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Abstract: Many chronic diseases exhibit multifaceted symptoms that cannot be
comprehensively characterized by one outcome. To address this, researchers of-
ten adopt a global outcome to combine information from multiple individual out-
comes. The global rank-sum facilitates robust integration of multiple outcomes
and has been applied in many clinical studies. We consider longitudinal settings
and devise a global percentile outcome for depicting patients’ time-varying global
disease burden. We develop useful regression strategies for the longitudinal global
percentile outcome based on a flexible regression framework of the monotonic
index model. Posing minimal restrictions, we propose a maximum rank corre-
lation type estimator and show that it entails desirable asymptotic properties.
The methods are also extended to accommodate the common missing at random
dropout scenarios. We propose a computationally stable and efficient procedure
for parameter estimation, as well as a perturbation scheme for consistent vari-
ance estimation. Numerical studies show that our method performs well under

realistic settings. We apply the proposed method to data from a Parkinson’s



disease clinical trial to examine risk factors associated with elevated global dis-

ease burden and accelerated disease progression. Key words and phrases: Global

percentile outcome; Longitudinal data; Maximum rank correlation; Monotonic

index model; Parkinson’s disease.

1. Introduction

Definition of the primary outcome plays a central role in biomedical studies.
For many diseases with complex symptoms and multi-dimensional deterio-
rations, however, there is no single outcome that is comprehensive enough
to capture all important aspects of the disease. In these situations, re-
searchers often construct a global outcome that combines information from
multiple individual outcomes. For example, the NIH Exploratory Trials
in Parkinson’s Disease (NET-PD) Long-term Study-1 (LS-1) was a multi-
center, double-blind, placebo-controlled, randomized trial aimed at testing
whether the daily administration of creatine would slow the global progres-
sion of Parkinson’s disease (PD) (Kieburtz et al., 2015). PD involves a
broad spectrum of symptoms, including movement-related (motor) symp-
toms such as tremor and stiffness, as well as non-motor symptoms such as
impaired sense of smell, sleep disorders, and fatigue. To comprehensively

assess the global disease progression, the steering committee of the LS-1



chose five outcome measures for the primary analysis, accounting for both
motor and non-motor symptoms (Elm and Investigators, 2012). A global
rank-sum (O’Brien, 1984)) was formulated based on the change from baseline
to year five in the five outcome measures. Similar rank-based global out-
comes have also been adopted in studies of heart failure (Felker and Maisel,
2010; |Sun et al., 2012) and amyotrophic lateral sclerosis (Berry et al., 2013).

For each study subject, the global rank-sum is computed by first calcu-
lating the subject’s rank among the study participants in terms of each indi-
vidual outcome and then summing up the outcome-specific ranks (O’Brien,
1984). The theoretical properties of the global rank-sum test were dis-
cussed in [Huang et al. (2005). They also considered the general nonpara-
metric Behrens-Fisher hypothesis problem. The global rank-sum test was
extended to censored outcomes by |Ramchandani et al. (2016), and exten-
sion to clustered multiple endpoints were considered in |[Zhang et al. (2019).

However, existing methods for the global rank-sum are mostly targeting
two-sample or K-sample hypothesis testing problems and could not account
for additional covariates, such as confounders or risk factors. What is more,
these methods do not accommodate longitudinal data, a data structure that
commonly arises in biomedical studies. In the NET-PD LS-1 trial and many

similar studies, the outcome measures were collected during pre-planned



follow-up visits, providing important opportunities for exploring the time
trend of global disease progression and the associated mechanisms. It is
desirable to link the covariates to the global disease burden and progression
through a sensible regression framework.

In this paper, we consider regression modeling of a global, rank-based
outcome for longitudinal data. By compositing the percentile ranks of each
outcome, we devise a global percentile outcome (GPO) that amalgamate in-
formation from the individual longitudinal outcomes. The GPO provides a
robust and scale-free way to quantify patients’ global disease levels relative
to the study population. It ranges between 0 and 1 and facilitates straight-
forward interpretation. We adopt a longitudinal monotonic index model
that requires minimal distributional assumptions and provides great flexi-
bility in accommodating a broad range of relationships between the GPO
and covariates. The maximum rank correlation (MRC) estimator under the
monotonic index model has been well studied for cross-sectional data (Han
1987; |Cavanagh and Sherman 1998; Sherman 1993; among others). We de-
signed rank-based objective functions, which can be readily implemented
in standard statistical software. We show that the proposed methods enjoy
desirable theoretical properties despite the non-smooth objective functions

and the inter-subject dependence due to the estimated GPO.



The rest of the paper is organized as follows. In Section [2| we describe
the proposed regression models and estimation strategies. We start with the
case where a single outcome measure is considered and then proceed to the
GPO, which becomes a univariate outcome after the combination. Next, we
extend the methods to accommodate dropout, a common complication in
longitudinal data. Asymptotic properties are rigorously established for the
proposed estimators. We provide sensible variance estimation procedures
and discuss strategies for numerical implementations. In Section [3| we
evaluate our estimators through extensive numerical experiments. We apply
the proposed method to the NET-PD LS-1 data to examine risk factors for
increased disease burden and accelerated disease progression in Section [4]

Some concluding remarks are provided in Section [5]

2. Methods

2.1 Monotonic index regression for single longitudinal outcome

We start from the situation with a single longitudinal outcome. For subject
i, let Y; = (Yio, ..., Yim) denote a continuous longitudinal outcome mea-
sured at times tg, ..., %y, with tg = 0 corresponding to the baseline and a’
denoting the transpose of a. The covariate vector X; = (X, ..., X;,)" is of

length p. The observed data consist of i.i.d. samples {(X;, Y;)}",, where



2.1 Monotonic index regression for single longitudinal outcome

n is the sample size. To characterize the relationship between Y, and X;,

we consider the following monotonic index model:

Eng{ﬂ(xzatm76)a€zm}a m:O77M7 (2]—)

where ((a,b) is an unspecified bivariate function that is increasing in both
arguments. (X, t,,3) is a prespecified function with an unknown pa-
rameter vector B, for which the true value is given by 8,. It can be pa-
rameterized in a similar manner as the mean part of a GEE model, except
that no intercept term is needed. For example, one may let pu(X;, t,, 3) =
Yor Xa(Bor + Boatm) + Bty or (X, tm, B) = > 1y Xu{Bo + Boul(m >
0)} + Bim. The error term ¢, follows an unspecified distribution F.. The
components of (g,...,er) could be correlated within the same subject
but are independent across different subjects. To ensure identifiability, it
is necessary to impose a scaling constraint on 3, as the model has mini-
mal assumptions on the link function. Two common ways to impose this
constraint in literature are by fixing one of the elements to be 1 (Sherman,
1993)) or restricting that ||3|| = 1 (Han, 1987)). Without loss of generality,
we follow the first approach in the sequel. We have verified through simu-

lations (unreported) that the proposed methods also perform satisfactorily



2.1 Monotonic index regression for single longitudinal outcome

when we adopt the unit norm constraint. In practice, one could adopt one
of the two constraints according to the clinical interest of the application.

Let B8 = B(0) = (1,0") and B, = B(6y) = (1,0;)'. To estimate
the unknown coefficients, we extend the maximum rank correlation (MRC)

estimator for cross-sectional data and define the objective function as

M M
£.(6) = ﬁ > S 1> Vi T [pfXestus B(O)} > X1, B(6)}]
1<i#j<n u=0 v=0
(2.2)
L,(0) exploits the degree of concordance between the outcome value and
the model-based u{X,t,3(0)} across the follow-up times, and we let 0 =
argmaxg L£,(0). The £,,(0) is non-differentiable with respect to @ but can
be solved using a nonlinear optimization algorithm such as the Nelder-Mead
algorithm. More details about computation are deferred to Section
For any 8 € © and f(@), a function of 6, write V,, for the following

m-~th partial derivative operator with respect to 8, and let |V,,|f(0) =

| 52 £(8) |. For z = (x,y') and 6 € ©, define

7777 Y| oc° im



2.1 Monotonic index regression for single longitudinal outcome

Similar to|Sherman (1993), our MRC estimator for longitudinal outcomes is
consistent and asymptotically normal, which we summarize in the following
theorem. Detailed regularity conditions and proof can be found in the

Supplementary Material 1.1.

Theorem 1. Under model (2.1) and conditions (C1)-(C4) in the Supple-
mentary Material, we have (IR 6y, and \/ﬁ(ﬁ — 0y) converges in distribu-

tion to N'(0, VIAV™Y) where V = EVa7(+,00)/2 and A = EV7(+,00)V17(-, 0y)'.

Alternatively, we can approximate the second indicator function in
by kernel smoothing. For the MRC with cross-sectional data, |[Lin and Peng
(2013) and |Zhang et al. (2018) have used smoothing approaches to overcome
the computational challenges posed by the non-smooth objective function.

Here, we consider the kernel-smoothed MRC estimator, which maximizes

M M
1 X, ty, 3(0)} — 1 {X;, t,, B(O
00— S 3OS 1(ra v A 080}~ Xt O]
1<i#j<n u=0 v=0

(2.3)
¢(+) is a continuous kernel function that is monotonically increasing and
satisfies lim,, o ¢(x) = 0 and lim, o ¢(x) = 1. We could use a Gaussian
kernel by setting ¢(x) as the cumulative distribution function (CDF) of a

standard normal distribution, logistic kernel ¢(z) = (1 + e¢~*)~!, or other

functions satisfying the above-mentioned properties. The choice of ¢ showed

8



2.2 Monotonic index models for the global percentile outcomes

minimal impact in our preliminary simulations, thus we adopted the logistic
kernel below. The bandwidth parameter ¢, vanishes as n — oo, and we

discuss the choices of ¢,, in Section [2.5]

2.2 Monotonic index models for the global percentile outcomes

We now adapt our method to handle the global percentile outcome (GPO)
that combines information from K individual outcomes, where K is a finite
integer. The observed outcomes are Yji,,, where ¢ = 1,2, ..., n is the subject
index, k =1,..., K is the outcome index, and m = 0,1,..., M is the visit
index. Without loss of generality, we assume that higher values are worse
for all outcomes. Denote the marginal CDF of the k-th outcome at visit m

as Fim (). We formulate a longitudinal GPO for subject ¢ as:

Pin = 2 AFsn(Vi) + Fon (Vi) -+ Fiem(Yisen)} ,m = 0,1, ., M.
(2.4)
The GPO effectively quantifies the global disease level of the i-th subject
at each visit through compositing the subject’s percentile rank in each in-
dividual outcome. As a percentile-based outcome, it naturally avoids the
issue of skewed distributions and outliers. It also features straightforward

interpretation as a composite percentile with a range of [0, 1]. Specifically,



2.2 Monotonic index models for the global percentile outcomes

higher P;,, reflects larger global disease burden, and worsening P, over m
suggests that subject ¢ progresses faster than the general trend. We shall
focus on the P;,, in below, though it is possible to formulate a weighted
version of GPO by assigning outcome-specific weights, if certain outcomes
are deemed more important than others. When K > 1, the GPO is not
uniformly distributed and also non-Gaussian. Considering its formulation,
the common assumption of linear covariate effect may also be dubious, and
it is desirable to avoid stringent assumptions in the modeling procedure.
When dealing with a single outcome, the model in (2.1) is rather general
and encompasses many commonly used models. In the presence of multi-
ple longitudinal outcomes, the GPO represents an integrated metric that
effectively unifies information from the multiple outcomes. As seen in (2.4),
the GPO becomes a single continuous outcome post-combination, making
it a natural decision for the application of the generalized monotonic index
regression model studied in Section 2.1. We apply this monotonic index
model directly to the GPO, without making any specific assumptions on
the individual outcomes. Notably, we refrain from imposing specific as-
sumptions on the individual longitudinal outcomes, which, in fact, serves
as an advantageous aspect of our proposed method. This global modeling

strategy is similar to the win ratio regression (Mao and Wang, 2021)), where

10



2.2 Monotonic index models for the global percentile outcomes

model assumptions are placed directly on a global rank-based composite,
bypassing model specification for the individual components. In the follow-

ing, we consider modeling the GPO using the monotonic index regression,

Pim = C{M(Xza tm7 /6)7 5im} . (25)

With the unspecified link ((a,b) and error distribution, it relies on mini-
mal assumptions and accommodates a wide range of the covariate-outcome
relationship, including but not limited to a linear transformation model.

Directly modeling the GPO is suitable for settings similar to the mo-
tivating example, where the main interest is on the global disease burden,
rather than detailed disease aspects captured by individual outcomes. In-
deed, when some of the individual outcomes exhibit skewness and non-
normality, ensuring accurate model specification for each individual out-
come becomes challenging. In this case, it is preferable to directly employ
a global regression model through the GPO, rather than constructing K
separate regression models for the individual outcomes. Under this global
model, the relationship between the covariates and each Yjy,, is left unspec-
ified and not required to follow Equation (2.5).

The model readily identifies covariates that affect the global disease bur-

11



2.2 Monotonic index models for the global percentile outcomes

den and/or progression and facilitate straightforward interpretation. The
GPO itself is directly interpretable as the global disease level in the study
population, with a value of 0 corresponding to the best and 1 corresponding
to the worst disease burden. Regarding covariate effects, consider an illus-
trative example when (X, ¢, 3) is specified as Y7, Xu(Bor + Boutm) +
Bitm. A positive (or negative) coefficient [y suggests that a higher value
in this covariate is associated with a heavier (or lower) global disease bur-
den. Moreover, a positive (or negative) coefficient of the covariate by time
interaction (,,; suggests that a higher value in this covariate is indicative
of accelerated (or slower) disease progression relative to the general trend
of progression in the study population. This facilitates the identification of
specific patient subgroups that tend to progress faster over time in global
disease level. For monotonic index models, it is standard practice to fix one
of the components to 1 for identifiability (Sherman, 1993). One may set
this component as a well-acknowledged risk factor for the disease, such as
total UPDRS or age in our motivating example. Following this, the magni-
tude of other coefficients can be easily interpreted as the effect relative to
the reference risk factor. Thus, both the sign and magnitude of the fitted
coefficients are easily interpretable in real applications.

One important distinction between the GPO and a standard outcome

12



2.2 Monotonic index models for the global percentile outcomes

is that the true GPO, P;,, is not directly observable but can be estimated
by 731m =K! Zszl ﬁkm(Yikm), where ﬁkm() is the empirical CDF of Y,,.

We can then estimate the regression coefficients by maximizing

ESPO(O) = ; Z Z Zj(ﬁzm > ﬁjv)[[“{xlatmaﬁ(e)} > U{vatvw@(e)}}?

n(n —1) 1<i#£j<nm=0 v=0

(2.6)

and we denote the maximizer as §p. A kernel-smoothed version can also
be defined accordingly. Similar to the scenario with single outcome, /0\73 is

shown to be consistent and asymptotically normal.

Theorem 2. Under model (2.5) and conditions (C5)-(C11) in the Sup-
plementary Material, we have @p it 0o p and ﬁ(@; — 0y p) converges in

distribution to N'(0, V5 'ApVyt).

The detailed regularity conditions, formal proof, and the definitions
of Vp and Ap can be found in the Supplementary Material 1.2. Deriva-
tions of these theoretical properties need to account for the additional vari-
ability introduced by replacing P;,, with Pim. While the consistency of
573 follows from the uniform convergence of ﬁim to Pim, proof of asymp-
totic normality is challenged by the non-differentiable term I (73,u > 73jv)

in the objective function, which makes it difficult to sort out the addi-

13



2.2 Monotonic index models for the global percentile outcomes

tional variability due to the estimated 73w In the proof, we approxi-
mate I(Py, > 73jv) by kernel smoothing using K, (P — 73jv), where K(-)
is a continuously differentiable monotonically increasing kernel function
satisfying that K(z) > 0, K(z) + K(—z) = 1, lim, ,» K(-) = 1, and
K., (2) = K(z/a,). We further approximate K,, (P, — ,]/D\jv) by its first or-
der approximation, K (Pi, —Pj.) (ﬁw — ﬁjv —Piw+Pjy) + Ko, (Piv — Pjo)-
It can be shown that the difference between the original objective function
and the objective function obtained by the linearization of the indicator
I (732” > ﬁjv) is negligible, in that the resulting estimators have difference
of order op(n~'/2). For the linearized objective function, the conditions re-
quired in Theorem 4 of Sherman (1993) are satisfied, which further implies
the asymptotic normality of ﬁp. The form of the asymptotic covariance
Ap in the Supplementary Material indicates that when replacing P;,, with
'J/J\Z-m, only the pairs with P;, — P;, close to zero contribute to the additional
variation. This is well expected, as for those pairs with |P;, — P;,| distant
from zero, I (73w > ,/P\jy) coincides with I(P;, > P;,) with a high probability.

The proposed method can also accommodate situations where some,

but not all, outcomes are of discrete nature. Assuming, without loss of

P(Yim<2)+P(Yem<z) }

generality, that the ky, outcome is discrete, Fi,,(x) = { 5

can be used in place of the standard CDF in the definition of the true P;,,.

14



2.3 Accounting for missing data due to patient dropout

Similarly, in the estimation procedure, we use Fy,(z) = = i (Yem <

x) + I(Yem < x) + 1} in place of the empirical CDF in the derivation of

Pim. The remaining estimation and inference steps remain unchanged.

2.3 Accounting for missing data due to patient dropout

We next discuss how to handle commonly encountered dropout mechanisms,
namely missing completely at random (MCAR) and missing at random
(MAR). Let n;, € {0,1} indicate whether subject ¢ completed the m-th
visit. Handling dropout under MCAR is straightforward, where we compute

the objective function using only the completed visits as

‘Cn(/B) = ﬁ Z ZZﬁzmva(Ym > Y]v)[{ﬂ(xzatuaﬁ) > M(Xjatvaﬁ>}a

1<i#5<n u=0 v=0

for the scenario with single outcome. This objective can also be used for
the GPO, where we compute . by estimating Fj,,(-) using only the sub-
jects who completed visit m. For the more general dropout mechanism of
MAR, where the missing mechanism can depend on covariates as well as
observed outcomes, we adopt the methods of inverse probability weighting
(IPW) (Molenberghs et al., 2014; Yi and He, 2009) to account for dropout.

Denote Yim = (Yitm, - -, Yigm). We estimate Xiy, = P(im = 1 | Dim—1 =

15



2.3 Accounting for missing data due to patient dropout

L,X:,Yio,.... Y1) and wiy, =[]0, Ay with Ay = 1 under a suitable
parametric or semi-parametric model, such as a logistic regression model.
Denote « as the vector of parameters used in modeling missingness, and a

its estimated counterpart. We propose a weighted objective function:

L.(6,a) = Z Zzwzmmmz” Sk

1<z;éj<nu 0 v=0 ]U

I(Y;u > Yo ) I [11{ X5, tu, B(0)} > p{X;, 1, 8(6)}]

for the scenario of single longitudinal outcome, where w;,, (@) is the model-
based estimation of w;,,. The inverse weights can be included in a similar
manner in the kernel smoothed objective function. Regression of the GPO

requires an additional step, where we adopt the weighted marginal CDF

s ~ _ Nim
Fim(y:a) =n~t I I (Yiem <
k (Z/ ) — wjm(a) (]k _y)

in the calculation of ﬁim. The maximizers of the weighted objective function

~W ~W
for single outcome and GPO are denoted as @ and 6, , respectively.

16



2.3 Accounting for missing data due to patient dropout

For z = (x,y,m), @ € A and 0 € O, define

M M
. um Njv ] .
7(z,0,a) = ugo ;0 e a)]E (wjv(a)l(yu > Y ) I[p(x,t,, 0) > u{X;,t,,8(0)}]
77jv

" wj, (o)

T < Vo) Iln{x, tu. B(O)) < M{Xptv,ﬁ(g)}]) |

and V(a) = EVar(+, 0, )/2, where w(X,y,t,, a) is the value of w,(«)
when X; = x and (Yj,..., Y;») =y. Under the scenario with only single

outcome, we establish the following theorem.

Theorem 3. Under model (2.1)), conditions (C1)-(C3) and (C12)-(C15) in
the Supplementary Material, we have EW =i 0y, and \/E(EW—OO) converges

in distribution to N{0,V (ag) A(ew)V (o) ™'}, where
A((10) = E{VIT('a 007 aO) + ]EvavlT('v 007 aO)K(')}@Qa

and k(-) is the influence function of a.

The uniform convergence of w;,, (&) ensures the uniform convergence of

~ . N1%
L,(0,a), and thus guarantees the consistency of @ . Next, let P, denote

the average over the observed data. For asymptotic normality, the key step

17



2.3 Accounting for missing data due to patient dropout

is to show that

£.(0,0) — Lo(0p, ) — % 0 — 007 V() (0 — 6,)

1

7 (0 —00)" W,(cx) +o0p (|6 — 0] +0p (n7'),

uniformly over Op(1/4/n) neighbourhoods of (6, ), where

Wola) = /nP,Vi7(-, 0, )

- \/EPTLVIT(') 007 a()) + EVQVIT('J 007 aO)\/ﬁ(a - aO) + OP(l)a

It follows that

£,(6,8)~ £,(60,8) = (000" V(@)(0— 00+

(0 —80)" W, (&) +o0p (]|0 — 0]°) +op(n),

3

n

(2.7)

uniformly over op(1) neighbourhoods of 8,. The normality result then
follows from ([2.7)), the consistency of V(&) to V(ay), asymptotic normality
of W, (&) and Theorem 4 of Sherman (1993). Finally, we can combine all of

the techniques used in the proof of Theorems 3 and 4 to show the asymptotic

18



2.4 Variance estimation

~W
properties of 8, under the GPO setting with dropout, as stated in Theorem
4 below. Formal proofs of Theorems 3-4 are detailed in the Supplementary

Material 1.3-1.4, together with the detailed forms of Ap(a) and Vp(av).

Theorem 4. Under model (2.5), conditions (C5)-(C7), (C12)-(C14) and
(C16)-(C19) in the Supplementary Material, we have 572/ ER 0op, and

\/5(572/—00773) converges in distribution to N'{0, Vp(ao) ' Ap(an)Vp(aw) '}

2.4 Variance estimation

Variance estimation for 8 are important for making inferences about the
regression coefficients. However, several unknown quantities are involved in
the asymptotic variance-covariance matrix of 5, preventing direct variance
estimation according to the variance formula. A perturbation-resampling
method (Jin et al., 2001} (Cai et al., 2005) could be adopted instead. We
illustrate the procedure for GPO under MAR below, and similar steps could
be carried out for the kernel-smoothed estimators and for the scenario with
only single longitudinal outcome.

Our perturbation scheme is designed to account for the variability in
all components of the estimation procedure. Specifically, let {V;}I; be
n ii.d. positive random variables with unit mean and variance, such as

Vi ~ Exp(1). We start from the inverse probability weights for missing

19



2.4 Variance estimation

data. When logistic regression is used for modeling the missing mecha-
nism, for example, we could use V; as subject-specific weight in R function
glm, and the resulting parameter estimates & render perturbed inverse
probability weights w;,,(a&*). To account for the variability in the esti-
mated GPO, we calculate Pz, = K325 Fr (Yigm), where Fy, (y) =
= Vinim I (Yikm < y)/wjm(@") using the same set of {V;}i_,. Fi-

nally, we construct

,CGPO*(O) _ ; i i/[: ‘/;‘/;nzmnjv [1(7’5* > 7’5% ) «
! n(n—1) 1<ij<nm=0 v=0 Wim (0" )wju (@) . “

I{M(Xi;tmae) < N(Xjutvv 0)}}7

and denote its maximizer as 0 . Following the same lines as the proof of
Theorems 1-4, it can be shown that \/ﬁ(/é* —00) =n"V23" Vi +0,(1),
where ¢; is the influence function of 6. T hus, the conditional distribution
of @ given the observed data has the same asymptotic distribution as the
unconditional distribution of 8. In practice, we repeat the above process
for B times, where B is a predetermined large number such as 200 or 400.
A sample covariance matrix of ® can be used as an estimator for the

asymptotic covariance matrix of 6.

20



2.5 Numerical procedures

2.5 Numerical procedures

To maximize the objective functions, it is beneficial to supply good initial
values in the optimization. We generate multiple (e.g., five) initial values
for each dataset to protect against local minima. We design a procedure to
effectively obtain multiple sets of good initial values. Following |Clémencon

et al. (2008), we adopt a convexified objective function,

CO) = s D D0 Do v lmsen(¥— Vi) (0K 0) — (X1, 0)}.

1<i#j<n u=0 v=0

where 9(+) is a monotonically increasing convex function satisfying 1(0) = 1
and ¢ (x) > I(x > 0). The minimizer of C,(3;1) can be used as the initial
values after standardization (i.e., dividing each of its component by the first
component). For each initial value, we minimize C, (0;1)) over a subsample
(with replacement) of m subjects from the original data. In our simulation,
we found that this mechanism consistently produced good initial values with
the choice of ¢(x) = e” and m = |3n'/?], where | z| is the maximum integer
that does not exceed x. This specific choice costs minimal computation time
at the order of O(n) and was used throughout our numerical studies. For
the GPO setting, we only need to replace sgn(Y;, — Yj,) in C,(0;%) with

~

sgn(Piy, — 73j ). When the data are MAR, inverse probability weighting

21



is incorporated in computing C,(0;1). We fed these initial values to the
Nelder-Mead algorithm to maximize IC,,(€; ¢) and retained the solution with
the highest objective function. The bandwidth parameter ¢, was set to
0.125n~'/36 in our simulations, where & was the sample standard error of
1{X;,0,8(0¢)} with O¢ being the minimizer of the convexified objective

function computed on the full dataset.

3. Simulation study

3.1 Simulations setups

We conducted extensive simulations to examine the numerical performance
of the proposed estimator. For each setup, we implemented the proposed
method on 2000 simulated datasets, with sample sizes of n = 200 and 400.
We conducted B = 400 perturbations for each dataset and obtained 95%
percentile intervals. For the purpose of comparison, we implemented the
GEE (Hgjsgaard et al., 2006) with an identity link and working indepen-
dence correlation structure under setups S1-S3 below. We fix the first argu-
ment of the estimators in both models to 1, and we compute the standard

error of rescaled estimators from the GEE model using the delta method.

22



3.1 Simulations setups

3.1.1 Setups with single outcome

We considered p = 3 covariates, where X;; ~ N(0,1), X;2 ~ Bernoulli(0.5)
and X3 ~ Unif(0,1). There were three visits indexed by m = 0 (baseline),
1, and 2. We considered the following three setups regarding the relation-

ship between outcome and covariates:
Setup S1. Yim = M(Xza m?ﬂ) + €imsy Eim ™~ N(O, 02)7

Setup S2. Y, = Hi {u(Xs,m, B) + €im }, Hi(x) = x/(1 + |x|), and €, ~

N(0,0.16),
Setup S3. Y, = exp [{u(X;,m, B) + 6} /2.5] X €im, €im ~ Unif(0.2,0.6),

where u(X;,m,B) = Xa{Bio + Biml(m > 0)} + Xpo{Bao + BomI(m >
0) } 4 Xi3{ B30+ BamI(m > 0)}+5ym, m = 0,1, 2. For all the setups, the error
terms (g0, €41, €:2) followed the Frank copula (Nelsen, 2007) with parameter
6 = 5.72. We set the true value for B = (510, 820, B30, B11, Ba1, P31, B2, Baz, P32, Br)’
as (1,0,0.5,—0.2,—0.5,0.6, —0.2, —0.5,1.1,0.5)". The outcome model in S1
featured a linear relationship between the risk score u(X;, m,3) and out-
come, for which the GEE model was correctly specified. True models under
S2 and S3 were more complicated than a linear model, and the outcome was
nonlinear in the risk score p(X;, m,3). The error terms &, were additive

in Model S2 and multiplicative in Model S3. The latter two settings were
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3.1 Simulations setups

chosen to demonstrate the versatility of the proposed regression procedures
under various covariate-outcome relationships.

We next incorporated missing data in these setups, by setting 1,0 = 1
for the baseline visit and generating the missing indicators 7;,, from the

following logistic regression model for m =1, 2:

logit {P(Mim=1|Mim-1 = 1, Yim-1, Xi)} = ap+on Xir+aXip+as Xis+asYim_1.

We set a = (1.4, —-0.5,0,0.5,—0.5)" for setup S1, a = (1,0,0,0.5, —0.5)" for
setup S2, and a = (1.5,0.5,0,0.5, —0.1)" for setup S3. The missing rates

were around 23% for visit 1 and 38% for visit 2 under all three setups.

3.1.2 Setups for the global percentile outcomes

We generated three covariates, where X;3 ~ N (0,0.5), X;2 ~ Bernoulli(0.5)
and X;3 ~ N(0,0.5). There were 3 visits, and there were 4 individual
outcomes denoted as Yji,, Yiom, Yizm, Yiam, m = 0,1,2. The marginal
distributions of Y3, ..., Yy were N'(0,1), Exp(1), ¢t(df = 3), and Unif(—1,1),

respectively. The following two setups were considered for GPO:
Setup S4. Pim = H2 {M(Xzamaﬁ) + 5im}> Eim ™ EXP(l/\/g),

Setup S5. Pj,, = Hj [exp{u(Xi, m, B)}eim], €im ~ Unif(0.2,0.6),
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3.2  Simulation results

where Hy(-) and H3(-) are monotonically increasing functions, u(X;, m, 3) =
Xia{Bro + BimI(m > 0)} + Xio{B20 + BamI(m > 0)} + Xiz{ B0 + Bam I (m >
0)}+ fym, m = 0,1,2, and error terms (g0, €1, €52) followed the Frank cop-
ula model with parameter 5.72. True 3, = (1,—-1,1.5,0.3,0,—0.25,0.5,0, —0.5,0)".

We incorporated missing data by generating 7;,,, m = 1, 2, from

logit {P(Mim=1 | Mim—1 =1, Yim-1,Xi)} = ap + ax1X;1 +axa X,

+oaxsXiz+oay1Yim-11+ayaYim-12+aysYim_13+ ayaYim_ia4,

where (ag, ax1, axa, x3, Oy, Qye, Qys, ayy) = (1.4,-0.5,0,0.5,0,0,0,0.1).
This yielded around 20% missingness at visit 1 and about 36% missingness

at visit 2 under both setups.

3.2 Simulation results

For the setups with single longitudinal outcome, Figure [1| summarizes the
parameter estimation results under Setup S1-S3, with and without missing
data. The corresponding summary tables are in Tables S1-S2 in the Supple-
mentary Materials. The proposed estimator showed negligible biases, and
the empirical bias shrinks when sample size increases. The empirical stan-

—-1/2

dard deviation (ESD) decreases with sample size roughly at the n rate,

which agrees with our theoretical results. When missingness is present, our
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3.2  Simulation results

estimator has bias similar to the complete data case. The ESDs and ASEs
were slightly larger when compared to their counterparts under complete
data. The average standard error (ASE) based on perturbation resampling
provides good approximation to the ESD, and the empirical coverage prob-
ability (ECP) of 95% confidence intervals is close to the nominal level, with
improving performance as sample size increases.

Table |1 compares our method on complete data with the GEE method
assuming an identity link for n = 200, and the corresponding summary table
for n = 400 are presented in Tables S3 in the Supplementary Material. As
expected, under Setup S1, the GEE was correctly specified and provided
unbiased estimation of 3. Our estimator had larger ESDs than the GEE
estimator, as we posed weaker model assumptions and only utilized the
rank information from the outcomes. Under Setups S2-S3, where the GEE
model was mis-specified, the GEE estimator could be severely biased with
empirical coverage probability reaching 0 for some coefficients. The ESD of
the two estimators are comparable to each other under Setups S2-S3.

Figure [2| summarizes the results with the longitudinal GPO under Se-
tups 4 and 5, and the corresponding summary tables are presented in Tables
S4-S5 in the Supplementary Material. Additionally, Supplemental Table S6

presents the simulation results under a modified Setup 4, where one of the
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3.2  Simulation results
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3.2  Simulation results

individual outcomes was dichotomized to be binary. Under all these GPO
scenarios, the patterns were quite similar to those observed for the single
longitudinal outcome scenario, and the empirical bias was negligible in all
setups considered. Again, the proposed rank estimator performed satisfac-
torily for both the additive-effect scenario (Setup S4) and the multiplicative-
effect scenario (Setup S5). The empirical coverage rates were all close to
the nominal level of 95% . Though the GPO were estimated rather than
observed, the ASE continued to provide a satisfactory estimate for ESD.
Indeed, the impacts of estimated GPO and missing weights on the ESD
were quite small empirically, as shown in Supplemental Table S7, though
theoretically they lead to additional components in the variance formula.
Supplemental Table S8 displays the simulation results with B = 200, 400,
and 600 under Setup S4. The results demonstrate that the ASE and C95 are
comparable for all values of B, suggesting that the results are relatively ro-
bust to the choice of B, as long as B is sufficiently large. We also conducted
sensitivity studies to investigate the impact of using a mis-specified probit
regression model to estimate the missing weights, while the true mechanism
follows the aforementioned logistic regression model. The results, as shown
in Supplemental Table S9, remain satisfactory, indicating that our proposed

methods are relatively insensitive to the choice of weighting scheme model.
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3.2  Simulation results

Taken together, these simulation results demonstrate the robustness of
our methods in the presence of various outcome distributions, link functions,

and covariate effect mechanisms.
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Figure 1: Performance of the proposed method for single longitudinal out-
come under Setups S1-S3. The points in the figures denote the average
bias over 2000 repetitions and the error bars correspond to the empirical
standard deviation.
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Figure 2: Performance of the proposed method for longitudinal GPO formed
by the four individual outcomes under Setups S4-S5. The points in the
figures denote the average bias over 2000 repetitions and the error bars
correspond to the empirical standard deviation of the bias.
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4. Real data analysis

We applied the proposed methods to the data from NET-PD LS-1 study
(Kieburtz et al., 2015). The study was a multi-center, double-blind, placebo-
controlled, 1:1 randomized efficacy trial, with the objective to determine
whether creatine monohydrate was effective in slowing the progression of
long-term clinical decline among 1741 patients with early and treated PD.
In the analysis here, we are interested in examining risk factors associated
with the global disease burden and/or the progression of PD. Consider-
ing that PD is a multi-factorial disease, we follow |[Kieburtz et al. (2015)
and capture the global disease burden using five individual outcomes, in-
cluding the Modified Schwab and England Activities of Daily Living Scale
(ADL), 39-item Parkinson’s Disease Questionnaire Summary Index (PDQ-
39), UPDRS questions related to ambulatory capacity (AC), Symbol Digit
Modalities (SDM) test, and the Modified Rankin Scale (mRS) measured at
baseline and at yearly follow-up visits. ADL and SDM were reversely coded,
such that higher values are worse for all outcomes. These measures collec-
tively capture patient’s motor, cognitive and behavioral disability (Elm and
Investigators, 2012). Participants were randomized to placebo or creatine
and were projected to follow up for a minimum of 5 years. The study was

terminated early based on an interim analysis, where the two-sample global
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rank-sum test yielded a 2-sided p-value of 0.45, indicating that there was
limited significant evidence that creatine monohydrate could improve clini-
cal outcomes. In our analytic dataset, the median and maximum follow-up
years were 4 and 6 years, respectively. The missing rates at year 1 to 6
were 7.8%, 13.7%, 20.2%, 39.8%, 61.2% and 82.6%. The missing mecha-
nism was deemed to satisfy the MAR, as the main reason of a missed visit
was administrative and due to study termination.

We applied the proposed method to the longitudinal GPO formed by
the five outcomes. We considered as covariates a comprehensive set of base-
line risk factors, time (in years), as well as the interaction between these
baseline factors and time if significant. Under this model, the main effect
of a covariate corresponds to its association with the level of the global dis-
ease burden during the follow-up. In addition, a positive interaction with
time would imply a higher rate of progression in terms of the global per-
centile, such that patients with higher values in this baseline factor tend to
have worsening global percentile/ranks. Following Bega et al. (2015)) and
based on our preliminary analyses, we included the following covariates
measured at baseline: age at symptom onset (Onset Age), treatment arm
(creatine vs. placebo), Beck Depression Inventory (BDI) score, EuroQOL-

5D (EQ-5) score, Levodopa equivalent dose (LED), predominant PD symp-
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tom type (postural-instability gait predominant [PIGD] subtype vs other),
Race (non-Hispanic white vs others), Scales for Outcomes of Parkinson’s
Disease Cognition (SCOPA-COG) score, Total Functional Capacity (TFC)
score, and total UPDRS score. We also identified significant interactions
with follow-up time (¢) for Onset Age and Race. All continuous variables
except follow-up time were centered at the mean, and we scaled the con-
tinuous variables using meaningful units, e.g., per 10 years for Onset Age,
see Table 1. The missingness was modeled by logistic regression, where
the following variables were included based on clinical insights and model
selection: follow up time, duration of diagnosis at time of study entry, On-
set Age, income, LED, and AC and SDM in the previous year. For the
purpose of comparison, we also fitted a weighted GEE model with indepen-
dent working correlation structure using the geeglm function in R from the
geepack package. In our analysis, the coefficient for total UPDRS score
were fixed to 1 under both our method and the weighted GEE model. The
standard errors were computed from 400 perturbations.

Table 1 summarizes the results from the two methods, which are con-
sistent for most of the risk factors. As expected, the study treatment cre-
atine showed no significant effect, which is consistent with the primary

conclusion of the trial based on a two-sample test of the global rank-sum.
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The PIGD subtype, lower SCOPA-COG, TFC, EQ-5, and higher BDI to-
tal score, were explanatory of worse global disease burden during the study
follow-up. While LED was insignificant in our model, it was associated with
worse disease burden under the GEE. Considering that levodopa is the main
medication for management of PD symptoms, the significance of LED un-
der GEE may be an artifact of confounding or model misspecification. In
terms of risk factors for accelerated disease progression, the time-varying
effect of Onset Age and Race were identified in both models. Specifically,
patients with older onset age tend to have faster progression. Though PD is
most prevalent among the non-Hispanic White, our analysis suggests that
patients from other racial and ethnicity groups tend to experience faster
progression, in that they would have worsening global percentile relative to
the study population as time elapses. Our method led to a much larger
coefficient for the race by time interaction when compared to the GEE,
suggesting a larger racial disparity in terms of the rate of global disease
progression. Our results are insensitive to the range and scale change over
time for the outcome variables, and our modeling procedure thus provides

robust insights into the progression global PD status.
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Table 2: Analysis of the NET-PD LS-1 data.

MRC weighted GEE
Risk factor Estimate SE  P-value Estimate SE  P-value
Onset Age (per 10 years) 0.200 0.135  0.137 0.252 0.070  0.000
PIGD subtype 1.031 0.230  0.000 0.924 0.165  0.000
Race (non-Hispanic White)  -0.034  0.458  0.941 0.011 0.208  0.956
LED (per 1000 units) 0.318 0.449  0.478 1.024 0.275  0.000
BDI 0.141 0.029  0.000 0.088 0.017  0.000
EQ-5 (per 0.1 unit) -0.442 0.097  0.000 -0.310 0.057  0.000
SCOPA-COG -0.114 0.024  0.000 -0.099 0.016  0.000
TFC -0.637 0.131  0.000 -0.422 0.080  0.000
Creatine 0.106 0.206  0.608 0.039 0.135  0.774
Time () 0.434 0.195 0.026 0.272 0.108  0.012
Onset Age X t 0.209 0.048  0.000 0.165 0.032  0.000
Race x t -0.481 0.203  0.018 -0.242 0.111  0.029

The coefficient for baseline total UPDRS score (per 10 units) were fixed to 1.

5. Discussion

In this paper, we proposed rank regression strategies for univariate longitu-
dinal outcomes and longitudinal global percentile outcomes. Our method
requires minimal assumptions and allows for a broad range of relationships
between covariates and the longitudinal outcome, thereby offering robust
estimation of the regression coefficients. We established consistency and
asymptotic normality of our proposed estimators. For univariate longitu-
dinal outcome subject to missing at random, we demonstrated that the
proposed estimator is asymptotically normal, provided that the estimator

of the missing data model has asymptotic normality. Under the longitudinal
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global percentile outcome setting, the non-differentiable term [ (7/5w > ﬁjy)
poses an additional challenge to the theoretical justification. We overcome
this difficulty by approximating the indicator function with a smooth func-
tion and then prove that this approximation does not affect the asymptotic
properties of the proposed estimator. Our methods perform satisfactorily
under various simulation studies and are readily applicable to many longi-
tudinal studies.

In this work, we have focused on longitudinal data with pre-planned
follow-up times. When the follow-up times are irregular, it would be diffi-
cult to estimate the GPO directly using the empirical CDF. However, this
difficulty could be resolved by first estimating a time-specific marginal CDF
using kernel smoothing, borrowing information from patients with similar
visit times. Next, our method can be extended to the high-dimensional
setting by incorporating suitable penalization terms. Finally, we have fo-
cused on the regression coefficients in this paper, but it may be desirable to
also estimate the unspecified link function. These directions are beyond the

scope of the current work, but they will be investigated in future research.
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