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Abstract: We present a method based on the Orthogonal Symmetric Non-negative

matrix Tri-Factorization (OSNTF) of the adjacency and the normalized Lapla-

cian matrices for community detection in networks. We establish the connection

of the factors obtained through this factorization to a non-negative basis of an in-

variant subspace of the approximating matrix, drawing parallel with the spectral

clustering. Since the exact OSNTF may not exist or may not be computable for

a given matrix like many non-negative matrix factorization methods, we study

the approximate OSNTF that solves an optimization problem. We show that the

global optimizer of the OSNTF objective function is consistent for community de-

tection in networks generated from the stochastic block model as well as its degree

corrected version. We compare the method with several state-of-the-art methods

for community detection, including regularized spectral clustering, SCORE and

SCOREplus, and spectral clustering followed by likelihood-based refinement, in

both simulations and real datasets with known ground truth community assign-

ments. These results show the excellent performance of the OSNTF under a wide

variety of simulation setups and for real datasets obtained from disparate fields.

Key words and phrases: Community detection, degree corrected stochastic block
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model, invariant subspace, network data, non-negative matrix factorization.

1. Introduction

Over the last two decades, there has been a surge in interest in the statistical

inference of network data motivated by their applications in information

sciences, biology, social sciences, and economics. A network consists of a set

of entities called nodes or vertices and connections among them called edges

or relations. The problem of community detection in networks has received

considerable attention in the literature. A community is often defined as

a group of nodes that are more “structurally similar” to each other than

the rest of the network. Therefore nodes that belong to a community have

similar patterns of connection to the rest of the network.

Several methods have been proposed in the literature for the efficient

detection of network communities. These methods include modularity max-

imization (Newman and Girvan, 2004; Blondel et al., 2008), spectral clus-

tering (Ng et al., 2002; McSherry, 2001; Rohe et al., 2011; Lei and Rinaldo,

2015; Qin and Rohe, 2013), semidefinite programming (Montanari and Sen,

2016; Hajek et al., 2016), and model based clustering using maximum like-

lihood (Choi et al., 2012; Zhao et al., 2012), variational EM (Daudin et al.,

2008) and MCMC algorithms (Snijders, 2001; McDaid et al., 2013). Several
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of these methods have been studied theoretically under the stochastic block

model (SBM) and the degree corrected stochastic block model (DCSBM).

In particular, spectral clustering and its variants including the regularized

spectral clustering, the SCOREmethod have been studied extensively under

both SBM and DCSBM (Rohe et al., 2011; Qin and Rohe, 2013; Jin, 2015;

Lei and Rinaldo, 2015; Gao et al., 2017). A spectral clustering followed by

likelihood based refinement scheme was shown to be mininax optimal under

the SBM in Gao et al. (2017), and under the DCSBM in Gao et al. (2018).

In this paper, we consider methods for community detection in net-

works based on the non-negative matrix factorization of the adjacency and

the Laplacian matrices of the network. Non-negative matrix factorization

(NMF) has received strong attention in the machine learning and data

mining literature since it was first introduced in Lee and Seung (1999).

The method has many good properties in terms of performance and inter-

pretability. It is quite popular in many applications, including image and

signal processing, information retrieval, document clustering, neuroscience,

and bioinformatics. A matrix X is said to be non-negative if all its ele-

ments are non-negative, i.e., Xij ≥ 0 for all i, j. The general NMF of order

K decomposes a non-negative matrix X ∈ RN×M
+ into two non-negative

factor matrices W ∈ RN×K
+ and H ∈ RK×M

+ , i.e., X = WH. When
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K ≤ min{M,N}, NMF can also be looked upon as a dimension reduction

technique that “decomposes a matrix into parts” that generate it (Lee and

Seung, 1999).

However, an exact NMF of order K may not exist for any given non-

negative matrix. Even if one does, finding the exact NMF in general settings

is a computationally difficult problem (Vavasis, 2009). In fact it was shown

that not just finding an exact order K NMF but also verifying the existence

of the same is NP-hard. Several algorithms for an approximate solution have

been proposed in the literature to remedy this (Lee and Seung, 2001; Lin,

2007; Cichocki et al., 2009). Popular optimization-based algorithms aim to

minimize the difference between X and WH in the Frobenius norm under

the non-negativity constraints. However, a natural question arises that

given the matrix X is generated by exact multiplication of non-negative

matrices (the “parts”), whether the decomposition can uniquely identify

those parts of the generative model. A number of researchers have tackled

this problem both geometrically and empirically (Donoho and Stodden,

2004; Hoyer, 2004; Laurberg et al., 2008; Huang et al., 2014).

NMF has also been applied in the context of clustering (Xu et al., 2003;

Ding et al., 2005, 2006; Kim and Park, 2008). The “low-rank” NMF, where

K ≤ min{M,N}, can be used to obtain a low-dimensional factor matrix,
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which can subsequently be used for clustering. Ding et al. (2005) showed

interesting connections of NMF with other clustering algorithms, such as

kernel k-means and spectral clustering. For applications in graph cluster-

ing where we generally have a symmetric adjacency matrix or a Laplacian

matrix as the non-negative matrix, a symmetric version of the factorization

was proposed in Wang et al. (2011). This factorization, called the symmet-

ric non-negative matrix factorization (SNMF), has been empirically shown

to yield good results in various clustering scenarios, including community

detection in networks (Wang et al., 2011; Kuang et al., 2012). Arora et al.

(2011) used a special case of SNMF, the left stochastic matrix factorization,

for clustering and derived perturbation bounds. Yang et al. (2012) used a

regularized version of the SNMF algorithm for clustering, while Psorakis

et al. (2011) used a Bayesian NMF for overlapping community detection.

In this paper, we consider another non-negative matrix factorization

designed to factorize symmetric matrices, the orthogonal symmetric non-

negative matrix (tri) factorization (OSNTF) (Ding et al., 2006; Pompili

et al., 2014). In contrast with earlier approaches, the requirement of being

orthogonal in OSNTF adds another layer of extra constraints but generates

sparse factors which are good for clustering. It also performs well in our

simulation experiments. We prove that OSNTF is consistent under both
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the SBM and its degree corrected variant. Through simulations and real

data examples, we demonstrate the efficacy of OSNTF in community de-

tection. In particular, our simulations show the proposed methods either

outperform or are competitive with the spectral clustering and its modifi-

cations including regularization and projection, SCORE and SCOREplus,

and likelihood based refinement under a variety of scenarios including high

degree of heterogeneity and sparsity. We also explore various issues asso-

ciated with the methods including interpretation of the estimated factors,

numerical algorithms, and initialization.

Main contributions: We have two main contributions in this paper.

First, we provide motivation and theoretical justification for using OSNTF

for the problem of community detection in network data. We interpret

the OSNTF factors as a nonnegative basis for an invariant subspace of the

closest (in Frobenius norm) approximating matrix. We establish an upper

bound on the mis-clustering rate using this method under the SBM and its

degree corrected variant. Second, we demonstrate the consistently excel-

lent performance of the proposed method in comparison to state-of-the-art

methods for community detection in extensive simulation studies as well as

real data experiments.
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2. Methods

We consider an undirected graph G on a set of N vertices. The adjacency

matrix A associated with the graph is defined as a binary symmetric matrix

with Aij = 1, if node i and j are connected and Aij = 0, if they are not.

Throughout this paper we do not allow the graphs to have self loops. In this

context we define degree of a node as the number of nodes it is connected to,

i.e., di =
∑

j Aij. The corresponding normalized graph Laplacian matrix

can be defined as L = D−1/2AD−1/2, where D is a diagonal matrix with

the degrees of the nodes as elements, i.e., Dii = di. For a matrix H, the

notation H ≥ 0 means H is non-negative, i.e., all its elements are non-

negative. We denote the Frobenius norm as ∥ · ∥F and the spectral norm as

∥ · ∥2. We use ∥ · ∥ to denote the L2 norm (Euclidean norm) of a vector.

We first describe SNMF which was previously used for community de-

tection in networks using adjacency matrix byWang et al. (2011) and Kuang

et al. (2012). Given a symmetric positive semi-definite matrix A, the exact

SNMF of order K for the matrix can be written as

AN×N = HHT , HN×K ≥ 0. (2.1)

However since finding or even verifying the existence of the exact SNMF is

NP-hard, an approximate solution is obtained instead by solving the follow-
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ing optimization problem, which seeks to minimize the distance in Frobenius

norm between A and HHT , i.e., we find, Ĥ = argminHN×K≥0 ∥A−HHT∥F .

Denoting Â = ĤĤT , it is easy to see that Ĥ is an exact SNMF factor of

Â. We will refer to the solution of this optimization problem as SNMF.

Clearly if A has an exact factorization as in Equation (2.1), that factoriza-

tion will be the solution to this optimization problem and then SNMF will

refer to that exact factorization. However since HHT is necessarily positive

semi-definite, the exact factorization in Equations (2.1) can not exist for

matrices A or L that are not positive semi-definite. Moreover, being pos-

itive semi-definite is not a sufficient condition for the non-negative matrix

A to have a decomposition of the form HHT with H ≥ 0. A non-negative

positive semi-definite matrix that can be factorized into an SNMF is called

a completely positive matrix (Berman, 2003; Gray and Wilson, 1980).

In an attempt to remedy this situation, we consider another symmetric

non-negative matrix factorization where the matrix A is not required to be

completely positive. Given a matrix A, this factorization, called the orthog-

onal symmetric non-negative matrix tri-factorization (OSNTF) of order K

(Ding et al., 2006), can be written as

AN×N = HSHT , HN×K ≥ 0, SK×K ≥ 0, HTH = I. (2.2)

The matrix S is symmetric but not necessarily diagonal and can have both
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positive and negative eigenvalues. Note that having the S matrix gives

the added flexibility of factorizing matrices which are not positive semi-

definite and hence has negative eigenvalues. In this connection it is worth

mentioning that another symmetric tri-factorization was defined in Ding

et al. (2005) without the orthogonality condition on the columns of H.

However we keep this orthogonality condition as it leads to sparse factors

and our experiments indicate that it leads to better performance for non-

overlapping community detection both in simulations and in real networks.

As before, in practice it is difficult to obtain or verify the existence

of the exact OSNTF in Equation (2.2) for any given adjacency matrix.

Hence to obtain an approximate decomposition, we minimize the distance

in Frobenius norm between A and HSHT , i.e., we find

[Ĥ, Ŝ] = argmin
HN×K≥0, SK×K≥0, HTH=I

∥A−HSHT∥F . (2.3)

The solution to this optimization problem will be referred to as OSNTF of

A. If an exact OSNTF of A exists then this solution will coincide with the

exact OSNTF.

Once we obtain Ĥ, the community label for the ith node, zi, is obtained

by assigning the ith row of Ĥ to the column corresponding to its largest
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element, i.e.,

zi = argmax
j∈{1,...,K}

Ĥij. (2.4)

Here the rows of Ĥ represent the nodes and the columns represent the

communities. This way each node is assigned to one of the K communities.

Uniqueness While finding if an exact OSNTF of order K exists is NP-

hard, it is worth investigating that given such a factorization exists, whether

it is even possible to uniquely recover the parts or factors through non-

negative matrix factorization. This issue has been investigated in detail

in Donoho and Stodden (2004), Laurberg et al. (2008), Ding et al. (2006),

and Huang et al. (2014). We describe two observations which together

are sufficient for identification in our application. Let us denote the set

HN×K
+ = {H ≥ 0, HTH = I}. We notice the following two propositions.

Proposition 1. For any H ∈ HN×K
+ , each row of H contains at most one

non-zero (positive) element.

Proposition 2. For any N×N symmetric matrix A, if rank(A) = K ≤ N ,

then the order K exact OSNTF of A is unique up to a permutation matrix,

provided the exact factorization exist.

The proof of these two propositions along with those of all other lemmas

and theorems are given in the Supplementary Material. Note while the
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second proposition is a result of the exact version of OSNTF, the global

optimizer of the optimization problem for OSNTF leads to the same solution

as the exact version when the matrix has an exact OSNTF.

Connections to invariant subspaces, projections, and spectral clus-

tering We now connect OSNTF to invariant subspaces of a linear trans-

formation on a finite dimensional vector space. Suppose [Ĥ, Ŝ] is an OSNTF

of order K of the matrix A. Then Â = ĤŜĤT is an at most rank K ma-

trix approximating A. By definition Â has an exact OSNTF of order K.

Focusing on the exact OSNTF, we note that the factorization in (2.2) of

order K ≤ N can be equivalently written as

AH = HSHTH = HS, HN×K ≥ 0, SK×K ≥ 0, HTH = I. (2.5)

This implies that the columns of H span a K-dimensional invariant sub-

space,R(H), ofA. Further, SinceH hasK orthonormal columns, rank(H) =

K. Consequently, the columns of H form an orthogonal basis for the sub-

space R(H). Every eigenvalue of S is an eigenvalue of A and the corre-

sponding eigenvector is in R(H). To see this, note that if x is an eigen-

vector of S corresponding to the eigenvalue λ, then, Sx = λx. Now,

AHx = HSx = λHx. Hence λ is an eigenvalue of A and the corre-

sponding eigenvector is Hx, which is in R(H). Finally, since in this case,
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rank(A) = rank(S), S contains all the non-zero eigenvalues of A as its

eigenvalues.

Note that the projection matrix onto the column space of H, i.e., R(H),

is given by P = HHT . From Equation (2.5) we have AP = AHHT =

HSHT = HHTHSHT = PA. Therefore, R(H) is also a reducing sub-

space of the column space of A (Radjavi and Rosenthal, 2003; Stewart and

Sun, 1990). Hence the following decomposition holds (called the spectral

resolution of A):

HT
1

HT
2

A(H1H2) =

S1 0

0 S2

, where H1 and H2 are

matrices whose columns span R(H) and its orthogonal complement respec-

tively (Stewart and Sun, 1990).

Reverting back to the approximate factorization, we notice that the

optimization problem in Equation (2.3) is to find the best projection of

A into an at most rank K matrix Â which has a non-negative invariant

subspace. Note, here and subsequently, the “best” approximation implies a

matrix which minimizes the distance in Frobenius norm. The difference of

this projection with the projection in spectral clustering through singular

value decomposition (McSherry, 2001; Von Luxburg, 2007) is that the pro-

jection in singular value decomposition ensures that the result is the best at

most rank K matrix approximating A, however it does not necessarily have
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an invariant subspace with a non-negative basis. In that sense the OSNTF

projection adds an additional constraint on the projection and consequently

the resultant matrix is no longer the best at most rank K approximating

matrix. In OSNTF, the non-negative invariant subspace R(H) is used for

community detection. Hence in general, the discriminating subspace in OS-

NTF is different from the one used in spectral clustering. We can make a

similar observation for SNMF.

An equivalent objective function for OSNTF We characterize the

optimization problem of OSNTF in (2.3) as an equivalent maximization

problem. Given a feasible H ∈ HN×K
+ , the square of the objective function

in the optimization problem in (2.3) can be written as

J = tr[(A−HSHT )T (A−HSHT )] = tr(AA− 2SHTAH + SS).

Solving for S (without nonnegativity constraint), we obtain Ŝ = HTAH.

We note that this Ŝ is automatically non-negative since both H and A

are non-negative matrices. Therefore, given an H ∈ HN×K
+ , the solution

obtained for S is a feasible solution. Replacing S by Ŝ in the objective

function J , we get the concentrated objective function as

argmin
H∈HN×K

+

tr(AA−HTAHHTAH) ≡ argmax
H∈HN×K

+

∥HTAH∥2F . (2.6)
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We denote the (positive) square root of the concentrated objective function

as F (A,H) = ∥HTAH∥F .

The OSNTF procedure seeks to solve the optimization problem in Equa-

tion (2.6) to estimate an H ∈ HN×K
+ . This can be compared with the

optimization viewpoint of spectral clustering, which seeks to optimize the

same objective function as in (2.6), keeping the constrain HTH = IK but

removing the non-negativity constraint H ≥ 0. Therefore, intuitively, OS-

NTF solves a more complex problem than the spectral clustering objective

function in the first step. However, the advantage of the OSNTF method

is in the second stage, where Equation (2.4) suggests that communities can

be assigned simply by comparing the entries in each row of H and does

not require a k-means algorithm to assign communities. In the next sec-

tion, we show that OSNTF is consistent for community detection in graphs

sampled from both the SBM and the DCSBM. As part of the proofs in the

Supplementary Material, we show that OSNTF is able to correctly recover

the community structure from the expected probability matrices (noiseless

case) for both models. Since spectral clustering relies on k-means clustering

in the second step, for DCSBM, either the eigenvectors need to be projected

in a unit sphere or ratios of eigenvectors should be taken in order to cor-

rectly identify the community structure (Qin and Rohe, 2013; Jin, 2015).
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However, the same OSNTF algorithm works for both SBM and DCSBM

graphs given the method is unaffected by degree heterogeneity. In the sim-

ulations, we observe that the OSNTF may have some advantages over the

spectral methods (including those designed for degree heterogeneity) when

the graph is sparse or has substantial degree heterogeneity.

3. Consistency of OSNTF for community detection

We now turn our attention to more general adjacency and Laplacian matri-

ces. The SBM is a well studied statistical model of a network with commu-

nity structure (Holland et al., 1983; Snijders, 2001; Rohe et al., 2011; Lei

and Rinaldo, 2015; Choi et al., 2012). The K block SBM assigns to each

node of a network, a K dimensional community label vector which takes the

value of 1 in exactly one position and 0’s everywhere else. Let Z be a ma-

trix whose ith row is the community label vector for the ith node. Given

the community labels of the nodes, the edges between them are formed

independently following a Bernoulli distribution with a probability that de-

pends only on the community assignments. We further assume that there

is at least one non-zero element in each column, i.e., each community has

at least one node. The SBM can be written in the matrix form as

E(A) = A = ZBZT , B ∈ [0, 1]K×K , Z ∈ {0, 1}N×K , (3.1)
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where the matrix B ≥ 0 is a K × K symmetric matrix of probabilities.

We assume the matrix B is of full rank, i.e., of rank K. We will refer to

the matrix A as the population adjacency matrix. The population Lapla-

cian matrix is defined from this adjacency matrix as L = D−1/2AD−1/2,

where D is a diagonal matrix with the elements being Dii =
∑

j Aij.

The matrix L under the K class SBM defined above can be written as

L = ZD
−1/2
B BD

−1/2
B ZT = ZBLZ

T , where DB = diag(BZT1N) ∈ RK×K

with 1N being the vector of all ones in RN , is a diagonal matrix and

BL = D
−1/2
B BD

−1/2
B (Rohe et al., 2011).

Although the SBM is a well-studied model, it is not very flexible in

terms of modeling real world networks. Many real world networks exhibit

heterogeneity in the degrees of the nodes which the SBM fails to model.

To remedy this, an extension of SBM for general degree distributions was

proposed in Karrer and Newman (2011), called the DCSBM. In our matrix

terms the model can be written as

A = ΘZB′ZTΘ, B′ ∈ RK×K
+ , Z ∈ {0, 1}N×K , Θ ∈ RN×N

+ , (3.2)

where B′ is a symmetric full rank matrix and Θ is an N × N diagonal

matrix containing the degree parameters θi for the nodes as elements. Fol-

lowing Karrer and Newman (2011) we impose identifiability constraints∑
{i:Ziq=1} θi = 1 for each q ∈ {1, . . . , K}. The interpretation of B′ is that
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each entry B
′

ql represents the expected number of edges between communi-

ties q and l.

We define regularized versions of the adjacency matrix Aτ and the

Laplacian matrix Lτ as follows. Let ∆ = nmaxi,j Aij. We reduce the

weights of the edges incident on vertices whose degrees are larger than 2∆

such that all degrees of the new weighted graph is bounded by 2∆ (Le et al.,

2017). For the regularized Laplacian matrix, we first define Aτ = A+∆
n
11T .

Then define the Laplacian as Lτ = D
−1/2
τ AτD

−1/2
τ , where Dτ is the diag-

onal matrix of degrees of Aτ such that (Dτ )ii =
∑

j(Aτ )ij. We derive

nonasymptotic upper bounds on the error rates of community detection by

applying OSNTF to the regularized adjacency matrix Aτ and the regular-

ized normalized Laplacian matrix Lτ as defined above. The results for the

non-regularized matrices follow similarly, albeit, with weaker bounds.

Lemmas 1 and 2 in the Supplementary Materials show that (i) the pop-

ulation adjacency matrix A and (regularized) Laplacian matrix Lτ have

exact OSNTFs and (ii) the community assignment vector zi can be recov-

ered from these OSNTF factor matrices H̄ and H̄L (explicitly defined in

the lemmas) under the models SBM and DCSBM respectively.

However, the sample regularized adjacency matrixAτ and sample Lapla-

cian matrix Lτ may not have exact OSNTFs. In that case, let the opti-
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mization problem in (2.3) or equivalently in (2.6), obtain a solution [Ĥ, Ŝ]

as OSNTF of Aτ . The matrix approximating Aτ is then Â = ĤŜĤT and

we assign the nodes to the communities using the matrix Ĥ. We denote

the objective function in the optimization problem of (2.6) as F (Aτ , H) =

∥HTAτH∥F . This is a function of the regularized adjacency matrix Aτ

and the factor matrix H. We can define a corresponding “population”

version of this objective function with the population adjacency matrix as

F (A, H) = ∥HTAH∥F . The next lemma, which is an intermediate re-

sult, shows that for any H ∈ HN×K
+ , the difference between F (Aτ , H) and

F (A, H) is bounded in high probability.

Lemma 1. For any H ∈ HN×K
+ , (i) there exists a constant c1(r1) > 0,

such that with probability at least 1−n−r1, we have |F (Aτ , H)−F (A, H)| ≤

c1K∆3/2 for some r1 > 0, and (ii) there exists a constant c2 > 0, such that

with probability at least 1− o(1), we have |F (Lτ , H)− F (Lτ , H)| ≤ c2K√
∆
.

We quantify the error in community detection through a measure called

mis-clustering rate which, given the true community assignment and a can-

didate community assignment, computes the proportion of nodes for which

the assignments do not agree. Let z̄ denote the true assignment and ẑ

denote a candidate assignment. Then we define the mis-clustering rate

r = 1
N
infΠ dH(z̄,Π(ẑ)), where Π is a permutation of the labels and dH(·, ·)
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is the Hamming distance between two vectors.

Lemmas 4 and 5 in the Supplementary Material relate this mis-clustering

rate with the difference between Ĥ and H̄P for some arbitrary permutation

matrix P in Frobenius norm. The next two theorems obtain upper bounds

on the mis-clustering rate of OSNTF under SBM and DCSBM. Define rA

and rL as the mis-clustering rate for community detection through OSNTF

of Aτ and Lτ respectively.

Theorem 1. Let G be a graph generated from an N-node K-community

SBM with parameters (Z,B) as in Equation (3.1). Define λA and λL∆ as

the smallest non-zero (in absolute value) eigenvalues of the population adja-

cency matrix A and normalized Laplacian matrix with regularization param-

eter τ = ∆, i.e., L∆, respectively. Further, define Nmax = maxk∈{1,...,K}(Z
TZ)kk,

i.e., the population of the largest block. Then (i) with probability at least

1−n−r1, we have rA ≤ Nmaxc1K∆3/2

N(λA)2
, and (ii) with probability at least 1−o(1),

we have rL ≤ c2NmaxK

N(λL∆ )2
√
∆
, for some constants r1, c1, c2 > 0.

Theorem 2. Let G be a graph generated from an N-node K-community

DCSBM with parameters (Θ, Z,B) as in Equation (3.2). Define λA and

λL∆ as the smallest non-zero (in absolute value) eigenvalues of the pop-

ulation adjacency matrix A and normalized Laplacian matrix with regu-

larization parameter τ = ∆, i.e., L∆, respectively. Further, define m =
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mini∈{1,...,N} θi/
√

(ZTΘ2Z)kk with k being the community to which node i

truly belongs. Then (i) with probability at least 1 − n−r1, we have rA ≤

4c1K∆3/2

Nm2(λA)2
, and (ii) with probability at least 1−o(1), we have rL ≤ 4c2K

Nm2(λL∆ )2
√
∆
,

for some constants r1, c1, c2 > 0.

We end this section with several theoretical remarks on the results.

Remark 1 (Simplified setting SBM). We apply Theorem 1 to a simplified

special case of the SBM (Rohe et al., 2011; Qin and Rohe, 2013). Let

all the probabilities of connection within blocks be p for all blocks, and

the probability of connection between nodes from different blocks be q for

all block pairs. The number of nodes within each block is N
K

(hence all

blocks are of the same size), and K is the number of blocks. Then we have

Nmax = N/K. Further let p = a∆
N
and q = b∆

N
with a and b being constants.

Consequently, p ≍ q. Then we can write the matrix B as

B = (p− q)IK + q1K1
T
K ,

where IK is theK-dimensional identity matrix and 1K is theK-dimensional

vector of all 1s. Clearly the non-zero eigenvalues of A correspond to the

eigenvalues of (ZTZ)1/2B(ZTZ)1/2 = N
K
B. Using this we obtain λA =

N
K
(p− q) = ∆

K
(a− b). Then from the result of Theorem 1, we have

rA ≲
K2

√
∆(a− b)2

.
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This result indicates that the mis-clustering rate increases with increasing

number of communities, decreases with increasing average degree of nodes

(which can happen either by increasing the density of the network or the

number of nodes in the network), and decreases with increasing separation

between intra and inter community probabilities of connection. Further,

the mis-clustering rate goes to 0 as long as K = o(∆1/4).

We can obtain a similar result for the OSNTF with regularized normal-

ized Laplacian matrix as well. We first define the following matrix:

B∆ = (p− q)IK +
(
q +

∆

N

)
1K1

T
K .

Then we can write the normalized Laplacian matrix with regularization

parameter ∆ as L∆ = ZB∆,LZ
T , where

B∆,L =
1

N(q + ∆
N
) + N

K
(p− q)

(
(p− q)IK +

(
q +

∆

N

)
1K1

T
K

)
.

The non-zero eigenvalues of L∆ are same as the eigenvalues of B∆,L, we

compute the smallest eigenvalue of N
K
B∆,L. This implies

λL∆ =
1

1 +K q+∆/N
(p−q)

=
1

1 +K b+1
a−b

≍ (a− b)

(b+ 1)K
.

Then using the result in Theorem 1, we obtain

rL ≲
K2

√
∆(a− b)2

.
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Therefore the asymptotic upper bound for the mis-clustering rate is the

same using the (regularized versions of) adjacency matrix or the normal-

ized Laplacian matrix. This is not surprising since several authors have

observed that for spectral clustering, one cannot differentiate between us-

ing adjacency or the normalized Laplacian matrix by upper bounds on error

rates (Sarkar and Bickel, 2015; Tang and Priebe, 2018).

Remark 2 (Simplified setting DCSBM). We next analyze the asymptotic

upper bounds in Theorem 2 similarly in terms of simplified settings of

DCSBM that will elucidate the role of degree heterogeneity as well. As

in the previous remark, we let the number of nodes within each block be N
K
.

Note the K ×K matrix B′ has the interpretation that its (q, l)th element

B′
ql is the expected number of edges from community q to community l.

Then we assume

B′ = ((p− q)IK + q1K1
T
K)

N2

K2
.

Suppose ∆̄ is a quantity (different from ∆ defined in the theorem) such

that p = a ∆̄
N

and q = b ∆̄
N

with a and b being constants (a > b). Note

that the entries of the matrix B′
ql are

N2p
K2 on the diagonal and N2q

K2 off the

diagonal. Therefore, the total number of links in the network is c∆̄N for

some constant c > 0. This gives ∆̄ the interpretation of being the average

degree of the network. Then notice, maxq,l B
′
ql =

N2p
K2 . Now we compute
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from Theorem 2:

∆ = N max
i,j

Pij = N max
i,j

θiθjB
′
Zi,Zj

≤ Nθ2maxmax
q,l

B′
ql = N

(N
K

)2

pθ2max.

On the other hand, for computing m, we make the assumption that for any

q, we have (ZTΘ2Z)qq =
∑

i:Ziq=1 θ
2
i = K

N
. This implies that the groups

themselves are not heterogeneous and the heterogeneity is only within a

group. This can be thought of as a similar assumption to the constraint∑
i:Ziq=1 θi = 1. Then we compute

m = min
θi√

(ZTΘ2Z)qq
=

θmin√
K
N

.

Next we need to compute λA. For this we note that the non-zero eigen-

values of A are the same as the eigenvalues of

(ZTΘ2Z)1/2B′(ZTΘ2Z)1/2 =
K

N
B′ =

N

K
((p− q)IK + q1K1

T
K).

Therefore, we obtain λA = N
K
(p − q) = ∆̄

K
(a − b). Then combining these

results, we have

rA ≲
(K
N

)2N3/2(N
K
)3( ∆̄

N
)3/2θ3max

θ2min(
∆̄
K
)2(a− b)2

=
NK√

∆̄(a− b)2

θ3max

θ2min

.

Therefore, the asymptotic upper bound in this case depends on the extent

of degree heterogeneity through a function of θmin and θmax. This behavior

is similar to that observed for the spectral algorithm SCORE in (Jin et al.,
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2022). It is easy to see that if all θis were equal, the DCSBM boils down to

the SBM and then by the constraint θmax = θmin = K
N
. Then this asymptotic

upper bound becomes the same as what we found for the case of SBM.

Further consider a scenario, where all θis are K
N
, except for a finite

number of them which are all K
f(N)N

, where f(N) > 1 is a function of N .

Then θmax = K
N

and θmin = K
f(N)N

. Then the upper bound becomes rA ≲

K2f(N)2√
∆̄(a−b)2

. Therefore, consistent community detection will still be possible as

long as f(N) = o( ∆̄
1/4

K
). Hence we could have θmin an order of magnitude

smaller than θmax, and yet, consistent community detection will be possible

with OSNTF for appropriate growth rates on K and ∆̄.

Remark 3. Note a seemingly simpler technique can be used to obtain a

bound if the adjacency matrix concentrates in the Frobenius norm (Arora

et al., 2011). Note that from Lemmas 1 and 2 in the Supplementary Mate-

rial, A = H̄S̄H̄T for both SBM and DCSBM. Now let Ĥ, Ŝ be the solution

of the OSNTF problem applied to the matrix Aτ . Then define A1 = ĤŜĤT .

Clearly both A and Aτ are matrices that have exact OSNTFs. Then we

note the following relationship:

∥A1 −A∥F ≤ ∥Aτ − A1∥F + ∥Aτ −A∥F ≤ 2∥Aτ −A∥F ,

since ∥Aτ−A1∥F ≤ ∥Aτ−A∥F as A1 is the closest matrix in Frobenius norm

to Aτ that has a rank K ONSTF. Now Ĥ and H̄ are invariant subspaces
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of A1 and A respectively. Therefore a perturbation theorem for invariant

subspaces will provide a bound provided ∥Aτ −A∥F can be bounded. How-

ever, the adjacency matrix is known to not concentrate well in Frobenius

norm (Rohe et al., 2011) and the crude bound of
√
n∥Aτ −A∥2 is too loose

for our purpose.

4. Algorithm for OSNTF: convergence and implementation

In this section we discuss algorithms and implementation details for the

OSNTF method. There are several algorithms proposed in the literature to

solve the OSNTF optimization problem in Equation (2.3). The algorithm

given by Ding et al. (2006) is a multiplicative update rule (MUR) which

alternates with the following update rules:

Sik ← Sik

√(
(HTAH)ik

(HTHSHTH)ik

)
, (4.1)

Hik ← Hik

√(
(AHS)ik

(HHTAHS)ik

)
. (4.2)

for i = 1, . . . , N and k = 1, . . . , K. The matrix H is used for community

detection in OSNTF. The algorithm needs a starting solution H0, S0. In

this paper we call this procedure applied to the Laplacian matrix as the

OSNTF method and applied to the regularized Laplacian matrix as the

regularized OSNTF method.
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Algorithm 1: OSNTF- Convergent

Input: A,K, tuning parameter α

Result: Clustering solution z ∈ {1, . . . , K}N .

1: Compute L or Lτ . Set δ = 10−10, and σ = 10−6

2: Initialize H ≥ 0, S ≥ 0 randomly, or with regularized Spectral

3: ∇SJ(H,S) = HTHSHTH −HTAH

S̃ij = max(Sij, σ) if ∇SJ(H,S) < 0, and S̃ij = Sij otherwise

S
(t+1)
ij = St

ij − S̃t
ij

(∇SJ(H,St))ij

(HTHS̃tHTH)ij + δ

4: ∇HJ(H,S) = HSHTHS + αHHTH − AHS − αH

H̃ij = max(Hij, σ) if ∇HJ(H,S) < 0, and H̃ij = Hij otherwise

H
(t+1)
ij = H t

ij − H̃ t
ij

(∇HJ(H
t, S))ij

H̃SH̃T H̃S + αH̃H̃T H̃)ij + δ

5: Assign community: ẑi = argmaxj∈{1,...,K}Hij.

While Ding et al. (2006) showed that the multiplicative algorithm con-

verges to a stationary point, the guarantee applies to the algorithm which

contains an unknown Lagrange multiplier. The authors obtained the mul-

tiplier parameter with approximations. The algorithm also suffers from a

zero-locking problem. It is easy to note that if any entry of the parameter

matrices H,S is zero at any point during the updates, then the algorithm

will stop updating that entry irrespective of a stationary point is reached
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or not (Mirzal, 2014).

The zero-locking problem can be avoided by providing a starting solu-

tion that is strictly positive. It can be shown that under the assumptions

that the Laplacian matrix does not contain any zero rows or columns (no

isolated nodes) and the starting solution is strictly positive, all subsequent

updates will keep the solution strictly positive. However, the algorithm will

not generally converge to a stationary point in that case since a stationary

point can lie on the boundary of the feasible space. In order to provide

a convergent algorithm, Mirzal (2014) developed an algorithm which prov-

ably converges to a stationary point. An algorithm based on gradients in

the Stiefel manifold was developed in Choi (2008). However, the author

did not investigate convergence properties of the algorithm. The conver-

gence of algorithms for orthogonal tri-factorization is even less studied. The

only paper we found that has studied the problem is Mirzal (2017) where

a convergent algorithm was developed following the ideas in Mirzal (2014).

Using the approach of Mirzal (2014, 2017), we develop a convergent

algorithm for the OSNTF problem described in Algorithm 1. The method

requires a tuning parameter in the input which balances the relative impor-

tance of orthogonality constraint. The algorithm is an additive update rule

(AUR) method that alternates between updating H and S with modifica-
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tions in each stage to avoid the zero locking problem. We call the convergent

algorithms in Algorithm 1 applied to L and Lτ as OSNTF Convergent and

Regularized OSNTF Convergent respectively.

For both the OSNTF algorithms and the OSNTF-Convergent algo-

rithms, we obtain the starting solution H0 as the matrix whose rows contain

0.01/(K − 1) in each position, except for the assigned community accord-

ing to a community assignment methods where it contains 0.99. For the

community assignment method of the initial solution, we use regularized

spectral clustering with spherical k-means applied to the Laplacian matrix

(Qin and Rohe, 2013) to obtain a community assignment. The matrix S is

initialized as S0 = 0.08IK + 0.021K1
T
K . In our simulation study, we found

that OSNTF is reasonably agnostic to the starting solution if we run OS-

NTF multiple times with multiple starting values and choose the solution

that minimizes the OSNTF objective function over these different runs.

5. Simulation Results

In this section we generate networks from both the SBM and the DCSBM

and evaluate the performance of OSNTF approaches along with a few other

methods applied to the normalized Laplacian matrix of the networks. In this

section and the next section on real data analysis, we consider four OSNTF
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algorithms, namely, OSNTF (algorithm by Ding et al. (2006)), Regularized

OSNTF (Reg. OSNTF), OSNTF-convergent (OSNTF-conv, Algorithm 1),

Regularized OSNTF-convergent (Reg. OSNTF-conv). The methods we

compare the OSNTF procedures against are the spectral clustering (Spec-

tral) (Rohe et al., 2011; Lei and Rinaldo, 2015), the regularized spectral

clustering (Reg. Spectral) (Qin and Rohe, 2013), the SCORE method (Jin,

2015), the SCOREplus method (Jin et al., 2022), the spectral clustering

followed by likelihood refinement scheme (SBM refine) in Gao et al. (2017),

and the algorithm in Gao et al. (2018) which we call DCBM refine. The

prefix “regularized” before a method implies that the method is applied to

the regularized Laplacian matrix. For brevity, in the simulations we only

present results from OSNTF and Reg. OSNTF while omitting the results

from OSNTF-conv and Reg. OSNTF-conv. For the real data analysis, we

present results from all four OSNTF algorithms. We also omit results from

the SCORE procedure since the procedure fails to execute for some graphs

with high degree heterogeneity and low density. As discussed in this pa-

per, the OSNTF method conceptually is similar to spectral clustering, and

therefore it is natural to compare it with spectral methods. However, the

algorithms used for computing the solution remind the reader of the likeli-

hood refinement-based schemes starting from a suitable initial solution in
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Gao et al. (2017, 2018). Therefore we compare the performance of OSNTF

against those two methods as well.

We conduct four experiments, generating data from the SBM for the

first three and from the DCSBM for the last one. The clustering quality

of a partition is evaluated by measuring its agreement with the known

community structure, i.e., the fraction of nodes correctly classified (correct

classification rate). Clearly the correct classification rate takes a value

between 0 and 1, with higher values indicating better agreement between

the partitions. Further note that a random assignment is expected to have

a correct classification rate of 1/K, where K is the number of communities.

All results are averaged over 100 simulations.

SBM: increasing density of the network: We generate data from

the SBM with 4 clusters and 600 nodes. For the SBM, the signal to noise

ratio, defined as the diagonal to off-diagonal elements’ ratio, is fixed at

around 3. We increase the network’s average density (defined as the frac-

tion of the pairs of nodes that are connected by an edge) from 0.025 to 0.08.

This simulation is designed to test the robustness of the methods for sparse

graphs where node degrees are relatively low. The results are presented in

Figure 1(a). We notice that OSNTF and Reg. OSNTF are the two best

performing methods for sparser graphs. The usual spectral clustering with-
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Figure 1: Comparison of the performance of various methods for three simulation

settings: (a) SBM with K = 4, N = 600 and increasing average density, (b)

SBM with K = 4, N = 600 and increasing separation between inter and intra

community probabilities, (c) DCSBM with K = 4, N = 600 and decreasing

degree heterogeneity, and (d) SBM with increasing K and N = 500.
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out any regularization and SBM refine method underperform among the

methods compared in sparse graphs. The SCORE method (figure omitted)

is not able to improve upon the spectral clustering’s performance, while

regularized spectral clustering slightly improves it. The SCOREplus and

DCBM refine methods perform better than regularized spectral clustering,

but underperform OSNTF and regularized OSNTF.

SBM: Increasing number of communities We increase the num-

ber of communities K from 4 to 12 while holding N = 500. As expected,

the performance of all community detection methods deteriorates with in-

creasingK (see Figure 1(d)). Among the methods, we observe that SCORE

(figure omitted), DCBM refine, and the two OSNTF methods perform well.

SBM: Increasing difference between intra and inter commu-

nity parameters: As predicted by the theoretical result, the performance

of the OSNTF methods improves with increasing separation between the

inter and intra community parameters. The theoretical results for the other

methods also indicate a similar phenomenon. Our simulation confirms this

observation and we notice that the performance of all methods improves

similarly with increasing separation (see Figure 1(b)).

DCSBM: varying degree heterogeneity parameter: In our last

experiment, we generate data from a DCSBM with 4 communities and 600
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nodes. The degree parameter is generated from a power law distribution

with lower bound parameter xmin = 1 and shape parameter β. We in-

crease the shape parameter from 1.9 to 3.3 in steps of 0.2. A smaller β

leads to greater degree heterogeneity, and hence increasing the parameter

gradually makes the DCSBM more similar to an SBM. We again keep the

signal to noise ratio at 3 and the average density of the networks gener-

ated is around 0.05. The results are presented in Figure 1(c). Here we see

that the (unregularized) spectral clustering and the SBM refine completely

break down in the presence of degree heterogeneity and recover slowly as

the parameter β increases. The two OSNTF methods, regularized spectral

clustering, DCBM refine and SCOREplus are robust against degree het-

erogeneity with the OSNTF method consistently outperforming all other

methods. We dropped SCORE from this simulation since the method gives

an error for the case of lowest β. This simulation study indicates that

ONSTF performs well under severe degree heterogeneity.

5.1 Advantages of OSNTF and computational cost

From the above simulation results, we see that the OSNTF method gener-

ally has some advantages in terms of better performance than other existing

methods in the literature when the network is sparse or has a severe degree
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of heterogeneity. In most cases, the closest a method comes to OSNTF is

SCOREplus, which was designed keeping in mind sparse and high degree-

heterogeneity cases (Jin et al., 2022). Therefore, to elucidate the advantages

of OSNTF specifically, we explore these cases more and conduct another

simulation. In Figure 2(a) we focus on very sparse graphs with low av-

erage density of the network, and in Figure 2(b) we focus on graphs with

higher degree heterogeneity. These two figures confirm that in some of those

cases, OSNTF has substantially better performance compared to the other

existing methods.

We further confirm this by checking the number of cases different algo-

rithms returned the best correct clustering rate out of the 90 repetitions in

each scenario. For the simulation with low average density graphs, we note

from Table S1 in the Supplementary Material that either OSNTF and Reg.

OSNTF performed the best most of the times for the cases investigated.

For the simulation with high degree heterogeneity, we notice that OSNTF

performed the best in vast majority of repetitions for all scenarios (Table

S2 in the Supplementary Material). These confirm the strong performance

of OSNTF in these scenarios.

However, we find that OSNTF has a higher computational cost com-

pared to non-iterative methods like SCOREplus and regularized spectral
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Figure 2: Scenarios where OSNTF has advantage over other methods. (a)

SBM with K = 4, N = 600 and increasing average density, (b) DCSBM

with K = 4, N = 600 and decreasing degree heterogeneity

clustering, and the computational cost is comparable to the iterative meth-

ods like SBM refine and DCBM refine. In Figure S1 in the Supplementary

Material, we plot the computational cost with increasing number of nodes

N . As N increases, the computational cost for the iterative methods, in-

cluding that of OSNTF, increases quite a bit.
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6. Real data analysis

In this section, we apply the OSNTF methods to five real network datasets

with known ground truth community structures and compare their perfor-

mance with competing methods. All methods are applied to the normalized

Laplacian matrix of the networks with their respective regularization tech-

niques when applicable. We briefly describe the datasets below.

We analyze the political blogs dataset collected by Adamic and

Glance (2005). The dataset comprises of 1490 political blogs during US

presidential election with the directed edges indicating hyperlinks. We con-

sider the largest connected component of the graph comprising of 1222

nodes and convert it into an undirected graph by assigning an edge be-

tween two nodes if there is an edge between the two in any direction. This

dataset with the above mentioned preprocessing was also analyzed by Kar-

rer and Newman (2011); Amini et al. (2013); Qin and Rohe (2013); Jin

(2015); Zhao et al. (2012); Gao et al. (2017), etc. for community detec-

tion, and is generally considered as a benchmark for evaluating algorithms.

The ground truth community assignments partitions this network into two

groups, liberal and conservative, according to the political affiliations or

leanings of the blogs.

The second dataset is the Dolphins data which is an undirected social
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Table 1: Comparison of OSNTF and Regularized OSNTF with other meth-

ods in terms of number of nodes mis-clustered with respect to the ground

truth communities. The best two algorithms (least number of nodes mis-

clustered) are highlighted in bold for all datasets.

Dataset Polblogs Dolphins Football Simmons Emails

N 1222 62 110 1137 1005

K 2 2 11 4 42

Exp. Rand (N(1− 1
K
)) 611 31 100 853 981

OSNTF 55 1 5 159 437

Reg. OSNTF 66 1 5 197 461

OSNTF Conv. 56 2 5 174 454

Reg. OSNTF Conv. 64 2 4 210 458

Spectral 600 1 6 384 531

Reg. Spectral 63 1 5 241 467

SCORE 58 5 5 268 730

SCOREplus 51 1 6 127 536

SBM refine 581 2 4 278 818

DCBM refine 59 2 4 227 480
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network of associations among 62 dolphins living in Doubtful Sound, New

Zealand, curated by Lusseau et al. (2003). During the course of the study,

it was observed that a well connected dolphin coded as SN100 left the

group, and this resulted into a split of the group into two subgroups. These

subgroups consisting of the remaining 61 dolphins constitute our ground

truth communities.

The third dataset is the US college Football network data from Girvan

and Newman (2002), which is a network representation of all Division I

games for the season 2000. The ground truth communities for comparison

are the conferences the teams belong to.

The fourth dataset is the Simmons College Facebook network data

that consists of 24257 friendship links among 1137 students (Traud et al.,

2012; Jin et al., 2022). The ground truth community labels are the years

of graduation for the members.

The final dataset is the Email-EU-Core data which is a network of

emails exchanged among members of a large European research institute

(Yin et al., 2017; Leskovec et al., 2007). The network has 25571 edges

among 1005 members. We consider an undirected network, and therefore

an edge is recorded between two members if either of them has sent an email

to the other member. The ground truth community structure assigns each
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member to the department they belong to, resulting in 42 communities.

Results: Table 1 summarizes the performance of the proposed meth-

ods, along with a number of methods that have appeared in the literature,

in terms of the number of nodes mis-clustered for these 5 datasets. The row

N shows the number of nodes in the networks, the row K is the number

of communities in the ground truth community labels (which is assumed

to be known for all methods), and the row “Exp. Rand” provides the

expected number of nodes that a random community assignment will mis-

cluster and is given by N(1 − 1
K
). All methods perform reasonably well

in the Dolphins and the Football datasets. In the political blogs data, the

spectral clustering and the SBM refine method perform poorly, while the

remaining methods perform well. In the Simmons dataset, OSNTF and

SCOREplus outperform the others. Finally, in the Emails dataset, OSNTF

substantially outperforms all other methods. In all datasets, OSNTF de-

livers either the best or the second-best performance. Further note that

in all cases, the OSNTF method either matches or improves the clustering

performance of its initialization, namely, the regularized spectral clustering.

Overall, the comparison in terms of performance in real data analysis re-

veals that the OSNTF methods are competitive with other state-of-the-art

methods proposed in the literature.
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7. Discussions and Conclusions

In this paper, we proposed a factorization of the symmetric Laplacian ma-

trix with non-negativity and orthogonality constraints (OSNTF) for com-

munity detection in network data. The factorization approximates the

Laplacian matrix (or a regularized version of it) with a matrix that has an

exact OSNTF by solving an optimization problem. We derived nonasymp-

totic upper bounds on the error rate of community detection using the OS-

NTF method (assuming global optimizer can be found for the approxima-

tion optimization problem) in graphs generated from the SBM and DCSBM.

This method is quite similar to spectral clustering, and attempts to es-

timate the same discriminating subspace as spectral clustering for a block-

diagonal Laplacian matrix that corresponds to a graph with K connected

components. However, for more general graphs the two methods obtain

very different invariant subspaces for discrimination. Our simulations show

that this method outperforms spectral clustering in a wide variety of sit-

uations. In particular, for sparse graphs and for graphs with high degree

heterogeneity, this method does not suffer from some of the issues spectral

clustering faces. While it is clear from Eckart-Young theorem that spectral

clustering uses the best K dimensional subspace that represents the data,

the subspace may not be the best discriminating subspace for clustering.
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Supplementary Material

The online Supplementary Material contains proofs of theoretical results

and additional tables and figures.
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