the model

averaging estimator for µ are

µ̂(m) = Ẑ(m)

(
ẐT

(m)Ẑ(m)

)−1
ẐT

(m)

(
I− K̂(m)

)
Y + K̂(m)Y ≡ P̂(m)Y,

µ̂(ω) =
M∑

m=1

ωmµ̂(m) =
M∑

m=1

ωmP̂(m)Y = P̂(ω)Y,
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where P̂(ω) =
∑M

m=1 ωmP̂(m). Denote P(m) ≡ Ẑ(m)

(
ẐT

(m)Ẑ(m)

)−1
ẐT

(m), which is still

idempotent, and P̂(m) ≡ P(m)

(
I− K̂(m)

)
+ K̂(m).

Additionally, the modified loss, the conditional risk, and the Mallows-type crite-

rion are transformed into

L̂n(ω) = ∥µ̂(ω)− µ∥2 = ∥P̂(ω)Y − µ∥2,

R̂n(ω) = ∥{P̂(ω)− I}µ∥2 + tr{P̂T (ω)P̂(ω)Ω},

Ĉn(ω) = ∥Y − µ̂(ω)∥2 + 2tr{P̂(ω)Ω}.

Let ω̃ = argminω∈Hn Ĉn(ω). Note that the covariance matrix Ω is typically

unknown in practice. Hence, we should estimate Ω to obtain a computationally

feasible criterion. Following Hansen (2007), we estimate Ω based on the largest

candidate model indexed by M∗ = argmax1≤m≤M(pm + qm), leading to an estimator

given by

Ω̂ = diag
(
ϵ̂2(M∗),1, . . . , ϵ̂

2
(M∗),n

)
, (2.2)

where
(
ϵ̂(M∗),1, . . . , ϵ̂(M∗),n

)T
= Y − µ̂(M∗).

With Ω replaced by Ω̂, we select the optimal weights as follows,

ω̂ = argmin
ω
Ĉn(ω)|Ω=Ω̂

= argmin
ω

∥Y − µ̂(ω)∥2 + 2tr{P̂(ω)Ω̂},
(2.3)

which can be treated as a feasible counterpart of Ĉn(ω). Let H =
(
Y− µ̂(1), . . . , Y −

µ̂(M)

)
and b =

(
tr(P̂(1)Ω̂), . . . , tr(P̂(M)Ω̂)

)T
. It is clear that (2.3) is a standard
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2.3 Implementation details15

quadratic programming problem in the form of

min
ω
Ĉn(ω)|Ω=Ω̂ = min

ω
ωTHTHω + 2ωTb

subject to 1Tω = 1 and ω ≥ 0,

where 1 is a vector with all entries equal to 1. The problem can be efficiently optimized

by the R package quadprog.

Remark 2. Our work exhibits several distinctions when compared to model averag-

ing approaches to scalar regressions with a partially linear structure. Notably, Zhang

and Wang (2019) as well as Zhu et al. (2019) investigated Mallows-type model av-

eraging estimators for partially linear models and varying-coefficient partially linear

models, respectively. Both our studies and theirs employed the profile least squares

estimation method with kernel smoothing techniques. However, their treatment of

scalar variables does not entail the subsequent challenges associated with handling

functional predictors, a pivotal focus in our own research. Regarding the source of

model uncertainty, while they deliberated on both which predictors are included in

candidate models and which are allocated to linear or non-linear parts, our natural

division between scalar and functional predictors avoids this kind of uncertainty. We

concentrate solely on determining which components are retained in the models.

2.3 Implementation details

2.3.1 Model preparation

A key problem in implementing the proposed model averaging method lies in the

preparation of candidate models. Depending on the context, the candidate models
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can be prepared in various ways. In specialized fields like economics and finance,

candidate models are often postulated based on different theories for prediction. This

entails using prior knowledge of the model setup. Without these expert theories,

all possible specifications of predictors can be considered when preparing candidate

models.

Typically, with p variables in z and q scores in ξ, we have a total number of

M = (2p − 1) · (2q − 1) candidate models, requiring that at least one component from

each part is included. However, when p or q is large, estimating and averaging all

possible candidate models is computationally infeasible. Hence, a model screening

step prior to model averaging is more desirable. For example, a backward elimination

procedure before model averaging was employed by Zhang et al. (2012), but it may

still be computationally burdensome when p is large. In addition, the well-known

screening procedure based on marginal correlations between the predictors and the

response (Fan and Lv, 2008; Fan and Song, 2010) was performed to prepare candidate

models in Ando and Li (2014). This ordering model screening strategy was also

adopted by Zhang et al. (2016). Moreover, Zhang et al. (2016) advocated a top

m model screening approach, which use penalized regression with various tuning

parameters to screen out some candidate models. More recently, Zhang et al. (2020)

utilized the order of entering the solution path of penalized regression to sequence

predictors, and then prepared candidate models in a nested manner. Zou et al. (2022)

ordered the covariates first based on their marginal correlations with the dependent

variable, and constructed the candidate model by including one extra covariate at
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each time based on the ordering.

In our context, when both p and q are small, we consider all possible candidate

models with diverse specifications in z and ξ, ensuring the inclusion of at least one

component in each part. This leads to a total of M = (2p − 1) · (2q − 1) candidate

models. In cases where p or q is large, we may adopt a pre-screening strategy that

combines ordering screening and threshold screening. Specifically, we arrange the

scalar variables based on their marginal correlation with Y , and screen out the most

informative FPC scores, which collectively account for a certain proportion of ex-

plained variance in FPCA. Subsequently, we construct candidate models in a nested

fashion by incorporating the first few scalar predictors and transformed FPC scores

in the ordering. Denote by psc and qsc the numbers of screened out scalar predictors

and transformed FPC scores. Finally, we have psc×qsc candidate models in all, which

significantly eases the computational load.

2.3.2 Multiple functional predictors

If there are more than one functional predictor available, denoted as X1(t),..., Xg(t),

we may extend our model (1.3) and (2.1) to an additive form:

Y = θTz+m1(X1) + · · ·+mg(Xg) + ε,

Y = θTz+ f1(ξ1) + · · ·+ fg(ξg) + ε,

where ξ1, . . . , ξg are vectors of transformed FPC scores corresponding to X1(t), ...,

Xg(t), and f1, . . . , fg represent unknown functions for nonparametric modeling. The
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approach of additive modeling for functional predictors, m1(X1)+· · ·+mg(Xg), rather

than m(X1, . . . , Xg), serves to alleviate the issue of the “curse of dimensionality” that

often arises in nonparametric statistics. Regarding the estimation for f1, . . . , fg, we

can also perform profile kernel smoothing method outlined above. The advantage

of this method is its computational efficiency, as the estimator can be computed

without iteration. However, as discussed in Speckman (1988), it may produce different

estimators depending on the order of fj, due to its hierarchical nature. Consequently,

in model averaging context, a more efficient and stable estimator needs to be explored,

and we leave this for future work.

As for the kernel function employed in smoothing, we also utilize a product kernel

function Kj,hj

(
u
)
=

∏qj
l=1 kj,hj

(u) to address each fj(ξj). Here, kj,hj
(·) represents a

univariate kernel function and hj is a scalar bandwidth. For small qj, second-order

kernel functions are commonly used in the field. If qj increases, the application of

higher-order kernel functions, such as fourth or sixth-order, can help reduce smooth-

ing bias, albeit at the cost of increased variance. In our development, we advocate

performing a pre-screening procedure before model averaging when many {ξj.l} are

available. This helps alleviate estimation bias for the nonparametric part.

3. Asymptotic optimality

Define ηn = infω Rn(ω), and let λmax(·) and λmin(·) denote the largest and smallest

singular value of a matrix respectively. Let ω0
m be a weight vector in which the

m-th component is 1 and the others are 0. Let p̃ = maxm pm, q̃ = maxm qm, and
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h = minm hm. We focus on X(t), which is densely observed with noise, and consider

a fixed M here. The following assumptions are required for the model averaging

estimator to achieve asymptotic optimality.

Assumption 1. (a) The eigenvalue sequence {λl} of X(t) satisfies

c−1
λ l−α ≤ λl ≤ Cλl

−α,

λl − λl+1 ≥ C−1
λ l−1−α, l = 1, 2, . . . ,

where cλ and Cλ represent generic positive constants, and α > 1 to ensure∑∞
l=1 λl <∞.

(b) E(∥X∥4) <∞ where ∥X∥ =
{ ∫

T X
2(t)dt

}1/2
, and there exists a constant Cζ > 0

such that E(ζ2l ζ2j ) ≤ Cζλlλj and E(ζ2l − λl)
2 < Cζλ

2
l , ∀l ̸= j.

Assumption 1 imposes mild restrictions on X(t), which are widely used in func-

tional regressions, see Cai and Hall (2006); Cai and Yuan (2012). Assumption 1(a)

assumes that the eigenvalues decay at a polynomial rate, which is a relatively slow

rate, allowing X(t) to be flexibly modelled as a L2 process. Moreover, it requires

that the spacings among eigenvalues not be too small to ensure the identifiability

and consistency of sample eigenvalues and eigenfunctions. Assumption 1(b), same

as Assumption 2 in Wong et al. (2019), places a weak moment restriction on X(t),

which is easily satisfied when X(t) is a Gaussian process.

Assumption 2. (a) The kernel function k(·) is a bounded symmetric density with

compact support and continuously bounded first derivative function.
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(b) maxi
∑n

j=1 |K(m),ij| = O(1) (a.s.), maxj
∑n

i=1 |K(m),ij| = O(1) (a.s.), uniformly

for m = 1, . . . ,M .

Assumption 2 imposes specific requirements on the kernel estimation method.

Assumption 2(a) is commonly used for kernel functions and is met by various types,

including second-order uniform, Epanechnikov, and quartic kernels. Assumption 2(b)

bounds the elements of the smoother matrix, which has been discussed in Speckman

(1988) and is similar to condition 1 in Zhang and Wang (2019).

Assumption 3. (a) For some integer G ≥ 1, maxi E(ε4Gi |Zi, Xi) < ∞ (a.s.), i =

1, . . . , n.

(b) Mη−2G
n

∑M
m=1

{
Rn(ω

0
m)

}G
= op(1).

(c) q̃ = O(n1/(2+2α)) where α relates to the decay rate of eigenvalues {λl} in Assump-

tion 1, n1/2η−1
n q̃ = op(1), η

−1
n q̃2 = op(1).

(d) ∥µ∥2/n = O(1), a.s.

(e) The smallest nonzero singular value of the kernel smoother K(m), i.e., the square

root of nonzero eigenvalue of KT
(m)K(m), is bounded away from 0 (a.s.), for all

m = 1, . . . ,M .

Parts (a), (b), and (d) of Assumption 3 are standard conditions for model aver-

aging. Assumption 3(a) constrains the conditional moment of random errors, which

is easily satisfied by Gaussian error, see Hansen (2007); Zhang et al. (2014) also. As-

sumption 3(b) is a common convergence condition in the literature, which requires
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that ηn goes to infinity rapidly enough, implying that there is no simple approxi-

mating model with zero bias. It holds in scenarios where all candidate models are

misspecified, as indicated in Wan et al. (2010); Zhang and Wang (2019); Zhu et al.

(2019) and others. Assumption 3(c) regulates the growth rate of the number of FPC

scores, which guarantees effective estimation accuracy. Remind that α > 1 so that

the order of q̃ is smaller than n−1/4, which may also help alleviate fitting issues in

kernel smoothing. The remaining two restrictions in Assumption 3(c) are technical

conditions that limit the dimensionality of the nonparametric part. Specifically, they

ensure that the diverging rate of q̃ is constrained by the diverging rate of ηn as n ap-

proaches infinity. If ηn goes to infinity at a rate greater than n1/2, then η−1
n q̃2 = op(1)

is implied directly. Assumption 3(d) concerns the sum of µ2
i and is commonly used

in regression contexts, see Liang et al. (2011). Assumption 3(e) serves as a techni-

cal condition ensuring the stability of estimation for θ̂(m) and f̂(m)(ξ̂(m)). It further

implies an intermediate result, as illustrated below in Lemma 1.

Lemma 1. Under Assumptions 1, 2 and 3(c)(e), we have

λmax

(
P(m) − P̂(m)

)
= Op(n

− 1
2 qm),

for all m = 1, . . . ,M .

Lemma 1 demonstrates that the difference between P(m) and its estimate P̂(m) di-

minishes as n approaches infinity. This suggests that the perturbation stemming from

our estimated FPC scores can be bounded, provided certain conditions met. Unlike

Zhu et al. (2018), who did not account for the approximation effect of their estimated
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FPC scores and directly derived asymptotic optimality assuming that true P(m) and

P(ω) are obtained based on the estimated FPC scores, our approach considers the

estimation influence. Other works, addressing estimation influences in different model

setups such as the estimation of the variance of random coefficients in mixed-effects

models and the auto-regression coefficient in spatial auto-regressive models, often em-

ploy λmax

(
P(m) − P̂(m)

)
= op(1) as a high-level and technical condition, see Zhang

et al. (2014); Zhang and Yu (2018). Here, we choose less intricate but equally effective

assumptions, which include mild restrictions on X(t) and the kernel method, as well

as several order requirements on the growth rate of the number of FPC scores and

a standard condition regarding the smallest singular value of the matrix K(m). We

derive this lemma as an intermediate result instead of listing it as a condition.

Now we provide the asymptotic optimality of the model averaging estimator when

Ω is known.

Theorem 1. Under Assumptions 1–3, it holds that

Ln(ω̃)

infω∈Hn Ln(ω)
→ 1 (3.1)

in probability as n→ ∞.

Theorem 1 illustrates the asymptotic optimality of ω̃ in the sense that the squared

loss based on the weight vector ω̃ is asymptotically identical to that obtained using

the infeasible optimal weight vector if Ω is known.

Following Liu and Okui (2013), we process tr{P̂(ω)Ω} as one entity rather than

considering Ω in isolation, and estimate it by
∑n

i=1 ϵ̂
2
(M∗),iρii(ω) where ρii(ω) is the i-
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th diagonal element of P̂(ω). Denote ρ
(m)
ii as the i-th diagonal element of P̂(m). When

Ω is replaced by its estimate Ω̂ given in (2.2), provided that the following additional

assumptions are satisfied, it can be shown that the model averaging estimator based

on ω̂ shares the same asymptotic optimality as ω̃ in Theorem 1.

Assumption 4. (a) There exists a constant c such that maxi ρ
(m)
ii ≤ cn−1|tr

(
P̂(m)

)
|

(a.s.), uniformly for m = 1, . . . ,M .

(b) tr
(
K(m)

)
= O(h−q̃) (a.s.), uniformly for m = 1, . . . ,M .

(c) η−1
n p̃ = op(1) and η

−1
n h−q̃ = op(1).

Assumption 4(a), same as Condition 5 in Zhang and Wang (2019) and Condition

(C.6) in Zhu et al. (2019), means that there should not be any dominant or strongly

influential subjects as shown in Li (1987) and Andrews (1991). Assumption 4(b) is

typically used in kernel smoothing technique, see Condition (h) of Speckman (1988)

and Condition 4 of Zhang and Wang (2019). Assumption 4(c), similar to Condition

(C.9) of Zhu et al. (2019) and Condition 3 of Zhang et al. (2018), places additional

restrictions on the growth rate of the dimensionality of scalar predictors and FPC

scores.

Theorem 2. Under Assumptions 1–4, we have that

Ln(ω̂)

infω∈Hn Ln(ω)
→ 1 (3.2)

in probability as n→ ∞.
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Theorem 2 shows that Theorem 1 remains valid when Ω is replaced by Ω̂. Thus,

the practically feasible ω̂ also enjoys the asymptotic optimality. The supplementary

material provides the detailed proof for Theorems 1–2.

4. Simulation study

In this section, we compare the finite sample performance of the proposed Mallows-

type model averaging (MMA) estimator to several popular model selection and av-

eraging estimators, including AIC, BIC, equally weighting, SAIC and SBIC (Buck-

land et al., 1997). For the m-th candidate model, AIC and BIC select the model

with the smallest scores, defined as AICm = log(σ̂2
m) + 2tr(P̂(m))/n and BICm =

log(σ̂2
m) + log(n)tr(P̂(m))/n, where σ̂

2
m = ∥Y − µ̂(m)∥2/n. Equally weighting sim-

ply assigns uniform weights of 1/M to each candidate model. SAIC and SBIC assign

weights to the m-th candidate as ωAIC
m = exp(−AICm/2)/

∑M
m=1 exp(−AICm/2) and

ωBIC
m = exp(−BICm/2)/

∑M
m=1 exp(−BICm/2) respectively. Additionally, we also

compare to the oracle MMA (oMMA) estimator, assuming the variance matrix Ω of

the random error vector ε is known. Furthermore, both the MMA and oracle MMA

estimators derived from model (1.2) (MMA-lin and oMMA-lin) are also performed

to illustrate the benefit of nonparametric modeling in detecting potential non-linear

effect of X(t). This helps to further illustrate the modeling difference between our

approach and that of Zhu et al. (2018).
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The data is generated from the following PLFS model,

Yi = µi + εi =

M0∑
j=1

θjZij + f(ξi) + εi, i = 1, . . . , n. (4.1)

The vector ξi represents the transformed FPC scores derived from ζi, where ζil is

independently generated from N(0, λl). Here, the standard Gaussian CDF, denoted

as Φ(·), is employed as the transformation. We now consider the following examples.

Two additional examples are provided in the supplementary material.

Example 1. To illustrate the effectiveness of nonparametric modeling of the func-

tional predictor, we perform a comparison under linear effect of Xi(t). M0 = 4 and

θ = (1.5, 0.7, 0.2,−0.4)T . Zi is a 4 × 1 vector that follows a multivariate normal

distribution with zero means and a variance-covariance matrix Σ = (0.5|a−b|)4×4. The

functional predictor Xi(t) is obtained by

Xi(t) =
4∑

l=1

ζilψl(t), t ∈ [0, 1],

where ψl(t) =
√
2 sin(πlt), l = 1, . . . , 4, and ζil is i.i.d and simulated from N(0, l−3/2),

i = 1, . . . , n. The random error term εi is i.i.d. and follows N(0, η2). η controls the

signal-to-noise ratio and we vary it such that R2 = var(µi)/var(Yi) ranges from 0.1

to 0.9, where var(µi) and var(Yi) denote the variances of µi and Yi, respectively. In

this scenario, data is generated from the following process,

Yi =
4∑

j=1

θjZij +

∫ 1

0

Xi(t)β(t)dt+ εi,

where the coefficient function β(t) = 1 + log(1 + t), t ∈ [0, 1].

Example 2. M0 = 50 and θj = j−2/3. Consider z and X(t) being correlated.

Simulate (Zi, ζi1) ∼ MN(0,Σ), where Σ = (0.5|a−b|)51×51. The functional predictor
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Xi(t) is generated from

Xi(t) =
10∑
l=1

ζilψl(t), t ∈ [0, 1],

where ψl(t) =
√
2 sin(πlt), l = 1, . . . , 10, and ζil is i.i.d. and follows N(0, l−3/2), i =

1, . . . , n, l = 2, . . . , 10. Consider another type of heteroskedasticity for independent

random errors as εi ∼ N
(
0, η2(Z2

i1 +0.01)
)
. Varying η such that R2 ranging from 0.1

to 0.9. And the non-linear effect of Xi(t) is introduced by

f(ξi) = exp
( 10∑

l=1

ξil/l
)
,

where ξil = Φ(λ
−1/2
l ζil).

Assume that X(t) is observed at 100 equally-spaced grids on the defined interval

with measurement error. Denote the i-th observation of X at time point tj by Xij =

Xi(tj)+ eij, where measurement errors eij’s are independent N(0, 0.2) variables. The

sample size is set as n = 50, 100, 200 and 400.

In Example 1, we omit z4 and ξ4 in preparing candidate models, so all candidate

models are misspecified. With different specifications of which elements in {z1, z2, z3}

and {ξ1, ξ2, ξ3} are included in the model, we have a total number ofM = 49 candidate

models for Example 1. As for Example 2, we first conduct pre-screening and then

construct candidate models in a nested way. That is, order scalar predictors according

to their marginal correlations to the response Y , and screen out the first psc = ⌈n1/3⌉

variables, where ⌈x⌉ denotes the smallest integer larger than x. Besides, the first

qsc FPC scores which account for as least 85% of the cumulative variance explained

proportion are picked out in order. Then, we set each candidate model include the
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first a scalar predictors and the first b transformed FPC scores in the ordering. As a

result, we have psc × qsc candidate models in all.

We employ the Epanechnikov kernel k(u) = 3(1−u2)I(|u| ≤ 1)/4 for illustration,

with the bandwidth hm set to n−1/(1+qm) based on the rule-of-thumb method, m =

1, . . . ,M . The mean squared error (MSE) of each method is presented,

MSE =
1

nD

D∑
d=1

∥µ̂(d) − µ(d)∥2,

where D = 200 denotes the number of repetitions and d represents the d-th trial. For

easy comparison, all MSE’s are normalized by dividing by the MSE of AIC model

selection estimator. Thus, a normalized MSE (NMSE) smaller than 1 indicates the

corresponding estimator is superior to AIC estimator, and vice versa.

Figures 1–2 depict the corresponding results for Examples 1–2. In Example 1, we

investigate the performances of all methods under a partially linear functional linear

model. As shown in Figure 1, both the MMA-lin and oMMA-lin outperform the other

methods, particularly for medium and large R2 values, underscoring the effectiveness

and efficiency of linear modeling when linear effects are prevalent in the data.

In Example 2, we consider a more intricate data generation process. The true

models incorporate heteroscedastic random errors, a departure from Zhu et al. (2018)

which primarily addresses homoscedastic error term. Hence, we omit the comparison

to the oMMA-lin method here. In Example 2, both the MMA and oMMA estimators

exhibit a clear advantage over other estimates, for small and large values of R2,

respectively. However, MMA-lin performs worse in Example 2, with its lines entirely
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Figure 1: Normalized mean squared error (NMSE) comparisons for Example 1.

falling outside each subfigure. This could be attributed to the much stronger non-

linear effects in Example 2, where linear modeling encounters challenges in dealing

with this type of effects.

The oMMA performs better than MMA for large R2 values, whereas MMA excels

for smaller R2 values. This discrepancy can be attributed to the signal-to-noise ratio

inherent in the dataset. Specifically, when the signal predominates, the oracle knowl-
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Figure 2: Normalized mean squared error (NMSE) comparisons for Example 2.

edge of the variance matrix Ω significantly enhances performance. Conversely, when

noise prevails, the oMMA estimator can capture the information regarding the error

terms but may struggle to precisely quantify the magnitude of approximation error.

This limitation could potentially compromise the oMMA’s ability to effectively dis-

tinguish between signal (in candidate models) and approximation. In contrast, MMA

employs an estimated variance matrix derived from the largest candidate model, which
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mitigates this issue. Additionally, when sample size n is limited, MMA exhibits an

advantage over AIC and SAIC methods. With increasing n, these estimators tend to

behave similarly in most cases for R2. On the other hand, BIC and SBIC yield less

satisfactory results in our framework, as their parsimonious nature does not align with

our objective of minimizing MSE. Furthermore, equally weighting performs worse in

each case, suggesting caution in its use especially when dealing with a strong signal.

To summarize, both the proposed MMA and oMMA estimators demonstrate com-

petitive performance when compared to the other estimators across most scenarios.

Their superior performance can be attributed, in part, to the fact that their optimality

does not hinge on the correct specification of candidate models. This means that the

true model needs not be included in the set of candidate models. In addition, equally

weighting method generally yields poorer outcomes in most cases, especially as R2 in-

creases. Both BIC and SBIC display poor performance in our simulations, likely due

to their parsimonious nature not aligning with our objective. It is noteworthy that

the model averaging estimators, SAIC and SBIC, consistently outperform their model

selection counterparts, AIC and BIC. The differences between AIC and SAIC, as well

as BIC and SBIC, tend to diminish as R2 increases. This underscores the potential

capability of model averaging approach in real-world data analysis. Furthermore, the

comparisons between MMA-type and MMA-lin-type estimators highlight the neces-

sity of nonparametric modeling in certain scenarios.
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5. Application to real data

In this section, we illustrate the application of our proposed method using a dataset

on soil properties analysis. The dataset includes mid-infrared spectroscopy mea-

surements (functional predictor X) of 160 soil samples collected in western Kenya.

These measurements were obtained within the spectrum range of 7498 to 600 cm−1.

Additionally, the dataset contains reference measurements, including the total car-

bon percentage (Y ), as well as 19 other covariates (z), such as exchangeable alu-

minium (mg · kg−1), boron concentration (mg · kg−1), and the exchangeable calcium-

to-magnesium ratio. Further details can be found in Sila et al. (2017). With the

inclusion of numerous variables, a large amount of model uncertainty arises, as the

empirical results may vary across different model specifications. Consequently, model

averaging is likely to gain an advantage in such situations.

We retained a sample of 158 observations after removing all incomplete records.

To assess the performance of our proposed procedure, we randomly allocated 90% of

the records (143) as the training set and constructed the test set using the remaining

data points (15). Following Sila et al. (2017), we log-transformed all scalar variables

except pH values and then standardized them. For X(t), we utilized the leading 3

FPC scores for modeling, which collectively account for at least 90% of the explained

variance in the functional data from the training set and do not exceed the order

⌈n1/(2+α)⌉, as listed in Assumption 3(c). Given the relatively large number of scalar

predictors, we initially screened out z whose absolute marginal correlation exceeds

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0067



32

Table 1: Average MSPEs, median MSPEs, and their standard errors on the test set

AIC BIC Equal SAIC SBIC MMA MMA-lin

Mean 0.339 0.339 0.377 0.332 0.335 0.329 0.347

Median 0.329 0.323 0.359 0.320 0.323 0.316 0.332

Ste 0.119 0.121 0.145 0.117 0.116 0.117 0.126

0.1, resulting in 13 remaining covariates (see details in the supplementary material).

We then adopted a nested approach for preparing candidate models. Each candidate

model includes one extra component from both the parametric and nonparametric

parts. We conducted D = 1000 runs, and for each repetition, we evaluated the mean

squared prediction error (MSPE) using

MSPE(d) =
1

ntest

∑
i∈TESTd

(
Y

(d)
i − µ̂

(d)
i

)2
, d = 1, . . . , D,

where ntest denotes the sample size of test set, Y
(d)
i represents the i-th response of the

test set TESTd, and µ̂
(d)
i signifies the prediction for Y

(d)
i .

The boxplots and the empirical cumulative distribution functions of {MSPE(d)}

across D runs are displayed in the supplementary material. Table 1 presents the

average and median MSPEs, as well as their standard errors across D repetitions. It

is worth noting that MMA yields the smallest average and median MSPEs, which

demonstrates its enhanced predictive capability compared to other model averaging

and selection estimators. SAIC follows as the second-best performer with slightly

larger average and median MSPEs, but still inferior to MMA. AIC exhibits a bit

larger average MSPE than SAIC and MMA. Additionally, BIC and SBIC show similar
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Table 2: Results of test statistics and adjusted p-values.

MMA/AIC MMA/BIC MMA/Equal

DM stat. -11.66 -7.356 -13.55

DM p.val 2.37E-29 3.93E-13 4.81E-38

t stat. -13.93 -10.08 -16.50

t p.val 3.03E-40 8.37E-23 8.30E-54

MMA/SAIC MMA/SBIC MMA/MMA-lin

DM stat. -4.110 -5.128 -6.293

DM p.val 2.14E-05 2.11E-07 3.48E-10

t stat. -6.597 -7.258 -8.713

t p.val 3.40E-11 4.72E-13 9.12E-18

performances to AIC and SAIC on this dataset, while the MSPEs of SBIC are slightly

larger than SAIC. The equally weighting method delivers significantly larger MSPEs,

reinforcing the need for cautious application in practice. Furthermore, MMA-lin

exhibits poor MSPE on this dataset, suggesting that nonparametric modeling proves

more effective than linear modeling for this data. Notably, the average and median

MSPEs of model averaging estimators are mostly smaller than those of their model

selection counterparts. This underscores that, when prediction performance is of

primary interest, model averaging stands as a favorable alternative to model selection.

To further highlight the superiority of MMA, we conducted a Diebold-Mariano

(DM) test (Diebold and Mariano, 2002) and a data-driven approach (Racine and

Parmeter, 2014), employing paired t-tests and Mann-Whitney-Wilcoxon (MWW)

tests. These methods are designed to testing whether two competing approximate
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models are equivalent in terms of their prediction performances. Table 2 provides the

test statistics for the first two tests, along with their corresponding p-values for one-

sided tests. We include the corresponding results of MWW test in the supplementary

material to save space. A negative value of test statistics indicates that the respective

method is less accurate than MMA. Notably, all p-values have been adjusted using

the Benjamini & Hochberg method (Benjamini and Hochberg, 1995) to account for

multiple comparisons. In the context of one-sided test employed here, the alternative

hypothesis suggests that the other method is less accurate than MMA.

All test statistics in Table 2 exhibit negative values, strongly indicating the su-

perior prediction accuracy of MMA. Furthermore, the adjusted p-values for the one-

sided tests approach zero, which demonstrate that MMA outperforms its competing

approaches with high confidence. Collectively, these findings affirm that the proposed

MMA procedure yields competitive outcomes in comparison to alternative methods.

6. Conclusion and discussion

We have introduced a Mallows-type model averaging approach for PLFS models,

which address the model uncertainty in the mixed-data scenario involving both scalar

and functional predictors. The theoretical analysis has verified the asymptotic op-

timality of MMA estimator in the context of densely observed functional predictors

with measurement error. Furthermore, our extensive numerical study has revealed

that the performance of the proposed estimator surpasses that of classical compet-

ing model selection and averaging methods in various cases, particularly in scenarios
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characterized by a large degree of model uncertainty.

Several aspects deserve future research. Firstly, while we have advocated an

additive modeling approach in scenarios involving multiple functional predictors, fur-

ther investigation is warranted to ascertain the most effective and efficient means

for conducting model averaging in such cases. Additionally, the asymptotic opti-

mality is derived under the assumption that all candidate models are misspecified.

Recent work, as exemplified by Zhang et al. (2020), Zou et al. (2022), and Fang

et al. (2022), has explored consistent properties in situations where correct models

exist within the model space. Investigating the consistency of the model averaging

approach in such contexts presents a promising yet challenging direction for future

research. Lastly, while our present study focused on a scalar response, it is crucial

to note that responses of binary, censored, and functional nature are prevalent in

practical applications. Thus, extending the proposed methodology to accommodate

these diverse response types is of great importance. This endeavor would broaden the

applicability and impact of our approach in real-world settings.

Supplementary Materials

The supplementary material contains additional simulations, additional details in

real application, and the detailed proofs for Lemma 1, Theorems 1 and 2.
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Aneiros-Pérez, G. and P. Vieu (2006). Semi-functional partial linear regression. Statistics & Probability

Letters 76 (11), 1102–1110.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful

approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57 (1),

289–300.

Buckland, S. T., K. P. Burnham, and N. H. Augustin (1997). Model selection: an integral part of inference.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0067



REFERENCES

Biometrics 53 (2), 603–618.

Cai, T. T. and P. Hall (2006). Prediction in functional linear regression. The Annals of Statistics 34 (5),

2159–2179.

Cai, T. T. and M. Yuan (2012). Minimax and adaptive prediction for functional linear regression. Journal

of the American Statistical Association 107 (499), 1201–1216.

Cardot, H., F. Ferraty, and P. Sarda (1999). Functional linear model. Statistics & Probability Letters 45 (1),

11–22.

Cardot, H., F. Ferraty, and P. Sarda (2003). Spline estimators for the functional linear model. Statistica

Sinica 13, 571–591.

Cheng, X. and B. E. Hansen (2015). Forecasting with factor-augmented regression: A frequentist model

averaging approach. Journal of Econometrics 186 (2), 280–293.

Claeskens, G. and N. L. Hjort (2008). Model selection and model averaging. Cambridge University Press.

Clyde, M. and E. I. George (2004). Model uncertainty. Statistical science 19, 81–94.

Diebold, F. X. and R. S. Mariano (2002). Comparing predictive accuracy. Journal of Business & economic

statistics 20 (1), 134–144.

Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical

Society: Series B (Methodological) 57 (1), 45–70.

Fan, J. and J. Lv (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of

the Royal Statistical Society Series B: Statistical Methodology 70 (5), 849–911.

Fan, J. and R. Song (2010). Sure independence screening in generalized linear models with np-dimensionality.

The Annals of Statistics 38 (6), 3567–3604.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0067



REFERENCES

Fan, Y., G. M. James, and P. Radchenko (2015). Functional additive regression. The Annals of Statis-

tics 43 (5), 2296–2325.

Fang, F., J. Li, and X. Xia (2022). Semiparametric model averaging prediction for dichotomous response.

Journal of Econometrics 229 (2), 219–245.

Gao, Y., X. Zhang, S. Wang, and G. Zou (2016). Model averaging based on leave-subject-out cross-validation.

Journal of Econometrics 192 (1), 139–151.

Hall, P., H.-G. Müller, and J.-L. Wang (2006). Properties of principal component methods for functional

and longitudinal data analysis. The annals of statistics 34 (3), 1493–1517.

Hansen, B. E. (2007). Least squares model averaging. Econometrica 75 (4), 1175–1189.

Hansen, B. E. and J. S. Racine (2012). Jackknife model averaging. Journal of Econometrics 167 (1), 38–46.

Hjort, N. L. and G. Claeskens (2003). Frequentist model average estimators. Journal of the American

Statistical Association 98 (464), 879–899.

Kong, D., K. Xue, F. Yao, and H. H. Zhang (2016). Partially functional linear regression in high dimensions.

Biometrika 103 (1), 147–159.

Li, K.-C. (1987). Asymptotic optimality for cp, cl, cross-validation and generalized cross-validation: discrete

index set. The Annals of Statistics 15 (3), 958–975.

Liang, H., G. Zou, A. T. Wan, and X. Zhang (2011). Optimal weight choice for frequentist model average

estimators. Journal of the American Statistical Association 106 (495), 1053–1066.

Liu, Q. and R. Okui (2013). Heteroskedasticity-robust cp model averaging. Econometrics Journal 16,

463–472.

Müller, H.-G. and F. Yao (2008). Functional additive models. Journal of the American Statistical Associa-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0067



REFERENCES

tion 103 (484), 1534–1544.

Racine, J. S. and C. F. Parmeter (2014, 02). Data-Driven Model Evaluation: A Test for Revealed Per-

formance. In The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and

Statistics, pp. 308–345. Oxford University Press.

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis (2nd ed.). New York: Springer.

Rice, J. A. and B. W. Silverman (1991). Estimating the mean and covariance structure nonparametrically

when the data are curves. Journal of the Royal Statistical Society: Series B (Methodological) 53 (1),

233–243.

Sila, A., G. Pokhariyal, and K. Shepherd (2017). Evaluating regression-kriging for mid-infrared spectroscopy

prediction of soil properties in western kenya-east africa. Geoderma Regional 10, 39–47.

Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society:

Series B (Methodological) 50 (3), 413–436.

Tang, Q., W. Tu, and L. Kong (2023). Estimation for partial functional partially linear additive model.

Computational Statistics & Data Analysis 177, 107584.

Wan, A. T., X. Zhang, and G. Zou (2010). Least squares model averaging by mallows criterion. Journal of

Econometrics 156 (2), 277–283.

Wang, G., X.-N. Feng, and M. Chen (2016). Functional partial linear single-index model. Scandinavian

Journal of Statistics 43 (1), 261–274.

Wong, R. K., Y. Li, and Z. Zhu (2019). Partially linear functional additive models for multivariate functional

data. Journal of the American Statistical Association 114 (525), 406–418.

Yao, F. and H.-G. Müller (2010). Functional quadratic regression. Biometrika 97 (1), 49–64.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0067



REFERENCES

Yao, F., H.-G. Müller, and J.-L. Wang (2005). Functional linear regression analysis for longitudinal data.

The Annals of Statistics 33 (6), 2873–2903.

Yu, D., L. Kong, and I. Mizera (2016). Partial functional linear quantile regression for neuroimaging data

analysis. Neurocomputing 195, 74–87.

Zhang, H. and G. Zou (2020). Cross-validation model averaging for generalized functional linear model.

Econometrics 8 (1), 7.

Zhang, X., J.-M. Chiou, and Y. Ma (2018). Functional prediction through averaging estimated functional

linear regression models. Biometrika 105 (4), 945–962.

Zhang, X. and C.-A. Liu (2023). Model averaging prediction by k-fold cross-validation. Journal of Econo-

metrics 235 (1), 280–301.

Zhang, X., A. T. Wan, and S. Z. Zhou (2012). Focused information criteria, model selection, and model

averaging in a tobit model with a nonzero threshold. Journal of Business & Economic Statistics 30 (1),

132–142.

Zhang, X., A. T. Wan, and G. Zou (2013). Model averaging by jackknife criterion in models with dependent

data. Journal of Econometrics 174 (2), 82–94.

Zhang, X. and W. Wang (2019). Optimal model averaging estimation for partially linear models. Statistica

Sinica 29, 693–718.

Zhang, X., D. Yu, G. Zou, and H. Liang (2016). Optimal model averaging estimation for generalized

linear models and generalized linear mixed-effects models. Journal of the American Statistical Associ-

ation 111 (516), 1775–1790.

Zhang, X. and J. Yu (2018). Spatial weights matrix selection and model averaging for spatial autoregressive

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0067



REFERENCES

models. Journal of Econometrics 203 (1), 1–18.

Zhang, X., G. Zou, and R. J. Carroll (2015). Model averaging based on kullback-leibler distance. Statistica

Sinica 25, 1583–1598.

Zhang, X., G. Zou, and H. Liang (2014). Model averaging and weight choice in linear mixed-effects models.

Biometrika 101 (1), 205–218.

Zhang, X., G. Zou, H. Liang, and R. J. Carroll (2020). Parsimonious model averaging with a diverging

number of parameters. Journal of the American Statistical Association 115 (530), 972–984.

Zhu, H., F. Yao, and H. H. Zhang (2014). Structured functional additive regression in reproducing kernel

hilbert spaces. Journal of the Royal Statistical Society. Series B, Statistical methodology 76 (3), 581–603.

Zhu, R., A. T. Wan, X. Zhang, and G. Zou (2019). A mallows-type model averaging estimator for the

varying-coefficient partially linear model. Journal of the American Statistical Association 114 (526),

882–892.

Zhu, R., G. Zou, and X. Zhang (2018). Optimal model averaging estimation for partial functional linear

models. Journal of Systems Science and Mathematical Sciences 38, 777–800.

Zou, J., W. Wang, X. Zhang, and G. Zou (2022). Optimal model averaging for divergent-dimensional poisson

regressions. Econometric Reviews 41 (7), 775–805.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0067


	Introduction
	Methodology
	Model and estimator
	Weight choice criterion
	Implementation details
	Model preparation
	Multiple functional predictors


	Asymptotic optimality
	Simulation study
	Application to real data
	Conclusion and discussion



