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Abstract: Technological advances have paved the way for collecting high-resolution

network data in basketball, football, and other team-based sports. Such data con-

sist of interactions among players of competing teams indexed by space and time.

High-resolution network data are vital to understanding and predicting the per-

formance of teams, because the performance of a team is more than the sum of

the strengths of its individual players: Whether a collection of players forms a

strong team depends on the strength of the individual players as well as the inter-

actions among the players. We introduce a continuous-time stochastic process as

a model of interactions among players of competing teams indexed by space and

time, discuss basic properties of the continuous-time stochastic process, and learn
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the stochastic process from high-resolution network data by pursuing a Bayesian

approach. We present simulation results along with an application to Juventus

Turin, Inter Milan, and other football clubs in the premier Italian soccer league.

Key words and phrases: Continuous-time stochastic processes; Relational event

data; Soccer games; Spatio-temporal data; Sport analytics.

1. Introduction

Sport analytics has witnessed a surge of interest in the statistics community

(see, e.g., Albert et al., 2017), driven by technological advances that have

paved the way for collecting high-resolution tracking data in basketball,

football, and other team-based sports.

Traditional sport analytics has focused on predicting match outcomes

based on summary statistics (Dixon and Coles, 1997; Karlis and Ntzoufras,

2003; Baio and Blangiardo, 2010; Cattelan et al., 2013). In more recent

times, the advent of high-resolution tracking data has expanded the role of

statistics in sport analytics (Albert et al., 2017) and has enabled granular

evaluations of players and teams (Cervone et al., 2014; Franks et al., 2015;

Cervone et al., 2016; Wu and Bornn, 2018; Yurko et al., 2019; Hu et al.,

2023) along with in-game strategy evaluations (Fernandez and Bornn, 2018;

Sandholtz et al., 2020; Nguyen et al., 2024). High-resolution tracking data
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fall into two categories: optical ball- and player-tracking data obtained from

video footage collected by multiple cameras in sport arenas, and data col-

lected by wearable devices. Some recent papers have used high-resolution

tracking data to evaluate the defensive strength of teams (Franks et al.,

2015); constructing a dictionary of play types (Miller and Bornn, 2017);

assessing the expected value of ball possession in basketball (Cervone et al.,

2016; Santos-Fernandez et al., 2022); and constructing deep generative mod-

els of spatio-temporal trajectory data (Santos-Fernandez et al., 2022).

As a case in point, we focus on soccer—that is, European football.

Soccer is a fast-paced sport that generates high-resolution network data in

the form of ball-tracking data indexed by space and time. The statistical

analysis of high-resolution network data generated by soccer poses many

challenges, including—but not limited to—the following:

1. Scoring a goal in a soccer match is a rare event, and useful predictors

are hard to come by: e.g., a soccer team may score 0, 1, or 2 goals

during a typical match, and scoring a goal requires a sequence of

complex interactions among players of two competing teams.

2. Soccer teams consist of more players and the interactions among the

players are more complex than, e.g., in basketball and other team-

based sports. The fact that soccer teams are larger than teams in

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0050



many other team-based sports implies that the actions of players on

the field need to be coordinated. To facilitate coordination, each soc-

cer team adopts a formation, which assigns each player in the team to

a specific position (e.g., goalkeeper, striker). Two popular formations

of soccer teams, known as 4-4-2 and 3-5-2, are shown in Figure 1 in

Supplement A. The chosen formation can affect the defensive and of-

fensive strategies of a soccer team and can hence affect the outcome

of a match. In addition, players may have different roles in different

formations, and the formations of teams may change during matches.

3. Soccer matches are zero-sum games: One team’s gain is another

team’s loss. For example, if the ball changes hands, one team loses

control of the ball while the other team gains control of the ball.

We address the lack of a comprehensive statistical analysis of the net-

work of interactions among soccer players by introducing a continuous-time

stochastic process, which helps shed light on

• which player controls the ball and how long, and how ball control

depends on the player’s attributes (including the player’s position in

the team’s formation and the player’s spatial position on the field,

provided that the spatial positions of players on the field are known);
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1.1 Comparison with Non-Network Models of Sport Data

• whether a change in ball control is a failure (i.e., the ball is lost to the

opposing team) or a success (i.e., the ball remains within the team in

control of the ball), and how the probability of a failure or a success

depends on attributes of players;

• whether a team on track to winning a match decreases its pace and

plays more defensively, while its opponent increases its pace and plays

more offensively to change the outcome of the match in its favor;

• unobserved attributes of players that may affect ball control and in-

teractions among players.

1.1 Comparison with Non-Network Models of Sport Data

In contrast to the literature on basketball and other team-based sports,

we do not focus on individual summaries, such as the expected ball posses-

sion of individual players (e.g., Cervone et al., 2016; Santos-Fernandez et al.,

2022). Instead, we focus on the network of interactions among players, be-

cause the performance of a team is more than the sum of the strengths of its

players. In other words, a collection of strong players may or may not form

a strong soccer team: Whether a collection of players forms a strong soccer

team depends on the one hand on the strength of the individual players

and on the other hand on how the players interact.
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1.2 Comparison with Discrete-Time Models of Sport Data

Some recent publications (e.g., Chacoma et al., 2020; Hirotsu et al.,

2023; Narizuka et al., 2023) have studied soccer matches by using prob-

abilistic models, but the mentioned publications focus on time-dependent

motion processes and ignore the network of interactions among players. By

contrast, the proposed stochastic modeling framework focuses on the net-

work of interactions among players and helps incorporate the formations of

soccer teams in addition to the spatial distances between players, provided

that the spatial positions of players are known.

Compared with the continuous-time within-play valuation models of

American football in Yurko et al. (2020), the proposed stochastic modeling

framework focuses on the pace of soccer matches, who is in control of the

ball, whether a change in ball control is a failure or a success, and who

secures control of the ball, rather than focusing on action evaluations. As

a result, the proposed stochastic modeling framework can provide a more

comprehensive understanding of team work in soccer and other team-based

sports than the existing literature.

1.2 Comparison with Discrete-Time Models of Sport Data

State-space models and other discrete-time stochastic processes have

been used as predictive models for National Football League (NFL) game
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1.2 Comparison with Discrete-Time Models of Sport Data

scores and other team-based sports (e.g., Glickman and Stern, 2005; Shaw

and Glickman, 2019). By contrast, we focus on continuous-time Markov

processes, for at least two reasons.

First, continuous-time Markov processes are natural models of real-

world processes where events can occur at any time t ∈ [0,+∞), including

fast-paced soccer matches.

Second, continuous-time Markov processes can be viewed as discrete-

time Markov chains with the time gaps between transitions of the Markov

chains filled with Exponential holding times (see, e.g., Chapter 3 of Nor-

ris, 1997). In other words, continuous-time Markov processes model when

changes take place, and which changes take place. Therefore, continuous-

time Markov processes help build richer models than discrete-time Markov

processes. For example, in applications to soccer matches, continuous-time

Markov processes help shed light on:

• Clock: When a change in ball control occurs, and how a change de-

pends on the attributes of the player in control of the ball.

• Transitions: Who passes the ball to whom, and how a change in ball

control depends on the attributes of the players involved.
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1.3 Comparison with Relational Event Models

1.3 Comparison with Relational Event Models

On mathematical grounds, the closest relatives of the proposed stochas-

tic modeling framework are relational event models (e.g., Butts, 2008; Perry

and Wolfe, 2013; Stadtfeld, 2011). Having said that, there are important

differences between relational event models and the proposed stochastic

modeling framework:

1. Soccer matches revolve around the ball. A reasonable stochastic model

of soccer matches needs to reflect the fact that soccer matches revolve

around the ball: e.g., at any given time t, a single player is in con-

trol of the ball and can initiate a relational event (e.g., a pass), and

a stochastic model of soccer matches should reflect that. By con-

trast, relational event models assume that any actor can initiate a

relational event at any time: e.g., at any given time t, any employee

of a company can send an email to one or more other employees.

2. Soccer matches are zero-sum games: One team’s gain is another

team’s loss. As a result, a reasonable stochastic model of soccer

matches should distinguish between successful and unsuccessful rela-

tional events (e.g., passes), which can affect the outcomes of a match.

By contrast, relational event models are not concerned with zero-sum
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1.4 Structure of Paper

games and do not distinguish between successful and unsuccessful re-

lational events: e.g., email communications between the employees of

a company are not zero-sum games, and the event that employee A

sends an email to employee B does not necessarily result in a gain or

a loss for employee A or employee B.

3. The formations of soccer teams and the locations of players on the

field can affect the outcome of a match. By contrast, if an employee

of a company considers sending an email, the location of the employee

is unimportant: As long as the employee is connected to the World

Wide Web, the employee can send an email from any location on

planet Earth.

1.4 Structure of Paper

We first introduce the data that motivated the proposed stochastic modeling

framework (Section 2) and then introduce the stochastic modeling frame-

work (Section 3). A Bayesian approach to learning the stochastic modeling

framework from data is described in Section 4, and Bayesian computing is

discussed in Section 5. An application to the motivating data is presented

in Section 6. Simulation results can be found in Section 7.
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2. High-Resolution Network Data

We consider data provided by Hudl & Wyscout (https://footballdata.

wyscout.com/). The data consists of 380 matches during the 2020/21 sea-

son of Serie A, the premier league of the Italian football league system.

The data include ball-tracking data, but not player-tracking data. In other

words, we know which player is in control of the ball, but we do not know

where the players are located on the field.

Figure 2 in Supplement A shows a subset of the data: passes between

the players of Juventus Turin (with 4-4-2 formation) and Inter Milan (with

3-5-2 formation). These data are based on the home games of Juventus

Turin versus AC Milan and Inter Milan versus AC Milan in 2020/21. The

figure reveals that passes depend on the formations of teams. Figure 2(a)

in Supplement A shows that the midfield players and defenders of Juventus

Turin (with 4-4-2 formation) dominate ball control. By contrast, strikers

do not control the ball all too often, but are key to scoring goals and hence

winning matches. Figure 2(b) in Supplement A reveals that the midfield

players of Inter Milan (with 3-5-2 formation) likewise dominate ball control.

In addition, the right wing of Inter Milan plays an important role in Inter

Milan’s 3-5-2 formation, by passing the ball to the strikers and in so doing

helping the team launch counterattacks straight out of the backfield. Other
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descriptive summaries, including detailed information on the formations

and players of Juventus Turin, Inter Milan, and other soccer clubs in Serie

A are presented in Supplement C.

3. Stochastic Modeling Framework

We introduce a continuous-time stochastic process as a model of soccer

matches starting at time t0 := 0 and stopping at time T ∈ [90,+∞).

Soccer matches involve two competing teams. Each team consists of

11 players and can substitute up to 5 players during a match, effective

2022/23. Let T1,t be the set of players of one of the two teams and Tt,2 be

the set of players of the opposing team at time t ∈ [0, T ). The two sets T1,t

and T2,t are disjoint, in the sense that T1,t ∩ T2,t = {} for all t ∈ [0, T ).

The compositions of the two teams T1,t and T2,t can change during a match,

because players may be injured; players may be substituted; and the referee

may remove players from the field due to violations of rules. We consider

changes in the compositions of T1,t and T2,t to be exogenous.

3.1 Generic Continuous-Time Stochastic Process

We introduce a generic continuous-time stochastic process that captures

salient features of soccer matches.
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3.1 Generic Continuous-Time Stochastic Process

Scoring goals: rare events. We focus on who is control of the ball,

whether a change in ball control is a failure or a success, and who secures

control of the ball, but we do not model the process of scoring goals. While

scoring goals is important for winning matches, the event of scoring a goal

is a rare event and useful predictors are hard to come by, because scoring

a goal requires a sequence of complex interactions among players of two

competing teams. We leave the construction of models for scoring goals

to future research and focus here on ball control and interactions among

players, which are important for scoring goals and winning matches.

Ball control and interactions among players. We first describe

a generic continuous-time stochastic process. We then introduce a specifi-

cation of the continuous-time stochastic process in Section 3.2 and discuss

basic properties of the continuous-time stochastic process in Supplement D.

A generic continuous-time stochastic process of a soccer match starting

at time t0 := 0 and stopping at time T ∈ [90,+∞) takes the following form:

1. At time t0 := 0, the referee starts the match. The player who secures

control of the ball at time t0 is chosen at random from the set T1,t0 ∪

T2,t0 and is denoted by i1.

2. At time tm := tm−1 + hm (m = 1, 2, . . . ), the ball passes from player
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3.2 Specification of Continuous-Time Stochastic Process

im ∈ T1,tm ∪ T2,tm to player jm ∈ T1,tm ∪ T2,tm \ {im}, where hm ∼

Exponential(λim) and im = jm−1 (m = 2, 3, . . . ). The process of

passing the ball from player im to player jm is decomposed as follows:

2.1 The change in ball control is either a failure (indicated by Sim =

0) in that player im loses the ball to a player of the opposing

team, or is a success (indicated by Sim = 1) in that im succeeds

in passing the ball to a player of im’s own team.

2.2 Conditional on Sim ∈ {0, 1}, player im cedes control of the ball

to player jm ∈ T1,tm ∪ T2,tm \ {im}, indicated by im → jm.

3. The referee stops the match at time T ∈ [90,+∞).

We consider the decision of the referee to stop the match to be exogenous,

so that the stopping time T ∈ [90,+∞) of the match is non-random. In

practice, soccer matches last 90 minutes, but disruptions of matches due to

injuries and substitutions of players may result in overtime.

3.2 Specification of Continuous-Time Stochastic Process

We introduce a specification of the generic continuous-time stochastic pro-

cess introduced in Section 3.1, by specifying the distributions of the holding

times hm, the success probabilities P(Sim = sim), and the pass probabilities
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3.2 Specification of Continuous-Time Stochastic Process

P(im → jm | Sim = sim). Basic properties of the resulting continuous-time

stochastic process are discussed in Supplement D. Throughout, we denote

by Im the team of player im in control of the ball at time tm.

Holding time distributions A natural specification of the holding time

distributions is

hm | λim
ind∼ Exponential(λim).

To allow the rate λim ∈ (0,+∞) of player im’s holding time hm to depend

on observed attributes of im (e.g., the position of im in the formation of

im’s team and the location of im on the field), we assume that

λim(ω) := exp(ω⊤cim),

where ω ∈ Rp is a vector of p parameters and cim ∈ Rp is a vector of p

observed attributes of player im.

Success probabilities The probability of a successful pass {Sim = 1} by

player im can be specified by a logit model:

logit{Pα,η(Sim = 1)} := α⊤x1,im + η1,im ,
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3.2 Specification of Continuous-Time Stochastic Process

where α ∈ Rd1 is a vector of d1 parameters and x1,im ∈ Rd1 is a vector of

d1 observed attributes of player im. The random effect η1,im ∈ R captures

the effect of unobserved attributes of player im on the success probability.

Pass probabilities The conditional probability of event {im → jm} given

{Sim = 0} can be specified by a multinomial logit model:

Pβ,η(im → jm | Sim = 0)

:=


exp(β⊤x2,im,jm + η2,jm)∑
j ̸∈ Im exp(β⊤x2,im,j + η2,j)

if jm ̸∈ Im

0 if jm ∈ Im,

where β ∈ Rd2 is a vector of d2 parameters and x2,im,j ∈ Rd2 is a vector

of d2 observed attributes of players im and j. The random effect η2,j ∈ R

captures the effect of unobserved attributes of player j on the conditional

probability of securing control of the ball.

Along the same lines, the conditional probability of event {im → jm}

given {Sim = 1} can be specified by a multinomial logit model:

Pγ,η(im → jm | Sim = 1)

:=


0 if im = jm or jm ̸∈ Im

exp(γ⊤x3,im,jm + η3,jm)∑
j ∈Im\{im} exp(γ

⊤x3,im,j + η3,j)
if im ̸= jm and jm ∈ Im,
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3.2 Specification of Continuous-Time Stochastic Process

where γ ∈ Rd3 is a vector of d3 parameters and x3,im,j ∈ Rd3 is a vector of d3

observed attributes of players im and j, e.g., whether players im and j are

friends, whether player im passed the ball to player j in the past, whether

player im received the ball from player j in the past, or the spatial distance

between players im and j at the time of the pass (provided that the spatial

positions of players are known). The random effect η3,j ∈ R captures the

effect of unobserved attributes of player j on the conditional probability of

securing control of the ball.

Random effects Let ηi := (η1,i, η2,i, η3,i) ∈ R3 and assume that

ηi | Σ
iid∼ MVN3(03, Σ),

where 03 ∈ R3 is the three-dimensional null vector and Σ ∈ R3×3 is a

positive-definite variance-covariance matrix.

Alternative models It is worth noting that there are other possible

approaches to constructing stochastic models of soccer matches. For ex-

ample, each the two following approaches to constructing models can help

shed light on salient aspects of soccer matches:

(a) Assuming player im is in control of the ball at time tm, first deter-
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3.2 Specification of Continuous-Time Stochastic Process

mine whether im succeeds in passing the ball to a teamplayer. Then

determine which teamplayer jm receives the ball provided that the

pass is a success, otherwise determine which player jm of the oppos-

ing team secures control of the ball provided that the pass is a failure

(the approach pursued here).

(b) Assuming player im is in control of the ball at time tm, suppose that

im first selects a teamplayer km and intends to pass the ball to km.

Then determine whether the intended pass im → km succeeds. If the

intended pass im → km succeeds, set km = jm, otherwise select the

player jm who secures control of the ball from the opposing team (an

approach suggested by an anonymous referee).

While both approaches can be useful, there are two good reasons for choos-

ing approach (a), that is, the approach pursued here.

First, soccer matches revolve around the ball, so soccer teams wish to

retain control of the ball. Thus, the player in control of the ball is first

and foremost responsible for passing the ball to a teamplayer—unless the

player has the rare opportunity to score a goal. By construction, approach

(a) respects the importance of retaining control of the ball.

Second, approach (a) has one advantage over approach (b): If a pass

is a failure, we do not observe the intended receiver km. Worse, even when
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a pass is a success, we may not observe the intended receiver km: e.g.,

im may intend to pass the ball to teamplayer km, but the ball ends up

in possession of some other teamplayer jm ̸= km by accident. In fact,

instead of observing the intended receiver km, we observe the actual receiver

jm, who may or may not be identical to the intended receiver km. In

other words, the data fall short, in that we do not observe the intended

passes im → km, but we observe the actual passes im → jm, regardless

of whether the passes are failures or successes. As a result, approach (b)

would require augmenting the observed passes im → jm by the unobserved,

intended passes im → km. While it is possible to augment the observed

passes im → jm by the unobserved, intended passes im → km using data-

augmentation methods, such methods come at additional computational

costs compared with approach (a). In addition, there may be statistical

costs: It is not clear how much information the data contain about the

unobserved, intended passes im → km.

4. Bayesian Learning

We pursue a Bayesian approach to learning the stochastic modeling frame-

work introduced in Section 3 from high-resolution network data.

A Bayesian approach is well-suited to online learning, that is, updat-
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ing the knowledge about the parameters α, β, γ, ω, Σ and the random

effects η1,η2, . . . as soon as additional data points roll in. To demon-

strate, consider two teams and let x1 := (h1,m, i1,m, j1,m)
M1
m=1 be the out-

come of the first match of the two teams (with M1 ≥ 1 passes) and

x2 := (h2,m, i2,m, j2,m)
M2
m=1 be the outcome of the second match of the two

teams (with M2 ≥ 1 passes). To ease the presentation, assume that the

compositions of the two teams do not change during the first and second

match, the 22 players of the two teams are labeled 1, . . . , 22, and the ran-

dom effects are denoted by η := (η1, . . . ,η22). In addition, assume that the

outcomes of the first and second match x1 and x2 satisfy

π(x1, x2 | α, β, γ, ω, η) = π(x1 | α, β, γ, ω, η)

× π(x2 | α, β, γ, ω, η, x1),

where π denotes a generic probability density function. The conditional
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probability density function π(x1 | α, β, γ, ω, η) is of the form

π(x1 | α, β, γ, ω, η) =

M1∏
m=1

[
λi1,m(ω) exp{−λi1,m(ω)h1,m}

× Pα,η(Si1,m = si1,m)

× Pβ,η(i1,m → j1,m | Si1,m = 0)1(Si1,m
= 0)

× Pγ,η(i1,m → j1,m | Si1,m = 1)1(Si1,m
= 1)
]

× exp

{
−λi1,M1+1

(ω)

(
T1 −

M1∑
k=1

h1,k

)}
,

assuming that the start time t0 := 0 and the stopping time T1 ∈ [90,+∞)

of the match are determined by the referee and are both non-random. The

function 1(.) is an indicator function, which is 1 if its argument is true

and is 0 otherwise. The conditional probability density function π(x2 |

α, β, γ, ω, η, x1) is of the same form as π(x1 | α, β, γ, ω, η), but is

based on M2 passes rather than M1 passes and can depend on the outcome

of the first match x1.

The posterior of α, β, γ, ω, Σ, η based on the outcome of the first
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match x1 is proportional to

π(α, β, γ, ω, Σ, η | x1) ∝ π(x1 | α, β, γ, ω, η)

× π(η | Σ) π(α, β, γ, ω, Σ),

where π(α, β, γ, ω, Σ) is the prior ofα, β, γ, ω, Σ. The prior ofα, β, γ, ω, Σ

is described in Section 5.

As soon as the outcome of the second match x2 is observed, the knowl-

edge about α, β, γ, ω, Σ, η in light of x2 can be updated as follows:

π(α, β, γ, ω, Σ, η | x1, x2)

∝ π(x1, x2 | α, β, γ, ω, η) π(η | Σ) π(α, β, γ, ω, Σ)

∝ π(x2 | α, β, γ, ω, η, x1) π(α, β, γ, ω, Σ, η | x1).

In other words, as soon as the outcome of the second match x2 is ob-

served, we can update the knowledge about α, β, γ, ω, Σ, η in light of x2

via π(x2 | α, β, γ, ω, η, x1), with the knowledge about α, β, γ, ω, Σ, η

prior to the second match x2 being quantified by π(α, β, γ, ω, Σ, η | x1),

the posterior based on the outcome of the first match x1. As a result, a

Bayesian approach is a natural approach to updating knowledge about the

stochastic modeling framework as additional data points roll in. More than

two teams with can be handled, and multiple matches in parallel.
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5. Bayesian Computing

While a Bayesian approach to learning the stochastic modeling frame-

work introduced in Section 3 from high-resolution network data is natural,

the posterior π(α, β, γ, ω, Σ, η | x) of the parameters α, β, γ, ω, Σ and

the random effects η based on the outcome of a match x is not available in

closed form. We approximate the posterior by using Markov chain Monte

Carlo methods, by sampling from the full conditional distributions of the

parameters and the random effects:

π(α | x) ∝ L(α,η; x) π(α)

π(β | x) ∝ L(β,η; x) π(β)

π(γ | x) ∝ L(γ,η; x) π(γ)

π(ω | x) ∝ L(ω; x) π(ω)

π(η | x) ∝ L(α,η; x)L(β,η; x)L(γ,η; x)L(Σ; η)

π(Σ | η) ∝ L(Σ; η) π(Σ),
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where

L(α,η; x) ∝
M∏

m=1

Pα,η(Sim = sim)

L(β,η; x) ∝
M∏

m=1

Pβ,η(im → jm | Sim = 0)1(Sim= 0)

L(γ,η; x) ∝
M∏

m=1

Pγ,η(im → jm | Sim = 1)1(Sim= 1)

L(ω; x) ∝
M∏

m=1

λim(ω) exp{−λim(ω)hm} exp

{
−λiM+1

(ω)

(
T −

M∑
k=1

hk

)}

L(Σ; η) ∝
n∏

i=1

det(Σ−1)1/2 exp

(
−1

2
η⊤
i Σ−1 ηi

)
,

assuming that x is the outcome of a single soccer match with M ≥ 1 passes

starting at time t0 = 0 and stopping at time T ∈ [90,+∞); note that both

the start time t0 and the stopping time T are non-random. We assume that

the prior factorizes according to

π(α, β, γ, ω, Σ) = π(α) π(β) π(γ) π(ω) π(Σ),

with marginal priors of the form

αk
iid∼ N(0, 102), k = 1, . . . , d1, βk

iid∼ N(0, 102), k = 1, . . . , d2

γk
iid∼ N(0, 102), k = 1, . . . , d3, ωk

iid∼ N(0, 102), k = 1, . . . , p,
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where N(0, 102) is a Gaussian with mean 0 and variance 102 = 100. To

specify the prior of the variance-covariance matrix Σ of the random effects,

we decompose Σ according to

Σ :=


ση1 0 0

0 ση2 0

0 0 ση3

 Λ


ση1 0 0

0 ση2 0

0 0 ση3

 ,

where Λ ∈ [−1,+1]3×3 is a correlation matrix. We then assume that

Λ ∼ LKJcorr(2) has a Lewandowski-Kurowicka-Joe (LKJ) distribution

with parameter 2 and σηk

iid∼Exponential(1) (k = 1, 2, 3).

To sample from the full conditionals, we use Markov chain Monte Carlo

methods implemented in R package rstan (Stan Development Team, 2023).

Since the stochastic modeling framework leverages exponential-family dis-

tributions as building blocks (e.g., Bernoulli, Multinomial, Exponential, and

multivariate Gaussians), we do not have more numerical issues than other

exponential-family models, such as generalized linear models, Gaussian and

non-Gaussian graphical models (Efron, 2022).
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6. Application

We use the stochastic modeling framework introduced in Section 3 to an-

alyze the data described in Section 2. We focus on the matches of four

soccer teams during the 2020/21 season of Serie A, the premier league of

the Italian football league system:

• Juventus Turin (Juventus F.C.; 15,832 observations);

• Inter Milan (Internazionale Milano; 13,564 observations);

• Crotone (Crotone S.r.l.; 8,125 observations);

• Fiorentina (ACF Fiorentina; 8,107 observations).

Juventus Turin and Inter Milan belong to the most storied Italian soccer

clubs, while Crotone and Fiorentina were mid- and low-level teams during

the 2020/21 season, respectively. The numbers of observations mentioned

above refer to the total numbers of passes during the 2020/21 season, ag-

gregated over all matches played by the selected teams with the dominant

formation. The selected teams have in common that all of them were pro-

ficient users of the 4-4-2 formation (Juventus Turin) or the 3-5-2 formation

(Inter Milan, Crotone, Fiorentina).

We use the following specification of the stochastic modeling framework:
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• Module 1 (M1): The Exponential model of the holding times hm

uses the following covariates: position-specific indicators of who is in

control of the ball and indicators of whether the player’s team is on

track to winning or losing the match (i.e., the player’s team has scored

at least one more goal or one less goal than its opponent, respectively).

• Module 2 (M2): The logit model of the probability of a successful

pass {Sim = 1} uses the following covariates, in addition to an inter-

cept: the length of the pass in terms of two-dimensional Euclidean

distance; an indicator of whether player im initiates the pass in the

opposing team’s half of the field; an indicator of whether the ball ends

up in the opposing team’s third of the field; an indicator of whether

the pass is a forward pass; an indicator of whether the pass is an air

pass; indicators of whether the player’s team is on track to winning or

losing the match (i.e., whether the player’s team has scored at least

one more goal or one less goal than its opponent, respectively); and a

position-specific random effect.

• Module 3 (M3): The multinomial logit model of the conditional

probability of event {im → jm} given {Sim = 1} uses the following

predictors: the graph distance between players im and jm—defined
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as the length of the shortest path between im and jm—based on the

nearest-neighbor graph in Figure 3 in Supplement A; the number of

times jm received the ball prior to the m-th pass; and a position-

specific random effect.

It would be interesting to include more features into the multinomial logit

model of the conditional probability of event {im → jm} given {Sim = 1},

e.g., the spatial positions of players and additional network features. That

said, we do not have data on the spatial distances between players and

additional network features. Note that these limitations are limitations

of the data, not the model: The model can incorporate spatial distances

between players as well as additional network features. In addition, note

that we focus here on all matches involving the four mentioned teams with

the dominant formation, but we do not use the data of the opposing teams.

As a consequence, we do not specify the conditional probabilities of events

{im → jm} given {Sim = 0}. Last, but not least, note that we use position-

specific rather than player-specific random effects, because the data do not

include complete information about which position is filled by which player.

Posterior sensitivity checks and posterior predictive checks can be found

in Sections 6.1 and 6.2, respectively: The posterior sensitivity checks sug-

gest that the posterior is not too sensitive to the choice of prior, while the
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posterior predictive checks indicate that model-based predictions match

the observed data. Tables 9 and 10 in Supplement E present posterior

summaries of the model parameters, based on the 2020/21 matches of

Fiorentina, Crotone, and Inter Milan (with 3-5-2 formation) and Juventus

Turin (with 4-4-2 formation). Among other things, these results suggest

that the rate at which players pass the ball is reduced when the team is on

track to winning a match, compared to scenarios in which the team is nei-

ther on track to winning nor losing a match (holding everything else fixed).

By contrast, when on track to losing a match, the rate at which players

of Juventus Turin and Inter Milan pass the ball is reduced, while the rate

at which players of Fiorentina and Crotone pass the ball is not reduced.

There is an additional observation suggesting that the modus operandi of

Juventus Turin and Inter Milan is different from the modus operandi of

Fiorentina and Crotone: Starting a pass in the opponent’s half of the field

does not increase the probability of a successful pass among Fiorentina and

Crotone players, but it does increase the probability of a successful pass

among Juventus Turin and Inter Milan players. Taken together, these re-

sults suggest that the modus operandi of Juventus Turin and Inter Milan

differs from the modus operandi of Fiorentina and Crotone, warranting

more research into how these and other soccer teams operate and how the
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6.1 Posterior Sensitivity Checks

modus operandi affects match outcomes. That said, we hasten to point out

that we cannot make causal statements about how soccer teams operate.

Causal inference for soccer and other team-based sports is a challenging but

promising direction for future research, as we discuss in Section 8.5.

Among the position-specific effects, it is worth noting that the length of

time the goal keeper controls the ball tends to be lower than the length of

time other positions control the ball. This observation makes sense, because

the goal keeper has an incentive to remove the ball from the penalty area

as soon as possible, so that the opposing team cannot gain control of the

ball in the penalty area and score an easy goal.

6.1 Posterior Sensitivity Checks

To assess the sensitivity of the posterior to the choice of prior, we con-

sider the following three priors:

• Prior 1:

αk
iid∼ N(0, 52), k = 1, . . . , d1, βk

iid∼ N(0, 52), k = 1, . . . , d2

γk
iid∼ N(0, 52), k = 1, . . . , d3, ωk

iid∼ N(0, 52), k = 1, . . . , p;
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6.2 Posterior Predictive Checks

• Prior 2, used in Section 6:

αk
iid∼ N(0, 102), k = 1, . . . , d1, βk

iid∼ N(0, 102), k = 1, . . . , d2

γk
iid∼ N(0, 102), k = 1, . . . , d3, ωk

iid∼ N(0, 102), k = 1, . . . , p;

• Prior 3:

αk
iid∼ N(0, 152), k = 1, . . . , d1, βk

iid∼ N(0, 152), k = 1, . . . , d2

γk
iid∼ N(0, 152), k = 1, . . . , d3, ωk

iid∼ N(0, 152), k = 1, . . . , p;

where N(0, 52), N(0, 102), and N(0, 152) are Gaussians with mean 0 and

variances 52 = 25, 102 = 100, and 152 = 225, respectively. The random

effects prior is described in Section 5 and is the same under all three priors.

The posteriors under these priors are similar, as can be seen by comparing

Tables 9 and 10 with the corresponding tables in Supplement F.

6.2 Posterior Predictive Checks

Using the posterior draws generated in Section 6, we compare model-

based predictions of the waiting times between passes and the proportions of

successful passes to the observed waiting times and the observed proportions

of successful passes by Inter Milan, Crotone, and Fiorentina during the

2020/21 season. The model-based predictions (i.e., posterior predictions)
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are shown in Figure 4 in Supplement G and match the observed data.

7. Simulation Results

We simulate data from the stochastic modeling framework specified in

Section 6. We choose the data-generating parameters of the model so that

the simulated data mimic the Inter Milan data in Section 6. We simulate

100 short soccer seasons, each with 1,000 passes. To estimate the model

from the 100 simulated soccer seasons, we leverage the Bayesian approach

described in Section 5, using the prior described in Section 5. We present

in Figure 5 in Supplement H aggregated simulations results based on all

100 simulated soccer seasons. In addition, we present the data-generating

parameters along with posterior summaries of the parameters based on one

of the 100 simulated soccer seasons in Table 15 in Supplement H. The figure

and table demonstrate that the posterior means of the parameters cluster

around the data-generating parameters.

8. Discussion

We view the proposed stochastic modeling framework as a first step to

modeling soccer matches and other team-based sports as space- and time-

indexed network processes and hope that it will stimulate future research.
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8.1 Model Specification

To stimulate future research, we conclude with a short discussion of open

questions and directions for future research.

8.1 Model Specification

The deluge of high-resolution network data generated by soccer and other

team-based sports implies that there are many possible features that may

be relevant for predicting ball control, goals, and match outcomes. The

specific features used in Section 6 make sense as a starting point, but sound

model selection procedures and more data are needed to shed light on which

features are useful for predicting ball control, goals, and match outcomes.

In addition, the proposed stochastic modeling framework includes player-

specific random effects ηi ∈ R3, which are correlated within players i but

are shared across soccer matches. Since the proposed stochastic modeling

framework is already fairly complex, we stick to the player-specific random

effects. More advanced latent process models—e.g., multilevel models with

position- and team-specific random effects and other more complex latent

process models—constitute an interesting direction for future research.
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8.2 Causal Inference

8.2 Causal Inference

While impressive progress has been made on the foundations of causal in-

ference (e.g., Peters et al., 2017; Imbens and Rubin, 2015; Pearl, 2009),

causal inference for soccer and other team-based sports poses challenges

(e.g., Hall et al., 2002; Price et al., 2022; Dona and Swartz, 2023). First,

conducting experiments in soccer is hard. Thus, causal inference needs

to rely on observational rather than experimental data. Second, the out-

comes of interest may be player-specific (e.g., scoring goals) or team-specific

(e.g., winning matches) or both. Third, the outcomes of players and teams

may depend on the outcomes of other players in the same team as well

as the opposing team. As a result, there can be interference (Hudgens

and Halloran, 2008; Sävje et al., 2021; Li and Wager, 2022), complicating

causal inference. Last, but not least, soccer matches are network-, space-,

and time-dependent processes, and stochastic processes aspiring to emulate

them will have to reflect the complexity of these real-world processes. As

a consequence, causal inference for soccer and other team-based sports is a

challenging but promising direction for future research.
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Sävje, F., P. Aronow, and M. Hudgens (2021). Average treatment effects

in the presence of unknown interference. The Annals of Statistics 49,

673–701.

Shaw, L. and M. Glickman (2019). Dynamic analysis of team strategy in

professional football. Barça Sports Analytics Summit 13.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0050



REFERENCES

Stadtfeld, C. (2011). Events in Social Networks. A Stochastic Actor-oriented

Framework for Dynamic Event Processes in Social Networks. Ph. D.

thesis, Karlsruhe Institute of Technology. Download: uvka.ubka.uni-

karlsruhe.de/shop/download/1000025407.

Stan Development Team (2023). RStan: the R interface to Stan. R package

version 2.21.8.

Wu, S. and L. Bornn (2018). Modeling offensive player movement in pro-

fessional basketball. The American Statistician 72 (1), 72–79.

Yurko, R., F. Matano, L. F. Richardson, N. Granered, T. Pospisil,

K. Pelechrinis, and S. L. Ventura (2020). Going deep: models for

continuous-time within-play valuation of game outcomes in Ameri-

can football with tracking data. Journal of Quantitative Analysis in

Sports 16 (2), 163–182.

Yurko, R., S. Ventura, and M. Horowitz (2019). nflWAR: A reproducible

method for offensive player evaluation in football. Journal of Quantitative

Analysis in Sports 15 (3), 163–183.

Department of Statistics, University of Missouri-Columbia

E-mail: grieshopn@missouri.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0050

mailto:grieshopn@missouri.edu


REFERENCES

Department of Economics, University of Missouri-Columbia

E-mail: yong.feng@mail.missouri.edu

Department of Biostatistics and Data Science, The University of Texas

Health Science Center at Houston

E-mail: guanyu.hu@uth.tmc.edu

Department of Statistics, The Pennsylvania State University

E-mail: michael.schweinberger@psu.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0050

mailto:yong.feng@mail.missouri.edu
mailto:Guanyu.Hu@uth.tmc.edu
mailto:michael.schweinberger@psu.edu

	Introduction
	Comparison with Non-Network Models of Sport Data
	Comparison with Discrete-Time Models of Sport Data
	Comparison with Relational Event Models
	Structure of Paper

	High-Resolution Network Data
	Stochastic Modeling Framework
	Generic Continuous-Time Stochastic Process
	Specification of Continuous-Time Stochastic Process

	Bayesian Learning
	Bayesian Computing
	Application
	Posterior Sensitivity Checks
	Posterior Predictive Checks

	Simulation Results
	Discussion
	Model Specification
	Causal Inference




